UG/I/MATH/H/I/15

2015

MATHEMATICS

[Honours]

PAPER - I (New)

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

(Classical Algebra)

[Marks : 30]

1. Answer any one question:

 15×1

(a) (i) If $(1+z)^n = (1-z)^n$ then show that the values of z are $i \tan \frac{i\pi}{n}$, where r = 0, 1, 2, ..., (n-1), but omitting $\frac{n}{2}$. if n is even.

4

(ii) The equation $ax^3 + bx^2 + cx + d = 0$ has two equal root β . The show that $(9ad - bc)^2 = 4 (b^2 - 3ac) (c^2 - 3bd)$. Also find the value of β .

4

(iii) If $a_1, a_2, \dots a_n$; $b_1, b_2, \dots b_n$ be all real numbers, then show that

$$(a_1^2 + a_2^2 + \dots + a_n^2) (b_1^2 + b_2^2 + \dots + b_n^2)$$

$$\geq (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2,$$

the equality occurs when either

(1) $a_i = 0$ or $b_i = 0$ or both $a_i = 0$ and $b_i = 0$ $(i = 1, 2, 3, \dots n)$.

6

Or

(II) $a_i = Kb_i$ for some non-zero real K, $i = 1, 2, 3, \dots n$.

- (b) (i) If the equation f = 0 has all its roots real then show that the equation $ff'' f'^2 = 0$ has all its roots imaginary; where dashes denote derivatives with respect to x.
 - (ii) If a, b, c, be positive rational numbers then prove that

$$a^{a}b^{b}c^{c} \ge \left(\frac{a+b}{2}\right)^{\frac{a+b}{2}} \left(\frac{b+c}{2}\right)^{\frac{b+c}{2}} \left(\frac{c+a}{2}\right)^{\frac{c+a}{2}}$$
$$\ge \left(\frac{a+b+c}{3}\right)^{a+b+c}$$

- (iii) Define Log z, where z is a non-zero complex number. Prove that $Log z_1 + Log z_2 = Log(z_1 z_2)$ where z_1, z_2 be two distinct complex numbers such that $z_1 z_2 \neq 0$. Does the above relation hold for $z_1 = z_2$? Justify. 1 + 2 + 1
- 2. Answer any one question:

 8×1

6

(a) (i) State Descartes' rule of signs regarding the number of positive roots of an equation with real coefficients. Apply this rule to show that the equation

 $x^4 + 12x - 5 = 0$ has two real roots and two non-real roots. If one of the non-real roots be 1 + 2i, find all the roots of the equation.

5

(ii) If x, y, z are positive numbers and x + y + z = 1 then show that $8xyz \le (1 - x)(1 - y)(1 - z) \le \frac{8}{27}$

(b) (i) Form an equation whose roots are the special roots of $x^{15} - 1 = 0$ and hence show that the roots of

$$x^4 - x^3 - 4x^2 + 4x + 1 = 0$$
 are
 $2\cos\frac{2r\pi}{15}$, $r = 1, 2, 4, 7$.

(ii) If $2\cos\theta = t$, prove that

3

5

$$\frac{1+\cos 7\theta}{1+\cos \theta} = (t^3 - t^2 - 2t + 1)^2$$

3. Answer any one question:

 4×1

(a) Prove that the equation $(x + 1)^4 = a(x^4 + 1)$ is a reciprocal equation if $a \ne 1$ and solve it when a = -2.

(b) Prove that the least value of x + 2y + 4z is $4\sqrt{3}$, where x, y, z are positive real numbers satisfying the condition $x^2y^3z = 8$.

4. Answer any one question:

 3×1

3

- (a) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the equation whose roots are $\alpha\beta + \beta\gamma$, $\beta\gamma + \gamma\alpha$, $\gamma\alpha + \alpha\beta$.
- (b) Determine k and solve the equation if the roots are in arithmetic progression $8x^3 12x^2 kx + 3 = 0$.

GROUP - B

(Abstract Algebra)

[Marks : 35]

5. Answer any three questions:

 8×3

(a) (i) Let $f: A \rightarrow B$ be an injective mapping from a set A into the set B. If C and D be subsets of A, then prove that

$$f(C \cap D) = f(C) \cap f(D)$$

- (ii) In a group G, prove that for any two elements $a, b \in G$ the equation ax = b has a unique solution in G. Also show that the subset $A = \{a \in G : ag = ga \text{ for all } g \in G\}$ is a subgroup of G and also show that A is a normal subgroup of G.
- (b) (i) Define a partition on a non empty set.

 Prove that a partition of a set induces
 an equivalence relation on that set. 1+3
 - (ii) Let $S = \{x \in R : -1 \le x \le 1\}$ and $f: R \to S$ be a mapping defined by

$$f(x) = \frac{x}{1 + |x|}$$

show that f is invertible and find f^{-1} . 3 + 1

- (c) (i) In the field R of real numbers, show that $S = \{a + b \sqrt{3} ; a, b \in Q\}$ is a subfield but $T = \{b \sqrt{3}, b \in Q\}$ is not, where Q is the set of relational numbers.
 - (ii) Define S_3 , the symmetric group of order 3, show that if is not abelian.

- (d) (i) In a group (G, *) the elements a, b commute and O(a) and O(b) are prime to each other. Show that $O(a * b) = O(a) \cdot O(b)$.
 - (ii) A subgroup H of a group G is normal if and only if $aHa^{-1} = H$ for every $a \in G$.
- (e) (i) Prove that the intersection of two subrings is a subring. Cite an example to show that union of two subrings may be a subring. 2+1
 - (ii) Find the order of the permutation

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 3 & 5 & 1 & 2 \end{pmatrix}$$

in S_6 . Decompose f as a product of transpositions. Give an example to show that S_6 is not an abelian group. 2 + 1 + 2

6. Answer any *two* questions :

 4×2

4

(a) $(R, +, \cdot)$ is a field. Another law of composition X' is defined in R by taking $a \times b = a.u.b$, where a, b are two elements of R and $u \neq 0$

is a fixed element of R . Prove that $(R, +)$.	x)
is a ring. Is $(R, +, x)$ a field? Justify.	

- (b) Show that a cyclic group G with generators of finite order n is isomorphic to the multiplicative group of nth order unity.
- (c) Prove that a finite integral domain is a field. 4

7. Answer any one question:

(a) If a is an idempotent element of a ring R, then prove that for any $b \in R$, the product (1-a) ba is nilpotent.

(b) Let G be a group and $a \in G$. If O(a) = 24, find $O(a^4)$, $O(a^7)$ and $O(a^{10})$.

GROUP - C

(Linear Algebra)

[*Marks* : 25]

- 8. Answer any one question:
 - (a) (i) Prove that the rank of the product of two matrices cannot exceed the rank of

 15×1

4

4

 3×1

either factor. If a matrix of rank r be multiplied by a non-singular matrix, what will be the rank of the product?

(ii) Using Jacobi's theorem prove that

$$\begin{bmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{bmatrix} = (af - be + cd)^{2}$$

(iii) Define eigenvalues and eigenvectors of a matrix. Find the eigenvalues and eigenvectors of

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

(b) (i) If the row rank of the matrix

$$\begin{pmatrix}
3 & 4 & -3 & 5 \\
1 & 2 & -1 & 7 \\
4 & 1 & 2 & 9 \\
2 & -1 & 4 & K
\end{pmatrix}$$

is 3 then find the value of K.

(ii) For what values of a the following system of equations is consistent?

$$x - y + z = 1$$

$$x + 2y + 4z = a$$

$$x + 4y + 6z = a^{2}$$

Solve the above equations considering that value of a.

(iii) What is a real quadratic form? Check whether the form

$$4x^2 + 9y^2 + 2z^2 + 8yz + 6zx + 6xy$$
is positive definite or not.

9. Answer any *one* question :

 8×1

5

5

- (a) (i) Apply the Gram-Schmidt process to the vectors (1, 0, 1), (1, 0, -1) and (1, 3, 4) to obtain an orthonormal basis for R³ with the standard inner product.
 - (ii) Prove that the eigenvectors corresponding to two distinct eigenvalues of a real symmetric matrix are orthogonal. 3

- (b) (i) A is a non singular matrix such that the sum of the elements in each row is K. Prove that the sum of the elements in each row of A^{-1} is K^{-1} .
 - (ii) State Schwarz' inequality in Euclidean space. In a Euclidean space V, prove that two vectors α , β are linearly dependent iff $|(\alpha,\beta)| = ||\alpha|| ||\beta||$. 1+4

10. Answer any one question:

 2×1

- (a) For what real value(s) of k the set of vectors $\{(k, 1, 1), (1, k, 1), (1, 1, k)\}$ is linearly dependent in \mathbb{R}^3 .
- (b) If V be a vector space over a field F and let $\alpha \in V$ then prove that $W = \{c \ \alpha : c \in F\}$ forms a subspace of V.