2018

MCA 2nd Semester Examination COMPUTER ORIENTED NUMERICAL METHODS

PAPER-MCA-205

Subject Code-32

Full Marks: 100

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer any five questions.

- (a) Apply Newton's Divided difference formula to find the polynomial of the lowest possible degree which satisfies the conditions f(3) = 3, f(2) = 12, f(1) = 15 and f(-1) = -21.
 - (b) Find the real root of the equation 3x cosx 1 = 0 correct to four significant figures by using Newton-Raphson method.

(c) Consider the equation $x_{n+1} = \frac{1}{2}(a_n + b_n)$ to explain the Bisection method for numerical solutions of Algebric and Transcendental equations. 5+5+4

2. (a) Find f(31.5) from the following table by using Newton's Backward interpolation formula:

х	20	24	28	32
f(x)	0.01427	0.01581	0.01772	0.01996

- (b) Solve the equation $x^3 9x + 1 = 0$ for the root lying between 2 and 3 correct to 3 significant figures using Regula-Falsi method.
- (c) What is interpolation and extrapolation? 6+6+2
- 3. (a) Solve the following system of equations by Gausselimination method

$$5x_1 - x_2 = 9$$

 $-x_1 + 5x_2 - x_3 = 4$
 $-x_1 + 5x_3 = -6$

(b) Find a real root of the transcendental equation $x^x + 2x - 2 = 0$ correct upto two decimal places using Bisection method. 7+7

- **4.** (a) Establish Simpson's $\frac{1}{3}$ Rule for numerical integrations.
 - (b) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Weddle's role, taking n = 6.

Hence compute an approximate value of π . 9+5

- 5. (a) What do you mean by Numerical Analysis?
 - (b) Discuss different Errors in Numerical Analysis.
 - (c) Write the algorithm of Lagrange's interpolation method. 2+7+5
- **6.** (a) Evaluate by Trapezoidal rule $\int_0^1 (4x 3x^2) dx$, by taking

n = 10. Also find absolute and relative errors.

(b) Solve by Gauss-Jordan method:

$$20x_1 + 5x_2 - 2x_3 = 14$$

$$3x_1 + 10x_2 + x_3 = 17$$

$$x_1 - 4x_2 + 10x_3 = 23$$

$$7+7$$

- 7. (a) Find the root of the equation 100x = 21 sin (x + 0.5) lying between 0 and 1, correct to four places of decimals using the Fixed Point iterations Method.
 - (b) Define: Algebric Equation, Transcendental Equation.
 - (c) For any numerical integration, if the number of intervals = 12 then, which rule you would prefer to apply and why?
 - (d) Which rule you would like to use when the valves of x are not equi-spaced for any numerical interpolation problem?
 7+4+2+1

[Internal Assessment: 30 Marks]