Total Pages-4 PG/IIIS/MCA-304/18 (CBCS)

MCA 3rd Semester Examination, 2018

MCA

(Design and Analysis of Algorithm)

PAPER - MCA-304

Full Marks: 100

Time: 3 hours

Answer any five questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

- 1. (a) Define time complexity and space complexity of an algorithm.
 - (b) What is asymptotic notation? Explain different types of asymptotic notations used in analysis of algorithm. 2+4

(Turn Over)

	(<i>c</i>)	problem and find the time complexity. 4+	2
2.	(a)	Explain why a tail recursive function is advantageous over a non-tail recursive function?	3
	(b)	Write down the Mergesort algorithm using divide and conquer strategy.	8
	(c)	Obtain worst case time complexity of Quicksort.	3
3.	(a)	Explain greedy programming approach with an example. Describe the differences between greedy programming and dynamic programming approach. 4 +	2
	(b)	Write down the algorithm of matrix chain multiplication problem using dynamic programming approach.	8
4 .	(a)	Write down the Depth First Search algorithm for graph traversal.	_

PG/IIIS/MCA-304/18 (CBCS)

(Continued)

(b) Explain Fractional Knapsack problem and

	14	write down the algorithm.	6
	(c)	Describe how all pair shortest path problem is solved using dynamic programming strategy.	4
5.	(a)	Write down the Kruskal's algorithm for finding the minimum spanning tree of a graph.	4
	(b)	Write an algorithm using backtracking for 8 queens problem.	6
	(c)	Explain how the 15-puzzle problem is solved using branch and bound strategy.	4
6.	(a)	Define decision problem and optimization problem.	2
	(b)	Explain P and NP class of problems using examples.	6
	(c)	What is an NP complete problem? Explain circuit satisfiability problem. 3 +	- 3

PG/IIIS/MCA-304/18 (CBCS)

(Turn Over)

(4)

7. Write short notes on the following:

 $3\frac{1}{2}\times4$

- (a) Lower Bound Theory
- (b) Disjoint set manipulation
- (c) Graph Coloring Problem
- (d) Approximation algorithm.

[Internal Assessment: 30 Marks]