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ABSTRACT 
We report the presence of the nonclassical properties namely squeezing and antibunching 
in three mode Bose-Einstein Condensate (BEC) system where the atomic mode is 
coupled with two molecular modes. Here photo associative stimulated Raman adiabatic 
passage (STIRAP) prepares the molecular modes in conjugation with Bose stimulation. 
Both squeezing and antibunching are found for atomic mode whereas the molecular 
modes remain coherent. The coupled mode squeezing is observed if one of the mode is 
necessarily atomicandthe coupled mode antibunching is present only for atomic-excited 
molecular mode. No nonclassicalities are found in excited molecular-stable molecular 
mode. The model Hamiltonian is solved analytically by a well-established approximation 
technique and the solutions are plotted with rescaled time. These solutions are well 
supported by numerical simulations. The criteria used here to examine nonclassicalities 
are practically realizable. 
 
Keywords: Squeezing, Antibunching, Nonclassicality, BEC, STIRAP, Sen-Mandal 
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1. Introduction 
The squeezing and antibunching are the nonclassical states required for the 
implementation of various other quantum mechanical states in numerous useful purposes 
such as dense coding [1], quantum cryptography [2,3] or quantum teleportation [4]. 
Antibunching is a quantum mechanical characteristic that is essential in realizing single 
photon sources [5]. In the recent past, BEC based systems are reported to make notable 
contributions in the actualization of quantum computing devices [6-9] e.g., the optical 
fiber coupled cavity consisting of two component BECs can transfer quantum mechanical 
states [9]. 

The single photon state is said to be the most nonclassical of all the quantum states of 
light [10]. But the nonclassicalitycan also involve a large number of photons. For the 
criterion of nonclassicality, one may think of Glauber-Sudarshan quasi-probabilty 
distribution or the P function [11]. For all the nonclassical states, P function is negative or 
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more singular than �function. For practical applications, several other constructions of 
nonclassicality criterion such as negativity of Wigner function, Q parameters etc. have 
come into existence. We have resorted to some experimentally realizable nonclassial 
criteria relating to squeezing, intermodal squeezing, antibunching and intermodal 
antibunching. 

The quantum states of BEC have marked both the theoretical and experimental 
significance [12-14]. Molecular Bose-Einstein Condensate (MBEC) can be produced 
using coherent photo association from an atomic BEC [15,16]. In this report, we 
investigate squeezing and antibunching (single mode as well as coupled mode) in a 
system of three mode atom-molecule BECs prepared by STIRAP having interactions 
between different modes in which the stable molecular mode has maximal population 
density in comparison with excited molecular mode [17,18]. 

The paper is organized as follows. In sec. 2, the analytical solutions of the equations 
of motion constructed from the Hamiltonian of the system of interest are presented. Sec. 
3 gives the account of the presence of squeezing and sec. 4 deals with the occurrence of 
antibunching. Finally, it is concluded in sec 5. 
 
2. The model Hamiltonian and the analytical solutions 
The Hamiltonian of the model system [17] is as follows  

 
� = δ��� − �

	 
��	� + �	�� − �
	 
��� + ���.                                                             (1) 

  
where �, � and � are the bosonic annihilation operators for atomic mode, excited        
molecular mode and stable molecular mode with corresponding eigenstates׀ ,��1׀ �2� and 
 respectively.The stable and excited molecular states differ by energy � whereas � and ��3׀
� are the interactions between atomic and excited MBEC and between excited and stable 
MBEC respectively. The commutation relations among the field operators are given by 
 [�, ��] = 1, [�, �] = 0 
[�, ��] = 1, [�, �] = 0                                                                                                       (2) 
[�, ��] = 1,[�, �] = 0 
 
The stable molecular mode is maximally populated and for two photon resonance, atomic 
and stable molecular energy levels are exactly same as shown in the following schematic 
[17], 

 
Figure 1: The schematic of three mode atom-molecule BEC 
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The Heisenberg’s equations of motions for the field operators are given by the following 
set of equations (eqn. (3)). Here ħ = 1 is taken throughout the solution. 

 
�� �� = !����� ��� , 
�� �� = −!���� + ! #

	 �	�� + ! �
	 ��� ,                                                                  (3) 

���� = ! �
2 ��� . 

 
The coupled, nonlinear set of equations (3) does not have an exact analytical solution. 
Thus, an approximate technique called Sen-Mandal approach [19] has been adopted. 
These solutions are also featured in some of the authors’ earlier work [20] and are given 
by the following set of equations considering terms upto $��	  and $��	 , 
 

��� = %&��0 + %	���0 ��0 + %'���0 �	�0 + %(��0 ���0 b�0 
+ %*���0 ��0 , 

��� = +&��0 + +	�	�0 + +'c�0 + +(��0 + +*���0 ��0 b�0 ,                  (4) 
��� = ℎ&��0 + ℎ	��0 + ℎ'�	�0 + ℎ(��0 . 

 
The parametric functions  %.�! = 1,2,3,4,5 , +.�! = 1,2,3,4,5  and ℎ.�! = 1,2,3,4 are, 
 

%& = ℎ& = 1, 
%	 = 2+	 = �

� 1�� , 

%' = − %(
2 = − �	

2�	 [1�� − !��], 
%* = 2ℎ' = − ��

2�	 [1�� − !��], 
+& = 23.45 ,                                                                                                              (5) 

+' = ℎ	 = �
2� 1�� , 

+( = − 2�	 + �	

4�	 +&[1∗�� + !��], 

+* = − �	

�	 +&[1∗�� + !��], 

ℎ( = − �	

4�	 [1�� − !��]. 
 

The present set of solutions satisfies the following commutation relations which are 
called equal time commutation relations, 
 

7��� , ���� 8 = 1 
7��� , ���� 8 = 1                                        (6) 

7��� , ���� 8 = 1 
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The conservation law of total particle number is also satisfied, 
 
���� ��� + 2���� ��� + 2���� ��� =	constant.                        (7) 
 
3. Squeezing 
The stable molecular state is considered to have maximal population initially as evident 
with STIRAP. All the three modes are in coherent states at the beginning and the 
composite state is given by, 
 |�ψ(0)�� = |�;� ⊗ |�=�� ⊗ |�>���.               (8) 
 
where |�;��, |�=�� and |�>�� are eigen states of	�,�and �with the eigenvalues ;, = and > 
respectively. Consequently, following eigenvalue equations are valid, 
 �(0)|�ψ(0)�� = α|�;� ⊗ |�=�� ⊗ |�>���, �(0)|�ψ(0)�� = β|�;� ⊗ |�=�� ⊗ |�>�,��                                                                                (9) �(0)|�ψ(0)�� = γ|�;� ⊗ |�=�� ⊗ |�>�.�� 
 
To study the squeezing effect in various modes, the quadrature operators are defined as 
follows, 
 

BC = 1
2 [	D(�) + D�(�)] 

EC = − .
	 [	D(�) − D�(�)]                                      (10) 

 
whereD = �, �	or �. 
 
The possibility of squeezing in any mode ! is there if any one of the following 
inequalities is satisfied, 
 

(∆BC)	 < &
(, (∆EC)	 < &

(                                                  (11)  

 
And for the coupled mode squeezing, the quadrature operators are given by, 
 

BCH = 1
2√2 [	D(�) + D�(�) + J(�) + J�(�)] 

	ECH = &
	√	. 7	D(�) − D�(�) + J(�) − J�(�)8                                                                     (12) 

    
Whereas occurrence of any one of the following inequalities validates the coupled mode 
squeezing, 
 

(∆BCH)	 < &
(,  (∆ECH)	 < &

(                         (13) 
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whereJ = �, �	or � and D ≠ J. 
 
Using (4), (5), (9) and (10), the fluctuations in the quadrature of mode � is given by, 
 

L(∆BM)	(∆EM)	N = &
( [1 + |%	|	|=|	 ± (%&%	= + %&%';	 + %&%*> + �. �)]                    (14) 

 
where�. � stands for complex conjugate and the upper and lower signs correspond to (∆BM)	 and (∆EM)	respectively. In case of the other modes, it is found that 
 

L(∆BP)	(∆EP)	N = &
(                                                               (15) 

and 

L(∆BQ)	(∆EQ)	N = &
(                           (16) 

 
Using (4), (5), (9) and (12) we obtain the variances for the coupled modes as follows, 
 

L(∆BMP)	(∆EMP)	N = &
( [1 + &

	 |%	|	|=|	 + &
	 R(%&+*∗ + %(+&∗);=∗ + (%&+* + +&%( + 2+	%	);= ±

																											(%&%	= + %&%';	 + %&%*>) + �. �S]                                              (17) 
 

L(∆BMQ)	(∆EMQ)	N = &
( [1 + &

	 |%	|	|=|	 ± R&	 (%&%	= + %&%';	 + %&%*>) + �. �. S]                    (18) 

 
and 
 

L(∆BPQ)	(∆EPQ)	N = &
(                                       (19) 

 
In order to trace the signature of squeezing, the expressions of the equations (14), (17) 
and (18) are plotted with the dimensionless time �� which are shown in figure (2) and 
(3). All the figures clearly depict the presence of squeezing. The analytical treatments are 
well supported by the numerical simulations. It can be noted that the amount of squeezing 
can be variedby controlling coupling constants (not shown in figure). The modes � and � 
remain coherent all through the time evolution.  
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(a) 

 
(b) 

 
Figure 2: Plot of quadrature squeezing in mode � where in (a) = is taken as 1.0 and (b) 
= = −!. The other parameters are taken as,� = 5.0, � = � = 5.0 × 103(, ; = 1.0 and 

> = 1.0. 



Squeezing and Antibunching in Three-mode Atom-Molecule Bose-Einstein Condensates 
 

157 
 

 

 
(a) 

 

 
(b) 

 
Figure 3: Plot of quadrature squeezing for (a) the coupled mode � − � and (b) the 
coupled mode � − �. The rest of the parameters are taken as � = 5.0, � = � = 5.0 ×
103(, ; = 1.0 and > = 1.0. Here for (a) = = 1.0   and for (b) = = −!. 
 
4. Antibunching 
The quantum statistical properties for mode �can be studied by calculating the second 
order correlation function for zero-time delay 
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+�	 �0 = UMV�W MV�W M�5 M�5 X
UMV�W M�5 XUMV�W M�5 X                                                 (20) 

 
The particle number distribution for mode � is sub-PoissonianIf  0 < +�	 �0 < 1and the 
mode is associated with the nonclassical phenomenon called antibunching [10]. The eqn. 
(21) can be written in the form 
 

+�	 �0 − 1 = �YZ [3UZX
UZX[                                      (21) 

 
It is evident that numerator \ = �Δ^ 	−< ^ > in the right hand side of eqn. (21) 
determines the quantum statistical properties. Specifically speaking, the conditions \ <
0, \ = 0 and \ > 0 give the sub-Poissonian, Poissonian and super-Poissonian statistics 
respectively. Using eqn. (4), the analytical expression for \M is 
 

\M = |%	|	 `|=|	 + 6|;|	|=|	 − &
	 |;|(b + �%&

∗%	;∗[= + %&
∗%*;∗[> + �. �.  .                (22) 

 
Similarly, for the other modes 
 
\P = \Q = 0                           (23) 
 
For intermodal antibunching, the following expression can be used 
 

+�	 �0 = UMV�W PV�W P�5 M�5 X
UMV�W M�5 XUPV�W P�5 X                                     (24) 

 
Correspondingly 
 
\MP =< ���t ���t ��� ��� > −< ���t ��� >< ���t ��� >	.                    (25) 
 
Using equations (4) and (25), the following expression for the quantum statistics is 
obtained 
  \MP = −(4|+	|	 − |+'|	)|;|	|=|	.                        (26) 
 
We plot equations (22) and (26) with the scaled time �� (figure 4) and from these plots 
the presence of antibunching is ascertained. No antibunching is found from any other 
combination of modes. 
 
5. Conclusion 
We consider three mode atom-molecule BEC prepared by Bose Stimulated Raman 
Adiabatic Passage. The Heisenberg’s equations of motion derived from the model 
Hamiltonian is solved analytically using Sen-Mandal Technique. Using the solutions, we 
study two of the nonclassical properties of various modes namely, squeezing and 
antibunching. The plots of the solutions suggest the existence of both squeezing and 
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antibunching in atomic mode as well as the coupled modes involving atoms and the 
analytical solutions are well supported by numerical ones. Particularly for antibunching 
to be observed in atomic mode, complex eigenvalue for the bosonic field operator 
corresponding to excited molecular mode is taken. The stable and the excited molecular 
mode states remain coherent all through the time evolution. There is further scope of 
research if the system is made coupled with external cavity. 
 

 
(a) 

     

 
(b) 

 
Figure 4: Plot for antibunching for (a) mode � and (b) coupled mode � − �. The 

parameters are taken as � = 5.0, � = � = 5.0 × 103(, ; = 1.0 and > = 1.0. Here for (a) 
= = −!   and for (b) = = 1.0. 
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