2016

M.Sc. 4th Seme. Examination

CHEMISTRY

PAPER-CEM-403

Full Marks : 40

Time : 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Physical Special)

Answer any four questions, taking two from each group.

Group-A

- 1. (a) What is pumping ? How can it achieve population inversion ? 4
 - (b) What are the differences between optical pumping and electrical pumping ? 3
 - (c) What are semiconductor lasers ? Give an example. 3

2.	(a)	What is Stern-Volmer quenching ? How can you assigna quenching to be of Stern-Volmer type ?4
	(b)	Write down the mathematical expression that may be used to determine the fluorescence anisotropy value. 2
	(c)	How is the fluorescence of pyrene influenced by solvent polarity? 2
	(d)	Schematically show the P.E. curves I_2 molecule in its
_		ground and higher energy states. 2
3.	(a)	Write down the relation between the spin energy level of
		number 2
	(b)	Comment on the esr spectra of radical anion of benzene.
		3
	(c)	Mention the range of the applied magnetic field strength
		in an esr spectrometer ? 1
	(d)	How does the snesetivity of an esr spectrometer depend
		on temperature ? 2
	(0)	What is the value of an antical simulator in an arr
	(e)	what is the role of an optical circulator in an est
		spectrometer ? 2

C/16/M.Sc./4th Seme./CEM-403

2

 \mathbf{H}

(Continued)

4. "Write notes on (any four) :

- (a) Vibrationless transition ;
- (b) Stoke's shift;
- (c) Onsager field ;
- (d) Optical cavetus;
- (e) Brewster angle.

Group-B

- 5. (a) What do you mean by coherence in laser spectroscopy ?
 Explain different types of coherences with the help of suitable diagrams.
 - (b) The coherent length of a light source is 2.5×10^{-2} m and its wavelength is 5500Å. Calculate the frequency and coherence time. 3
 - (c) What do you mean by gain in lasers ? What is the condition for a threshold gain ?
 3
- 6. (a) How can the solvent polanity affect excited state dipolemoment of a substance? 3
 - (b) Comment on the pK_a values of phonolic substances in the ground and excited states.

C/16/M.Sc./4th Seme./CEM-403

	(c)	When ferrous sulphate and methylene blue are mixed
		together, the bleaching occurs only in presence of light.
		Explain.
	(0)	Hyperfine splitting, not the energy, is the marker in esr
1.	(a)	spectroscopy — why? 2
	(b)	Why do we get quintet of quintets is the esr spectra of
	. ,	pyrazine amion ? 3
	(c)	What is the typical wavelength range in esr spectros-
	ζ,	copy ? 1
	(d)	What do you mean by saturation in esr spectroscopy?
		2
	(e)	Why is the differential plot more preferred ir esr spec-
		troscopy ? 2
8	w	rite short notes on (any four): $4 \times 2\frac{1}{2}$
0.	•••	
	(a)	He-Ne laser ;
	(b) Excimer laser;
	(c	Excited state dipole moment ;
	(d) First vibronic peak ;
	(e) Optical band gap.

C/16/M.Sc./4th Seme./CEM-403

(Continued)

H.

(Organic Special)

Answer any five questions.

1. (a) Give the products with mechanism :

(iii)
$$N \xrightarrow{CH_3} Na / Hg / EtOH D 1\frac{1}{2}$$

(b) How would you detect the presence of both $-OCH_3$ and $>N - CH_3$ group in any alkaloid using same reagent? Explain the reaction condition to be employed. 2

C/16/M.Sc./4th Seme./CEM-403

(Turn Over)

3

2. (a) Carry out following conversion. Mention the reagents and reaction conditions for each step.

- (b) Prove that (-) quinine possesses erythro relationship between C₈ C₉ from the pk_a values of (-) quinine and (+) 9-epiquinine.
- 3. Predict the products with mechanism (Any four): 4×2

(i) Quinine
$$\xrightarrow{\text{dil HOAc}}$$
 Warm

C/16/M.Sc./4th Seme./CEM-403

(Continued)

(iii) 9 – deoxyquine
$$\xrightarrow{\text{NaH, DMSO}}_{O_2, 25^{\circ}\text{C}}$$

- (iv) Quinine $\xrightarrow{\text{tBuOK}}$ Benzo phenone dry toluene
- (v) Quinine $\frac{25\% H_3 PO_4, \text{ boil}}{25\% H_3 PO_4, \text{ boil}}$
- Predict the product with mechanism when the baine is separately treated with (a) Conc. HCl, (b) Conc. HCl containing SnCl₂, (c) dil. HCl with warming, (d) Phenyl maquesium bromide in dry ether.
- 5. (a) Write down the structure of etorphine which is used for immobilisation of large animals. Outline the synthesis of etorphine from the baine. 1+3
 - (b) Predict with mechanism (any two) : 2×2

(i)
$$\uparrow$$
 + \downarrow $\xrightarrow{h\nu}$ $\xrightarrow{h\nu}$

C/16/M.Sc./4th Seme./CEM-403

6. (a) Carry out following conversions

(i) Caryophylene \longrightarrow Isocaryophylene

(b) Outline a mechanism for the biosynthesis of squalene from two units of farnesgl pyrophosphate. In which type of plants, biosynthesis stops at presqualene pyrophosphate and why?

C/16/M.Sc./4th Seme./CEM-403

(Continued)

2

10

7. Predict the product/s of the following with mechanism :

C/16/M.Sc./4th Seme./CEM-403

ÖH OH

но

(Inorganic Special)

Answer any *five* questions taking at least two from each group.

Group-A

- 1. (a) Calculate the equilibrium concentration of Frenkel defect in a crystal.
 - (b) Write short notes on following :
 - (i) Edge dislocation ;
 - (ii) Screw dislocation. 4+2+2

2. (a) Draw the E-K diagram for direct and indirect lattice.

- (b) Derive the expression of energy gap for an electron passing through a crystal.
 2+6
- 3. (a) Calculate the Fermi energy of an electron when T > 0.
 - (b) Derive the expression for specific heat of electron gas.
 - (c) Distinguish among metal insulator and semiconductor. 3+3+2

C/16/M.Sc./4th Seme./CEM-403

(Continued)

10

- 4. (a) Write down the differences between 4f and 5f orbitals.
 - (b) How Uranium is extracted from its ore?
 - (c) Write down the separation of lanthanoid metal ions. 3+3+2

Group-B

- 5. (a) What do you mean by "X-band frequency" and "Q-band frequency" in ESR spectroscopy ? What are the advantages and limitations in using "Q-band frequency".
 - (b) An ESR instrument is operating at a frequency of 9.1 GHz, and measurements are made with atomic hydrogen. Resonance is observed at a magnetic flux density of 0.3247 T. Calculate the g value for the electron in the hydrogen atom.
 - (c) Show that "orbital angular momentum" of electron acts just opposite in direction with "orbital magnetic moment". 3+2+3
- 6. (a) Write short notes on "solvent used in ESR measurement".
 - (b) What do you mean by hyperfine splitting in ESR spectroscopy?
 - (c) Explain the appearance of three lines in the esr spectrum of napthalene diradical. 3+1+4

C/16/M.Sc./4th Seme./CEM-403

- 7. (a) Predict the intensity distribution in the hyperfine lines of the ESR spectrum of the \dot{NH}_2 radical.
 - (b) Explain why the energy of α -spin $\left(\mathbf{m}_{s} = +\frac{1}{2}\right)$ of electron

increases linearly whereas that of β -spin $(m_s = -\frac{1}{2})$ decreases with increasing external magnetic field.

(c) Explain the EPR activity of the ions Mn(II) and Cr(II). 3+3+2

12

|:f

C/16/M.Sc./4th Seme./CEM-403