#### 2018

# M.A./M.Sc. 1st Seme. Examination

### **ECONOMICS**

PAPER-ECO-103

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

# Group-A

1. Answer any two questions:

2×2

- (a) Write a maximisation and a minimisation non-linear programming problem with n variables and m constraints.
- (b) What are boundary irregularities?

- (c) What is complementary slackness?
- (d) What are bijective functions?
- 2. Answer any two questions:

2×4

- (a) Distinguish between one-to-one and on-to functions.
- (b) Consider the following non-linear programming problem and write the Kuhn-Tucker Condition for this problem

Max 
$$z = xy$$
  
s.t  $P_{xx} + P_{yy} \le M$   
 $x \le 40$   
and  $x_1, x_2 \ge 0$ .

- (c) Derive the envelope theorem for an unconstrained optimisation problem.
- (d) Give suitable examples and discuss the prevalence of non-linearity in economics?
- 3. Answer any one question:

1×8

- (a) Derive the Kuhn-Tucker condition for a non-linear programming problem of maximisation type.
- (b) Discuss the Kuhn-Tucker sufficiency theorem and Arrow-Enthoven sufficiency theorem for a non-linear programming problem of minimisation type.

#### Group-B

# 4. Answer any two questions:

2×2

- (a) Give one microeconomic example and one macroeconomic example of dynamic optimisation problem.
- (b) Distinguish between function and functional.
- (c) Explain static game with imperfect information.
- (d) How can you find solution of a game using mixed strategy?

# 5. Answer any two questions:

 $2 \times 4$ 

- (a) Explain subgame perfect equilibrium.
- (b) Explain, with a suitable example, the saddle path in dynamic optimisation through phase diagram stability analysis.
- (c) Explain the different terminal points in dynamic optimisation problem.
- (d) An industry consists of two firms producing an identical product. The market demand curve for the combined output of both the firms is

$$p = 8 - (Q_1 + Q_2)$$

The total cost function of each firm is

$$TC_i = 4Q_i$$
,  $i = 1, 2$ 

Find the Nash equilibrium of the game and explain.

# 6. Answer any one question :

1×8

(a) Write the necessary conditions of dynamic optimisation using optimal control theory. Solve the following optimum control problem.

$$\operatorname{Max} \int_0^1 (x - u^2) \, dt$$

s.t. 
$$\dot{\mathbf{x}} = \mathbf{u}$$
  
 $\mathbf{x}(0) = 2$ 

4+4

(b) Explain Nash equilibrium. What are the problems of Nash equilibrium? 3+5