Total Pages-4

C/16/M.Sc./2nd Seme./MTM-202

2016

M.Sc. 2nd Seme. Examination APPLIED MATHEMATICS WITH OCEANOLOGY AND

COMPUTER PROGRAMMING

PAPER-MTM-202

Full Marks : 50

Time : 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Numerical Analysis)

Answer Q. No. 1 and any two from the rest.

1. Answer any *four* questions :

2×4

 (a) Let f(x, y) = 0 and g(x, y) = 0 be two non-linear equations. Among fixed point iteraction and Newton-Raphson methods, which method is better to solve these equations and why ?

(Turn Over)

- (b) Compare direct and iteration method to solve a system of linear equations.
- (c) What is the multi-step method to solve an ODE? What is the advantage of this method?
- (d) Explain the need of stability analysis of a numerical method to solve a differential equation (ODE or PDE).
- (e) Define Cubic spline.
- (f) Compare Newton-Cotes and Gaussian quadrature formulae.
- 2. (a) Describe Lagrange's bivariate interpolation method.
 - (b) Given that f(0, 0) = 1, f(0, 1) = 1.414214, f(1, 0) = 1.732051and f(1, 1) = 2.

Find the Lagrange's bivariate interpolating polynomial and hence find the approximate value of f(0.25, 0.50).

(c) Describe Jacobi's method to find all eigen values and eigen vector of a real symmetric matrix.

4+4+8

C/16/M.Sc./2nd Seme./MTM-202

(Continued)

3. (a) Describe finite difference method to solve the following boundary value problem

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = r(x), a < x < b$$

with boundary conditions $y(a) = \alpha$ and $y(b) = \beta$, where α and β are two given numbers.

(b) Use finite difference method to find the value of y(0.25), y(0.50) and y(0.75) from the following $B \vee P$

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + 1 = 0$$
, where y(0) = 0, y(1) = 0.

(c) Describe least square method to solve the following inconsistent system of equations :

$$Ax = B$$

where A, x and B are of order $m \times n$, $n \times 1$ and $m \times 1$ respectively.

(d) Use least square method to solve the following equations :

x + y = 3.0, 2x - y = 0.03, x + 3y = 7.03 and 3x + y = 4.97. 5+3+5+3

C/16/M.Sc./2nd Seme./MTM-202

(Turn Over)

4. (a) Describe standard five-point and diagonal five-point formulae to solve the following Poisson's equation

$$\frac{\partial^2 y}{\partial x^2} + x \frac{\partial^2 u}{\partial y^2} = g(x, y) \text{ with the region } R$$

and u = f(x, y) on the boundary C of R.

- (b) Explain Bairstow method to find all roots of a polynomial equation.
- (c) Explain 3-point Gauss-Chebyshev quadrature formula. 4+8+4

[Internal Assessment -10]

TB-150