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ABSTRACT 
Many available techniques for time series modeling assume linear relationship among 
variables. However in some situations, variations in data do not exhibit simple 
regularities and are difficult to model accurately. Linear relationship and their 
arrangements for describing the behaviour of such data are often found to be inadequate. 
Since many real life data are nonlinear, there is need to investigate which models can best 
captured data that are linear as well as those that are nonlinear. This paper examined the 
performances of the following nonlinear time series model: Self Exiting Threshold 
Autoregressive (SETAR), Smooth Transition Autoregressive (STAR) and Logistic 
Smooth Transition Autoregressive (LSTAR) models in fitting general classes of linear 
and nonlinear autoregressive cases at different sample sizes. The relative performances of 
the models were examined, within the context of stationarity, and compared with linear 
Autoregressive (AR). The LSTAR was the best as sample size was increased for different 
nonlinear autoregressive functions except in polynomial function where SETAR models 
out-performed others. The performances of the four fitted models increased when sample 
size was increased. Finally, we demonstrated the application of the models stated earlier 
on data of monthly rainfall in Nigeria between 1973-2013. SETAR model fitted best to 
the Rainfall data and LSTAR was the best when the data was transformed to nonlinear. 
 
Keywords: SETAR, STAR, LSTAR, AIC, MSE 
 
1. Introduction 
A time series is a sequence of data points, measured typically at successive points at 
uniform time intervals. Time series data is an array of time and numbers. Data obtained 
from observations collected sequentially over time are extremely common. In business, 
we observe weekly interest rates, daily closing stock prices, monthly price indices, yearly 
sales figures, and so forth. In meteorology, we observe daily high and low temperatures, 
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annual precipitation and hourly wind speeds. In agriculture, we record annual figures for 
crop and livestock production, soilerosion, and export sales. In the biological sciences, 
we observe the electrical activity of the heart at millisecond intervals. In ecology, we 
record the abundance of an animal species. The list of areas in which time series are 
studied is virtually endless. The purpose of time series analysis is generally of twofold: to 
understand or model the stochastic mechanism that gives rise to an observed series and to 
predict or forecast the future values of a series based on the history of that series and, 
possibly, other related series or factors. 

Traditional time series analysis is based on assumptions of linearity and stationarity. 
However, there has been a growing interest in studying nonlinear and nonstationary time 
series models in many practical problems. The first and the simplest reason for this is that 
many real world problems do not satisfy the assumptions of linearity and/or stationarity. 
For example, the financial markets are one of the areas where there is a greater need to 
explain behaviours that are far from being even approximately linear. Therefore, the need 
for the further development of the theory and applications for nonlinear models is 
essential. 

In general time series analysis, it is known that there are a large number of nonlinear 
features such as cycles, asymmetries, bursts, jumps, chaos, thresholds, heteroskedasticity 
etc. Types of models that can be cast into this form have been presented in my last 
seminar. See also Tong (1990), Granger and Ter¨asvirta (1993) and Franse, and van Dijk 
(2000) and Tsay(2010). Kim and Nelson (1999) provides a comprehensive account of 
different Markov switching models that have been used in economic and financial 
research.  

In this study, we considered some linear and nonlinear time series models and 
investigate the performance of these models in fitting linear, trigonometry, exponential 
and polynomial forms of autoregressive function. The goodness of fit for each model 
with information criteria was considered in detail. A simulation study was carried out to 
verify the finite sample properties of the models for stationary data. The relative 
performance of each model were examined based on mean square error (MSE) and  
AIkaike Information Criteria (AIC). 

 
1.1.  Self-exciting threshold autoregressive (SETAR) model 
The Threshold Autoregressive model can be considered as an extension of autoregressive 
models, allowing for the parameters changing in the model according to the value of an 
exogenous threshold variable St-d. If it is substituted by the past value of which means St-d 
= Yt-d then we call it Self-Exciting Threshold Autoregressive model (SETAR). Some 
simple cases that are considered in this study are shown as follows: 
TAR Model 
 

�� = �∅�� + ∅��	�
� + ∅��	�
� + ������
� ≤ �
∅�� + ∅��	�
� + ∅��	�
� + ������
� > ��                                                              (5) 

 
SETAR Model 

�� = �∅�� + ∅��	�
� + ∅��	�
� + ����	�
� ≤ �
∅�� + ∅��	�
� + ∅��	�
� + ����	�
� > ��                                                               (6) 
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where d is the delay parameter and r is threshold value , triggering the changes between 
two different regimes. These models can be applied to the time series data which has a 
regime switching behavior  The threshold parameters satisfy the innovation within the ith 
regime ���is a sequence of identically independent normal random variables with zero 
mean and constant variance��� < ∞( = 1, 2. ). The overall process Yt, is non-linear when 
there are at least two regimes with different linear models. The simplest class of TAR 
models is the Self Exciting Threshold Autoregressive (SETAR) models of order p 
introduced by Tong(1983) and specified to order 2 by equation 3 in this work. The 
popularity of SETAR models is due to their being relatively simple to specify, estimate, 
and interpret as compared to many other nonlinear time series models.  
 
1.2.  Smooth transition AR (STAR) model 
A criticism of the SETAR model is that its conditional mean equation is not continuous. 
The thresholds (rj) are the discontinuity points of the conditional mean function µt. In 
response to this criticism, smooth TAR models have been proposed; see Chan and Tong 
(1986) and Ter¨asvirta (1994) and the references therein. A time series Yt follows a 2-
regime STAR(p)model of the form 

	� = �� + ∑ ∅�.�	�
� +  !"#$%
∆' ( (�� + ∑ ∅�.�	�
�)�*�)�*� ) + ��                                     (7) 

Where d is the delay parameter ∆and s are parameters representing the location and scale 
of model transition, and F(·) is a smooth transition function. In practice, F(·) often 
assumes one of three forms—namely, logistic, exponential, or a cumulative distribution 
function. The conditional mean of a STAR model is a weighted linear combination 
between the following two equations: 

+�� = �� +,∅�.�	�
�
)

�*�
 

+�� = (�� + ��) +,(∅�.� + ∅�.�)	�
�
)

�*�
 

The weights are determined in a continuous manner by F[(
"#$%
∆

' ]. The prior two 

equations above also determine properties of a STAR model. For instance, a prerequisite 
for the stationary of a STAR model is that all zeros of both AR polynomials are outside 
the unit circle. An advantage of the STAR model over the TAR model is that the 
conditional mean function is differentiable. However, experience shows that the 
transition parameters ∆and s of a STAR model are hard to estimate. In particular, most 
empirical studies show that standard errors of the estimates of ∆ and s are often quite 
large, resulting in t ratios of about 1.0; see Terasvirta (1994). This uncertainty leads to 
various complications in interpreting an estimated STAR model. 
 
 



 

1.3.  Logistic smooth transition AR (LSTAR) m
A more general model of a 
(LSTAR(P) model) is: 

	� =  (-, �; 	�
�� � �1

The coefficient γ, γ � 0
parameter and d is known as the 
transition variable for some d > 0 in 

The main aim of this study, therefore, is to suggest simple linear and nonlinear 
models stated earlier that can be fitted to data generated from general classes of linear 
and nonlinear second order autoregressive model. Its perform
was evaluated by simulation.

2. Materials and methods
Simulation studies were conducted to investigate the performance of autoregressive, self 
exciting threshold autoregressive, Smooth transition autoregressive models and logistic 
Smooth transition autoregressive models for fitting different general classes o
nonlinear autoregressive time series earlier stated. Effect of sample size and the 
stationarity of the models were examined on each of the general linear and nonlinear data 
simulated. Each model is subjected to 1000 replication simulation at d
sizes for stationary data structure. 
 
2.1. Criteria for assessment of the study
The goodness of fit for each model was assessed using commo
series, mean square error and AIC. The model with lowest criteria is the best among the 
models for the simulated data.  
 
Alkaike Information Criteria
There are several information criteria available to determine the best model of auto 
regressive process. All of th
Akaike information criterion 

AIC � 3

where the likelihood function is evaluated at the maximum
the sample size.  
 
Mean Squared Error 
The mean squared error 
"errors", that is, the difference between t
vector of estimated series, and 
MSE  
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transition AR (LSTAR) model 
A more general model of a logistic smooth transition autoregressive model 

� �45 3 6-�	�
� 3 7�8�

�                                                        

0 is the smoothness parameter and the scalar c is the location 
parameter and d is known as the delay parameter, the variable Y:
; is then called the 

for some d > 0 in model. 
The main aim of this study, therefore, is to suggest simple linear and nonlinear 

models stated earlier that can be fitted to data generated from general classes of linear 
and nonlinear second order autoregressive model. Its performance in finite sample cases 
was evaluated by simulation. 

ethods 
Simulation studies were conducted to investigate the performance of autoregressive, self 
exciting threshold autoregressive, Smooth transition autoregressive models and logistic 
Smooth transition autoregressive models for fitting different general classes o
nonlinear autoregressive time series earlier stated. Effect of sample size and the 
stationarity of the models were examined on each of the general linear and nonlinear data 
simulated. Each model is subjected to 1000 replication simulation at d
sizes for stationary data structure.  

ia for assessment of the study 
The goodness of fit for each model was assessed using common two criteria in time 

ean square error and AIC. The model with lowest criteria is the best among the 
models for the simulated data.   

Alkaike Information Criteria 
There are several information criteria available to determine the best model of auto 
regressive process. All of them are likelihood based. For example, the well

information criterion (AIC) (Akaike, 1973 cited by Tsay, 2010) is defined as

3
2

n
ln	�likelihood� �

2

n
�number	of	parameters�

where the likelihood function is evaluated at the maximum-likelihood estimates and 

 (MSE) of an estimator measures the average of the squares of the 
"errors", that is, the difference between the estimator and what is estimated. If 
vector of estimated series, and Y is the vector of the true values, then the (estimated) 

 

logistic smooth transition autoregressive model of order p 

                                                        (8) 

and the scalar c is the location 
is then called the 

The main aim of this study, therefore, is to suggest simple linear and nonlinear 
models stated earlier that can be fitted to data generated from general classes of linear 

ance in finite sample cases 

Simulation studies were conducted to investigate the performance of autoregressive, self 
exciting threshold autoregressive, Smooth transition autoregressive models and logistic 
Smooth transition autoregressive models for fitting different general classes of linear and 
nonlinear autoregressive time series earlier stated. Effect of sample size and the 
stationarity of the models were examined on each of the general linear and nonlinear data 
simulated. Each model is subjected to 1000 replication simulation at different sample 

n two criteria in time 
ean square error and AIC. The model with lowest criteria is the best among the 

There are several information criteria available to determine the best model of auto 
em are likelihood based. For example, the well-known 

(AIC) (Akaike, 1973 cited by Tsay, 2010) is defined as 

� 

likelihood estimates and nis 

) of an estimator measures the average of the squares of the 
he estimator and what is estimated. If 	N is a 

is the vector of the true values, then the (estimated) 
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2.2. Selection rule 
We computes MSE, Residual Variance, AIC and MAPE for n=50, 70, 100, 130, 150, 
180, 200, 250, 300 and 400 for each case model, and select the model that hasthe 
minimum criteria values as the best. Note that only second order of autoregressive were 
considered in each case and situation. 
 
2.3.  Models selected for simulation 
Data is generated from several linear and nonlinear second orders of general classes of 
autoregressive models as given below: 
Data is generated from several linear and nonlinear second orders of general classes of 
autoregressive models given below: 
Model 1.AR(2): 	�� � 0.3	��
� − 0.6	��
� + �� 
Model 2.TR(2): Yti = 0.3sin(	��
�) - 0.6cos(	��
�)+ et 

Model 3:EX(2): Yti = 0.3	��
�+ exp(-0.6	��
�) + et 

Model 4: PL(2):  Yt = 0.3	�
�� − 0.6	�
� + �� 
	��~R(0,1)and��� 	~R(0,1)	for	stationary	series	and		��~R(2000,20) 

and���~R(1000,10), 
T = 1,2, …50, 150	WX7	300.  = 1,2, … , 1000 

The model 1, 2, 3 and 4 are linear, trigonometry, exponential and polynomial 
autoregressive functions respectively with coefficients of Yt-1 being 0.3 and Yt-2 being -
0.6. Simulation studies were conducted to investigate the performance of self exciting 
threshold autoregressive, Smooth transition autoregressive models and logistic Smooth 
transition autoregressive models for fitting different general classes of linear and 
nonlinear autoregressive time series stated above. Effect of sample size and the 
stationarity of the models were examined on each of the general linear and nonlinear data 
simulated.  

Note that in autoregressive modeling, the innovation (error), et process is often 
specified as independent and identically normally distributed. The normal error 
assumption implies that the stationary time series is also a normal process; that is, any 
finite set of time series observations are jointly normal. For example, the pair (Y1,Y2) has 
a bivariate normal distribution and so does any pair of Y’s; the triple (Y1,Y2,Y3) has a 
trivariate normal distribution and so does any triple of Y’s, and so forth. Indeed, this is 
one of the basic assumptions of stationary data. However, in this study, the data will be 
generated under white noise assumption of stationarity and when the stationarity 
assumption is violated for order of past responses and random error terms to see behavior 
of the models in each case. 1000 replications were used to stabilize models estimations at 
different combinations of sample size (n) and models. The white noise assumption of the 
error term was also observed to make the data simulated be stationary. Data simulated 
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were fitted to each of the model as shown in the goodness of fit model in table 1-4. Each 
of the created data were replicated 1000 times using tsDyn Package in R software. 

 
3. Data analysis 
The performances of the fitted models on the basis of the two criteria of assessment were 
displayed in table 1-4 as follows: 
 

Table 1. Performances of the Fitted Models on the Basis of Mean Square Error 
and AIC Criteria for model 1: AR(2): 	�� � 0.3	��
� 3 0.6	��
� � �� 

Sample 
Size(n) 

MSE AIC 
AR SETAR STAR LSTAR AR SETAR STAR LSTAR 

50 1.0034 1.0704 1.0950 1.1162 1.2435 2.2551 14.9486 15.3815 
80 1.0007 1.0632 1.0743 1.0769 1.0823 1.7752 10.3405 15.4199 
100 0.9781 0.9482 0.9844 1.0341 0.6519 0.5120 5.3006 13.4578 
130 0.9000 

0.9326 0.9128 
1.0160 -

1.9453 
0.0118 -0.3022 13.1352 

150 0.8841 
0.9265 0.9036 

1.0067 -
2.0358 

-0.1791 -1.5080 12.5703 

180 0.8378 
0.9124 0.9223 

1.0010 -
3.0098 

-0.3771 -1.6924 11.2028 

200 0.8316 
0.9021 0.8507 

0.8999 -
3.5045 

-0.4642 -2.3415 9.0534 

250 0.8127 
0.8788 0.8568 

0.8820 -
4.0992 

-0.7922 -3.1600 8.6308 

300 0.8108 
0.8502 0.8299 

0.8439 -
4.1467 

-0.8058 -3.6287 8.5844 

400 0.8076 
0.7704 0.8081 

0.8238 -
5.1515 

-1.0361 -4.9978 2.4269 
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Figure 1(a). MSEof the Fitted Models on Model 1 
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Table 1 shows the goodness of fit test for the four models to model 1 with the average 
values of mean square error and AIC of 1000 replication simulated from each model at 
various sample sizes. The results obtained were plotted on the graphs as shown in figure 
1a and 1b respectively. The best fit to model 1 is AR based on both MSE and AIC 
followed by STAR model. However, with increase in sample size the performance of the 
four fitted models increase. 
 
Table 2. Performances of the Fitted Models on the Basis of Mean Square Error and AIC 
Criteria for model 2: TR(2): Yti = 0.3sin(	��
�) - 0.6cos(	��
�)+ et 

Sampl
e 

Size(n) 

MSE AIC 
AR SETA

R 
STAR LSTA

R 
AR SETA

R 
STAR LSTA

R 
50 1.877

8 
1.0856 1.255

5 
1.1032 39.334

7 
25.192
6 

34.950
4 

27.711
2 

80 1.287
8 

1.0419 1.197
9 

1.1038 32.015
2 

22.159
9 

25.879
2 

25.023
2 

100 1.241
0 

1.0201 1.032
2 

1.1032 24.577
8 

17.896
3 

20.004
4 

19.615
9 

130 1.121
3 

1.0013 1.025
3 

1.0252 20.772
5 

13.675
2 

16.361
2 

14.360
9 

150 1.094
2 

0.9954 1.019
5 

0.9935 20.594
6 

11.973
6 

12.737
3 

12.814
4 

180 1.077
0 

0.9837 1.001
6 

0.9838 13.847
7 

11.887
9 

11.971
5 

11.737
3 
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Figure 1(b). AICof the Fitted Models on Model 1 
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200 1.021
1 

0.9683 0.993
5 

0.9008 9.9183 10.652
4 

10.969
8 

6.6653 

250 1.012
3 

0.9399 0.987
1 

0.8618 9.7873 8.5465 8.8975 6.4006 

300 0.998
8 

0.9341 0.983
8 

0.8469 9.6550 6.5681 5.6446 3.0428 

400 0.911
9 

0.9106 0.847
2 

0.8401 7.5899 4.6985 5.5609 1.1264 
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Figure 2(a). MSEof the Fitted Models on Model 2 

Figure 2(b). AIC of the Fitted Models on Model 2 
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From the above results, in figure 2a and 2b, it was observed that LSTAR is fitted best to 
trigonometric function at sample sizes below 200 based but LSTAR is the best at sample 
size above 200 based on the two criteria. Meanwhile STAR compete well with SETAR as 
sample size increases  

Table 3a: Performances of the Fitted Models on the Basis of Mean Square Error and AIC 
Criteria for model 3: EX(2): Yti = 0.3	��
�+ exp(-0.6	��
�) + et 
Sam
ple 
Size
(n) 

MSE AIC 
AR SETAR STAR LSTA

R 
AR SETAR STAR LSTAR 

50 1.5195 1.2044 1.5001 1.0843 29.7012 29.8014 15.1502 17.2593 
80 1.3350 1.0192 1.0173 1.0045 23.133 20.2449 10.7939 10.7939 
100 1.2870 1.0074 1.0044 0.9794 18.4658 14.855 10.7571 10.6242 
130 1.2570 0.9973 0.9968 0.9735 17.1489 11.9369 7.8047 7.7358 
150 1.1998 0.9802 0.9794 0.9479 15.8781 8.5940 7.7897 7.7009 
180 1.1340 0.9744 0.9741 0.9053 15.518 8.0272 7.3729 4.9094 
200 1.0932 0.9645 0.9732 0.8705 14.4622 6.4697 5.6874 0.3905 
250 1.0390 0.9593 0.9391 0.8555 13.0971 5.8417 -4.3047 -6.8908 
300 1.0206   0.9488 0.9238 0.8345 12.901 4.9595 -5.3248 -7.5132 
400 0.8925 0.9259 0.9034 0.8054 12.5988 3.8493 -9.3038 -10.6848 
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Figure 3(a). MSEof the Fitted Models on Model 3 
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In figure 3a and 3b, we observed that STAR and LSTAR perform equally at sample size 
below 200 but LSTAR supersede the other three models as sample size increases and 
fitted best to the exponential function at large sample sizes sample sizes.  
 
Table 4(a). Performances of the Fitted Models on the Basis of Mean Square Error and 
Residual Variance Criterion for model 4: PL(2): Yt = 0.3	�
�

� 3 0.6	�
� � �� 
 

Sample 
Size(n) 

MSE AIC 
AR SETAR STAR LSTAR AR SETAR STAR LSTAR 

50 1.5399 1.1077 1.5432 1.7703 161.2003 14.3851 50.9901 85.9526 
80 1.5342 1.0389 1.3453 1.5884 159.8064 9.8809 49.8896 84.5517 
100 1.5231 0.9812 1.3399 1.5007 158.0353 9.5891 32.481 80.3441 
130 1.5134 0.9758 1.2253 1.4914 156.004 9.5891 32.4134 76.6701 
150 1.5132 0.9757 1.2252 1.3844 154.5532 8.3157 32.4134 74.5517 
180 1.4213 0.9492 1.2252 1.3833 50.8064 6.6123 32.4134 72.3378 
200 1.3399 0.9279 1.2252 1.1194 47.0134 -1.6793 32.4134 30.6764 
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Figure 3(b). AIC of the Fitted Models on Model 3 
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250 1.2350 0.8326 1.2248 1.0646 40.8526 -5.8224 32.4134 30.6619 
300 1.1392 0.8202 1.1266 1.0115 30.2822 -9.4363 17.9162 12.2683 
400 1.1222 0.7461 1.1062 1.0106 24.7411 -9.8073 14.0722 10.8421 

 

 

 
 
 
From fig. 4a and 4b, it can be observed that the best model is SETAR followed by STAR 
at sample sizes below 300 and LSTAR as sample size increases. 
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Figure 4(b). AIC of the Fitted Models on Model 4 
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3.1.  Application of the fitted models on real life data 
The four models was fitted to data on monthly rainfall collected from Nigeria 
Metallurgical Agency. The data was gathered from 1974 to 2013. Before fitting a 
nonlinear time series model to a given set of data, it is good if the nonlinearity 
characteristics of the data can be detected. There are various tests that have been 
suggested over the past years to distinguish linear from the nonlinear data sets. For 
example, SubbaRao (1980) et al and Hunnich (1982) used the bispectrum test. They used 
the fact that the square modulus of normalized bispectrum is constant when the time 
series is linear. The hypothesis is based on the non-centrality of parameters of the 
marginal distribution of the square moduli, where n is the sample size. Yuan (2000) 
modified the Hunnich’s test in such a way that the parameter being tested under the null 
hypothesis is no longer  but the location parameters, such as the mean or variance. The 
above mentioned methods are based on frequency domain approach. 

Furthermore, once a model is selected, sufficiently strong evidence need to be 
found in the data to abandon the linear model. Therefore, good statistical and diagnostic 
tests are needed to determine the nonlinearity in time series data. However in this work 
two tests are used to detect whether the rainfall data is nonlinear or linear. The tests are 
Keenan and Tsay F-tests. Both tests are based on time domain. They have been used in 
the literature for detection of nonlinearity in time series data (see for example Keenan, 
1985 and Tsay, 1986). The data was transformed using logarithmic transformation to 
ensure nonlinearity and the results are shown in table 5 and 6 respectively. 

 
Table 5. Test of Nonlinearity on Monthly Rainfall in Nigeria between 1974-2013 
Nonlinearity 
 Test 

                           Real Data                      Transform Data 
Test-
Stat 

DF p-
value 

Decision Test-
Stat 

DF p-value Decision 

Keenan 8.1645 24 0.0045 reject 1.4837 24 0.2239 accept 
Tsay F 1.534 24 0.0027 reject 1.787 24 0.09424 accept 
Table 5 shows that the null hypothesis of nonlinearity was rejected for the rainfall data 
before being transformed but accepted after being transformed using the two statistics. 
 
Table 6. Performances of the Fitted Models on Monthly Rainfall between 1974-2013 

 
Model 

Real Data Transform Data 
MSE AIC MSE AIC 

AR 6022 5546.21 2.777 1858.89 
SETAR 5873.27 4179.52 2.4041 435.0518 
STAR 5998.32 4181.63 2.3913 434.7764 

LSTAR 5873.29 4181.52 2.3839 432.99 
Table 26 shows that SETAR is the best to fit the rainfall data followed by LSTAR. 
However, when the data is transformed to make it nonlinear, LSTAR performs better 
than others based on the three criteria. 

4. Conclusion 
The best model to fit linear autoregressive function is AR at different sample sizes. The 
performance of LSTAR model supersedes other models as number of sample size 
increases except in polynomial function where SETAR model performs better than 
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others. The three nonlinear models SETAR, LSTAR and STAR have closed 
performances in exponential autoregressive function as number of sample size increases 
based on MSE and AIC criteria. The performance of the four fitted models increases as 
sample size increases. Finally, it was observed that SETAR model fits best to the Rainfall 
Data and LSTAR was the best when the data is transformed to nonlinear. 
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