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Chapter 1

Introduction

1.1 Introduction of Operations Research
Operations Research or Operational Research in developed countries usage, is a discipline
that deals with the application of advanced analytical methods to help for better decisions.
It is often considered to be a sub-field of Mathematics. The terms Management Science,
Industrial Engineering, Operations Management and Decision Science are sometimes used
as synonym of Operations Research (OR).

Utilizing techniques from other mathematical sciences, such as mathematical modelling,
statistical analysis and mathematical optimization, operations research arrives at optimal or
near-optimal solutions to complex decision-making problems. Because of its emphasis on
human-technology interaction and because of its focus on practical applications, operations
research has overlap with other disciplines, notably industrial engineering and operations
management and draws on psychology and organization science. Operations Research is
often concerned with determining the maximum (of profit, performance, or yield) or
minimum (of loss, risk, or cost) of some real-world objective. Originating in military efforts
before World War II, its techniques have grown to concern problems in a variety of
industries or companies. Today’s global markets and instant communications mean that
customers expect high-quality products and services when they need them, where they need
them. Organizations, whether public or private, need to provide these products and services
as effectively and efficiently as possible. This requires careful planning and analysis - the
hallmarks of good OR. This is usually based on process modelling, analysis of options or
business analytic.

1.1.1 Origin of Operations Research
The Operations Research (OR) was introduced during World War II, when the British
military management (the U.K and the USA) called upon a group of scientists together to
apply a scientific approach to the study of military operations to win the battle. The main
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CHAPTER 1. INTRODUCTION

objective was to formulate specific proposals and plans for aiding the military commanders
to arrive at the decisions on optimal utilization of limited military logistical and armament
supports and also to implement the decisions effectively. The effectiveness of operations
research in military invokes an interest in OR among other government departments,
industries, research and development, etc. In India, operations research came into existence
with the opening of an OR unit in 1949 at the Regional Research Laboratory at Hyderabad.
An OR unit under Professor P. C. Mahalonobis was established in 1953 in the Indian
Statistical Institute, Calcutta to apply OR methods in national planning and survey. He
made the first important application of OR in India in preparing the draft of the Second Five
Year Plan. The draft plan frame is still considered to be the most scientifically formulated
plan of massive economic development of India.

1.1.2 Examples of OR in action
• Inventory Control: Inventory control is the activity concerned with the management of
inventory situations. There are two basic functions of inventory control:

1. Maintaining an accounting record to handle the inventory transactions concerning each
inventory item.

2. Deciding inventory replenishment decisions. There are two basic replenishment
decisions.

(a) When is it necessary to place an order (or produce) to replenish inventory?

(b) How much is to be ordered (or produced) in each replenishment?

• Supply Chain Management: Supply chain management is a set of approaches utilized
to efficiently coordinate and integrate suppliers, manufacturers, warehouses and stores, so
that merchandise is produced and distributed at the right quantities, to the right locations
and at the right time, in order to minimize system-wide costs while satisfying service level
requirements.
• Scheduling: of aircrews and the fleet for airlines, of vehicles in supply chains, of orders in
a factory and of operating theaters in a hospital.
• Facility planning: computer simulations of airports for the rapid and safe processing of
travellers, improving appointment systems for medical practitioners.
• Planning and forecasting: identifying possible future developments in telecommunications,
deciding how much capacity is needed in a holiday business.
• Yield management: setting the prices of airline seats and hotel rooms to reflect changing
demand and the risk of no customer.
• Credit scoring: deciding which customers offer the best prospects for credit companies.
• Marketing: evaluating the value of sale promotions, developing customer profiles and
computing the life-time value of a customer.
• Defence and peace keeping: finding ways to deploy troops rapidly. OR techniques are
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deployed in defence operations ( viz. administration, intelligence, training etc.) of the air
force, army and navy in order to arrive at an optimum strategy to achieve consistent goals.

1.2 Basic Concepts and Terminologies
The inventory systems depend on several parameters- such as demand, replenishment,
resources, lead time and various types of costs, constraints, etc. Detailed descriptions on
these parameters are available in the literature on Inventory Control problems(cf., Hadley
and Whitin [96], Naddor [184], etc.).

1.2.1 Definitions and Terminologies

Demand: Demand refers to the quantity of a commodity required at a given time. It usually
depends upon the decisions of people outside the organization which has the inventory
problem. The size, rate and pattern can classify the demand into following categories.

Deterministic demand Stochastic demand Imprecise demand
• fixed or constant • with known distribution • Fuzzy demand
• dependent on stock • with unknown distribution • Rough demand
• dependent on price • etc. • Fuzzy-random demand
• dependent on quality • Fuzzy-rough demand
• dependent on trade credit • etc.
• etc.

In some cases, demand may be represented by vague, imprecise and uncertain data. This
type of demand is termed as fuzzy demand. Demand also can be treated as fuzzy-stochastic
in nature.

Complementary Product: A product that is typically used in conjunction with another
product, such that a change in the demand for one product results in a change in the demand
for the other. Two goods (A and B) are complementary if using more of good A requires the
use of more of good B. For example, the demand for one good (printers) generates demand
for the other (ink cartridges). If the price of one good falls and people buy more of it, they
will usually buy more of the complementary good also, whether or not its price falls.
Similarly, if the price of one good rises and reduces its demand, it may reduce the demand
for the paired or complementary good as well. Others examples of complementary products
are:

• DVD player and DVD • Boot and lace • Mobile Phone and Sim Card
• Flash-light and battery • Tea and sugar • Car and fuel

Substitute Product: One product is called a substitute for another only if it can be used in
exactly the same way and serves the same need. For substitutable items, an increase in the
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price of one of the products will increase the demand for the substitute item. There are
several situations when substitution between products is allowed. Fair price shops, ration
shops, supermarkets, etc. are the examples where substitutions between the products are
very common. Substitution frequently occurs between different brands of rice, wheat, soda,
shampoo, toothpaste, hair oil, etc. in a stationary shop. Some examples of substitute
products are:

• Petroleum and natural gas • Margarine and butter
• Tea and coffee • Sprite and 7-UP

Replenishment/Supply: Replenishment can be categorized according to size, pattern and
lead time. Replenishment size refers to the quantity or size of the order to be received into
inventory. The size may be constant or variable, depending on the type of inventory system.
Replenishment patterns refer to how much amount of inventory is added to the inventory
stock. The replenishment patterns are usually instantaneous or uniform. Normally,
replenishment are made either in once or batch-wise.

Time/Planning Horizon: The time period over which the inventory level will be controlled
is called the time horizon. It may be finite or infinite depending upon the nature of the
inventory system of the commodity.

Constraints: Constraints in inventory system deal with various properties that some way
place limitations imposed on the inventory system. Constraints may be imposed on the
amount of investment, available space, resources and finance, the amount of inventory held,
average inventory expenditure, number of orders, etc. These constraints can also be fuzzy,
random and fuzzy-random in nature.

Fully Back-logged/Partially Back-logged Shortages: During stock-out period, the sales
and/or goodwill may be lost either by a delay or complete refusal in meeting the demand of
the customers. In the case where the unfulfilled demand for the goods can be satisfied
completely at a later date, then it is a case of fully back-logged shortages, i.e., it is assumed
that no customer walk away during this period and the demand of all these waiting
customers is met at the beginning of the next period. Again, it is normally observed that
during the stock-out period, some of the customers wait for the product and others walk
away. Such a phenomenon is called partially backlogged shortages.

Salvage: During storage, some items get partially spoiled or damaged, i.e., some items
loose their utility. But in a developing country, it is normally observed that some of these
are sold at a lower price (less than the purchasing price) to a section of customers and this
gives some revenue to the management. This revenue is called salvage value.

Inventory Cost: The cost relevant to inventory decision making, namely
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• Ordering or Setup Cost • Holding or Carrying Cost
• Purchase Cost • Unit Production Cost
• Shortage or Penalty Cost • Unit Transportation Cost

Ordering or Set-up Cost: It is the cost associated with the expense of issuing a purchase
order to an out-side supplier or setting up machines before internal production. These costs
also include clerical and administrative costs, telephone charges, telegram, transportation
costs, loading and unloading costs, watch and ward costs, etc. Generally, this cost is
assumed to be independent of the quantity ordered for or produced. In the costs like
transportation cost, etc., some part of it may be quantity dependent.

Holding or Carrying Cost: It is the cost associated with the storage of the inventory until
its use or sale. It is directly proportional to the quantity in inventory and the time for which
the stocks are held. This cost generally includes the costs such as rent for storage space,
interest on the money locked-up, insurance, taxes, handling, etc.

Purchase or Unit Cost of an Item: It is the unit purchase price to obtain the item from an
external source or the unit production cost for internal production. It may also depend upon
the demand when production is done in large quantities as it results in reduction of
production cost per unit. Also, when quantity discounts are allowed for bulk orders, unit
price is reduced and depends on the quantity purchased or ordered. Unit production cost is
also production dependent. For example, if one worker is needed to tend the machine, then
as more units are produced per unit time, the wages of the worker spread over more units.

Shortage or Stock-out Cost or Penalty Cost: It is the penalty incurred when the stock
proves inadequate to meet the demand of the customers. This cost parameter does not
depend upon the source of replenishment of stock but upon the amount of inventory not
supplied to the customer.

Unit Transportation Cost: The cost by which one unit product is transported from source
or availability of the product to destination or the retailer.

Wholesaler : Wholesaler is a person or firm that buys large quantity of goods from
manufacturers/ producer/ supplier. Thus a wholesaler takes the inventory in bulk and
delivers a bundle of related product to retailers. Wholesaler is also known as distributor. A
distributor is typically an organization that takes ownership of significant inventories of
products. A wholesaler is a middleman between a manufacturer and retailers of the product.
The wholesaler makes money by buying the product(s) from the manufacturer at a lower
price- usually through discounts based on volume buying.

Manufacturer : One who makes products through a process involving raw materials, com-
ponents, or assemblies, usually on a large scale with different operations divided among dif-
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ferent workers. Manufacturer is also known as producer.

Retailer : One who sells goods or commodities directly to consumers is known as retailer.
A retailer purchased items from the manufacturer or wholesaler and sold to the end user at
a marked up price. Retailers stock inventory and sell in smaller quantities to the general
public.

Supply chain : A supply chain is a system of organizations, people, activities, information,
and resources involved in moving a product or service from supplier to customer. Supply
chain activities transform natural resources, raw materials, and components into a finished
product that is delivered to the end customer. In sophisticated supply chain systems, used
products may re-enter the supply chain at any point where residual value is recyclable.

Promotional Effort : Generally, promotion communicates with the public in an attempt to
influence them toward buying products and/or services. Promotion includes all the ways
available to make a product and/or service known to and purchased by customers and
clients. The particular activity to promote the business, product or service is called
promotion. A store might advertise that it’s having a big promotion on certain items. For
instance, a business person may refer to an ad. as a promotion. Price discount, trade credit,
free gifts etc. are well established tools of promotional effort.

Advertisement :The non-personal communication of information which is usually paid for
and usually persuasive in nature about products, services or ideas by identified sponsors
through the various media, is regarded as Advertising.

Defective Product : A product is in a defective condition, unreasonably dangerous to the
user, when it has a propensity or tendency for causing physical harm beyond that which
would be contemplated by the ordinary user, having ordinary knowledge of the product’s
characteristics commonly known to the foreseeable class of persons who would normally
use the product.

Recycling : Recycling is a process by which materials (waste) are change into new
products to prevent waste of potentially useful materials, reduce the consumption of fresh
raw materials, reduce energy usage, reduce air pollution (from incineration) and water
pollution (from land filling) by reducing the need for “conventional” waste disposal, and
lower greenhouse gas emissions. Recycling is a key component of modern waste reduction.
Recyclable materials include many kinds of glass, paper, metal, plastic, textiles, and
electronics. Materials to be recycled are either brought to a collection center or picked up
from the curb side, then sorted, cleaned, and reprocessed into new materials.

Trade Credit : In recent competitive market, manufacturer /wholesaler /retailer frequently
offers delay period for settling the account on purchasing amount of units (greater than or
equal to a certain amount fixed by the wholesaler/manufacturer). This is termed as trade
credit period. Depending upon the credit period, demand of an item increases or decreases.
If credit period is offered to the retailers only by the supplier, it is called one level trade
credit. On the other hand if both the supplier and the retailer offer credit period to his/her
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retailer and customers respectively, it is called two level trade credit. Again, if credit period
is offered depending upon some conditions (like amount of purchase should exceed some
label, frequency of order etc.), it is called conditionally delay in payment or conditional
credit period.

Inflation and time value of money: Inflation is a present increase in the level of consumer
price or a persistent decline in the purchasing power of money, caused by an increase in
available currency and credit beyond the proportion of available goods and service. It is the
rate at which the general prices for goods and services are rising and subsequently,
purchasing power is falling. With the increase of inflation rate, more amount of money is to
be paid for the same quantity of commodity. As for example, if the inflation rate is 1%, a $
5 of pen will cost $ 5.05 in a year. Mathematically, Buzacott [30] assumed that cost at time
t, φ(t), becomes φ(t+ δt) = φ(t) + i φ(t)δt at time (t+ δt) (where δt is sufficiently small)
when a constant inflation rate i ($/unit) exists in the market, i.e.,

φ(t+ δt) = φ(t) + i φ(t) δt as δt→ 0

⇒ φ(t+ δt)− φ(t)

δt
→ i φ(t) as δt→ 0

⇒ dφ(t)

dt
= i φ(t) ⇒ dφ(t)

φ(t)
= i dt

which yields a solution as φ(t) = φ(0)ei t, where φ(0) is the cost at time t = 0.

On the other hand, time value of money is one of the basic concept of finance. We know
that if we deposit money in a bank we will receive interest. For example, $ 1 today invested
for one year at 7% return would be worth $1.07 in a year. Because of this, we prefer to
receive money today rather than the same amount in the future. Money we receive today is
more valuable to us than money received in the future by the amount of interest we can earn
with the money. It is the changes in purchasing power of money over time.

So, if i% and r% are the annual inflation and interest rate respectively, resultant effect of
inflation and time value of money (i.e., increased rate of cost) on purchasing a unit of item
in future is (i − r)%. So if φ(0) is the cost of an item at time t = 0, its cost at time t,
φ(t) = φ(0)e−R t, where R = (r − i) is called discount rate of cash flow.

Selling Price : Selling price is the price at which something is offered for sale. Generally, it
is not fixed for long time for a particular item.

Learning Effect : In many realistic situations, because the firms and employees perform
the same task repeatedly, they learn how to perform more efficiently. Therefore, the actual
production and/or set-up cost of a job is less rather than earlier in the production process.
This phenomenon is known as the ‘learning effect’ in the literature. Different types of
learning effects have been demonstrated and extensively studied in a number of areas. One
of them is processing/set-up time. Production process of some jobs to be faster than those
of others, i.e., the learning is some time job-dependent.
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Carbon Emission : Carbon emission mainly the green house gas emissions is the release
of carbon into the atmosphere. It mainly contributes to climate change. Since greenhouse
gas emissions are often calculated as carbon dioxide equivalents, they are often referred to
as “carbon emissions” when discussing global warming or the greenhouse effect. Since the
industrial revolution the burning of fossil fuels has increased, which directly correlates to
the increase of carbon dioxide levels in our atmosphere and thus the rapid increase of global
warming.

Cap and Trade : A cap and trade system, also known as emission trading, consists of
governmental policies and economic tools that try to control pollution. They set limits on
the quantity of greenhouse gas emitted and provide credits as incentives in order to achieve
set targets.
Cap : Large-scale emitters of greenhouse gases such as corporations are given limits in the
form of emission permits for how much they can pump into the atmosphere. The total
number of permits issued throughout any given region cannot exceed the overall cap for that
system. The permits are usually issued in quantities equivalent to tons of carbon dioxide,
which are slowly declining as limits become stricter over time.
Trade : Some entities will have an easier time staying within the limits of their emission
permits. Efficient companies that produce fewer greenhouse gas emissions than they are
allotted can sell their excess permits to other companies that need them. The cost for
purchasing such permits is determined by the market.

Carbon Tax : A carbon tax is usually defined as a tax based on greenhouse gas emissions
(GHG) generated from burning fuels, coal, and gas, aimed at reducing the production of
greenhouse gases. It puts a price on each tonne of GHG emitted, sending a price signal
that will, over time, elicit a powerful market response across the entire economy, resulting
in reduced emissions. It has the advantage of providing an incentive without favouring any
one way of reducing emissions over another. By reducing fuel consumption, increasing fuel
efficiency, using cleaner fuels and adopting new technology, businesses and individuals can
reduce the amount they pay in carbon tax, or even offset it altogether.

10



1.2. BASIC CONCEPTS AND TERMINOLOGIES

Product Quality : Product quality means to incorporate features that have a capacity to meet
consumer needs (wants) and gives customer satisfaction by improving products (goods) and
making them free from any deficiencies or defects.

Reliability : Reliability is defined as the probability that a device will perform its intended
function during a specified period of time under stated conditions. Mathematically, this may
be expressed as,

R(t) = Pr(T > t)

∫ ∞
t

f(x)dx

where f(x) is the failure probability density function and is the length of the period of time
(which is assumed to start from time zero). There are a few key elements of this definition:

• Reliability is predicated on “intended function:” Generally, this is taken to mean
operation without failure. However, even if no individual part of the system fails, but
the system as a whole does not do what was intended, then it is still charged against
the system reliability. The system requirements specification is the criterion against
which reliability is measured.

• Reliability applies to a specified period of time. In practical terms, this means that a
system has a specified chance that it will operate without failure before time .
Reliability engineering ensures that components and materials will meet the
requirements during the specified time. Units other than time may sometimes be used.

• Reliability is restricted to operation under stated (or explicitly defined) conditions.
This constraint is necessary because it is impossible to design a system for unlimited
conditions. A Mars Rover will have different specified conditions than a family car.
The operating environment must be addressed during design and testing. That same
rover may be required to operate in varying conditions requiring additional scrutiny

1.2.2 Different Environments
The parameters, like demand, inventory cost (viz., unit production/purchasing cost, set-up
cost, holding cost, shortage cost, transportation cost, advertisement cost, etc.), lead time,
quantity, available resources, goals, etc., involved in the inventory system may be
deterministic (crisp/precise) or some of them may be non-deterministic (i.e., imprecise like
fuzzy, rough, random, fuzzy-rough, fuzzy-random etc.). Thus the environments in which
inventory models are developed can be classified as follows:
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Crisp Environment : The deterministic and precisely defined system parameters and the
resources form the environment as a crisp one.

Fuzzy Environment : It is an environment in which all or some inventory parameters,
resources and/or goal(s) of objective(s), etc., are imprecise and vague (i.e., inexact due to
human perception process). It is uncertain in non-stochastic sense and called fuzzy. The
fuzzy parameters or quantities are characterized by membership functions.

Stochastic Environment : In this environment some of the parameters like, lead time,
demand, resources, inventory costs, etc., are random in nature and specified by probability
distributions. It may happen that the demand or any factor of a commodity in the society is
uncertain, not precisely known, but some past data about it is available. From the available
records, the probability distribution of demand or any other factor of the commodity can be
determined and with that distribution the problem can be analysed and solved.

Fuzzy-Stochastic Environment : It is an combination of both stochastic and fuzzy
environments. Here, some parameters, goals, etc., are fuzzy and some others are random.
For example, in an inventory control problem, holding cost may be imprecise and demand
as random. On the other hand, an inventory parameter/variable may be both fuzzy and
random together. The statement - the probability of having large demand of football world
cup ticket contains both impreciseness and randomness together. Here large is fuzzy and
‘probability’ represents randomness.

Rough Environment : In this environment some of the parameters like, demand
coefficients, inventory costs, planning horizon, etc., are rough in nature and represented by
rough sets.

Fuzzy-Rough Environment : It is an environment in which some of the parameters are
fuzzy-rough in nature. Fuzzy rough variable is a measurable function from a rough space to
the set of fuzzy variables. More generally, a fuzzy rough variable is a rough variable taking
fuzzy values.

1.3 Historical Review on Inventory Models
The control and maintenance of inventory, i.e., over-stocking and under-stocking, is a
problem common to all organizations in any sector of the economy. Inventory problems in
deterministic environment have been studied by several researchers since early twentieth
century. The earliest simple EOQ model has been developed by Ford Harris [99] of
Westinghouse Corporation, USA. After few years R.H. Wilson [269] published same type
of formula and it has been named as Harris-Wilson formula or Wilson’s formula. Since
then, lot of research work have been reported by several researchers of inventory control
problems in different environments and the process still going on. Full length book in the
field of inventory control systems have been presented by several
authors [7, 97, 184, 215, 267]. Few of the existing literature in this field are reviewed and
presented below.
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1.3.1 Models with stock dependent demand

The class of inventory models with initial stock or current inventory-level dependent
demand rates has recently received considerable attention. In reality, in the context of
present competitive market, the inventory/stock is decoratively displayed through electronic
media to attract the customers and thus to push the sale. We often see decorative displays of
items in shops that are used as “psychic stock” stimulate more sales of some retail items.
Baker and Urban [10] and Urban [259] formulated EOQ models with stock dependent
demand where the dependency is of simple form. Mandal and Phaujder [168] considered
linear form of stock-dependent demand, i.e. D = c + dq, where Mandal and Maiti [169] and
Maiti and Maiti [163] and others took the demand as D = dqβ . Recently, Jiangtao et
al. [117] considered a multi-item inventory model for perishable items where the demand
rates of the items are stock-dependent and two level trade credit is allowed with restriction
on inventory capacity. Yang et al. [277] developed a supply chain policy for a single
manufacturer and a single retailer with a single product assuming stock dependent demand
for retailer. Tyagi et al. [258] and Chakraborty et al. [37] investigated models for
deteriorating items with stock-dependent demand in crisp and fuzzy environments
respectively.

1.3.2 Models on imperfect production process

In the literature, few EPL models are available for imperfect units. Rosenblatt and
Lee [217] studied the effects of an imperfect production process on the optimal production
run time by assuming that time to out-of-control state is exponentially distributed. Salameh
and Jaber [225] and Lin [145] studied the EOQ/EPQ model for the items with imperfect
quality and proposed discount sales for them. Hayek and Salameh [100] derived an optimal
operating policy for the finite production model under the effect of reworking of imperfect
quality items. They assumed that all defective units are repairable and allowed back-orders.
Chiu [55] extended the work of Hayek and Salameh [100] and examined an EPQ model
with defective items reworking the repairable units immediately. Sana [227] presented an
EPL model with random imperfect production process and defective units were repaired
immediately when they were produced. Sarkar et al. [230] obtained the optimal reliability
for an EPL model connecting process reliability with imperfect production system. Barzoki
et al. [11] investigated the effects of imperfect production on the works in process inventory
and evaluated the optimum lot size for the minimum total cost. Here, some imperfect
products were reworked and others were sold at a reduced price. Krishnamoorthi and
Panayappan [133] have studied an EPQ model that incorporated imperfect production
quality, not screening out proportion of defects and thereby passing them on to customers
and resulting in sales returns. Not all of the defective units are repairable, a portion of them
are scrap and discarded beforehand. Chen et al. [45] developed an alternative optimization
solution process to determine the optimal replenishment lot size considering imperfect
rework and multiple shipments. Taleizadeh et al. [247] presented an EPQ model with
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rework process for a single stage production with one machine. Recently Chen [49]
investigated a problem with production preventive maintenance, inspection and inventory
for an imperfect production process. Pal et al. [195] formulated an EPQ model with
imperfect production process and stochastic demand. Cárdenas-Barrón et al. [35] presented
an easy method for the results of Chen et al. [45] and Chiu et al. [54] deriving the optimal
number of replenishment and shipments jointly. Krishnamoorthi and Panayappan [134]
evaluated optimal lot size minimizing the total cost for an EPQ model without and with
shortages allowing imperfect production system and immediate rework of the imperfect
units. Rad et al. [207] developed a model of an integrated vendor-buyer supply chain with
imperfect production and shortages. Sarkar et al. [234] revisited the EPQ model with
rework process at a single stage manufacturing system with planned back-orders. The
production system was assumed to be imperfect having random defective rates. Recently,
Taleizadeh and Wee [248] extended a multi-product single machine manufacturing system
with manufacturing capacity limitation and immediate reworking of imperfect products
allowing partial back-ordering.

1.3.3 Models with complementary and substitute products

Now-a-days, due to strong competitive market, retailers prefer the business / production of
several items with the hope that due to dull market, if one item does not fetch profit, the
other one will save the situation. Among these multi-items, there may be some substitute
and / or complementary items. There are several investigations for substitutable items in the
newsboy setting. Das and Maiti [60] studied a single period newsboy type inventory problem
for two substitutable deteriorating items with resource constraint involving a wholesaler and
several retailers. Stavrulaki [244] modelled the joint effect of demand (stock-dependent)
stimulation and product substitution on inventory decisions by considering a single period
and stochastic demand. Gurler and Yilmaz [93] assumed substitution of a product when
the other one is out of stock and presented a two level supply chain newsboy problem with
two substitutable products. Kim and Bell [130] investigated the impact of the symmetrical
and asymmetrical demand substitution on optimal prices, production levels and revenue and
the impact of changes in the production cost on the optimal solutions. Recently Zhao et
al. [291] developed a two-stage supply chain where two different manufacturers compete
to sell substitutable products through a common retailer and analysed the problem using
game theory. Here the consumer demand function is defined as a linear form of the two
products’ retail prices-downward slopping in its own price and increasing with respect to
the competitor’s price. In marketing substitutable items, the demand of an item is sometimes
affected by the other, depending upon the other item’s inventory level (Maity & Maiti, [167]).
Ahiska and Kurtul [3] presented a one-way product substitution strategy for a stochastic
manufacturing/ re-manufacturing system and illustrated using real life data.
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1.3.4 Models with carbon emission

Recently, in the literature, several inventory models have been analysed under distinct
carbon emission policies. Hua et al. [107] examined both analytically and numerically the
impact of carbon trade, carbon price and carbon cap on order decisions and total cost of an
environmental inventory model based on the classical EOQ model. Bouchery et al. [25]
studied an EOQ model in multi-objective decision making problems with sustainability
criteria. Song and Leng [243] studied a news-vendor setting considering a mandatory CE
capacity, Carbon Emission (CE) tax and cap and trade systems under stochastic
environment. A multi-sourcing deterministic lot-sizing model with carbon constraint was
investigated by Absi et al. [1]. An EOQ model with a constraint on the emission of carbon
was considered by Chen et al. [50]. They concluded that without increasing cost
significantly, CE can be reduced through operational adjustment. Du et al. [75] investigated
an emission dependent supply chain consisting of one single emission-dependent
manufacturer and one single permit supplier. They derived the influence of ”cap and trade”
system on the decision making. Jaber et al. [112] examined the effect of different legislative
systems such as carbon tax, emission penalty and a combination of tax and penalty on a two
echelon supply chain model. Jin et al. [118] studied the impact of three CE reduction
policies including cap and trade and carbon tax regulations on a major retailer determining
its supply network design and choice of transportation. Zakeri et al. [287] presented an
analytical supply chain planning model that can be used to examine the supply chain
performance at the tactical/operational planning level under carbon pricing and trading
schemes. He et al. [101] examined the production lot sizing issues of a firm under cap and
trade and carbon tax regulations. Xu et al. [276] studied the joint production and pricing
decisions for products of a production firm under cap and trade and carbon tax regulations.
They compared the effect of two regulations on the total carbon emissions, the firm’s profit
and social welfare.

1.3.5 Models allowing credit period

In the last two decades, the inventory models with trade credit have been widely studied by
several researchers. The concept of trade credit was first introduced by Haley and
Higgins [98]. Goyal [90] was the first who established an EOQ model with a constant
demand rate under the condition of permissible delay in payments. Later, Aggarwal and
Jaggi [2] generalized the EOQ model from non-deteriorating items to deteriorating items.
Jamal et al. [115] further extended the EOQ model to allow for shortages. Thereafter,
Teng [251] amended the model by using selling price to calculate the revenue instead of
unit cost, and obtained an easy analytical closed-form solution. Afterwards,
Huang [110, 111] proposed two levels of trade credit policy where the supplier would offer
the retailer a delay period for payment and the retailer also adopts the trade credit policy to
stimulate his/her customer demand. Furthermore, he also assumed that the retailer’s trade
credit period offered by supplier, M is not shorter than the customer’s trade credit period

15



CHAPTER 1. INTRODUCTION

offered by the retailer, N (M≥N). Then Liao [141] further generalized Huang’s model to an
EPQ model for deteriorating items. Subsequently, Teng [252] established optimal ordering
policies for a retailer to deal with bad credit customers as well as good credit customers.
Lately, Ouyang et al. [192] considered two-level trade credit link to order quantity. Seifert
et al. [236] organized a review of trade credit literature and provided a detailed agenda for
future research. Recently, Chen et al. [46] discussed the retailer’s optimal EOQ/EPQ when
the up-stream trade credit is linked to order quantity or when the down-stream trade credit
is only a fraction of the purchase amount. Liao et al. [143] derived optimal strategy for
deteriorating items with capacity constraints under two-level trade credit. Chung et al. [58]
established a new EPQ inventory model for deteriorating items under two levels of trade
credit, in which the supplier offers to the retailer a permissible delay period and
simultaneously the retailer in turn provides a maximal trade credit period to its customers in
a supply chain system comprised of three stages. In the next year, Chung et al. [59] adopted
the rigorous methods of mathematical analysis in order to develop the complete solution
procedures to locate the optimal solution removing shortcomings in the earlier investigation
by Ouyang et al. [191]. Recently, Ouyang et al. [190] proposed an integrated inventory
model with capacity constraint and a permissible delay payment period that is order-size
dependent.

1.3.6 Models with inflation and time value of money
At present, the effect of inflation can’t be ignored as the economy of any country changes
rigorously due to high inflation. Considering this effect on inventory costs, first impetus
was given by Buzacott [30]. Among others, Beirman and Thomas [19], Datta and Pal [65],
Ray and Chaudhuri [214] studied some EOQ models with linear time-varying demand
taking inflation and time value of money into account. Moon and Lee [180] presented an
EOQ model with inflation and time value of money. Wee and Law [264] addressed an
inventory problem with finite replacement rate of deteriorating items incorporating the
effect of inflation and time value of money. In the same year, Chang [42] proposed an
inventory model for deteriorating items with trade credit under inflation. In recent years,
Chang [42], Jaggi et al. [113], Maiti [160, 161], Sana [226, 227] and Sarkar et al. [229, 232]
and others presented inventory models in this direction.

1.3.7 Models with Uncertainty (Impreciseness and Randomness)
The first publication accommodating the uncertainty in non-stochastic sense was in 1965 by
Prof. Zadeh [284]. After that extensive research works have been done in this
area [43, 76, 148, 201]. But applications of fuzzy sets in inventory control problems are
around 25-30 years. Among these works one can refer the works of Park [201], Roy and
Maiti [218], Mandal and Maiti [170], Alonso-Ayuso et al. [5], Wee et al. [265], etc. Lee
and Yao [140] developed an EPQ model considering fuzzy demand and fuzzy production
quantity. After one year, Yao and Lee [279] presented an inventory model - (i) with back
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order and (ii) without back order in fuzzy situations considering the fuzzy numbers.
Katagiri and Ishii [125] developed their inventory model under fuzzy shortage cost. Ouyang
and Chang [189] developed an inventory model with fuzzy lost sales. Dey and Maiti [70]
presented an EOQ model with fuzzy lead-time under inflation and time-value of money. Till
now, Fuzzy Differential Equation (FDE) and fuzzy integration are little used to solve fuzzy
inventory models [92], though the topics on fuzzy differential equations have been rapidly
growing in the recent years.

The first impetus on solving FDE was made by Kandel and Byatt [121]. After two years,
an extended version of their work has been published by them [122]. Some notable papers
in this direction are due to Petrovic et al. [202], Buckley and Feuring [27], Chalco-Cano
and Roman-Flores [39, 40], etc. On the other hand, study on fuzzy integration was initiated
by Sugeno [245]. Dubois and Prade [77, 78] presented two most valuable research papers
on fuzzy integration. Sims and Wang [242] gave a good review of this subject. After that
several researchers investigated different procedures for fuzzy integration. Wu [270]
introduced the concept of fuzzy Riemann integral and its numerical integration.

Petrovic et al. [202] considered the newsboy problem with fuzzy demand and fuzzy
inventory costs. They considered two fuzzy models one with (i) imprecisely described
discrete demand and other with (ii) imprecisely estimated unit holding and unit shortage
costs. Generally, fuzzy inventory models are developed considering some of the inventory
parameters as fuzzy in nature [18, 43, 140, 163, 223, 265]. To reduce the objective function,
they defuzzified the fuzzy parameters to a crisp one by either defuzzification methods or
following possibility/necessity measure of fuzzy events. Finally they solved the reduced
crisp model to determine decision for the Decision Maker (DM). In the existing literature,
little attention has been paid on fuzzy demand and fuzzy production rate. Wee et al. [265]
developed a multi-objective joint replenishment inventory model of deteriorating items,
where demand is stock dependent and fuzzy in nature. They solved the corresponding crisp
model and fuzzified the total profit and return on inventory investment for optimal
decisions. But occurrence of fuzzy demand/ production rate leads to FDE and fuzzy
integration for the formulation of the model. It is better to formulate these types of
problems using FDE for more accuracy of inventory decisions at the present day
competitive market.

After the second world war, more attention was focused on the stochastic nature of
inventory problems. To study the earliest publications, one can follow the research
papers [24, 97, 203]. Among others, Kalpakam and Sapan [120], Kodama [131], Hill et
al. [103], etc. have developed their models with probabilistic lead time or probabilistic time
scheduling or uncertain quantity receiving or random supplying. Bookbinder and
Cakanyildirim [23] developed a continuous review inventory model under random
lead-time. Cakanyildirim et al. [31] extended the model to a continuous review inventory
model under lot-size dependent random lead-time. Das et al. [64] considered a stochastic
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inventory problem with fuzzy storage cost. Lifetime of the products, specially the seasonal
products for which the planning horizon fluctuates every year depending upon the
environmental effects, is finite and imprecise (fuzzy or random) in nature. Moon and
Yun [181] first developed an EOQ model with Random Planning Horizon. After that large
number of research papers have been published incorporating this
assumption [180, 219, 221]. According to the author’s best knowledge, very few research
papers have been published in fuzzy-stochastic environment. Though some researchers
have given attention in this field, still there are lot of scope for research work to
develop/modify and to solve a number of real-life inventory models in fuzzy-stochastic
environment [165].

Recently, new type uncertain variables such as − rough, fuzzy-rough, random-rough are
much used in the research field of science and technology including inventory control
problems [147, 152, 157, 239, 272–274]. Though some researchers are interested during last
few years to deal with the above mentioned uncertainties, still there are lot of scope for the
inventory practitioners to develop and solve real-life inventory models in rough,
fuzzy-rough or random-rough environments.

1.4 Motivation and Objective of the Thesis

1.4.1 Motivation of the Thesis

The major phases of OR are identification of the problem correctly, including the
objectives, alternative courses of actions and constraints of the system. Based on the above
consideration, the next step is to construct a model of the problem or the system under
study. The models show the relation and inter-relation between an action and the reaction or
between cause and effect. The models also enable to forecast the factors which are crucial
for the system. Once a model is formulated, it is possible to analyse the problem. For an
appropriate constructed model, it is required to collect some information from well kept
records, from current tests, from an experiment. Such information are termed as input data.
After formulating the model and collecting the input data, the next step is to obtain a
solution procedure.

In OR, inventory process is one of the important application areas. In management
system, the studies of inventory control problem have tremendous importances. It protects
the system from fluctuation of demand, provide better services to the system, keeps smooth
flow of raw-materials, aids, reduces the risk of loss, helps to minimize the workload,
manpower and labour, facilitates, cost accounting activities, avoids duplication of order,
stock and many more. Inventory problems for fixed (deterministic) parameters have been
studied ever since early twentieth century. For these purpose, the readers may refer to
Harris [99], Hadley and Whitin [96], Naddor [184].
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In inventory control system, high level of inventory attracts more visibility and also may
imply that the goods are popular and fresh. Thus the inventory problem with stock
dependent demand is addressed by several researchers to reflect realistic circumstances.
The problem of stock dependent demand has been studied in both empirical and theoretical
papers. Empirical evidence of such demand of specific product has been provided
in [10,163,169,259]. Moreover, the theoretical models are proposed for developing optimal
policies in [37, 117, 168, 258]. Production disruption is a very familiar event in real life
production process. This disruption may be defined in the form of defective units of the
item. As mentioned in § 1.3.2, most of the production inventory models are investigated
with the assumptions of known proportion of defective units and fixed inspection state.
Besides this, at present in case of economic condition throughout the world, one can’t
ignore the “psychic stock” of goods and period of uncertain out-of-control state.

After all these studies, some lacunas exist in the formulation of inventory models with
stock dependent demand and imperfect production.

• In every manufacturing process, it is fact that environment is disturbed to some extent
and for that, now-a-days, attention is paid not to pollute the environment. Till now,
very few have introduced the environment protection cost (EPC) in EPL models, which
again varies with the rate of production.

• Few investigators have considered the non-instantaneous out-of-control state (starting
point of imperfect production) to be random during the production time, but none has
imposed it as a chance constraint for the system.

• Defective production rate normally increases with the time elapsed from the
out-of-control state and the production rate. Sana [227] considered this with constant
demand and fully reworked defective units. None has investigated this phenomena in
conjunction with stock-dependent demand and environmental protection cost.

Considering these facts, the author has formulated an EPL model (Model-3.1) with stock
dependent demand, random out-of-control state (including chance constraint) and
EPC.

In a production process, the defectiveness of the item depends on the reliability of the
machine [230, 233]. For a long run process, learning knowledge [20, 21, 82] is an important
factor to the DM. Moreover, it is generally observed that specially for electrical or
electronic goods, the life time of the item is not infinite. It is finite, but not predictable,
rather it fluctuates for different items. This phenomenon has inspired us to formulate
Model-3.2 which is constructed in terms of an EPL model with reliability dependent
random defective units in out-of-control state over different uncertain finite time
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horizons.

In reality, for multi item inventory system, considerable savings may be achieved by the
co-ordination of replenishment for a group of items. When inventory for a particular item
has been exhausted, price of the item become extremely high and / or quality of the item
is reduced to very low, then the demand of that item is met by another substitutable item.
Consequently the demand of a complementary item exogenously increase the demand of the
relative item, such as mobile phone and sim card, tea and sugar, car and fuel etc. Kim and
Bell [130], Maity and Maiti [167] and others researchers (cf. § 1.3.3) investigated the impact
of the symmetrical and asymmetrical demands for substitutable and complementary items.
But none has considered the following phenomena.

• A production-marketing system for complementary and substitute items under
randomly imperfect production process and budget limitation.

• An investigation in conjunction with advertisement / promotional cost, selling price
dependent demand and EPC.

• Commencement of imperfect units depends inversely on production rate.

• A part of the set up cost of the business system depends on the production rate.

These concepts motivated us to formulate an EPL model for complementary and
substitute items under imperfect production process with promotional cost and selling
price dependent demands (Model-4.1).

Several authors (Moon and Yun [181], Roy et al. [221], Guria et al. [94], Manna et al.
[172]) suggested that for any kind of business process, planning horizon is neither infinite
nor finite (fixed or deterministic). They established the concept of random planning horizon
for single/multi-item EOQ or EPQ model. But none conceived the idea of random planning
horizon for substitutable items. Besides that quality is an important criteria for substitutable
items. Moreover, following facts are to be considered in an inventory control system.

• Learning effect on the set up cost of the system and maintenance of the machinery
system is realistic phenomena.

• Product substitution depends on the joint effect of price and quality or on the basis of
either price or quality.

• Quality improvement cost which is a function of quality of an item, is a part of UPC.

• Development of an efficient heuristic algorithm (FAGA) is necessary to solve such a
complex inventory problem in uncertain environment.
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Keeping all these in mind, we construct the Model-4.2 (Quality and pricing decisions for
substitutable items under imperfect production process over a random planning
horizon).

In certain situations, the inventory process terminates after a small duration of time which
implies that the entire inventory on hand has no value after that duration. In order to control
this, news-boy problem is very common in our daily life. Here the DM makes the decisions
about the level of inventory for a very short period. This is the case, for example with
the products such as daily news paper, magazine, X-mass cards, etc. Several extensions of
the news-boy model have been reported in the literature [60, 198, 199, 261] in terms of the
assumptions- substitutable item, random demand, budget constraint, etc. But, till now none
has considered a news-boy problem with

• Promotional effects on the random demands to boost the demand.

• Substitute items- one substitute the other when the latter is out of stock.

• Budget constraints on purchasing or promotional or both of these costs.

• A heuristic optimization method named as “Rough Age based Genetic Algorithm
(RAGA)” is introduced for approximate single objective optimal solutions.

Therefore there is a strong motivation to construct the Model-4.3 entitled “Optimum
ordering for two substitute items in a news-vendor management with promotional
effort on demand using Rough Age based Genetic Algorithm.”

Some developed countries (UK, USA, Germany, etc.) have made a climate policy called
“carbon-tariffs policy” on the production firms. This policy has a significant impact on the
social welfare. For this reason, the production inventory management system is urged to
consider the fact of carbon emission during the production of an item.

Uncertainty is the only certain phenomena in the world of uncertainty. Now-a-days, in the
competitive market, the DM of the management system can’t take the risk of considering
fixed information data. Again the impreciseness (fuzziness) of the parameters / variables is
defuzzified in different ways. During the last two decades, a lot of literatures are available in
this context [27, 40, 76, 148, 201, 218, 270, 284, 288]. All these motivated us to consider the
Model-5.1 and Model-5.2. The other reasons for adaptation of Model-5.1 are

• A production system producing imperfect quantities after the passage of sometime
from the occurrence of production and emitting carbon from the beginning is
considered and introduced under all the available carbon rules and regulations of the
worldwide countries.

• A heuristic optimization method has been introduced– Rough age based MOGA for
multi-objective optimizations in fuzzy environment is presented.
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Although there are lot of research works in fuzzy environment, but most of them were not
formulated following fuzzy differential equation (FDE) approach. Hence the cost function
and sales revenue have become expressions as fuzzy integral (FRI). Moreover, the concept
of Intuitionistic Fuzzy Set (IFS) can be seen as an alternative approach to define a fuzzy set
instead of normal fuzzy set. Therefore, we consider an “EPL models with fuzzy imperfect
production system including carbon emission: A fuzzy differential equation approach”
(Model-5.2) under the strong motivation of the following.

• As the defective production starts after sometime from the commencement of produc-
tion and is uncertain, this production time is taken as fuzzy and time dependent fuzzy
defective production rate is considered.

• An EPL system is characterised by FDE and solved as MOOP using α-cut.

• For optimization, a new technique, IFOT is introduced.

In practical world, to make the co-operative relationship more attractive to boost the demand
of the items, a wholesaler / retailer offers several concessions to their customers such as credit
period, free transportation, etc. Again a manufacturer produces the items under a defective
production process and sells items in different markets. Generally, it is observed that each
market has different selling seasons. He et al. [102] considered an EOQ model with several
markets. Das et al. [62] applied this conception in a supply chain model. But still, there are
some gaps in the literature, like

• An EPL model for several markets along with the availability of trade credit period.
This credit period may be uncertain in non-stochastic sense.

• Model with inflation and transportation cost which is reduced from cycle to cycle with
the help of learning inspection.

These gaps motivated us to develop the Model-6.1 named as “A learning effected
imperfect production inventory model for several markets with fuzzy trade credit
period and inflation.”

Again in supply chain management system, there is a scope of bi-level trade credit.
However, in practical situation as there is high rate of interest after the credit period, it is
more profitable if all the payment is made as early as possible. These ideas influenced us to
formulate “A fuzzy imperfect EPL model with dynamic demand under bi-level trade
credit policy” (Model-6.2) with new realistic assumptions on credit period and its
payment.

1.4.2 Objective of the Thesis
The main objectives of the thesis are
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(i) To develop some inventory / production inventory model(s) for single and / or
integrated system i.e. supply chain management system in different types of uncertain
environments with few innovative and realistic assumptions which are not considered
so far.

(ii) To modify some existing probabilistic or fuzzy programming method and to develop
solution techniques (Expectation, FDE, Possibility, Necessity, FAGA, RMOGA,
TLBO, IFOT, etc.) as per the requirements of the model described in (i). The models
are solved by these methods.

(iii) To convert the uncertain models into the corresponding deterministic single or multi-
objective problems by using different appropriate techniques.

(iv) To show different effects or relations of the models’ parameters and decision variables
through some numerical examples and to perform their sensitivity analyses.

1.5 Organization of the thesis
In the proposed thesis, some real life uncertain inventory problems are considered and
solved. The proposed thesis is divided into following four parts and seven chapters.

Part-I : Introduction and Solution Methodologies
Chapter-1

Introduction

This Chapter contains an introduction giving an overview of the development on inventory

control system in crisp, fuzzy, random, rough, fuzzy-random and fuzzy-rough
environments.

Chapter-2

Solution Methodologies

In this Chapter, preliminary ideas on crisp set, fuzzy set, intuitionistic fuzzy set, rough set

etc, are given. The following techniques/methods have been developed /modified and used
to solve the proposed inventory models in uncertain environments.

• Generalized Reduced Gradient Technique (GRG)

• Intuitionistic Fuzzy Optimization Technique (IFOT)

• Fuzzy Age-based Genetic Algorithm (FAGA)
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• Rough age based Multi-Objective Genetic Algorithm (RMOGA)

• Teaching and Learning Based Optimization (TLBO)

• Buckley-Feuring method (for solution of FDE)

• Hukuhara derivative and Chalco-Cano technique (for solution of FDE)

Part-II: Inventory Problems in Uncertain Environment

Chapter-3

Inventory Problems with Stock dependent Demand
in Random Environment

Model-3.1: An EPL model for randomly imperfect production system with
stock-dependent demand and rework

In this model, we consider a single item, imperfect EPL model with stock-dependent
demand and partial rework. In real life EPL models, defective production commences from
the out-of-control state, after the passage of some time from production commencement. Its
occurrence is random and imposed here through a chance constraint. The set-up cost is
partly production dependent. Unit production cost (UPC) is also production dependent and
a part of it is taken as environment protection cost (EPC). Defective rate is also assumed to
be random and production dependent. The model is formulated as an average cost
minimization problem subject to a chance constraint and solved using a non-linear
optimization technique- GRG method through LINGO 11.0 software. Several special cases
are derived and more specifically, the present investigation derives the expressions of
Sana [227] and Khouja and Mehrez [127]. Numerical experiments are performed to
illustrate the general and particular models. Some sensitivity analyses are presented against
few model parameters.

Model-3.2: An EPL model with reliability-dependent randomly imperfect production
system over different uncertain finite time horizons

Imperfect EPL models are considered over different types of uncertain finite time
horizons with stock-dependent demand, reliability dependent defective rate and random
out-of-control state. Generally, in EPL models, defective production starts after the passage
of some time from production commencement. So occurrence of defective production is
random and imposed here through a chance constraint. Reliability of a machinery system
affects on the defective rate and production cost to produce an item. Here UPC depends on
reliability and production rate and part of it is taken against the EPC. Both linear and
non-linear production dependent forms of quality are considered. The problems are
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formulated as total cost minimization problems with crisp, random, fuzzy, fuzzy-random,
rough and fuzzy-rough constraints and solved using GRG method through LINGO 11.0
software. Several special cases are derived and numerical experiments are performed to
illustrate the general and particular models.

Chapter-4

Inventory Problems on Complementary and Substitute Products
in Random Environment

Model-4.1: EPL models for complementary and substitute items under imperfect
production process with promotional cost and selling price dependent demands

This model considers a multi-item, imperfect EPL model with advertisement/promotional
cost and selling price dependent demand and partially rework under a budget constraint.
The items are either complementary or substitute to each other. In the EPL models,
defective production commences from the out-of-control state, after the passage of some
time from production commencement. Its occurrence is random after the lapse of certain
time and it is imposed here through a chance constraint. The set-up cost is partly production
dependent. UPC is also production dependent and a part of it is taken as EPC. Defective
rate is also assumed to be random and production dependent. The model is formulated as an
average profit maximization problem subject to chance constraints and a budget constraint
and solved using the GRG method. Several special cases are derived and numerical
experiments are performed to illustrate the general and particular models. Some sensitivity
analyses are presented against few model parameters.

Model-4.2: Quality and pricing decisions for substitutable items under imperfect
production process over a random planning horizon

This investigation determines the optimum qualities and prices of two substitute products
for a manufacturer cum retailer in an imperfect production process over a random planning
horizon for maximum profit. In this EPL process, items are produced simultaneously,
defective production commences during the “out-of-control” state after the passage of some
time from the commencement of production and the defective units are partially reworked.
The items are substitutable to each other depending on their prices and qualities jointly or
separately. UPC depends directly on raw-material, labour and quality improvement costs
and inversely to the production rate. A part of it is spent against environment protection.
Here learning effect is introduced in the set-up and maintenance costs. For the whole
process, the planning horizon is random with normal distribution, which is treated as a
chance constraint. A Fuzzy Age based Genetic Algorithm (FAGA) is introduced for the
solution of a single objective problem. The above mentioned models are formulated as
profit maximization problems subject to a chance constraint and solved using FAGA. The
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models are demonstrated numerically and the optimum results are presented graphically.

Model-4.3: Optimum ordering for two substitute items in a news-vendor management
with promotional effort on demand using Rough Age based Genetic Algorithm

This model presents a single period news-vendor management system for two substitute
items. Here substitution is made only when one item is exhausted and then the substitute
item is sold at a different price. Here, the News-Vendor problem deals with stochastic
uniform demand and a promotional effort to boost the random demand. Different scenarios
are formulated and combined to find the expected profit of the system. The profit function is
optimized with constraints on purchasing and/ or promotional costs. A Rough-Age based
GA (RAGA) is developed for single objective optimization and applied to identify the
optimal strategies of the proposed model. Finally, real-life experiments are performed to
illustrate the models. Some sensitivity analyses are also presented to stabilize the numerical
experiments.

Chapter-5

Inventory Problems with Carbon Emission in Fuzzy Environment

Model-5.1: Green logistics under imperfect production system: A Rough age based
Multi-Objective Genetic Algorithm approach

Imperfect EPL models are considered with time dependent defective rate. Here, defective
production starts after the passage of some time from the production commencement.
Produced defective units are partially reworked and sold as fresh units. Under the
environmental regulation, a cost (carbon tax) is charged by the government to mitigate
global warming by reducing carbon emission (CE). Management also uses carbon trading
when upper limit of carbon emission is given by the government. This cost brings a
contradiction to production manager. For more profit, if more production is decided, then
CE and tax due to that are more. The models are formulated as profit maximization
problems and solved using Rough age based Multi-Objective Genetic Algorithm
(RMOGA). Numerical experiments and graphical presentation are performed to illustrate
the models. An algorithm with example for the firm management to achieve the maximum
profit is also presented.

Model-5.2: EPL models with fuzzy imperfect production system including carbon
emission : A fuzzy differential equation approach

This model outlines the production policies for maximum profit of a firm producing
imperfect economic lot size with time-dependent fuzzy defective rate under the respective
country’s carbon emission rules. In this investigation, two criteria in production process are
considered : (i) Generally in EPL models, defective production starts after the passage of
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some time from production commencement. So the starting time of producing defective
units is normally uncertain and imprecise. Here it is taken as fuzzy. Thus produced
defective units are fuzzy, partially reworked instantly and sold as fresh units. As a result,
the inventory level at any time becomes fuzzy and the relation between the production,
demand and inventory level becomes a Fuzzy Differential Equation (FDE). (ii) Under the
environmental regulation, a cost (say carbon tax) is charged by the government to mitigate
global warming by reducing CE. Firm management also uses carbon trading when upper
limit of carbon emission is fixed by the government. This cost brings a contradiction to
production management. For more profit, if more production is decided, then CE and tax
due to that increase. To avoid the carbon penalty, total production may be reduced but in
that case, profit will be less. Considering the above two real-life criteria, some production
policies are outlined. Here models are formulated as profit maximization problems using
FDE, the corresponding inventory and environmental costs are calculated using fuzzy
Riemann-integration. α-cuts of average profits are obtained and the reduced multi-objective
crisp problems are solved using Intuitionistic Fuzzy Optimization Technique (IFOT).
Numerical experiments and graphical presentation are performed to illustrate the models.
Considering different carbon regulations, an algorithm for a firm management in a country
is presented to achieve the maximum profit. Real-life production problems for the firms in
Annex I and developing countries are solved.

Chapter-6

Inventory Problems with Trade Credit Policy in Fuzzy Environment

Model-6.1: A learning effected imperfect production inventory model for several
markets with fuzzy trade credit period and inflation.

This model consists of joint relationship among supplier, manufacturer-cum-retailer and
multiple markets in which manufacturer-cum-retailer gets a facility of fuzzy credit period
for purchasing of raw materials from supplier. The manufacturer produces the finished
goods along with defective units at a constant rate. Here the finished product is transported
to different markets in different seasons, with a transportation cost that depends on the
amount of transportation and learning ratio. Also, the demand of the item is different in
each market. Further, the optimal operation policy that maximizes total profit of the
integrated system is derived under a constant rate of inflation. But due to impreciseness in
trade credit period, profit function seems fuzzy in nature, thereby determining the optimal
imprecise values of decision variables. Equivalent crisp profit function is obtained by
applying fuzzy expectation method. The closed form solutions of the objective and it’s
concavity properties have been derived to obtain maximum profit. Finally, the models are
illustrated with certain numerical data and graphical solutions are provided with sensitivity
analysis with respect to model’s parameters.
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Model-6.2: A fuzzy imperfect EPL model with dynamic demand under bi-level trade
credit policy

An imperfect EPL model with fuzzy dynamic demand is developed in a fuzzy production
process under bi-level trade credit policy. Supplier offers a delay period (M) to the
manufacturer-cum-retailer for payment of raw-material cost. Due to this facility,
manufacturer-cum-retailer also offers a trade credit period (N) to the customers to boost the
demand. During trade credit period of customers, demand of the item increases with time at
a decreasing rate. Different parameters of demand are assumed as fuzzy. Depending upon
the values of M and N, twelve scenarios are depicted. In each scenario, the model is
represented through FDE whose solution is obtained using Chalco-Cano [39] technique.
Thus average profit function is imprecise in nature and its α-cut values are maximized for
making optimal decision of production run time. All scenarios are illustrated with
numerical examples. Further more, an alternative approach of payment for the remaining
inventory after the credit period M has also been proposed in the present study. In the new
approach, retailer clears all dues before the end of business cycle whenever it is feasible. It
has been explained with the help of numerical examples and the outcomes are compared
against the above traditional approach.

Part-III : Summary of the Thesis

Chapter-7

Summary and Future Extension

Part-IV: Appendices, Bibliography and Indices

Appendix A

Appendix B

Bibliography

Indices
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Chapter 2

Solution Methodology

2.1 Mathematical prerequisites

2.1.1 Crisp Set Theory

Crisp Set: By crisp one means dichotomous, that is, yes or no type rather than more-or-less
type. In conventional dual logic, for instance, a statement can be true or false- and nothing
in between. In set theory, an element can either belongs to a set or not; and in optimization,
a solution is either feasible or not. A classical set, X , is defined by crisp boundaries, i.e.,
there is no uncertainty in the prescription of the elements of the set. Normally it is defined
as a well defined collection of elements or objects, x ∈ X , where X may be countable or
uncountable.

Convex Set: A subset S ⊂ <n is said to be convex, if for any two points x1, x2 in S, the line
segment joining the points x1 and x2 is also contained in S. In other words, a subset S ⊂ <n
is convex, if and only if

x1, x2 ∈ S ⇒ λx1 + (1− λ)x2 ∈ S; 0 ≤ λ ≤ 1.

Convex Combination: Given a set of vectors {x1, x2, · · · , xn}, a linear combination
x = λ1x1 + λ2x2 + · · · + λnxn is called a convex combination of the given vectors, if

λ1, λ2, · · · , λn ≥ 0 and
n∑
i=1

λi = 1

Convex function: The function f : S → < is said to be convex if for any x1, x2 ∈ S and
0 ≤ λ ≤ 1, implies that

f{(1− λ)x1 + λx2} ≤ (1− λ)f(x1) + λf(x2).

The definition of convex functions can be modified for concave functions by replacing ′ ≤′
by ′ ≥′.
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2.1.2 Fuzzy Set Theory
The concept of fuzzy set was initialized by Zadeh [284] in 1965. Fuzzy set theory has
been well developed and applied in a wide variety of real problems including inventory
control problems. It was developed to define and solve the complex system with sources of
uncertainty or impreciseness which are non-stochastic in nature. The term “FUZZY” was
proposed by Prof. L, A. Zadeh in 1962 [283]. A short delineation of the fuzzy set theory is
given below.

2.1.2.1 Fuzzy Set
Fuzzy sets deal with objects that are ‘matter of degree’, with all possible grades of truth
between yes or no. So a fuzzy set is a class of objects in which there is no sharp boundary
between those objects that belong to the class and those that do not. Let X be a collection of
objects and x be an element of X, then a fuzzy set Ã in X is a set of ordered pairs
Ã = {(x, µÃ(x))/x ∈ X}, where µÃ(x) is called the membership function or grade of
membership of x in Ã which maps X to the membership space M which is considered as the
closed interval [0,u], where 0 < u ≤ 1.

Note: When M consists of only two points 0 and 1, Ã becomes a non-fuzzy set (or Crisp set)
and µÃ(x) reduces to the characteristic function of the non-fuzzy set (or crisp set).

• Equality: Two fuzzy sets Ã and B̃ in X are said to be equal if and only if µÃ(x) =
µB̃(x),∀x ∈ X.

• Containment: A fuzzy set Ã in X is contained in or is a subset of another fuzzy set
B̃ in X , written as Ã ⊂ B̃ if and only if µÃ(x) ≤ µB̃(x),∀x ∈ X.

• Support: The support of a fuzzy set Ã is a crisp set, denoted by S(Ã), and defined as
S(Ã) = {x |µÃ(x) > 0}.

• Height: The height of a fuzzy set Ã is the maximum membership grade value of Ã
and denoted by h(Ã) = sup

x∈X
µÃ(x), where X is universal set.

• Normal fuzzy set: A fuzzy set Ã is called normal if its height is 1, i.e., if h(Ã) =
sup
x∈X

µÃ(x) = 1

• Core: The core of a fuzzy set Ã is a set of all points with unit membership degree in
Ã denoted by Core(Ã), and defined as Core(Ã) = {x ∈ X |µÃ(x) = 1}.

• Convexity: A fuzzy set Ã in X is said to be convex if and only if for any x1, x2 ∈
X, the membership function of Ã satisfies the inequality µÃ(λx1 + (1 − λ)x2) ≥
min{µÃ(x1), µÃ(x2)} for 0 ≤ λ ≤ 1.
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2.1.2.2 Fuzzy Number
A fuzzy number is a convex, normal fuzzy set defined on the real line. Here some
definitions of fuzzy numbers are presented below.

A general shape of a fuzzy number following the above definition may be shown
pictorially as in Fig. 2.1. Here, a1, a2, a3 and a4 are real numbers. A fuzzy number Ã in X
is said to be discrete or continuous according as its membership function µÃ(x) is discrete
or continuous. Linear Fuzzy Number (LFN), Triangular Fuzzy Number (TFN), Parabolic
Fuzzy Number (PFN) and Trapezoidal Fuzzy Number (TrFN), are special classes of
continuous fuzzy numbers.

Figure 2.1: Membership func-
tion of general fuzzy number
Ã = (a1, a2, a3, a4)

Figure 2.2: Membership function of
LFN

Definition 2.1. Linear Fuzzy Number (LFN): A LFN Ã is specified by two parameters
(a1, a2) and is defined by its continuous membership function µÃ(x) : X → [0, 1] as follows
(cf. Fig. 2.2):

µÃ(x) =


0 if x ≤ a1
a2 − x
a2 − a1

if a1 ≤ x ≤ a2

1 if x ≥ a2

Definition 2.2. Triangular Fuzzy Number (TFN): A TFN Ã is specified by the triplet
(a1, a2, a3) and is defined by its continuous membership function µÃ(x) : X → [0, 1] as
follows (cf. Fig. 2.3):

µÃ(x) =


x− a1

a2 − a1

if a1 ≤ x ≤ a2

a3 − x
a3 − a2

if a2 ≤ x ≤ a3

0 otherwise
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Figure 2.3: Membership function of
TFN

Figure 2.4: Membership function of
PFN

Definition 2.3. Parabolic Fuzzy Number (PFN): A PFN Ã is also specified by the triplet
(a1, a2, a3) and is defined by its continuous membership function µÃ(x) : X → [0, 1] as
follows (cf. Fig. 2.4):

µÃ(x) =


1− (

a2 − x
a2 − a1

)2 for a1 ≤ x ≤ a2

1− (
x− a2

a3 − a2

)2 for a2 ≤ x ≤ a3

0 otherwise

Definition 2.4. Trapezoidal Fuzzy Number (TrFN): A TrFN Ã is specified by four
parameters (a1, a2, a3, a4) and is defined by its continuous membership function
µÃ(x) : X → [0, 1] as follows (cf. Fig. 2.5):

µÃ(x) =



x− a1

a2 − a1

for a1 ≤ x ≤ a2

1 for a2 ≤ x ≤ a3
a4 − x
a4 − a3

for a3 ≤ x ≤ a4

0 otherwise

Figure 2.5: Membership function of
TrFN

Figure 2.6: α-cut of general fuzzy num-
ber Ã = (a1, a2, a3, a4)
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Definition 2.5. α - Cut of a fuzzy number: α- cut of a fuzzy number Ã in X is denoted by
A[α] and is defined as the following crisp set (cf. Fig. 2.6):

A[α] = {x : µÃ(x) ≥ α, x ∈ X} where α ∈ [0, 1]

A[α] is a non-empty bounded closed interval contained in X and it can be denoted by
A[α] = [AL(α), AR(α)]. AL(α) and AR(α) are the lower and upper bounds of the closed
interval respectively. Fig. 2.6 represents a fuzzy number Ã with α-cuts
A[α1] = [AL(α1), AR(α1)], A[α2] = [AL(α2), AR(α2)]. It shows that if α2 ≥ α1 then
AL(α2) ≥ AL(α1) and AR(α1) ≥ AR(α2). Here, A′[α] = {x ∈ X|µÃ(x) > α} is called
‘strong α-level set’

Definition 2.6. α-cut of a function: Let F̃ (X) be the space of all compact and convex fuzzy
sets on X . If f : <n → < is a continuous function, then f̃ : F̃ (<n)→ F̃ (<) is well defined
function and its α-cut f̃(u)[α] is given by (cf. Roman-Flores et al. [216])

f̃(u)[α] = f(u[α]), ∀α ∈ [0, 1],∀ũ ∈ F̃ (<n) (2.1)

where f(A) = {f(a)/a ∈ A}.

Definition 2.7. Fuzzy Extension Principle [285]: If ã , b̃ ⊆ < and c̃ = f(ã, b̃), where
f : <×< → < is a binary operation, membership function µc̃ of c̃ is defined as (cf. page 53
of Zimmermann [288], second revised version)

For each z ∈ <, µc̃(z) = sup{min(µã(x), µb̃(y)), x, y ∈ < and z = f(x, y)} (2.2)

2.1.2.3 Defuzzification Method
In the literature of fuzzy mathematics, several approaches are available to convert a fuzzy
number into its equivalent crisp number [47, 48, 91, 280]. Each method has some merits and
demerits over the others. In this thesis, used defuzzification methods are discussed below.

A. Graded Mean Integration Representation (GMIR) of Fuzzy Number: Chen and
Hsieh [47,48] introduced GMIR method based on the integral value of graded mean α-level
of a generalized fuzzy number. The graded mean α-level value of generalized fuzzy number
Ã = (A1, A2, A3, A4) is α[AL(α)+AR(α)

2
], α ∈ [0, 1]. Then the GMIR of a general fuzzy

number Ã is

P (Ã) =

1∫
0

α[
AL(α) + AR(α)

2
]dα/

1∫
0

αdα. =
1

6
[A1 + 2A2 + 2A3 + A4] (2.3)

Here equal weightage has been given to the left and right parts of the membership function.
The representation given by (2.3) can be generalized/modified by replacing [AL(α)+AR(α)]

2
,
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α ∈ [0, 1] with [kAL(α) + (1 − k)AR(α)], α ∈ [0, 1], where the value of k depends on the
preference of the decision maker. Therefore, the modified form of Eq. (2.3) is

Pk(Ã) =

1∫
0

α[k AL(α) + (1− k)AR(α)]dα/

1∫
0

αdα

=
1

3
[k(A1 + 2A2) + (1− k)(2A3 + A4)]. (2.4)

The method is also known as k-preference integration representation.

B. Possibility/Necessity Measure of Fuzzy Event
In order to measure a fuzzy event, Zadeh [285] proposed the concept of possibility measure
in the year 1978. Considering the degree of membership µF̃ (u) of an element ũ in a fuzzy
set F̃ , defined on a referential U , one can find in the literature, three interpretations of this
degree [80].

Degree of similarity: According to degree of similarity, µF̃ (u) is the degree of proximity of
ũ to prototype elements of F̃ . Historically, this is the oldest semantics of membership grades
since Bellman et al. [14].

Degree of preference: According to degree of preference, F̃ represents a set of more or
less preferred objects (or values of a decision variable x) and µF̃ (u) represents an intensity
of preference in favour of object ũ, or the feasibility of selecting ũ as a value of x. Fuzzy
sets then represent criteria or flexible constraints. This view is the one later put forward by
Bellman and Zadeh [15], it has given birth to an abundant literature on fuzzy optimization,
especially fuzzy linear programming and decision analysis.

Degree of uncertainty: This interpretation was proposed by Zadeh [285] when he
introduced the possibility theory and developed his theory of approximate reasoning [286].
µF̃ (u) is then the degree of possibility that a parameter x has value ũ, given that all that is
known about it is that “x is F̃ ”. Then the values encompasses by the support of the
membership functions are mutually exclusive, and the membership degrees rank these
values in terms of their respective plausibility. Set functions called possibility and necessity
measures can be derived so as to rank-order events in terms of unsurprising-ness and
acceptance respectively.

Let ã and b̃ be two fuzzy numbers with membership functions µã(x) and µb̃(x) respectively.
Then according to Dubois and Prade [76], Liu and Iwamura [148], Zadeh [285]

pos(ã ∗ b̃) = sup{min(µã(x), µb̃(y)), x, y ∈ <, x ∗ y}, (2.5)

where pos represents possibility, ∗ is any one of the relations >,<,=,≤,≥.

nes(ã ∗ b̃) = 1− pos(ã ∗ b̃), (2.6)
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where nes represents necessity.

Similarly, possibility and necessity measures of ã with respect to b̃ are denoted by Πb̃(ã)
and Nb̃(ã) respectively and are defined as

Πb̃(ã) = sup{min(µã(x), µb̃(x)), x ∈ <} (2.7)
Nb̃(ã) = min{sup(µã(x), 1− µb̃(x)), x ∈ <}. (2.8)

According to the definitions of fuzzy numbers, following lemmas can easily be derived.

Lemma 2.1. If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number, pos(ã > b) ≥
α iff

a3 − b
a3 − a2

≥ α.

Lemma 2.2. If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number, nes(ã > b) ≥
α iff

b− a1

a2 − a1

≤ 1− α.

Lemma 2.3. If ã = (a1, a2, a3) be a TFN with 0 < a1 and b is a crisp number, pos(ã ≤ b) ≥
α iff

b− a1

a2 − a1

≥ α.

Lemma 2.4. If b̃ = (b1, b2, b3) and ã = (a1, a2, a4) be TFNs with 0 < a1 0 < b1, pos(b̃ ≥
ã) ≥ α iff b3−a1

a2−a1+b3−b2 ≥ α.

Lemma 2.5. If ã = (a1, a2, a3) be a TFN and b be a crisp number with 0 < a1 and 0 < b,

Πã(b) = Nã(b) =


b−a1
a2−a1 for a2 ≥ b ≥ a1
a3−b
a3−a2 for a3 ≥ b ≥ a2

0 otherwise.

Lemma 2.6. [158]: If ã = (a1, a2, a3, a4) be a TrFN and b be a crisp number then

pos(ã ≥ b) =


1 if a3 ≥ b
a4−b
a4−a3 if a3 ≤ b ≤ a4

0 otherwise

Lemma 2.7. [158]: If ã = (a1, a2, a3, a4) be a TrFN and b be a crisp number then

nes(ã ≥ b) =


1 if a1 ≥ b
a2−b
a2−a1 if a1 ≤ b ≤ a2

0 otherwise
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C. Credibility Measure [152]: Let Ã be any fuzzy number. Then credibility measure of Ã
is denoted by cr(Ã) and defined as

cr(Ã) =
1

2
[pos(Ã) + nes(Ã)] (2.9)

More generally, according to Maity [158] the above form can be considered as

cr(Ã) = [ρpos(Ã) + (1− ρ)nes(Ã)] where 0 ≤ ρ ≤ 1.

D. Fuzzy Expectation [149]: Let X̃ be any normalized fuzzy variable. The expected value
of the fuzzy variable X̃ is denoted by E[X̃] and defined by

E[X̃] =

∫ ∞
0

cr(X̃ ≥ r) dr −
∫ 0

−∞
cr(X̃ ≤ r) dr (2.10)

provided that at least one of the two integral is finite.

Lemma 2.8. [158]: If Ã = (a1, a2, a3) be a TFN and r be a crisp number, expected value
of Ã, E(Ã) is given by

E[Ã] =
1

2
[(1− ρ)a1 + a2 + ρ a3]

where ρ (0 ≤ ρ ≤ 1) is the degree of optimism/pessimism for DM.

Lemma 2.9. [158]: If Ã = (a1, a2, a3, a4) is a TrFN and r is a crisp number, then expected
value of Ã, E[Ã], is given by

E[Ã] =
1

2
[(1− ρ)(a1 + a2) + ρ(a3 + a4)]

where ρ (0 ≤ ρ ≤ 1) is the degree of optimism/pessimism for DM.

2.1.2.4 Fuzzy Differential Equation (FDE)
It is well-known that the H-derivative (differentiability in the sense of Hukuhara) for fuzzy
mappings was initially introduced by Puri and Ralescu [205] and it is based in the
H-difference of sets, as follows.

Definition 2.8. Let be u, v∈ F n. If there exists w∈ F n such that u = v + w, then w is called
the H-difference of u and v and it is denoted by u – v.

Definition 2.9. [205]. Let be T = (a,b) and consider a fuzzy mapping F : (a,b)→ F n. We
say that F is differentiable at t0 ∈ T if there exists an element F ′(t0) ∈ F n such that the
limits

lim
h→0+

F (t0 + h)− F (t0)

h
and lim

h→0+

F (t0)− F (t0 − h)

h

exist and are equal to F ′(t0). Here the limit is taken in the metric space (F n,D).
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Definition 2.10. Let be F : (a,b)→ F n and t0 ∈ (a, b). We say that F is differentiable at t0
if:

(I) it exists an element F ′(t0) ∈ F n such that, for all h > 0 sufficiently near to 0, there are
F (t0 + h)− F (t0), F (t0)− F (t0 − h) and the limits (in the metric D)

lim
h→0+

F (t0 + h)− F (t0)

h
= lim

h→0+

F (t0)− F (t0 − h)

h
= F ′(t0) (2.11)

or,
(II) it exists an element F ′(t0) ∈ F n such that, for all h < 0 sufficiently near to 0, there are
F (t0 + h)− F (t0), F (t0)− F (t0 − h) and the limits (in the metric D)

lim
h→0−

F (t0 + h)− F (t0)

h
= lim

h→0−

F (t0)− F (t0 − h)

h
= F ′(t0) (2.12)

Theorem 2.1. [39]: Let F : T → F be a function and denote [F (t)]α = [fα(t), gα(t)], for
each α ∈ [0, 1]. Then
(i) If F is differentiable in the first form (I), then fα and gα are differentiable functions and

[F ′(t)]α = [f ′α(t), g′α(t)]. (2.13)

(ii) If F is differentiable in the second form (II), then fα and gα are differentiable functions
and

[F ′(t)]α = [g′α(t), f ′α(t)]. (2.14)

There are several approaches in the literature [27] to define fuzzy derivative. The concept
of fuzzy differentiation was introduced by Dubois and Prade [76]. Motivated by their study
[76–78], Seikkala [237] defines fuzzy differentiation and fuzzy integration using inclusion
property of α-cuts of fuzzy numbers.

Definition 2.11. According to Seikkala [237], if Ỹ (t) be a fuzzy number for each
t ∈ I(⊆ <), having α-cut, Ỹ (t)[α] = [YL(t, α), YR(t, α)] then dỸ (t)

dt
exists and

dỸ (t)
dt

[α] = [dYL(t,α)
dt

, dYR(t,α)
dt

] provided [dYL(t,α)
dt

, dYR(t,α)
dt

] are α-cuts of a fuzzy number for
each t ∈ I , i.e., if the following conditions hold:

dYL(t, α)

dt
and

dYR(t, α)

dt
are continuous on I × [0, 1].

dYL(t, α)

dt
is an increasing function of α for each t ∈ I.

dYR(t, α)

dt
is a decreasing function of α for each t ∈ I.

dYL(t, 1)

dt
≤ dYR(t, 1)

dt
,∀ t ∈ I.

(2.15)
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Accordingly, they define fuzzy integral
b∫
a

Ỹ (t)dt for all a, b ∈ I having α-cut

( b∫
a

Ỹ (t)dt

)
[α] =

[ b∫
a

YL(α, t)dt,

b∫
a

YR(α, t)dt

]
provided that the integrals on the right exist. This definition of fuzzy integration agrees with
the definition of Dubois and Prade [77] and Wu [270].

A. Fuzzy Differential Equation-1 (FDE-1) [27]: Consider the first order ordinary
differential equation

dY

dt
= f(t, Y, k), Y (0) = C, (2.16)

where k = (k1, k2, ...kn) is a vector of constants and t is in some interval I (closed and
bounded) which contains zero. Let the Eq. (2.16) has a unique solution

Y = g(t, k, C), for t ∈ I, k ∈ K ⊂ <n, C ∈ < (2.17)

When k̃ = (k̃1, k̃2, ...k̃n) is a vector of fuzzy numbers and C̃ be another fuzzy number, then
the Eq. (2.16) reduces to the following FDE

dỸ

dt
= f(t, Ỹ , k̃), Ỹ (0) = C̃ (2.18)

assuming that derivative [27, 237] of the unknown fuzzy function Ỹ (t) exists according to
the above definition [238].
According to Buckley and Feuring [27],

Ỹ (t) = g(t, k̃, C̃) (2.19)

is solution of (2.18) if its α-cut Ỹ (t)[α] = [YL(t, α), YR(t, α)] satisfies the following condi-
tions (2.20) along with the conditions given by the Eq. (2.15).

dYL(t, α)

dt
= fL(t, α),

dYR(t, α)

dt
= fR(t, α), ∀α ∈ [0, 1].

dYL(0, α)

dt
= CL(α),

dYR(0, α)

dt
= CR(α), ∀α ∈ [0, 1].

(2.20)

where f̃(t)[α] = [fL(t, α), fR(t, α)], C̃[α] = [CL(α), CR(α)] and membership function of
Ỹ (t) is obtained using fuzzy extension principle (Eq. (2.2)). To justify the validity of this
solution one can see [27].
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B. Fuzzy Differential Equation-2 (FDE-2) [39]: Let the fuzzy initial value problem is

x′(t) = F (t, x(t)), x(0) = x0, (2.21)

where F : [0, a] × F → F is a continuous fuzzy mapping and x0 is a fuzzy number.
Following Kaleva [119], we observe that the relations (2.13) and (2.14) in Theorem 2.1 give
us an useful procedure to solve the fuzzy differential equation (2.21). In fact, denote
[x(t)]α = [uα(t), vα(t)], [x0]α = [u0

α, v
0
α] and [F (t, x(t))]α = [fα(t, uα(t), vα(t)), gα(t, uα(t),

vα(t))]. Then, we have the following alternatives for solving the problem (2.21):

Case I. If we consider x′(t) by using the derivative in the first form (I), then from (2.13) we
have [x′(t)]α = [u′α(t), v′α(t)]. Now, we proceed as follows:
(i) Solve the differential system{

u′α(t) = fα(t, uα(t), vα(t)), uα(0) = u0
α

v′α(t) = gα(t, uα(t), vα(t)), vα(0) = v0
α

(2.22)

for uα and vα;
(ii)Ensure that [uα(t), vα(t)] and [u′α(t), v′α(t)] are valid level sets;
(iii) By using the Representation Theorem (Remark 1c of Chalco-Cano [39]), we construct
a fuzzy solution x(t) such that [x(t)]α = [uα(t), vα(t)] for all α ∈ [0, 1].

Case II. If we consider x′(t) by using the derivative in the second form (II), then from
(2.14) we have [x′(t)]α = [v′α(t), u′α(t)] and, consequently, now we proceed as follows:

(i) Solve the differential system{
u′α(t) = gα(t, uα(t), vα(t)), uα(0) = u0

α

v′α(t) = fα(t, uα(t), vα(t)), vα(0) = v0
α

(2.23)

for uα and vα;
(ii)Ensure that [uα(t), vα(t)] and [v′α(t), u′α(t)] are valid level sets;
(iii) By using the Representation Theorem again, we obtain a another fuzzy solution x(t)
such that [x(t)]α = [uα(t), vα(t)] for all α ∈ [0, 1].

2.1.2.5 Fuzzy Riemann Integration (FRI)
A. Fuzzy Integral: The study on fuzzy integral was started before three decades. Sims and
Wang [242] gave a good review of this subject. Dubois and Prade [77] defined integral of
fuzzy mapping f̃(x)over a crisp interval I = [a, b] and proved that under certain condition
(
∫
I
f̃)[α] =

∫
I
f̃ [α]. In a subsequent paper [78] they define integration of a real mapping

f(x) between fuzzy bounds D̃ = [ã, b̃]. If I = [IL, IR], where IL=infimum of the support of
ã and IR=Supremum of the support of b̃, then according to their definition

∀z ∈ <, µ∫
D̃

(z) = sup
x,y∈I

min(µã(x), µb̃(y)), under the constraint z =

y∫
x

f(t)dt
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But their definition does not include integration of fuzzy mapping over a fuzzy domain.
In a recent paper Wu [270] defined integration of fuzzy mapping over crisp and fuzzy
intervals and accordingly two types of FRIs have been defined by him.

B. Fuzzy Riemann Integral of type-I [270]: Let f̃(x) be a closed and bounded fuzzy
valued function on [a, b] and [fL(α, x), fR(α, x)] be α-cut of f̃(x) ∀x ∈ [a, b]. If fL(α, x)
and fR(α, x) are Riemann integrable on [a, b], ∀α, then the fuzzy Riemann integral
b∫
a

f̃(x)dx is a closed fuzzy number and its α-level set is given by

( b∫
a

f̃(x)dx

)
[α] =

[ b∫
a

fL(α, x)dx,

b∫
a

fR(α, x)dx

]

C. Fuzzy Riemann Integral of type-II [270]: Let f̃(x̃) be a bounded and closed fuzzy
valued function defined on the closed fuzzy interval [ã, b̃] and f̃(x) be induced by f̃(x̃).
[fL(α, x), fR(α, x)] be α-cut of f̃(x) and f̃(x) is either non-negative or non-positive.
Case-1: If f̃(x) is non-negative and fL(α, x) and fR(α, x) are Riemann integrable on
[aR(α), bL(α)] and [aL(α), bR(α)] respectively ∀α, then the fuzzy Riemann integral
b̃∫̃
a

f̃(x̃)dx̃ is a closed fuzzy number and its α-level set is given by

( b̃∫
ã

f̃(x̃)dx̃

)
[α] =



[ bL(α)∫
aR(α)

fL(α, x)dx,
bR(α)∫
aL(α)

fR(α, x)dx

]
if bL(α) > aR(α)[

0,
bR(α)∫
aL(α)

fR(α, x)dx

]
if bL(α) ≤ aR(α)

Case-2: If f̃(x) is non positive and fL(α, x) and fR(α, x) are Riemann integrable on
[aL(α), bR(α)] and [aR(α), bL(α)] respectively ∀α, then the fuzzy Riemann integral
b̃∫̃
a

f̃(x̃)dx̃ is a closed fuzzy number and its α-level set is given by

( b̃∫
ã

f̃(x̃)dx̃

)
[α] =



[ bR(α)∫
aL(α)

fL(α, x)dx,
bL(α)∫
aR(α)

fR(α, x)dx

]
if bL(α) > aR(α)[ bR(α)∫

aL(α)

fL(α, x)dx, 0

]
if bL(α) ≤ aR(α)

2.1.2.6 Intuitionistic Fuzzy Set(IFS), [8, 9]
Let X = x1, x2, ..., xn be a finite universal set. An Atanassov’s IFS A is a set of ordered
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triples,
A = {〈xi, µA(xi), νA(xi)〉 : xiX}

where µA(xi) and νA(xi) are functions mapping from X into [0, 1]. For each xi ∈X, µA(xi)
represents the degree of membership and νA(xi) represents the degree of non-membership
of the element xi to the subset A of X. For the functions µA(xi) and νA(xi) mapping into [0,
1], the condition 0 ≤ µA(xi) + νA(xi) ≤ 1 holds .

2.1.3 Interval and some useful properties

An interval I in < is a subset of < having two bounds IL, IR and defined as I = {x ∈
<|IL ≤ x ≤ IR}. IL and IR are termed as left and right bounds of I respectively and the
interval is represented by I = [IL, IR]. It’s mean and half width are denoted respectively
by m(I) and w(I) and are defined as m(I) = (IL + IR)/2 and w(I) = (IR − IL)/2. An
interval I can also defined by its mean m(I) and width w(I) as < m(I), w(I) >, i.e. I =
[IL, IR] ≡< m(I), w(I) >. Clearly α-cut of a fuzzy number with continuous membership
function can be treated as an interval.
Arithmetic of Interval: Let ∗ ∈ {+,−, ., /} be a binary operation on the set of positive real
numbers. If A and B are closed intervals then A ∗ B = {x ∗ y : x ∈ A, y ∈ B} defines a
binary operation on the set of closed intervals [182]. In the case of division, it is assumed
that 0 /∈ B. The operations on intervals used here may be explicitly calculated from the
above definition as

A+B = [AL, AR] + [BL, BR] = [AL +BL, AR +BR]

A−B = [AL, AR]− [BL, BR] = [AL −BR, AR −BL]

A.B = [AL, AR].[BL, BR]

= [min{ALBL, ALBR, ARBL, ARBR},max{ALBL, ALBR, ARBL, ARBR}]
A

B
=

[AL, AR]

[BL, BR]
= [AL, AR].[

1

BR

,
1

AR
], where 0 /∈ B

kA =

{
[kAL, kAR], for k ≥ 0
(kAR, kAL), for k < 0, where k is a real number.

2.1.4 Random Set Theory

Probability Space: An order tuple (S,Ω, P ) is said to be Probability Space if

(I) S is a non-empty set of outcomes of a random experiment E,

(II) Ω is a set of all events (i.e., subsets of S), which is a σ-field, i.e., satisfies the following
properties: (i) ∅ ∈ Ω and (ii) A ∈ Ω ⇒ Ac ∈ Ω, where Ac is the complement of A in
Ω,
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(III) A1, A2, ... ∈ Ω⇒ A =
∞⋃
i=1

Ai ∈ Ω.

(IV) P is a probability function for the events, i.e., P : Ω → [0, 1] and P ({xi}) = pi,

0 ≤ pi ≤ 1, ∀xi ∈ S(i = 1, 2, 3, ...),
∞∑
i=1

pi = 1.

Random Variable (RV): If (S,Ω, P ) is a probability space associated with a random
experiment E and < be a set of real numbers then the mapping X̂ : (S,Ω, P ) → < is
known as random variable or stochastic variable.

The RV is of two types one is continuous RV and another is discrete RV.

Probability Distribution of Random Variable: Let X̂ be an RV defined on (S,Ω, P ). A
real valued function F defined on < that is nondecreasing, right continuous, satisfies

F (−∞) = 0 and F (∞) = 1

and is characterize by

F (x) = P{ω : X̂(ω) ≤ x} for all x ∈ <

is called Distribution Function (DF) of RV X̂ .

Probability Density function: If b > a,

P (a < X̂ ≤ b) = F (b)− F (a) =

a∫
b

F
′
(x) dx

or, P (a < X̂ ≤ b) =

a∫
b

f(x) dx

where f(x) = F
′
(x). The function f(x) is called probability density function of the

random variable x.

There are several types of probability distributions for describing various types of discrete
and continuous random variables. One of them is normal distribution which is used in this
thesis.
Normal Distribution: The best known and most widely used probability distribution is

the Normal distribution. The density function of the normal distribution is a bell-shaped
symmetrical curve about mean (cf. Fig. 2.7) and its probability density function with the
parameters m (mean) and σ(> 0) (standard deviation) is defined as:

f(x) =
1

σ
√

2π
exp

{
−(x−m)2

2σ2

}
where −∞ < x <∞.
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Figure 2.7: Density curve of normal distribution

2.1.5 Fuzzy-random variable and its properties
Definition 2.12. Fuzzy-random variable [206]: Let R is the set of real numbers, Fc(R) is
set of all fuzzy variables and Gc(R) is all of non-empty bounded close interval. In a given
probability space (Ω, F, P ), a mapping ξ : Ω→ Fc(R) is called a fuzzy random variable in
(Ω, F, P ), if ∀ α ∈(0,1], the set-valued function ξα : Ω→ Gc(R) defined by
ξα(ω) = (ξ(ω))α = {x|x ∈ R, µξ(ω)(x) ≥ α}, ∀ω ∈ Ω, is F measurable. Different semantics
of fuzzy-random variable are also presented by Xu and Zhou [275].

Theorem 2.2. Let ˜̄ξ is LR fuzzy random variable, for any ω ∈ Ω, the membership function
of ˜̄ξ(ω) is

µ ˜̄ξ(ω)
(t) =


L

(
ξ̄(ω)−t
ξL

)
for t ≤ ξ̄(ω)

R

(
t−ξ̄(ω)
ξR

)
for t ≥ ξ̄(ω)

where the random variable ξ̄(ω) is normally distributed with mean mξ and standard devia-
tion σξ and ξL, ξR are the left and right spreads of ˜̄ξ(ω). The reference functions L: [0,1]→
[0,1] and R : [0,1]→ [0,1] satisfy that L(1)=R(1)=0,L(0)=R(0)=1, and both are monotone
functions. Then{

Pr[Pos{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ

Pr[Nec{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ
are equivalent to

t ≤
{
mξ + σξΦ

−1(1− γ) + ξRR
−1(δ)

mξ + σξΦ
−1(1− γ)− ξLL−1(1− δ)

where Φ is standard normally distributed, δ, γ ∈[0,1] are predetermined confidence levels.

Proof. According to definition of possibility we get,

Pos[ ˜̄ξ(ω) ≥ t] ≥ δ ⇔ R

[
t−ξ̄(ω)
ξR

]
≤ δ ⇔ ξ̄(ω) ≥ t− ξRR−1(δ)

So for predetermined level δ, γ ∈ [0, 1] we have,
Pr[Pos{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ
⇔ Pr[ξ̄(ω) ≥ t− ξRR−1(δ)] ≥ γ
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⇔ Pr[
ξ̄(ω)−mξ

σξ
≥ t−ξRR−1(δ)−mξ

σξ
] ≥ γ

⇔ Φ

(
t−ξRR−1(δ)−mξ

σξ

)
≤ 1− γ

⇔ t ≤ mξ + σξΦ
−1(1− γ) + ξRR

−1(δ)
Similarly from the measure of necessity we have,

Nes[ ˜̄ξ(ω) ≥ t] ≥ δ ⇔ L

[
ξ̄(ω)−t
ξL

]
≥ 1− δ ⇔ ξ̄(ω) ≥ t+ ξLL

−1(1− δ)

So for predetermined level δ, γ ∈ [0, 1] we have,
Pr[Nes{ ˜̄ξ(ω) ≥ t} ≥ δ] ≥ γ
⇔ t ≤ mξ + σξΦ

−1(1− γ)− ξLL−1(1− δ)
The proof is complete.

2.1.6 Rough Set Theory
Rough set theory, initialized by Pawlak [200], has been proved to be an excellent
mathematical tool dealing with vague description of objects. A fundamental assumption in
rough set theory is that any object from a universe is perceived through available
information, and such information may not be sufficient to characterize the object exactly.
One way is the approximation of a set by other sets. Thus a rough set may be defined by a
pair of crisp sets, called the lower and the upper approximations, that are originally
produced by an equivalence relation (reflexive, symmetric, and transitive). A relation '
defined on U is called reflexive if each object is similar to itself, i.e., x ' x; symmetric if
x ' y ⇒ y ' x; transitive if x ' y, y ' z ⇒ x ' z for any x, y, z ∈ U .

Let U be a universe. Slowinski and Vanderpooten [241] extended the equivalence relation
to more general case and proposed a binary similarity relation that has not symmetry and
transitivity but reflexivity. Different from the equivalence relation, the similarity relation
does not generate partitions on U, for example, the similarity relation defined on < as “x is
similar to y if and only if |x− y| ≤ 1”.

The similarity class of x, denoted by R(x), is the set of objects which are similar to x,

R(x) = {y ∈ U | y ' x} (2.24)

Let R−1(x) be the class of objects to which x is similar

R−1(x) = {y ∈ U |x ' y} (2.25)

Lower and Upper Approximation [241]: Let U be a universe, and X be a set representing
a concept. Then its lower approximation is defined by

X = {x ∈ U |R−1(x) ⊂ X}; (2.26)

while the upper approximation is defined by

X =
⋃
x∈X

R(x) (2.27)
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Example 2.1. Let < be a universe. We define a similarity relation ' such that y ' x if and
only if [y] = [x], where [x] represents the largest integer less than or equal to x. For the set
[0, 1], we have [0, 1] = [0, 1), and [0, 1] = [0, 2). All sets [0, r) with 0 ≤ r ≤ 1 have the same
upper approximation [0, 1).

Figure 2.8: A graphical representation of a rough set

Rough Set [200]: Let U be the universe and and let R be an equivalence relation on U . For
any subset X ∈ U , the pair T = (U,R) is called an approximation space.

The two subsets:

RX = {x ∈ U | [x]R ⊂ X} (2.28)
RX = {x ∈ U | [x]R ∩X 6= φ} (2.29)

are called the R-lower (2.28) and R-upper (2.29) approximation of X , respectively. The
R-boundary region of X is denoted by BNR(X) and defined as

BNR(X) = RX −RX (2.30)

POSR(X) = RX is used to denote the R−positive region of X (represented by the
blackened cell in Fig. 2.8). NEGR(X) = U − RX is used to denote the R−negative
region of X (represented by the white cell in Fig. 2.8). The cells of Fig. 2.8 represent
objects to be evaluated, white cells are considered to be out side the rough set, black cells
are definitely within the rough set. Gray cells in Fig. 2.8 may or may not fit within our set.
Therefore it is obvious that if BNR(X) = 0, then we have a crisp set, BNR(X) > 0
provides us with a rough set for our evaluation.

Rough space [146]: Let Λ be a nonempty set, κ a σ-algebra of subset of Λ and ∆ be an
element in κ and π nonnegative, real-valued, additive set function. Then (Λ,∆, κ, π) is
called a rough space.

When we do not have information enough to determine the measure π for a real-life
problem, we use Laplace criterion which assumes that all elements in Λ are equally likely to
occur. For this case, the measure π may be taken as the cardinality of the set Λ. This
criterion will be used in all examples in this theses for simplicity.
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Rough variable [146]: A rough variable ξ̌ is a measurable function from the rough space
(Λ,∆, κ, π) to the set of real numbers. That is for every Borel set B of <, we have

{λ ∈ Λ | ξ̌(λ) ∈ B} ∈ κ

The lower and upper approximations of the rough variable are defined as follows,
ξ̌ = {ξ̌(λ) | λ ∈ ∆} and ξ̌ = {ξ̌(λ) | λ ∈ Λ} respectively.

Example 2.2. Let Λ = {x| 0 ≤ x ≤ 10} and ∆ = {x| 2 ≤ x ≤ 6}. Then the function
ξ̌(x) = x2 defined on (Λ,∆, κ, π) is a rough variable.

Example 2.3. A rough variable ([a, b][c, d]) with c ≤ a ≤ b ≤ d is a measurable function
from a rough space (Λ,∆, κ, π) to the real line, where Λ = {x| c ≤ x ≤ d}, ∆ = {x| a ≤
x ≤ b} and ξ̌(x) = x for all x ∈ Λ.

Figure 2.9: Tr {ξ̌ ≥ t} function curve

Trust measure [146]: Let (Λ,∆, κ, π) be a rough space. The trust measure of event A
is denoted by Tr{A} and defined by Tr{A} = 1

2
(Tr{A} + Tr{A}), where Tr{A} and

Tr{A} denote the lower and upper trust measures of event A, defined by Tr{A} = π{A
⋂

∆}
π{∆}

and Tr{A} = π{A}
π{Λ} respectively. When the sufficient amount of information is given about

the measurement of π for a real life problem, it may be viewed as the Lebesgue measure.
More generally, the above form can be considered as Tr{A} = (1 − η)Tr{A} + ηTr{A},
where 0 < η < 1

Let ξ̂ = ([a, b][c, d]), c ≤ a ≤ b ≤ d be a rough variable and lebesgue measure is used for
trust measure of an rough event associated with ξ̂ ≥ t. Then the trust measure of the rough
event ξ̂ ≥ t is denoted by Tr{ξ̂ ≥ t} and its function curve (cf. Fig. 2.9) is presented below

Tr{ξ̂ ≥ t} =



0 for d ≤ t
η(d−t)
(d−c) for b ≤ t ≤ d,
η(d−t)
d−c + (1−η)(b−t)

b−a for a ≤ t ≤ b,
η(d−t)
d−c + (1− η) for c ≤ t ≤ a,

1 for t ≤ c

(2.31)
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Rough Expectation [146]: let X̌ be a rough variable. The expected value of the rough
variable X̌ is denoted by E[X̌] and defined by

E[X̌] =

∫ ∞
0

Tr(X̌ ≥ r) dr −
∫ 0

−∞
Tr(X̌ ≤ r) dr (2.32)

provided that at least one of the two integrals is finite.

Lemma 2.10. [146]: Let ξ̌ = ([a, b][c, d]) is a rough variable where c > 0. Then expected
value of ξ̌ is

E[ξ̌] =
1

4
(a+ b+ c+ d) (2.33)

Proof. Since ξ̌ = ([a, b][c, d]) is a rough variable and r is a crisp number, then from definition
of trust measure (taking η = 0.50) we have,

Tr{ξ̌ ≥ r} =



0 for d ≤ r
d−r

2(d−c) for b ≤ r ≤ d,
1
2

(
d−r
d−c + b−r

b−a
)

for a ≤ r ≤ b,
1
2

(
d−r
d−c + 1

)
for c ≤ r ≤ a,

1 for r ≤ c

Tr{ξ̌ ≤ r} =



0 for r ≤ c
r−c

2(d−c) for c ≤ r ≤ a,
1
2

(
r−c
d−c + r−a

b−a
)

for a ≤ r ≤ b,
1
2

(
r−c
d−c + 1

)
for b ≤ r ≤ d,

1 for d ≤ r

So the expected value of ξ̌ is calculated using (2.32) as follows:

E[ξ̌] =

∫ ∞
0

Tr(ξ̌ ≥ r) dr −
∫ 0

−∞
Tr(ξ̌ ≤ r) dr

=

∫ c

0

1 dr +

∫ a

c

1

2

(d− r
d− c

+ 1
)
dr +

∫ b

a

1

2

(d− r
d− c

+
b− r
b− a

)
dr +

∫ d

b

d− r
2(d− c)

dr

=
1

4
(a+ b+ c+ d) (2.34)

Theorem 2.3. Let ξ̂ = ([a, b][c, d]), c ≤ a ≤ b ≤ d be a rough variable and a rough event is
ξ̂ ≥ t. Then Tr{ξ̂ ≥ t} ≥ α iff

t ≤


d− α(d−c)

η
, b ≤ t ≤ d

η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)
η(b−a)+(1−η)(d−c) , a ≤ t ≤ b

d+ (1−η−α)(d−c)
η

, c ≤ t ≤ a

c
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Proof. For predetermined level α ∈ [0, 1], we have,
Tr[ξ̂ ≥ t] ≥ α
⇔ α ≤ Tr[ξ̂ ≥ t],

⇔ α ≤


η(d−t)
(d−c) for b ≤ t ≤ d,
η(d−t)
d−c + (1−η)(b−t)

b−a for a ≤ t ≤ b,
η(d−t)
d−c + (1− η) for c ≤ t ≤ a,

1 for t ≤ c
[using the definition of trust measure of an event]

⇔ t ≤


d− α(d−c)

η
, b ≤ t ≤ d

η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)
η(b−a)+(1−η)(d−c) , a ≤ t ≤ b

d+ (1−η−α)(d−c)
η

, c ≤ t ≤ a

c
The proof is complete.

Modified Trust measure : We consider a modification/ refinement of the rough intervals.
Let ξ̂ is rough variable given by ξ̂=([a,b],[c,d]), 0 ≤ c ≤ c1 ≤ a ≤ b ≤ c2 ≤ d. Here, the
trust measures (cf. Eqs. (2.35) and (2.36)) of rough events ξ̂ ≥ r and ξ̂ ≤ r are considered on
five sub-intervals (extension of three sub-intervals trust measure) and corresponding function
curves are depicted in Figs. 2.10 and 2.11.

Tr{ξ̂ ≥ r} =



0, d ≤ r
(d−r)
3(d−c) , c2 ≤ r ≤ d
(d−r)
3(d−c) + (c2−r)

3(c2−c1)
, b ≤ r ≤ c2

1
3
[ (d−r)
(d−c) + (c2−r)

(c2−c1)
+ (b−r)

(b−a)
], a ≤ r ≤ b

1
3
[ (d−r)
(d−c) + (c2−r)

(c2−c1)
+ 1], c1 ≤ r ≤ a

1
3
[ (d−r)
(d−c) + 2], c ≤ r ≤ c1

1, r ≤ c.

(2.35)

Tr{ξ̂ ≤ r} =



0, r ≤ c
(r−c)
3(d−c) , c ≤ r ≤ c1

1
3
[ (r−c)
(d−c) + (r−c1)

(c2−c1)
], c1 ≤ r ≤ a

1
3
[ (r−c)
(d−c) + (r−c1)

(c2−c1)
+ (r−a)

(b−a)
], a ≤ r ≤ b

1
3
[ (r−c)
(d−c) + (r−c1)

(c2−c1)
+ 1], b ≤ r ≤ c2

1
3
[ (r−c)
(d−c) + 2], c2 ≤ r ≤ d

1, d ≤ r.

(2.36)
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0

Tr{ξ
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≥ r}
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1

Figure 2.10: Tr{ξ̂ ≥ r} function curve.

0

Tr{ξ
^ 

≤ r}

bac c
1 dc

2

Figure 2.11: Tr{ξ̂ ≤ r} function curve.

2.1.7 Fuzzy-Rough variable
Definition 2.13. Fuzzy-Rough variable [146]: Fuzzy rough variable is a measurable
function from a rough space (Λ,∆, κ, π) to the set of fuzzy variables. More generally, a
fuzzy rough variable is a rough variable taking fuzzy values.

A. Fuzzy-Rough Expectation [146]: Suppose ˇ̃X be a fuzzy rough variable. The expected
value of the fuzzy-rough variable ˇ̃X is denoted by E[ ˇ̃X] and is defined by

E[ ˇ̃X] =

∫ ∞
0

Tr(λ ∈ Λ |E[ ˇ̃X(λ)] ≥ r) dr −
∫ 0

−∞
Tr(λ ∈ Λ |E[ ˇ̃X(λ)] ≤ r) dr (2.37)

provided that at least one of the two integrals is finite.

Lemma 2.11. Let ˇ̃ξ = (ξ̌ − L, ξ̌, ξ̌ + R) be a Triangular fuzzy rough variable, where ξ̌ =

([a, b][c, d]) is a rough variable, then expected value of ˇ̃ξ is

E[ ˇ̃ξ] =
1

4
(a+ b+ c+ d) +

ρR− (1− ρ)L

2
(2.38)

Proof. Since ˇ̃ξ = (ξ̌−L, ξ̌, ξ̌+R) where ξ̌ = ([a, b][c, d]) is a triangular fuzzy rough variable,
then using the expectation of fuzzy variable (cf. Lemma 2.8) we get,

E[ ˇ̃ξ] = E[
1

2
{(1− ρ)(ξ̌ − L) + ξ̌ + ρ(ξ̌ +R)}] = E[ξ̌ + θ]

where θ = ρR−(1−ρ)L
2

and 0 ≤ ρ ≤ 1
Again, using Lemma 2.10, we get,

E[ξ̌ + θ] =
1

4
(a+ b+ c+ d) + θ =

1

4
(a+ b+ c+ d) +

ρR− (1− ρ)L

2
.

Therefore,

E[ ˇ̃ξ] =
1

4
(a+ b+ c+ d) +

ρR− (1− ρ)L

2
where 0 ≤ ρ ≤ 1
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Lemma 2.12. Let ˇ̃ξ = (ξ̌−L1, ξ̌−L2, ξ̌+R1, ξ̌+R2) be a trapezoidal fuzzy rough variable,
where ξ̌ = ([a, b][c, d]) is a rough variable. Then expected value of ˇ̃ξ is

E[ ˇ̃ξ] =
1

4
[a+ b+ c+ d] +

ρ(R1 +R2)− (1− ρ)(L1 + L2)

2
where 0 ≤ ρ ≤ 1.

Proof. Since ˇ̃ξ = (ξ̌ − L1, ξ̌ − L2, ξ̌ + R1, ξ̌ + R2) where ξ̌ = ([a, b][c, d]) is a trapezoidal
fuzzy rough variable,
then using Lemma 2.9 we get,

E[ ˇ̃ξ] = E[
1

2
[(1− ρ)(2ξ̌ − L1 − L2) + ρ(2ξ̌ +R1 +R2)]] where 0 ≤ ρ ≤ 1

= E[ξ̌ + θ] where θ =
ρ(R1 +R2)− (1− ρ)(L1 + L2)

2
Again using Lemma 2.10 we get,

E[ξ̌ + θ] =
1

4
[a+ b+ c+ d] + θ

=
1

4
[a+ b+ c+ d] +

ρ(R1 +R2)− (1− ρ)(L1 + L2)

2
.

Therefore,

E[ ˇ̃ξ] =
1

4
[a+ b+ c+ d] +

ρ(R1 +R2)− (1− ρ)(L1 + L2)

2
where 0 ≤ ρ ≤ 1.

Lemma 2.13. [146]: Let ˇ̃ξ is a fuzzy rough variable and gk(
ˇ̃ξ) be the continuous functions

for k = 1, 2, ..., p. Then the possibility pos{gk( ˇ̃ξ) ≤ 0, k = 1, 2, ..., p} is a rough variable.

Lemma 2.14. [146]: Let ˇ̃ξ is a fuzzy rough variable and gk(
ˇ̃ξ) be the continuous functions

for k = 1, 2, ..., p. Then the necessity nes{gk( ˆ̃ξ) < 0, k = 1, 2, ..., p} is a rough variable.

B. Chance of Fuzzy Rough event: A fuzzy rough constraint represents a fuzzy event which
frequently occurs in constraint inventory control problem in fuzzy rough environment. There
are several approaches to find a feasible region of search space of such problems. Chance
measure of such constraints due to solution X can be taken as feasibility measure of the
solution. Here two approaches of chance measure is presented which are followed to solve
some inventory control models of this thesis.
Approach-1 [146]: Let ˇ̃ξ be a fuzzy rough vector on the rough space (Λ,∆, κ, π) and gr(

ˇ̃ξ)
be the continuous functions from <n −→ <, r = 1, 2, ..., p. Then the chance of the fuzzy
rough event gr(

ˇ̃ξ) ≤ 0 for r = 1, 2, ..., p. be a function from [0,1] to [0,1], which is defined
as

Ch{gr( ˇ̃
ξ) ≤ 0, r = 1, 2, ..., p}(α) = sup{β | Tr{pos{gr( ˇ̃

ξ) ≤ 0, r = 1, 2, ..., p} ≥ β} ≥ α}
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where α, β ∈ [0, 1].

Approach-2 [146]: Let ˇ̃ξ be a fuzzy rough vector on the rough space (Λ,∆, κ, π) and gr(
ˇ̃ξ)

be the continuous functions from <n −→ <, r = 1, 2, ..., p. Then the chance of the fuzzy
rough event gr(

ˇ̃ξ) ≤ 0 for r = 1, 2, ..., p. be a function from [0,1] to [0,1], which is
defined as

Ch{gr( ˇ̃
ξ) ≤ 0, r = 1, 2, ..., p}(α) = sup{β | Tr{nes{gr( ˇ̃

ξ) < 0, r = 1, 2, ..., p} ≥ β} ≥ α}

where α, β ∈ [0, 1].

Theorem 2.4. Let ˜̂
ξ = (ξ̂ − L, ξ̂, ξ̂ + R) is a fuzzy rough variable characterized the

following membership function,

µ ˜̂
ξ
(t) =


t−ξ̂+ξL
ξL

for ξ̂ − ξL ≤ t ≤ ξ̂
ξ̂+ξR−t
ξR

for ξ̂ ≤ t ≤ ξ̂ + ξR
0 otherwise.

where ξL and ξR are left and right spreads of ˜̂
ξ, and ξ̂ = ([a, b][c, d]) rough variable,

characterized by the above mentioned trust measure function then for an event ˜̂
ξ ≥ t,{

Tr[Pos(
˜̂
ξ ≥ t) ≥ β] ≥ α

Tr[Nec(
˜̂
ξ ≥ t) ≥ β] ≥ α

are equivalent to

t ≤


d− α(d−c)

η
+ (1− β)ξR, for b ≤ t− (1− β)ξR ≤ d

η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)
η(b−a)+(1−η)(d−c) + (1− β)ξR, for a ≤ t− (1− β)ξR ≤ b

d+
(1−η−α)(d−c)

η
+ (1− β)ξR, for c ≤ t− (1− β)ξR ≤ a

c+ (1− β)ξR

t ≤


d− α(d−c)

η
− βξL, for b ≤ t+ βξL ≤ d

η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)
η(b−a)+(1−η)(d−c) − βξL, for a ≤ t+ βξL ≤ b

d+
(1−η−α)(d−c)

η
− βξL, for c ≤ t+ βξL ≤ a

c− βξL

Proof. For the given confidence level α and β in[0, 1] we have,

Tr[Pos(
˜̂
ξ ≥ t) ≥ β] ≥ α

⇔ Tr[ ξ̂+ξR−t
ξR

≥ β] ≥ α (using Lemma 2.1)

⇔ Tr[ξ̂ ≥ t− (1− β)ξR] ≥ α

⇔ α ≤


η[d−t+(1−β)ξR]

(d−c) for b ≤ t− (1− β)ξR ≤ d,
η[d−t+(1−β)ξR]

d−c + (1−η)[b−t+(1−β)ξR]
b−a for a ≤ t− (1− β)ξR ≤ b,

η[d−t+(1−β)ξR]
d−c + (1− η) for c ≤ t− (1− β)ξR ≤ a,

1 for t− (1− β)ξR ≤ c. (using trust measure)

⇔ t ≤


d− α(d−c)

η
+ (1− β)ξR, for b ≤ t− (1− β)ξR ≤ d

η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)
η(b−a)+(1−η)(d−c) + (1− β)ξR, for a ≤ t− (1− β)ξR ≤ b

d+ (1−η−α)(d−c)
η

+ (1− β)ξR, for c ≤ t− (1− β)ξR ≤ a

c+ (1− β)ξR
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Similarly for necessity measure with the same confidence level
Tr[Nes(

˜̂
ξ ≥ t) ≥ β] ≥ α

⇔ Tr[ξ̂ ≥ t+ βξL] ≥ α (using Lemma 2.2)

⇔ α ≤


η[d−t−βξL]

(d−c) for b ≤ t+ βξL ≤ d,
η[d−t−βξL]

d−c + (1−η)[b−t−βξL]
b−a for a ≤ t+ βξL ≤ b,

η[d−t−βξL]
d−c + (1− η) for c ≤ t+ βξL ≤ a,

1 for t+ βξL ≤ c. (using trust measure)

⇔ t ≤


d− α(d−c)

η
− βξL, for b ≤ t+ βξL ≤ d

η(b−a)+(1−η)b(d−c)−α(d−c)(b−a)
η(b−a)+(1−η)(d−c) − βξL, for a ≤ t+ βξL ≤ b

d+ (1−η−α)(d−c)
η

− βξL, for c ≤ t+ βξL ≤ a

c− βξL
The proof is complete.

2.2 Single-Objective Optimization in Crisp Environment
and Solution Techniques

2.2.1 Single-Objective Optimization Problem
The problem of optimization concerns with the maximization/minimization of an algebraic
or a transcendental equation of one or more variables, known as objective function under
some available resources which are represented as constraints. Such type of problem is
known as Single-Objective Optimization Problem (SOOP). This can be formulated as:

Find x = (x1, x2, ..., xn)T

which maximizes/minimizes f(x)
subject to x ∈ X

where X =

x :
gj(x) ≤ 0, j = 1, 2, ..., l
hk(x) = 0, k = 1, 2, ...,m
xi ≥ 0, i = 1, 2, ..., n




(2.39)

where, f(x), gj(x), j = 1, 2, ..., l and defined on n-dimensional set.
It is noted that, when both the objective function and hk(x), k = 1, 2, ...,m are functions

constraints are linear, the above SOOP becomes a SOLOP. Otherwise, it is a SONLOP.
A decision variable vector x satisfying all the constraints is called a feasible solution to

the problem. The collection of all such solutions forms a feasible region. The SOOP (2.39)
is to find a feasible solution x∗ such that for each feasible point x, f(x) ≤ f(x∗) for
maximization problem and f(x) ≥ f(x∗) for minimization problem. Here, x∗ is called an
optimal solution or solution to the problem.
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Local Minimum: x∗ ∈ X is said to be a local minima of (2.39) if there exists an ε > 0
such that f(x) ≥ f(x∗), ∀x ∈ X : |x− x∗| < ε,.
Convex Function: A function f(x1, x2, ..., xn) is convex if the Hessian Matrix, given by
H(x1, x2, ..., xn) =

[
∂2f

∂xi∂xj

]
n×n

, is positive semi-definite/positive definite.

Global Minimum: x∗ ∈ X is said to be a global minima of (2.39) if
f(x) ≥ f(x∗), ∀x ∈ X . Otherwise, if the function f(x) is convex then the local minimum
solution x ∈ X is global minimum.
Convex Programming Problem: The problem defined in (2.39) is to be called convex
programming problem if the objective function f(x1, x2, ..., xn) and the constraint functions
gj(x1, x2, ..., xn), j = 1, 2, ...,m are convex.

For solution of SONLOP by any available NLP method, local optimal solutions are
guaranteed. Also, it is known that, a local minimum/maximum solution is a global
minimum/maximum for a convex/concave optimization (i.e., a NLP problem to minimize a
convex function or to maximize a concave function) problem.

Lot of mathematical techniques based on linearization, gradient based techniques,
evolutionary algorithms, stochastic search algorithms, etc., are available in the literature to
solve such type of SONLOP. Here, few methods are illustrated, which have been used in
this thesis to solve the inventory problems, non-linear in nature.

2.2.2 Gradient Based Solution Techniques for Single-Objective
Optimization

Necessary Condition for Optimality: If a function f(x) is defined for all x ∈ X and has a
relative minimum at x = x∗, where x∗ ∈ X and all the partial derivatives ∂f(x)

∂xr
for

r = 1, 2, ..., n are exists at x = x∗, then ∂f(x∗)
∂xr

= 0.
Sufficient Condition for Optimality: The sufficient condition for a stationary point x∗ to
be an extreme point is that the matrix of second partial derivatives (Hessian Matrix) of f(x)
evaluated at x = x∗ is (i) positive definite when x∗ is a relative minimum point, and (ii)
negative definite when x∗ is a relatively maximum point.

2.2.2.1 Generalized Reduced Gradient (GRG) Technique
The GRG technique is a method for solving NLP problems for handling equality as well as
inequality constraints. Consider the NLP problem:

Find x = (x1, x2, ...xn)T

which maximizes f(x)
subject to x ∈ X

where X =

x :
gj(x) ≤ 0, j = 1, 2, ..., l
hk(x) = 0, k = 1, 2, ...,m
xi ≥ 0, i = 1, 2, ..., n




(2.40)
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By adding a non-negative slack variable sj (≥ 0), j = 1, 2, ..., l to each of the above
inequality constraints, the problem (2.40) can be stated as,

Maximize f(x)
subject to x ∈ X

where X =

x :

x = (x1, x2, ...xn)T

gj(x) + sj = 0, j = 1, 2, ..., l
hk(x) = 0, k = 1, 2, ...,m
xi ≥ 0 i = 1, 2, ...n
sj ≥ 0, j = 1, 2, ...l




(2.41)

where the lower and upper bounds on the slack variables, sj, j = 1, 2, ..., l are taken as a
zero and a large number (infinity) respectively.

Denoting sj by xj+n, gj(x) + sj by ξj , hk(x) by ξl+k, the above problem can be rewritten
as,

Maximize f(x)
subject to x ∈ X

where X =

x :
x = (x1, x2, ...xn+l)

T

ξj(x) = 0, j = 1, 2, ...l +m
xi ≥ 0 i = 1, 2, ...n+ l



 (2.42)

This GRG technique is based on the idea of elimination of variables using the equality
constraints. Theoretically, (l+m) variables (dependent variables) can be expressed in terms
of remaining (n − m) variables (independent variables). Thus one can divide the (n + l)
decision variables arbitrarily into two sets as

x = (y, z)T

where, y is (n −m) design or independent variables and z is (l + m) state or dependent
variables and

y = (y1, y2, ..., yn−m)T

z = (z1, z2, ..., zl+m)T

Here, the design variables are completely independent and the state variables are dependent
on the design variables used to satisfy the constraints

ξj(x) = 0, (j = 1, 2, ..., l +m).

Consider the first variations of the objective and constraint functions:

df(x) =
n−m∑
i=1

∂f

∂yi
dyi +

l+m∑
i=1

∂f

∂zi
dzi = ∇T

y f dy +∇T
z f dz (2.43)
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dξj(x) =
n−m∑
i=1

∂ξj
∂yi

dyi +
l+m∑
i=1

∂ξj
∂zi

dzi

or dξ = C dy +Ddz (2.44)

where ∇T
y f =

(
∂f

∂y1

,
∂f

∂y2

, ...,
∂f

∂yn−m

)
and ∇T

z f =

(
∂f

∂z1

,
∂f

∂z2

, ...,
∂f

∂zl+m

)

C =



∂ξ1

∂y1

... ... ...
∂ξ1

∂yn−m

∂ξ2

∂y1

... ... ...
∂ξ2

∂yn−m
... ... ... ... ... ... ...
... ... ... ... ... ... ...
∂ξl+m
∂y1

... ... ...
∂ξl+m
∂yn−m


, D =



∂ξ1

∂z1

... ... ...
∂ξ1

∂zl+m

∂ξ2

∂z1

... ... ...
∂ξ2

∂zl+m
... ... ... ... ... ... ...
... ... ... ... ... ... ...
∂ξl+m
∂z1

... ... ...
∂ξl+m
∂zl+m


,

dy = (dy1, dy2, ..., dyn−m)T

and dz = (dz1, dz2, ..., dzl+m)T

Assuming that the constraints are originally satisfied at the vector x (ξ(x) = 0), any
change in the vector dx must correspond to dξ = 0 to maintain feasibility at x + dx. Thus,
Eq. (2.44) can be solved as

Cdy +Ddz = 0

or dz = −D−1Cdy (2.45)

The change in the objective function due to the change in x is given by the Eq. (2.43), which
can be expressed, using Eq. (2.45) as

df(x) = (∇T
y f −∇T

z fD
−1C)dy

or
df(x)

dy
= GR

where GR = ∇T
y f −∇T

z fD
−1C

is called the generalized reduced gradient. Geometrically, the reduced gradient can be
described as a projection of the original n−dimensional gradient into the (n − l)
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dimensional feasible region described by the design variables.
A necessary condition for the existence of minimum of an unconstrained function is that

the components of the gradient vanish. Similarly, a constrained function assumes its
minimum value when the appropriate components of the reduced gradient are zero. In fact,
the reduced gradient GR can be used to generate a search direction S to reduce the value of
the constrained objective function. Similarly, to the gradient ∇f that can be used to
generate a search direction S for an unconstrained function. A suitable step length λ is to be
chosen to minimize the value of f(x) along the search direction. For any specific value of
λ, the dependent variable vector z is updated using Eq. (2.45). Noting that Eq. (2.44) is
based on using a linear approximation to the original non-linear problem, so the constraints
may not be exactly equal to zero at λ, i.e., dξ 6= 0. Hence, when y is held fixed, in order to
have

ξj(x) + dξj(x) = 0, j = 1, 2, ..., l +m (2.46)

following must be satisfied.

ξ(x) + dξ(x) = 0 (2.47)

Using Eq. (2.44) for dξ in Eq. (2.47), following is obtained

dz = D−1(−ξ(x)− Cdy) (2.48)

The value dz given by Eq. (2.48) is used to update the value of z as

zupdate = zcurrent + dz (2.49)

The constraints evaluated at the updated vector x and the procedure of finding dz using Eq.
(2.49) is repeated until dz is sufficiently small.

2.2.3 Soft Computing Techniques for Optimization
Heuristic optimization provides a robust and efficient approach for solving complex real
world problems. Recently, complicated inventory control problems are also solved using
heuristic approaches by several researchers [150, 162]. Among basic heuristic algorithms
GA and PSO are much used in different areas of science and technology [18, 137]. In this
thesis, some soft computing techniques are developed/modified to solve different inventory
control problems and are presented below.

2.2.3.1 Genetic Algorithm (GA)
Now-a-days Genetic Algorithm (GA) (Michalewicz [174]; Mondal and Maiti, [179]) is
extensively used to solve complex decision making problems in different fields of science
and technology. GA is an exclusive search algorithm based on the mechanics of natural
selection and genesis which initially was developed by Holland [105], then Goldberg [87].
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General structure of GA is presented below:

GA procedures
Representation: A n-dimensional real vector’, Xi = (xi1, xi2, ..., xin), is used to represent
the ith solution, where xi1, xi2, ..., xin represent n decision variables of the decision making
problem under consideration. Xi is called ith chromosome and xij is called jth gene of ith

chromosome.
Initialization: N such solutions Xi = (xi1, xi2, ..., xin), i = 1, 2, ...,N are randomly
generated by random number generator within the boundaries of each variable [Bjl, Bjr], j=
1, 2, ..., n. These bounds are calculated from the nature of the problem and previous
experience. Initialized (P(1)) sub-function is used for this purpose.
Constraint Checking: For constrained optimization problems, at the time of generation of
each individuals Xi of P(1), constraints are checked using a separate sub-function “check
constraint(Xi)”, which returns 1 if Xi satisfies the constraints otherwise returns 0. If check
constraint (Xi) =1, then Xi is included in P(1) otherwise Xi is again generated and it
continues until constraints are satisfied.
Diversity Preservation: At the time of generation of P(1), diversity is maintained using
entropy originating from information theory. Following steps are used for this purpose.

(i) Probability, prjk, that the value of the ith gene (variable) of the jth chromosome which
is different from the ith gene of the kth chromosome, is calculated using the formula
prjk = 1− xji−xki

Bjr−Bjl
where [Bjl, Bjr] is the variation domain of the ith gene.

(ii) Entropy of the ith gene, Ei(M), i=1, 2, ..., n is calculated using the formula: Ei(M) =∑M−1
j=1

∑M
k=j+1 −prjklog(prjk), where M is the size of the current population.

(iii) Average entropy of the current population is calculated by the formula: E(M) =
1
n

∑n
i=1Ei(M)

(iv) Incorporating the above three steps, a separate sub-function “check diversity(Xi)” is
developed. Every time a new chromosome Xi is generated, the entropy between this
one and previously generated individuals is calculated. If this information quantity is
higher than a threshold, ET , fixed at the beginning, Xi is included in the population
otherwiseXi is again generated until diversity exceeds the threshold,ET . This method
induces a good distribution of initial population.

Fitness Value: This fitness value is measured to check whether the initialised or generated
chromosomes are suited for the consideration. Chromosome with higher fitness value
receives larger probability of inheritance in subsequent generation, whereas chromosome
with low fitness will more likely to be eliminated. In this thesis, the value of the objective
function is taken as the fitness of the chromosome.
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Algorithm 1: GA PSEUDOCODE

1

1. Start
2. Set iteration counter t=0, Maxsize=200, ε = 0.0001 and pm(0) = 0.9.
3. Randomly generate Initial population P(t), where diversity in the population is

maintained using entropy originating from information theory.
4. Evaluate initial population P(t).
5. Set Maxfit= Maximum fitness in P(t) and Avgfit=Average fitness of P(t).
6. While (Maxfit− Avgfit ≤ ε) do
7. t=t + 1.
8. Increase age of each chromosome.
9. For each pair of parents do
10 Determine probability of crossover p̃c for the selected pair of parents
11. Perform crossover with probability p̃c.
12. End for
13. For each offspring perform mutation with probability pm do
14. Store offsprings into offspring set.
15. End for
16. Evaluate P(t).
17. Remove from P(t) all individuals with age greater than their lifetime.
18. Select a percent of better offsprings from the offspring set and insert into

P(t), such that maximum size of the population is less than Maxsize.
19. Remove all offsprings from the offspring set.
20. Reduce the value of the probability of mutation pm.
21. End While
22. Output: Best chromosome of P(t).
23. End algorithm.

Crossover: For each pair of parent solutions Xi, Xj , a random number c is generated from
the range [0, 1] and if c ¡ pc, crossover operation is made on Xi, Xj . To make crossover
operation on each pair of coupled solutions Xi, Xj a random number c1 is generated from
the range [0,1] and their offsprings Y1 and Y2 are determined by the formula:

Y1 = c1Xi + (1− c1)Xj , Y2 = c1Xj + (1− c1)Xi.
For constrained optimization problems, if a child solution satisfies the constraints of

the problem, then it is included in the offspring set otherwise it is not included in the
offspring set.

Mutation:

(i) Selection for mutation: For each offspring generate a random number r from the range
[0, 1]. If r < pm then the solution is taken for mutation, where pm is the probability of
mutation.

(ii) Mutation process: To mutate a solution X = (x1, x2, ..., xn), a random integer I in the
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range [1,n] has to be selected. Then replace xi by randomly generated value within the
boundary [Bil, Bir] of ith component of X. New solution (if satisfies constraints of the
problem) replaces the parent solution. If child solution does not satisfy the constraint,
then parent solution will not be replaced by child solution. Constraint checking of a
child solution Ci is made using “check constraint (Ci)” function.

Reduction process of pm: According to real world demand as generation increases, pm will
decrease smoothly since the search space was more wide initially and after some iterations,
it should move towards the convergence. This concept lead us to reduce the value of pm in
each generation. Let pm(0) is the initial value of pm. Then probability of mutation in T-th
generation pm(T ) is calculated by the formula pm(T ) = pm(0) exp(−T/α1), where α1 is
calculated so that the final value of pm is small enough (10−2 in our case). So
α1 = Maxgen/log[pm(0)

10−2 ], where Maxgen is the expected number of generations that the
GA can run for convergence.
Selection of offsprings: Maximum population growth in a generation is assumed as forty
percent. So not all offsprings are taken into the parent set for next generation. At first
offspring set is arranged in descending order in fitness. Then better solutions are selected
and entered into parent set such that population size does not exceeds Maxsize.
Termination Condition: Algorithm terminates when difference between maximum fitness
(Maxfit) of chromosome, i.e., fitness of the best solution of the population and average
fitness (Avgfit) of the population becomes negligible.
Implementation: With the above functions and values, the algorithm is implemented using
C-programming language

2.2.3.2 Fuzzy Age based Genetic Algorithm (FAGA)
Following Last and Eyal [137], here, a GA (Roy et al. [222]) with varying population size

is used where diversity of the chromosomes in the initial population is maintained using
entropy originating from information theory and chromosomes are classified into young,
middle age and old (in fuzzy sense) according to their age and lifetime. Following
comparison of fuzzy numbers using possibility theory (Liu and Iwamura [148]), here
crossover probability is measured as a function of parent’s age interval (a fuzzy rule base on
parents age limit is also used for this purpose).
Determination of fitness and lifetime: Value of the objective function due to the solution
Xi, is taken as fitness ofXi. Let it be Z(Xi). At the time of initialization, age of each solution
is set to zero. Following Michalewicz [174] at the time of birth, life-time of Xi is computed
using the following formula:

If Avgfit≥ Z(Xi), lifetime(Xi)=Minlt+K(Z(Xi)−Minfit)
Avgfit−Minfit

,

If Avgfit< Z(Xi), lifetime(Xi)=Minlt+Maxlt
2

+K(Z(Xi)−Avgfit)
Maxfit−Avgfit .

where Maxlt and Minlt are maximum and minimum allowed lifetime of a chromosome,
K=(Maxlt -Minlt)/2. Maxfit, Avgfit and Minfit represent respectively the best, average and
worst fitness of the current population. To optimize objective function, it is assumed that
Maxlt=7 and Minlt=1, N=10. According to the age, a chromosome can belongs to any one
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of age intervals-young, middle-age or old, whose membership functions are presented in
Fig. 2.12. For a small positive number δ given by the user, the common fuzzy age (a,b,c) is
described by Eq. (2.50).

Age =


Y oung, for a ≤ age < b− δ
Middle, for b− δ ≤ age ≤ b+ δ
Old, for b+ δ < age ≤ c

(2.50)

Crossover Process for FAGA:
Determination of probability of crossover( p̃c ): Probability of crossover p̃c , for a pair of
parents (Xi, Xj) is determined as:

(i) Following Maiti [161], at first age intervals (young, middle-age, old) of Xi and Xj are
determined by making possibility measure of fuzzy numbers young, middle-age, old
with respect to their ages.

(i) After determination of age intervals of the parents, their crossover probability ( p̃c ) is
determined as a linguistic variable (low, medium or high) using a fuzzy rule base as
presented in Table 2.1. Membership function of these linguistic variables are presented
in Fig. 2.13.

Figure 2.12: Membership functions of
age intervals.

Figure 2.13: Membership functions of
crossover probabilities.

Table 2.1: Fuzzy rule base for crossover probability

Parent-1Parent-2
Young Middle-age Old

Young Low Medium Low
Middle-age Medium High Medium

Old Low Medium Low
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2.2.3.3 Teaching-Learning-Based Optimization (TLBO)

TLBO is a teaching-learning based process developed by Rao et al. [211, 212] that intents
to study the influence of a teacher on the output of learners in a class. This algorithm is
basically helpful in mimicking the teaching-learning ability of teachers and learners in a
class room where there are two phases as Teacher phase (highly learned person) and
learners phase (learners). The output of the TLBO algorithm concerns with results or
grades of a learner that depend on the quality of teacher. Meanwhile, the interaction
between learners can also be helpful in terms of achieving better outcomes.

Initially, a group of learners is considered as population in this TLBO algorithm.
Followed by different subjects offered to the learners using different design variables in
such a way that the result will be resemblance to the ‘fitness’ value of the optimization
problem. From the complete set of population, best solutions are treated as teacher. The
working principles of learner’s phase and teacher’s phase are described below:

Teacher phase: First step in this phase is learners, learning through a teacher and that teacher
will try to increase the mean result of the classroom of value M1 at their potential level (i.e.
TA). But in general to get the better value depending on the value of M1, a teacher can move
to other mean value M2 depending on their capability. To formulate it, further consider Mj

be the mean and Ti be the teacher at any iteration i, whilst Ti will try to enhance existing
mean Mj to the new mean as Mnew. Finally the difference between existing mean and new
mean is shown as [211, 212]

Difference Meani = ri(Mnew − TFMj), (2.51)

where TF is the teaching factor which decides the value of mean to be changed and ri is
the random number in the range [0, 1]. Moreover, value of TF can be either 1 or 2 to decide
randomly with equal probability as a heuristic approach

TF = round[1 + rand(0, 1){2− 1}]. (2.52)

Depending on this Difference Mean, the updated solution can be written as:

Xnew,i = Xold,i +Difference Meani. (2.53)

Learner phase: Second part of the algorithm where learners gains their knowledge by
interacting it in-between. Randomly a learner interacts with other learners for enhancing
their knowledge. New things can be learned if the learners gets more knowledge from other
learners and mathematically it can be expressed below.
At any iteration i, taking two different learners Xi and Xj where i 6= j

Xnew,i = Xold,i + ri(Xi −Xj) If f(Xi) < f(Xj), (2.54)
Xnew,i = Xold,i + ri(Xj −Xi) If f(Xj) < f(Xi) (2.55)
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Accept Xnew if it gives better function value. It is necessary to show in the basic TLBO
algorithm the updated solution of both the teacher and learner phase. Also, if duplicate
solutions are present, they are randomly modified. Hence in the TLBO algorithm, the total
number of function evaluations is = {(2 × population size × number of generations) +
(function evaluations required for duplicate elimination)}. Besides, it may be noted that if
duplicate solutions are not removed, then it does not lead to final solution but at times, it
may show pre-mature convergence.

The sketch of TLBO algorithm: As explained above, the step-wise procedure for
implementing TLBO can be noted down as follows.
Step 1 Define the optimization problem and initialize its parameters.
Step 2 Initialize the population.
Step 3 Learners are learning from the teacher in the context to teacher phase
Step 4 With mutual interaction among learners, they increase their knowledge in the con-

text to learner phase.
Step 5 Finally the terminating criterion is to stop if the maximum generation number is

achieved; otherwise repeating from Step 3.
The flow chart of the Elitist TLBO algorithm is shown in Fig. 2.14.

Implementation of TLBO for optimization: The procedure for implementing TLBO is
given below.
Step 1: Define the optimization problem and initialize its parameters

Initializing the parameters as population size (Pn), number of generations (Gn), number
of design variables (Dn), and limits of design variables. (UL, LL).
Defining the optimization problem as: Minimize f(X). subject to Xi ∈ xi = 1, 2, ..., Dn

where f(X) is the objective function, X is a vector for design variables such that
LL,i ≤ x,i ≤ UL,i.

Step 2: Initialize the population
According to the population size and number of design variables generate a random

population. In TLBO, as population size indicates the number of learners and thus design
variables determines the subjects (i.e. courses) offered. Thus, population can be expressed
as:

Population =


x1,1 x1,2 · · · x1,D

x1,1 x1,2 · · · x1,D
...

...
...

...
xPn,1 xPn,2 · · · xPn,D


Step 3: Teacher phase
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Figure 2.14: Flowchart of TLBO algorithm

To calculate the mean of a particular subject, calculate mean of the population column-wise

M,D = [m1,m2, ...,mD]. (2.56)

The best solution will act as a teacher for that particular iteration

Xteacher = Xf(X)=min. (2.57)

Further, the teacher will try to shift the mean from M,D towards X,teacher, which act as a
new mean for the iteration. Hence,

Mnew,D = Xteacher,D. (2.58)

The difference between two means is expressed as

Difference,D = r(Mnew,DTFM,D). (2.59)
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The value of TF is selected as 1 or 2. To get the updated value the obtained difference must
be added to the current solution using

Xnew,D = Xold,D +Difference,D (2.60)

Accept Xnew if it gives better function value.

Step 4: Learner phase
As explained above, with mutual interaction among learners they increase their

knowledge in the context to Learner phase.

Step 5: Termination criterion
Finally the terminating criterion is to stop if the maximum generation number is achieved;
otherwise repeating from Step 3.

It has been observed that there isn’t any particular approach to manage the constraints in
an optimization problem. Alike other heuristic algorithms (e.g. GA, PSO, ACO, etc.),
TLBO algorithm does not have best mechanism to handle the constraints. So it is necessary
to inculcate constraint handling technique with TLBO algorithm besides having its own
potentials for solving. In this calculation, Deb’s heuristic constrained handling method [67]
is used to handle the constraints with the TLBO algorithm. Deb’s method uses tournament
selection operator in which two solutions are considered and compared with each other.
The three rules used for selection are

• Out of two solutions if one solution is feasible and the other solution is infeasible,
prefer the feasible solution,

• Solution having better objective function must be preferred if both the solutions are
feasible.

• Solution having the least constraint violation must be preferred if both the solution
provides infeasible solutions.

Above rules are useful at the end of Steps 2 (teacher phase) and 3 (learner phase). Based on
three heuristic rules, Xnew should be selected as per Deb’s constraint handling rules [67] as
there is need to accept solution of Xnew if and only if it provides better function value at the
end of Steps 2 and 3.

Previously work done on TLBO algorithm by Rao et al. [211, 212], Rao and
Savsani [210] and Rao and Patel [209], the aspect of ‘elitism’ was not considered and only
two common controlling parameters, i.e. population size and number of generations were
used. Also, the detailed investigation of the algorithms performance was not provided with
the controlling parameters such as population size and number of generations. Presently,
‘elitism’ is introduced in the TLBO algorithm to identify effects having its own potentials
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for solving the algorithm.

To replace the worst solutions during every generation, elite solutions are used as it has
been in the limelight of the most of evolutionary and swarm intelligence algorithms. In
TLBO algorithm, elite solution can be replaced after the end of learner’s phase so as to
avoid trapping from local optima whilst having duplicate solutions. Meanwhile, those
duplicate solution are modified for better result by mutation on randomly selected
dimensions. Apart from it, in the present work, the effect of common controlling
parameters of algorithms including elite-size on the performance of algorithm are
investigated by taking different population sizes, number of generations and elite sizes.

Algorithm 2: TLBO PSEUDOCODE

1 begin
2 g ←− 0;
3 initialize population(P, pop size)
4 evaluate(P)
5 repeat
6 Elite←− select best(P, elite)
7 for i = 1 −→ pop size do // Teacher Phase
8 TF = round(1 + r)
9 Xmean ←− calculate mean vector(P)

10 Xteacher ←− best solution(P)
11 Xnew = Xi + r.(Xteacher − (TF.Xmean))
12 evaluate(Xnew)
13 if f(Xnew) better than f(Xi) then
14 Xi ←− Xnew // End of Teacher Phase

15 j←− random(pop size)j 6= i
// Learner Phase

16 if f(Xi) better than f(Xj) then
17 Xnew,i = Xold,i + r.(Xi −Xj)
18 else
19 Xnew,i = Xold,i + r.(Xj −Xi)

20 evaluate(f(Xnew,i))
21 if f(Xnew,i) better than f(Xi) then
22 Xi ←− Xnew,i // End of Learner Phase

23 P←− replace worst with elite(P, Elite)
24 P←− remove duplicate individuals(P)
25 g←− g + 1
26 until (g6=num gen) // termination condition
27 print best result(P)
28 end
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2.3 Multi-Objective Optimization Problem

2.3.1 Multi-Objective Programming Problem
Development of single objective mathematical programming problems and methods for
their solutions have been presented in the earlier section. But, the world has become more
complex and almost every important real-world problem involves more than one objective.
In such cases, decision makers find imperative to evaluate best possible approximate
solution alternatives according to multiple criteria.

A general multi-objective programming problem (MOPP) is of the following form:

minimize fm(X), m = 1, 2, ...,M ;
subject to gj(X) ≥ 0, j = 1, 2, ..., J ;

xLi ≤ xi ≤ xUi , i = 1, 2, ..., n;

 (2.61)

where the solution X is a vector of n decision variables (DV). i.e. X = (x1, x2, ..., xn)T .
The last set of constraints are called variable bounds, restricting each DV xi to take a value
within a lower xLi and an upper xUi bound. These bounds constitute the decision space.
Here f1(x), f2(x), ..., fM(x) are M (≥ 2) objectives. It is noted that, if the objectives of
the original problem are: minimize fi(x), for i = 1, 2, ....,m0 and maximize fi(x) for i =
m0 + 1,m0 + 2, ....,M, then the objective in the mathematical formulation will be

Min F (x) = (f1(x), f2(x)...., fm0(x),−fm0+1(x),−fm0+2(x), ....,−fM(x))T .

subject to the same constraints as in (2.61).
If fi(x), (i = 1, 2, ....,M) and gj(x), (j = 1, 2, ...., J) are linear, the corresponding

problem is called Multi-Objective Linear Programming (MOLP) problem. When all or any
one of the above functions is non-linear, it is referred as a Multi-Objective Non-linear
Programming (MONLP) problem. Here, the problem is often referred to as a Vector
Minimum Problem (VMP).

Convex and non-convex MOPP: The multi-objective optimization problem (2.61) is said
to be convex if all the objective functions and the feasible region are convex, otherwise it is
called non-convex.

Ideal Objective Vector: An objective vector minimizing each of the objective functions is
called an ideal (or perfect) objective vector.

Complete optimal solution: x∗ is said to be a complete optimal solution to the MONLP in
(2.61) iff there exists x∗ ∈ X such that fi(x∗) ≤ fi(x), i = 1, 2, ...., k for all x ∈ X.

In general, the objective functions of the MONLP conflict with each other, a complete
optimal solution does not always exist and so Pareto (or non dominated) optimality concept
is introduced.

Pareto optimal solution: x∗ is said to be a Pareto optimal solution to the MONLP iff there
does not exist another x ∈ X such that fi(x) ≤ fi(x

∗) for all i, i = 1, 2, ...., k and fj(x) <
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fj(x
∗) for at least one index j, j = 1, 2, ...., k.

An objective vector F ∗ is Pareto-optimal if there does not exist another objective vector
F (x) such that fi ≤ f ∗i for all i = 1, 2, · · · , k and fj < f ∗j for at least one index j. Therefore,
F ∗ is Pareto-optimal if the decision vector corresponding to it is Pareto optimal.

Unless an optimization problem is convex, only locally optimal solution is guaranteed
using standard mathematical programming techniques. Therefore, the concept of Pareto-
optimality needs to be modified to introduce the notion of a locally Pareto-optimal solution
for a non-convex problem as defined by Geoffrion [85].

Locally Pareto optimal solution: x∗ ∈ X is said to be a locally Pareto optimal solution to
the MONLP if and only if there exists an r > 0 such that x∗ is Pareto optimal inX∩N(x∗, r),
where N(x∗, r) is a r-neighborhood of x∗, i.e, there does not exist another x ∈ X ∩N(x∗, r)
such that fi(x) ≤ fi(x

∗).

Concept of Domination: Most evolutionary multi-objective optimization algorithms use
the concept of domination. In these algorithms, two solutions are compared on the basis of
whether one dominates the other solution or not. Let us use the operator w between two
solutions i and j as i w j denotes that solution i is better than solution j on a particular
objective. Similarly i v j for a particular objective implies that solution i is worse than
solution j on this objective. With this assumption a solution x is said to dominate the other
solution y, if both the following conditions hold.
• The solution x is not worse than the solution y in all the objectives.
• The solution x is strictly better than the solution y in at least one objective, i.e., fj(x) w
fj(y) for at least one j ∈ {1, 2, ..k}

Now, let us introduce some non-linear programming techniques which have been used in this
thesis to achieve at least local Pareto optimal solutions.

2.3.2 Solution Techniques for Multi-Objective Programming Problem
in Crisp Environment

2.3.2.1 Multi-Objective Genetic Algorithm (MOGA) :
Genetic algorithm approach was first proposed by Holland [105]. Because of its generality
and its several advantages over conventional optimization methods it has been successfully
applied to many optimization problems. There are several approaches using genetic
algorithms to deal with the multi-objective optimization problems. These algorithms can be
classified into two types-(i) Non-Elitist MOGA and (ii) Elitist MOGA. A fast and elitist
MOGA was developed following Deb et al. [69] and is named as Fast and Elitist
Multi-objective Genetic Algorithm (FEMOGA).

2.3.2.2 Fast and Elitist Multi-Objective Genetic Algorithm
This multi-objective genetic algorithm has the following two important components.

(a) Division of a population of solutions into subsets having non-dominated solutions:
Consider a problem having M objectives and take a population P of feasible solutions
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of the problem of size N . We like to partition P into subsets F1, F2, · · · , Fk, such
that every subset contains non-dominated solutions, but every solution of Fi is not
dominated by any solution of Fi+1, for i = 1, 2, ..k − 1. To do this for each solution,
x, of P , calculate the following two entities.

(i) Number of solutions of P which dominate x, let it be nx.

(ii) Set of solutions of P that are dominated by x. Let it be Sx.

The above two steps require O(MN2) computations. Clearly F1 contains every
solution x having nx = 0. Now for each solution x ∈ F1, visit every member y of Sx
and decrease ny by 1. In doing so if for any member y, ny = 0, then y ∈ F2. In this
way F2 is constructed. The above process is continued to every member of F2 and
thus F3 is obtained. This process is continued until all subsets are identified. For each
solution x in the second or higher level of non-dominated subsets, nx can be at most
N − 1. So each solution x will be visited at most N − 1 times before nx becomes
zero. At this point, the solution is assigned a subset and will never be visited again.
Since there is at most N − 1 such solutions, the total complexity is O(N2). So overall
complexity of this component is O(MN2).

(b) Determine distance of a solution from other solutions of a subset: To determine
distance of a solution from other solutions of a subset following steps are followed:

(i) First sort the subset according to each objective function values in ascending
order of magnitude.

(ii) For each objective function, the boundary solutions are assigned an infinite dis-
tance value (a large value).

(iii) All other intermediate solutions are assigned a distance value for the objective,
equal to the absolute normalized difference in the objective values of two adjacent
solutions.

(iv) This calculation is continued with other objective functions.

(v) The overall distance of a solution from others is calculated as the sum of
individual distance values corresponding to each objective. Since M
independent sorting of at most N solutions (In case the subset contains all the
solutions of the population) are involved, the above algorithm has O(MNlogN)
computational complexity.

Using the above two operations proposed multi-objective genetic algorithm takes the fol-
lowing form:

1. Set probability of crossover pc and probability of mutation pm.
2. Set iteration counter T = 1.
3. Generate initial population set of solution P (T ) of size N .
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4. Select solution from P (T ) for crossover and mutation.
5. Made crossover and mutation on selected solution and get the child set C(T ).
6. Set P1 = P (T )UC(T ) // Here U stands for union operation.
7. Divide P1 into disjoint subsets having non-dominated solutions. Let these sets be
F1, F2, · · ·Fk.

8. Select maximum integer n such that order of P2(= F1UF2U ... UFn) ≤ N.
9. if O(P2) < N sort solutions of Fn+1 in descending order of their distance from other

solutions of the subset. Then select first N −O(P2) solutions from Fn+1 and add with
P2, where O(P2) represents order of P2.

10. Set T = T + 1 and P (T ) = P2.
11. If termination condition does not hold go to step-4.
12. Output: P(T)
13. End algorithm.

MOGAs that use non-dominated sorting and sharing are mainly criticized for their
• O(MN3) computational complexity
• non-elitism approach
• the need for specifying a sharing parameter to maintain diversity of solutions in the

population.
In the above algorithm, these drawbacks are overcame. Since in the above algorithm
computational complexity of step-7 is O(MN2), step-9 is O(MNlogN) and other steps are
≤ O(N), so overall time complexity of the algorithm is O(MN2). Here selection of new
population after crossover and mutation on old population, is done by creating a mating
pool by combining the parent and offspring population and among them, best N solutions
are taken as solutions of new population. By this way, elitism is introduced in the
algorithm. When some solutions from a non-dominated set Fj (i.e., a subset of Fj) are
selected for new population, those are accepted whose distance compared to others (which
are not selected) are much i.e., isolated solutions are accepted. In this way taking some
isolated solutions in the new population, diversity among the solutions is introduced in the
algorithm, without using any sharing function. Since computational complexity of this
algorithm < O(MN3) and elitism is introduced, this algorithm is named as FEMOGA.

2.3.2.3 Rough age based Multi-Objective Genetic Algorithm (RMOGA) :

In this thesis RMOGA is used where where diversity of the chromosomes in the initial
population is maintained using entropy originating from information theory and
chromosomes are classified into young, middle age and old (in fuzzy sense) according to
their age and lifetime. Here, imprecise nature of the age lifetime of the chromosomes are
considered following rough sense and a five levels rough age based (Very Young (VY),
Young (Y), Middle (M), Old (O) and Very Old (VO)) probability of crossover is considered.
There are several approaches using genetic algorithms to deal with the multi-objective
optimization problems. The better known ones include the plain aggregation approach, the
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population-based non-pareto approach, the pareto-based approach and Niche induction
approach [68, 69]. Proposed multi-objective genetic algorithm has been developed
following Deb et al. [69] with the help of rough age based probability of crossover.

Rough Set Based Age Dependent Selection: For the solution of an optimization problem,
in our proposed RMOGA, the age of a chromosome is determined by a new mechanism
based on weighted mean of their two objective values i.e. fitness values and then a Rough
age based selection is applied. Here the age of each chromosome lie in a region of the
common age represented by a rough set using five linguistic expressions. These regions are
termed as Very Young (VY), Young (Y), Middle (M), Old (O) and Very Old (VO). Now
according to the age distributions of the members (in pair) of the mating pool, similar
linguistic variables such as Very Low (VL), Low (L), Medium (M), High (H) and Very
High (VH) are generated for the said chromosomes to fix pcs. Using the trust measure of
rough set, the probability of crossover, pc for each chromosome is assigned by the
corresponding linguistic variables.

Determination of age: The above M such two-objective solutions have fitnesses represented
byZ1(Xi) andZ2(Xi) of the ith chromosomes. NowZ(Xi) = λZ1(Xi)+(1−λ)Z2(Xi), λ ∈
rand[0, 1]. At the time of initialization, each chromosome age is defined as null. Now in
every generation, the age is counted using the following mechanism (cf. Michalewicz [174]):

If Avgfit≥ Z(Xi), age(Xi)=Minage+K(Z(Xi)−Minfit)
Avgfit−Minfit

,

If Avgfit< Z(Xi), age(Xi)=Minage+Maxage
2

+K(Z(Xi)−Avgfit)
Maxfit−Avgfit .

where Maxage and Minage are maximum and minimum allowed ages of a chromosome,
K=(Maxage - Minage)/2. Maxfit, Avgfit, Minfit represent the best, average and worst fitness
of the current population. We calculated average age (Avgage) in each generation. Now
since age calculated as crisp values, we construct the common rough values form it as:

Rough Age=([r1*Avgage, r2*Avgage], [r3*Avgage, r4*Avgage]),
where r1=Maxage−Avgage

Avgage
, r2=Maxage+Minage

2
, r3=Maxage−Minage

2
, r4=Avgage−Minage

Avgage

According to the age, a chromosome can belongs to any one of age intervals- VY, Y, M,
O or VO. The common rough age ([a,b],[c,d]) is extended to 0 ≤ c ≤ c1 ≤ a ≤ b ≤ c2 ≤ d
and is described by Eq. (2.62) and depicted in Fig. 2.15.

Age =


V ery Y oung, for c ≤ V ery Y oung < c1

Y oung, for c1 ≤ Y oung < a
Middle, for a ≤Middle ≤ b
Old, for b < Old ≤ c2

V ery Old, for c2 < V ery Old ≤ d

(2.62)

Determination of probability of crossover( pc ): Probability of crossover pc, for a pair of
parents (Xi, Xj) is determined as:

Now we consider the age in a different linguistic code Very Low (VL), Low (L),
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Medium (M), High (H) and Very High (VH) scale so that it is more realistic in the sense of
classification and acceptable to design for the real world problems. The parent’s crossover
probability (pc) is determined as a linguistic variables as presented in Table 2.2. Determined
pc values of the extended linguistics are also given in the Fig. 2.16.

Table 2.2: Rough extended trust based linguistic

Chromosomes Very Young Young Middle Old Very Old
Very Young Very Low Low Medium Low Very Low

Young Low Low High Low Very Low
Middle Medium High Very High High Medium

Old Low Low High Low Very Low
Very Old Very Low Very Low Medium Very Low Very Low

Division of P (T ) into disjoint subsets having non-dominated solutions: According to
Deb et al. [69], the following procedure is adapted.
For every x ∈ P (T ) do

Set Sx = Φ ,where Φ represents null set
nx = 0
For every y ∈ P (T ) do

If x dominates y then
Sx = SxU{y}

Else if y dominates x then
nx = nx + 1

End if
End For

If nx = 0 then
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F1 = F1U{x}
End If

End For
Set i=1
While Fi 6= Φ do

Fi+1 = Φ
For every x ∈ Fi do

For every y ∈ Sx do
ny = ny − 1
If ny = 0 then

Fi+1 = Fi+1U{y}
End If

End For
End For
i=i+1

End While
Output:F1, F2, ...Fi−1.

Determine distance of a solution of subset F from other solutions: According to Deb et
al. [69], some modifications are made to evaluate the distance of Pareto solutions which are
given as
Set n=number of solutions in F
For every x ∈ F do

xdistance = 0
End For
For every objective m do

Sort F , in ascending order of magnitude of mth objective.
F [1] = F [n] = M , where M is a big quantity.

For i=2 to n-1 do
F [i]distance = F [i]distance + (F [i+ 1].objm− F [i− 1].objm)/(fmaxm − fminm )

End For
End For
In the algorithm F [i] represents ith solution of F , F [i].objm represent mth objective value
of F [i]. fmaxm and fminm represent the maximum and minimum values of mth objective
function.

Complexity analysis: MOGAs, that use non-dominated sorting and sharing are mainly
criticized for their O(MN3) complexity, but fast and elitist non-dominated sorting
algorithm has O(MN2) computational complexity where N is the popsize and M is the
number of objectives. Here also the proposed RMOGA has the same O(MN2)
computational complexity.
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2.4 Optimization in Fuzzy Environment

2.4.1 Single-Objective Optimization in Fuzzy Environment and
Solution Techniques

In most of the programming model, the decision maker is not able to define precisely
different parameters of the optimization problem under consideration. In these cases, the
parameters are defined either as non-stochastic sense, i.e., as fuzzy numbers with feasible
membership functions or in stochastic sense, i.e., as random numbers with feasible
probability distributions. In case of non-stochastic sense, the problem belongs to the class
of SOOP in fuzzy environment and is termed as FNLOP. A crisp non-linear SOOP may be
defined as follows:

Max f(x, a)
subject to gr(x, a) ≤ br r = 1, 2, ...,m

xi ≥ 0 i = 1, 2, ..., n

 (2.63)

where, x = (x1, x2, ..., xn)T is crisp decision vector, a = (a1, a2, ..., ak)
T is crisp parameter

vector, b = (b1, b2, ..., bm)T is crisp resource vector.
When the vectors a, b are fuzzy in nature, i.e., ã, b̃ , the above problem (2.63) reduces to a
FNLOP as

Max f̃(x, ã)

subject to g̃r(x, ã) ≤ b̃r r = 1, 2, ...,m
xi ≥ 0 i = 1, 2, ..., n

 (2.64)

where, x = (x1, x2, ..., xn)T is crisp decision vector, ã = (ã1, ã2, ..., ãk)
T is fuzzy parameter

vector, b̃ = (b̃1, b̃2, ..., b̃m)T is fuzzy resource vector (where the symbol ∼ represents fuzzi-
ness of the parameters).

Solution Techniques

As optimization of fuzzy objective is not well defined, it can be transformed to an
equivalent crisp problem using different procedures. In this thesis two approaches are used
which are presented below:

Fuzzy Expected Method: The above problem (2.64) can be transformed to an equivalent
crisp problem using expected value of fuzzy objective (cf. Eq. (2.10)) and
possibility/necessity measure of fuzzy events for constraints following Liu and
Iwamura [148], Maiti [160] for optimistic and pessimistic DMs respectively as below:

Maximize E[Z̃]

subject to pos(g̃r(x, ã) ≤ b̃r) ≥ βr r = 1, 2, ...,m

 (2.65)
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Maximize E[Z̃]

subject to nes(g̃r(x, ã) ≤ b̃r) ≥ βr r = 1, 2, ...,m

 (2.66)

where βr(r=1,2,...,m) are degree of optimism (pessimism) for ODM (PDM). Constraint of
the problems (2.65) and (2.66) can be transformed to a deterministic inequality using
definition of possibility/necessity measure of fuzzy events. Then transformed problem can
be solved using any classical / heuristic optimization technique.

2.4.2 Multi-Objective Optimization in Fuzzy Environment and
Solution Techniques

2.4.2.1 Intuitionistic Fuzzy Optimization Technique (IFOT) [38]:
To solve multi-objective maximization problems, we have used the following IFOT. For
each of the objective functions fL(x), fC(x), fR(x), we first find the upper bounds
UL, UC , UR (best values) and the lower bounds LL, LC , LR(worst values), where
UL, UC , UR are the aspired level achievements and LL, LC , LR are the lowest acceptable
level achievements for the objectives fL(x), fC(x), fR(x) respectively and dk = Uk − Lk is
the degradation allowance, or leeway, for objective fk(x), k = L, C, R. Once the aspiration
levels and degradation allowances for each of the objective function have been specified, we
form a fuzzy model and then transformed the fuzzy model into a crisp model. The steps of
intuitionistic fuzzy programming technique is given below.

Step 1: Solve the multi-objective cost function as a single objective cost function using one
objective at a time and ignoring all others.

Step 2: From the results of step 1, determine the corresponding values for every objective
at each solution derived.

Step 3: From step 2, we find for each objective, the best Uk and worst Lk values
corresponding to the set of solutions. The initial fuzzy models can then be stated as, in
terms of the aspiration levels for each objective, as follows : Find P and t1 satisfying
fk(x)>̃Uk, k = L,C,R, subject to the non negatively conditions and associate constraints.

Step 4: Define membership function (µfk ; k = L,C,R) and a non membership function
(νfk ; k = L,C,R) for each objective function.

An exponential membership function is defined as
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µfk =


1, fk ≥ Uk

e

−w

(
Uk−fk
Uk−Lk

)
−e−w

1−e−w , Lk ≤ fk ≤ Uk
0, fk ≤ Lk

(2.67)

where w(> 0) is the distribution parameter.
A quadratic non-membership function is defined as

νfk =


1, fk ≤ Lk(
Uk−fk
Uk−Lk

)2

, Lk ≤ fk ≤ Uk

0, fk ≥ Uk

(2.68)

µfk is strictly monotonic increasing function with property µfk(Uk) = 1, µfk(Lk) = 0,
where as νfk(Uk) = 0 and νfk(Lk) = 1. These two functions are continuous within
[Lk, Uk]. Here, µfk + νfk ≤ 1 for Lk ≤ fk ≤ Uk. Therefore, quite naturally the functions
meet at a point somewhere in [Lk, Uk].

Step 5: After determining the membership and non-membership function defined in ( 2.67)
and (2.68) for each objective function following Angelov [6] the problems can be formulated
as an equivalent crisp model as

max µ, min ν
sub to µ ≤ µfk ; for all k = L,C,R

ν ≥ νfk ; for all k = L,C,R
µ ≥ ν; and µ+ ν ≤ 1; µ, ν ≥ 0

 (2.69)

where µ denotes the minimal acceptable degree of objective(s) and constraints and ν
denotes the maximal degree of rejection of objective(s) and constraints. The problem (2.69)
can be rewritten as:

max (µ− ν)
sub to µ ≤ µfk ; for all k = L,C,R

ν ≥ νfk ; for all k = L,C,R
µ ≥ ν; and µ+ ν ≤ 1; µ, ν ≥ 0

 (2.70)

Step 6: Now the above problem can be solved by a non-linear optimization technique and
optimal solution of µ, (say µ∗) and ν, (say ν∗.) are obtained.

Step 7: Pareto-Optimal Solution
After deriving the optimum decision variables, Pareto-optimality test is performed according
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to Sakawa [224]. Let the optimum decision vector x∗ and the optimum values f ∗k = fk(x
∗),

k=L, C, R, are obtained from (2.70). With these values, the following problem is solved
using a non-linear optimization technique

min V =
∑

k εk, k = L,C,R;
sub to fk + εk = f ∗k ; for all k = L,C,R

εk ≥ 0; for all k = L,C,R.

 (2.71)

where εk is the deviation parameter from the optimal values.
The optimal solutions of (2.71) are called strong Pareto optimal solution provided V is

very small otherwise it is called weak Pareto solution.
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Inventory Problems in Uncertain
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Chapter 3

Inventory Problems with Stock
dependent Demand in Random
Environment

3.1 Introduction

An interesting phenomenon observed in any supermarket is that display of consumer goods
in large quantities attracts more and more customers and generates higher demand.
Balakrishnan et al. [28] suggested that “high inventories might stimulate demand for a
variety of reasons such as- increasing product visibility, kindling latent demand, signalling a
popular product, or providing consumers an assurance of future availability”. Many
researchers [10, 37, 117, 163, 168, 169, 259] have given considerable attention to the
situation where the demand rate depends on the level of on-hand inventory (cf. § 1.3.1).

In EPL models, normally UPC of a manufacturing system is assumed as constant. But, in
reality, it depends on the combination of different production factors such as raw materials,
technical knowledge, resources, production procedure, wear and tear of machineries, firm
size, quality of product, environmental pollution etc. Khouja and Mehrez [127] assumed a
UPC involving raw material, labour/energy, and wear and tear costs. After that, several
authors [169, 171] have implemented this in their EPL models. Das and Maiti [61] used this
type of production cost in terms of volume flexibility. Since no manufacturing company can
ensure that every machinery systems will remain in good condition for the whole life-time,
the reliability parameter takes an important role on the integrated cost function. For more
accuracy, we consider the development cost (a part of unit production cost) as a function of
reliability parameter which varies with the levels of technology and resources, etc. Sarkar et
al. [231] considered the UPC as a function of reliability parameter in imperfect production
process with safety stock. In the same year, they [230] investigated a model by introducing
optimal reliability, production lot size and safety stock. but, till now, none considered the
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cost to be incurred by the manufacturer against the measures for environment protection.

In a situation where some or all parameters are described by random variables, the
problem is expressed as a constraint called chance constraint, which helps to transform the
problem to a crisp one. Charnes and Cooper [44] were first to develop the Chance
Constraint technique. The problem with fuzzy parameters was solved by Liu and
Iwamura [148] in the form of a chance constraint type. In the recent years, it has been
extended for various applications in several directions [197]. Similarly following Katagiri et
al. [126] and Liu [146], the problem with fuzzy-random, rough and fuzzy-rough parameters
can be reduced to crisp ones with the help of constraints like chance Constraints.

Classical inventory models are usually developed over the infinite planning horizon.
According to Gurunani [95] and Chung and Kim [56], the assumption of infinite planning
horizon is not realistic due to several reasons such as variation of inventory costs, change in
product specifications and designs, technological developments, etc. Moreover, for seasonal
products like fruits, vegetables, warm garments, etc., business period is not infinite, rather
fluctuates with each season. Hence the planning horizon for seasonal products varies over
the years depending upon the environmental effects. Therefore, it is better to estimate this
type finite time horizon as random or fuzzy or fuzzy-random or rough or fuzzy-rough in
nature. Moon and Yun [181] developed an EOQ model in random planning horizon. Maiti
and Maiti [163] developed inventory models with stock dependent demand and two storage
facilities over a random planning horizon. Some more research works are available in this
direction [94, 221].

For a manufacturing system, it is difficult to produce perfect quality product for all times,
because any system is not same percent perfect. The effect of the presence of defective
units in the lot size and rework of these units are studied by several
researchers [217, 225, 227, 234, 247, 248] as mentioned in § 1.3.2. Biskup [20] pointed out
that repeated processing of similar tasks improves workers skills, e.g., workers are able to
perform setups, deal with machine operations or soft-wares, or handle raw materials and
components at a faster pace. Scheduling in this setting is known as scheduling with learning
effects. This concept of learning was also introduced by Cheng and Wang [52] into the field
of scheduling. Recently, Biskup [21] presented a comprehensive review of research on
scheduling with learning effects. Eren [82] proposed a non-linear mathematical
programming model for the single-machine scheduling problem with unequal release dates
and learning effects. But very few researchers have used the concept of learning in EPL
with finite time horizon.

Summarizing the above mentioned literature, the systematic chronological developments
in the related areas of the present investigation of Model 3.1 are presented in Table 3.1.

Though several inventory models are available with imperfect production as described in

80



3.1. INTRODUCTION

Table 3.1: Literature Review for Model-3.1

Authors with year Model
type

Demand Out of con-
trol state

Rework EPC Production
dependent
quality

Rosenblatt and Lee [217], 1986 EPQ Constant Random Yes No No
Mandal and Phaujder [168], 1989 EPQ Stock dependent No No No No
Urban [259], 1992 EOQ Stock dependent No No No No
Khouja and Mehrez [127], 1994 EPL Constant Random Yes No Yes
Mandal and Maiti [169], 1999 EPQ Stock dependent No No No No
Salameh and Jaber [225], 2000 EPQ Constant Random No No No
Maiti and Maiti [163], 2006 EOQ Stock dependent No No No No
Sana [227], 2010 EPL Constant Random Yes No No
Sarkar et al. [230], 2010 EPL Constant Random Yes No No
Taleizadeh et al. [247], 2012 EPQ Constant Crisp Yes No No
Pal et al. [195], 2013 EPQ Random Random Yes No No
Krishnamoorthi and Panayappan [134], 2014 EPL Time dependent Crisp No No No
Sarkar et al. [234], 2014 EPQ Constant Random Yes No No
Present model 3.1

EPL
Stock dependent

Random
Yes Yes

Yes

Table 3.2, in comparison of those, our main considerations are also presented here.

Table 3.2: Literature Review for Model-3.2

Authors with year Model
type

Demand type Out of con-
trol state

UPC Reliability Time horizon

Rosenblatt and Lee [217], 1986 EPQ Constant Random No No Infinite
Mandal and Phaujder [168], 1989 EPQ Stock dependent No Constant No Infinite
Khouja and Mehrez [127], 1994 EPL Constant Random Production rate depen-

dent
No Infinite

Salameh and Jaber [225], 2000 EPQ Constant Random Constant No Infinite
Roy et al. [221], 2009 EOQ Stock dependent No No No Random and

finite
Sana [227], 2010 EPL Constant Random Production rate depen-

dent
No Infinite

Sarkar et al. [230], 2010 EPL Constant Random Constant Yes infinite
Sarkar et al. [231], 2010 EPL Constant Random Reliability dependent Yes Infinite
Sarkar [233], 2012 EPQ Price and adver-

tising dependent
Time
dependent

Production and reliabil-
ity dependent

Yes Infinite

Guria et al. [94], 2013 EOQ Inflation and sell-
ing price depen-
dent

No No No Random and
finite

Present model 3.2
EPL Stock dependent Random Production and reliabil-

ity dependent

Yes
Uncertain and
finite

Hence, in this chapter, we developed two models. In the first model, we formulate a
randomly imperfect single item production-inventory system with production dependent
set-up cost, stock dependent demand, partial rework, disposal of defective units,
chance-constraint for commencement of imperfect production and variable production cost
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including EPC. In real life EPL models, a production system remains in control at the
beginning and after some time, it goes to out-of-control state. Thus, the occurrence of
production of imperfect units is random and is imposed here through a chance constraint.
The set-up cost, UPC and defective rate are production dependent and part of UPC is taken
as EPC. The problem is formulated as a cost minimization problem and solved using GRG
method using LINGO 11.0. Several special cases are derived and more specifically, the
present investigation extends the earlier works in this area. As particular cases, the
expression of Sana [227] and Khouja and Mehrez [127] are derived. Numerical experiments
are performed to illustrate the general and particular models. Some sensitivity analyses are
presented against few model parameters.

In the second model, we consider a randomly imperfect single-item production inventory
model over imprecise time horizon with learning effect on set-up cost, stock dependent
demand, reliability dependent defective production rate, partially reworked and disposal of
defective units, chance-constraint for commencement of imperfect production and variable
production cost including environmental protection cost. The problem is formulated as a
cost minimization problem with crisp, random, fuzzy, fuzzy-random, rough and
fuzzy-rough constraints and solved using GRG method. Several special cases are derived
and numerical experiments are performed to illustrate the general and particular models.

3.2 Model-3.1 : An EPL model for randomly imperfect
production system with stock dependent demand and
rework 1

3.2.1 Assumptions and Notations

The following assumptions are used to develop the proposed models:

(i) Replenishment rate is finite and taken as a DV.

(ii) Lead time is zero.

(iii) No shortages are allowed.

(iv) The inventory system considers a single item and the demand rate is linearly stock-
dependent.

(v) The time horizon is infinite and the production time is taken as a DV.

1This model has been accepted for publication in International Journal Operational Research, Inder-
science Enterprises Ltd., Y. 2015
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(vi) The production process shifts from “In-control” state to “Out-of-control” state at a
time, which is a random variable. Imperfect units are produced in the “Out-of-control”
state.

(vii) Production of defective units commences at a random time after the commencement
of production. Defective rate depends on production rate and time duration from the
starting of defective units’ production.

(viii) A part of the defective units are reworked at a cost immediately when they are
produced in “out-of-control” state and the defective units which are not reworked, are
disposed off by a cost.

(ix) UPC is production dependent and one part of it is used as EPC.

(x) Set up cost is considered as partly production dependent.

The following notations are used to develop the proposed models:

P Production rate (units per time unit) (DV).
q(t) Inventory level at time t (units).
D[q(t)] The demand rate (units per time unit) of perfect products at time t,

D[q(t)] = d0 + d1q(t) where d0 > 0, d1 is the stock-dependent consump-
tion rate parameter, 0 ≤ d1 ≤ 1.

T Length of the inventory cycle (time unit).
t1 Production run-time in one period (time unit)(DV).
Cs Set up cost per cycle (unit of money per set up), Cs = Cs0 +Cs1P

ρ, where
ρ > 0.

Ch Holding cost (money per unit per time unit).
Cd Cost to dispose an imperfect unit (money per unit).
Cr Cost to rework an imperfect unit (money per unit).
τ An exponential random variable that depends on P and denotes the time

at which the process shifts to the “out-of-control” state. The distribu-
tion function of “out-of-control” state is G(τ) = 1 − e−f(P )τ such that∫∞

0
dG(τ) = f(P )

∫∞
0
e−f(P )τdτ = 1. The exponential distribution has

often been used to describe the elapsed time to failure of many compo-
nents of the machinery system.

1
f(P )

The mean and standard deviation of the random variable τ . Here, f(P)
is an increasing function of P and the mean time of failure, 1/f(P ) is a
decreasing function of P.

θ Percentage of rework of defective units.
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λ(t, τ, P ) Rate of defective units produced at time t when the machine is in the “out-
of-control” state. Here λ(t, τ, P ) is defined as λ(t, τ, P ) = αP β(t − τ)γ .
where β ≥ 0,γ ≥ 0 and t ≥ τ . Generally speaking, the rate of defective
units increases with increase of production rate and production-run time.
The formulation of the function λ(t, τ, P ) shows that it is an increasing
function of production rate and production-run time simultaneously.

C(P ) UPC (money per unit) which is considered as C(P ) = rm+ g
P δ1

+η1P
δ2 +

η2P
δ3 where, δ1, δ2, δ3 > 0 and rm is the raw material cost per unit item,

g is the total labour/energy costs per unit time in a production system which
is equally distributed over the unit item. So, ( g

P δ1
) decreases with increases

of P . The third term η1P
δ2 is the wear and tear cost, proportional to the

positive power of production rate P . In a thermal electricity plant, the
inject of ‘ash’ in the atmosphere depends upon the rate of production. If
the production is more, the amount of required raw material i.e., impure
coal is more and hence the amount of ‘fly-ash’ is more. Now-a-days, some
measures are taken to reduce the ‘fly-ash’ amount. Thus the cost due to
this measure varies with the production rate. The fourth term η2P

δ3 is
EPC assuming that the cost due to the measures taken for the environment
protection is proportional to a positive power of production rate P , where
the power term varies with the nature of production firms.

N Defective units in a production cycle (units).
Q Expected production lot size (or inventory) (units) without defective units

at the end of production period.
TC(P, t1) Expected total cost (unit of money).
ATC(P, t1) Average expected total cost (unit of money).

3.2.2 Mathematical Model Development

Figure 3.1: Inventory versus time
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We consider here a production process in which an item is produced at the rate of P per unit
time. Initially the production process is “in-control” state upto time τ and after t = τ , it goes
to “out-of-control” state i.e. production of imperfect units is commenced and λ percentage of
P units are imperfect. Out of these imperfect units, θ percentage units are reworked and taken
as fresh units. The production process is continued up t = t1(> τ) and then discontinued.
Here, demand is assumed to be stock dependent, D[q(t)] say. In this process, the stock is
build up at the rate P − D(q) upto t = τ and P − D(q) − (1 − θ)λP upto τ ≤ t ≤ t1.
After t = t1, the stock is depleted at the rate D(q) and becomes zero at t = T (say).
Under these assumptions, the above production process with necessary end conditions can
be mathematically expressed by the Eqs. (3.1)- (3.6) (cf. Fig. 3.1). For this process, we
consider production, holding, set-up, rework and disposal costs. Hence, our objective is to
find the optimum production rate, P and the production period, t1 so that average total cost
ATC incurred in the system is minimum.

Hence, we have

dq(t)

dt
= P −D[q(t)], 0 ≤ t ≤ τ (3.1)

dq(t)

dt
= P −D[q(t)]− (1− θ)λP, τ ≤ t ≤ t1 (3.2)

dq(t)

dt
= −D[q(t)], t1 ≤ t ≤ T (3.3)

with the boundary conditions

q(t) = 0, at t = 0 (3.4)
q(t) = q(τ), at t = τ (3.5)
q(t) = 0, at t = T (3.6)

The solution of the differential equations (3.1), (3.2) and (3.3) is given by,

q(t) =
P − d0

d1

(1− e−d1t), 0 ≤ t ≤ τ (3.7)

q(t) =
P − d0

d1

(1− e−d1t)− (1− θ)αP β+1e−d1(t−τ)φ(t, τ, γ), τ ≤ t ≤ t1 (3.8)

where,

φ(t, τ, γ) =
(t− τ)γ+1

(γ + 1)
+
d1(t− τ)(γ+2)

1!(γ + 2)
+
d2

1(t− τ)(γ+3)

2!(γ + 3)
+
d3

1(t− τ)(γ+4)

3!(γ + 4)
+ · · ·

=
∞∑
i=1

di−1
1 (t− τ)γ+i

(i− 1)!(γ + i)

q(t) =
d0

d1

(
ed1(T−t) − 1

)
, t1 ≤ t ≤ T (3.9)
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The total defective units during [τ, t1] is

N =

∫ t1

τ

λPdt = P

∫ t1

τ

αP β(t− τ)γdt =
α

γ + 1
P β+1(t1 − τ)γ+1 (3.10)

Total expected number of defective units in a production lot size is

E(N) =
α

γ + 1
P β+1

∫ t1

0

(t1 − τ)γ+1d

(
G(τ)

)
=

α

γ + 1
P β+1f(P )e−f(P )t1ζ(P, t1) (3.11)

where ζ(P, t1) is given by the equation as

ζ(P, t1) =
tγ+2
1

(γ + 2)
+
f(P )tγ+3

1

1!(γ + 3)
+
f 2(P )tγ+4

1

2!(γ + 4)
+
f 3(P )tγ+5

1

3!(γ + 5)
+ · · ·

=
∞∑
i=1

f i−1(P )tγ+i+1
1

(i− 1)!(γ + i+ 1)
(3.12)

Now at time t = t1 the expected production lot size without defective units is

Q = E[q(t1)] =
∫∞

0
q(t1)d

(
G(τ)

)
= P−d0

d1
(1− e−d1t1)

∫∞
0
d

(
1− e−f(P )τ

)
−(1− θ)αP β+1f(P )e−f(P )t1

∫ t1
0
e[f(P )−d1](t1−τ)φ(t1, τ, γ)dτ

= P−d0
d1

(1− e−d1t1)− (1− θ)αP β+1f(P )e−f(P )t1

[
ψ1

γ+1
+ d1ψ2

1!(γ+2)
+

d21ψ3

2!(γ+3)
+ · · ·

] (3.13)

where,

ψi =
∞∑
j=1

[f(P )− d1]j−1tγ+j+i
1

(j − 1)!(γ + j + i)
for all i=1, 2, 3, 4 · · · (3.14)

Again from the Eq. (3.9) we get,

Q = E[q(t1)] =
d0

d1

(
ed1(T−t1) − 1

)
or,

d0

d1

(
ed1(T−t1) − 1

)
= Q =

P − d0

d1

(1− e−d1t1)

−(1− θ)αP β+1f(P )e−f(P )t1

[
ψ1

γ + 1
+

d1ψ2

1!(γ + 2)
+

d2
1ψ3

2!(γ + 3)
+ · · ·

]
or, T = t1 +

1

d1

log

[
1 +

1

d0

{
(P − d0)(1− e−d1t1)

−(1− θ)αd1P
β+1f(P )e−f(P )t1

∞∑
i=1

di−1
1 ψi

(i− 1)!(γ + i)

}]
(3.15)
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Now during the period (0, t1) the inventory which are to be hold, is

Qh1 =

∫ t1

0

q(t)dt =

∫ τ

0

q(t)dt+

∫ t1

τ

q(t)dt

=
P − d0

d1

(
t1 +

1

d1

(e−d1t1 − 1)

)
− (1− θ)αP β+1

[
ξ1

γ + 1
+

d1ξ2

1!(γ + 2)
+

d2
1ξ3

2!(γ + 3)
+

d3
1ξ4

3!(γ + 4)
+ · · ·

]
=
P − d0

d1

(
t1 +

1

d1

(e−d1t1 − 1)

)
− (1− θ)αP β+1

∞∑
i=1

di−1
1 ξi

(i− 1)!(γ + i)
(3.16)

where, ξi =
∞∑
j=1

(−1)j−1dj−1
1 (t1 − τ)γ+j+i

(j − 1)!(γ + j + i)
for all i=1, 2, 3, 4, · · · (3.17)

Now during the period (0, t1) the expected inventory which are to be hold, is

E[Qh1 ] =

∫ ∞
0

Qh1d

(
G(τ)

)
=
P − d0

d1

(
t1 +

1

d1
(e−d1t1 − 1)

)∫ ∞
0

d

(
1− e−f(P )τ

)
− (1− θ)αP β+1f(P )e−f(P )t1

∫ t1

0
ef(P )(t1−τ)(

ξ1

γ + 1
+

d1ξ2

1!(γ + 2)
+

d2
1ξ3

2!(γ + 3)
+

d3
1ξ4

3!(γ + 4)
+ · · ·

)
dτ (3.18)

=
P − d0

d1

(
t1 +

1

d1
(e−d1t1 − 1)

)
− (1− θ)αP β+1f(P )e−f(P )t1[

1

γ + 1

(
ξ11

γ + 2
− d1ξ12

1!(γ + 3)
+

d2
1ξ13

2!(γ + 4)
− d3

1ξ14

3!(γ + 5)
+ · · ·

)
+

d1

1!(γ + 2)

(
ξ21

(γ + 3)
− d1ξ22

1!(γ + 4)
+

d2
1ξ23

2!(γ + 5)
− d3

1ξ24

3!(γ + 6)
+ · · ·

)
+

d2
1

2!(γ + 3)

(
ξ31

(γ + 4)
− d1ξ32

1!(γ + 5)
+

d2
1ξ33

2!(γ + 6)
− d3

1ξ34

3!(γ + 7)
+ · · ·

)
+

d3
1

3!(γ + 4)

(
ξ41

(γ + 5)
− d1ξ42

1!(γ + 6)
+

d2
1ξ43

2!(γ + 7)
− d3

1ξ44

3!(γ + 8)
+ · · ·

)
+ · · · · · ·

]
(3.19)

where all ξij(P, t1, γ)[ for all i, j = 1, 2, 3, 4, · · · ] are given by the equations as

ξij(P, t1, γ) =
∞∑
k=1

fk−1(P )tγ+k+j+i
1

(k − 1)!(γ + k + j + i)
for all i, j=1, 2, 3,· · ·
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We have the relations among ξij’s as

ξij = ξji for all i,j=1, 2, 3, 4,· · ·
and ξij = ξmn whenever, i+j=m+n for all i,j,m,n=1, 2, 3, 4, · · ·

Now using the above relations, the Eq. (3.19) is expressed in the form as

E[Qh1 ] =
P − d0

d1

(
t1 +

1

d1

(e−d1t1 − 1)

)
− (1− θ)αP β+1f(P )e−f(P )t1[

ξ11

(γ + 1)(γ + 2)
− d1ξ12

(γ + 1)(γ + 2)(γ + 3)
+

d2
1ξ13

(γ + 1)(γ + 2)(γ + 3)(γ + 4)

− d3
1ξ14

(γ + 1)(γ + 2)(γ + 3)(γ + 4)(γ + 5)
+ · · ·

]
(3.20)

Now during the period [t1, T ] the inventory which are to be hold, is

Qh2 =

∫ T

t1

q(t)dt =
d0

d1

[
1

d1

(
ed1(T−t1) − 1

)
− (T − t1)

]
(3.21)

Now during the period (0, T ) the total expected number of storage units can be obtained
as,

E[Qh] = E[Qh1 ] +Qh2 (3.22)
where E[Qh1 ] andQh2 are given by the Eqs. (3.20) and (3.21) respectively.

In a cycle (0, T), the expected total cost = Expected holding cost + Rework cost + Disposal
cost + Set-up cost + Production cost.

i.e.TC(P, t1) = ChE(Qh) + θCrE(N) + (1− θ)CdE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

d1

(
t1 +

1

d1
(e−d1t1 − 1)

)
− (1− θ)αP β+1f(P )e−f(P )t1

(
ξ11

(γ + 1)(γ + 2)

− d1ξ12

(γ + 1)(γ + 2)(γ + 3)
+

d2
1ξ13

(γ + 1)(γ + 2)(γ + 3)(γ + 4)
− · · ·

)
+
d0

d1

(
ed1(T−t1) − 1

d1
− (T − t1)

)]
+

(
θCr + (1− θ)Cd

)
α

γ + 1
P β+1f(P )e−f(P )t1ζ(P, t1)

+ Cs + (rm +
g

P δ1
+ η1P

δ2 + η2P
δ3)Pt1 (3.23)

The expected average total cost is ATC(P, t1) =
TC(P, t1)

T
(3.24)

where T is given by Eq. (3.15)
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Chance constraint
In this production system, it is expected to have total production time greater than the time

of beginning of “out-of-control” state. This requirement acts as a constraint and expressed

here as a chance constraint. Hence, the chance constraint is Prob

(
t1 − τ ≥ ε

)
≥ r,

where t1 ≥ 0 and r ∈ (0, 1) is a specified permissible probability. Here m
(

=
1

f(P )

)
and

σ

(
=

1

f(P )

)
are the mean and standard deviation of the exponential random variable τ .

Then the constraint can be written as Prob(
τ −m
σ
≤ t1 − ε−m

σ
) ≥ r

where
τ −m
σ

is a random normal variate. Considering z, where
∫ z

0
φ(t)dt = r, φ(t), being

the standard normal density function, we have
t1 − ε−m

σ
≥ z

or, t1 ≥
1

f(P )
[1 + z] + ε (3.25)

where z is obtained from the normal distribution table for a particular value of r.

Optimization Problem
Therefore, the production-inventory model is finally reduced to the minimization of
expected average total cost given by Eq. (3.24) subject to the chance constraint given by Eq.
(3.25). i.e.

Min ATC(P, t1)

(
=
TC(P, t1)

T

)
s.t. t1 ≥

1

f(P )
[1 + z] + ε (3.26)

3.2.3 Particular Cases

Table 3.3: Different models deduced from Model-3.1

Characteristics Models name
of model Model -3.1A -3.1B -3.1C -3.1D -3.1E -3.1F -3.1G -3.1H -3.1I -3.1J -3.1K
Stock-dependent demand (d1 6= 0)

√ √ √ √ √

Constant demand (d1 = 0)
√ √ √ √ √ √

Random defective rate (β 6= 0, γ 6= 0)
√ √ √ √ √

Constant defective rate (β = 0, γ = 0)
√ √ √ √ √ √

Partial Rework (0 < θ < 1)
√ √ √

Fully Rework (θ = 1)
√ √ √ √

No Rework (θ = 0)
√ √ √ √
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Putting different values of θ, β, γ and d1, we get the different variations of Model-3.1,
which are summarized in Table 3.3 and the fresh units (Q), cycle period (T) and total
expected cost (TC) for different models are derived as bellow:

Model-3.1A(Same as Model-3.1 with full rework)
Taking θ = 1 in the Model-3.1, we have

Q =
d0

d1

(
ed1(T−t1) − 1

)
=
P − d0

d1

(1− e−d1t1) (3.27)

or, T = t1 +
1

d1

log

[
1 +

1

d0

(P − d0)(1− e−d1t1)
]

(3.28)

TC(P, t1) = ChE(Qh) + CrE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

d1

(
t1 +

1

d1

(e−d1t1 − 1)

)
+
d0

d1

(
ed1(T−t1) − 1

d1

− (T − t1)

)]
+

Crα

γ + 1
P β+1f(P )e−f(P )t1ζ(P, t1) + Cs + (rm +

g

P δ1
+ η1P

δ2 + η2P
δ3)Pt1 (3.29)

Model-3.1B (Same as Model-3.1 with No rework)
Taking θ = 0 in the Model-3.1, the expected production lot size without defective units at

the end of production is

Q =
d0

d1

(
ed1(T−t1) − 1

)
=
P − d0

d1
(1− e−d1t1)− αP β+1f(P )e−f(P )t1

∞∑
i=1

di−1
1 ψi

(i− 1)!(γ + i

or, T = t1 +
1

d1
log

[
1 +

1

d0

(
(P − d0)(1− e−d1t1)− αd1P

β+1f(P )e−f(P )t1

∞∑
i=1

di−1
1 ψi

(i− 1)!(γ + i

)]
(3.30)

where, ψi =

∞∑
k=1

[f(P )− d1]k−1tγ+k+i
1

(k − 1)!(γ + k + i)
; for all i = 1, 2, 3, ....

TC(P, t1) = ChE(Qh) + CdE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

d1

(
t1 +

1

d1
(e−d1t1 − 1)

)
− αP β+1f(P )e−f(P )t1

(
ξ11

(γ + 1)(γ + 2)

− d1ξ12

(γ + 1)(γ + 2)(γ + 3)
+

d2
1ξ13

(γ + 1)(γ + 2)(γ + 3)(γ + 4)
− · · ·

)
+
d0

d1

(
ed1(T−t1) − 1

d1
− (T − t1)

)]
+

Cdα

γ + 1
P β+1f(P )e−f(P )t1ζ(P, t1)

+ Cs + (rm +
g

P δ1
+ η1P

δ2 + η2P
δ3)Pt1 (3.31)

where, ξ1k =
∞∑
i=1

f i−1(P )tγ+i+k+1
1

(i− 1)!(γ + i+ k + 1)
, ζ(P, t1) =

∞∑
i=1

f i−1(P )tγ+i+1
1

(i− 1)!(γ + i+ 1)
for all i = 1, 2, 3, · · ·
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Model-3.1C (Same as Model-3.1 with Constant defective rate)

Taking β = 0 and γ = 0 in the Model-3.1, expected production lot size without defective
units at the end of production is

Q =
d0

d1

(
ed1(T−t1) − 1

)
=
P − d0

d1
(1− e−d1t1)− (1− θ)αPf(P )e−f(P )t1

∞∑
i=1

di−1
1 ψi

(i− 1)!i

or, T = t1 +
1

d1
log

[
1 +

1

d0

(
(P − d0)(1− e−d1t1)− (1− θ)αd1Pf(P )e−f(P )t1

∞∑
i=1

di−1
1 ψi

(i− 1)!i

)]
(3.32)

where, ψi =
∞∑
k=1

[f(P )− d1]k−1tk+i
1

(k − 1)!(k + i)
; for all i = 1, 2, 3, · · ·

TC(P, t1) = ChE(Qh) + θCrE(N) + (1− θ)CdE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

d1

(
t1 +

1

d1
(e−d1t1 − 1)

)
− (1− θ)αPf(P )e−f(P )t1

∞∑
k=1

(−1)k−1dk−1
1 ξ1k

(k + 1)!

+
d0

d1

(
ed1(T−t1) − 1

d1
− (T − t1)

)]
+

(
θCr + (1− θ)Cd

)
αPf(P )e−f(P )t1ζ(P, t1)

+ Cs + (rm +
g

P δ1
+ η1P

δ2 + η2P
δ3)Pt1 (3.33)

where, ξ1k =
∞∑
i=1

f i−1(P )ti+k+1
1

(i− 1)!(i+ k + 1)
and ζ(P, t1) =

∞∑
i=1

f i−1(P )ti+1
1

(i− 1)!(i+ 1)
for all i = 1, 2, 3, · · ·

Model-3.1D (Same as Model-3.1 with Constant defective rate and full rework)

Taking θ = 1 in the Model-3.1C, the expected production lot size without defective units
at the end of production and expected total cost are

Q =
d0

d1

(
ed1(T−t1) − 1

)
=
P − d0

d1

(1− e−d1t1)

or, T = t1 +
1

d1

log

[
1 +

1

d0

(P − d0)(1− e−d1t1)
]

(3.34)

TC(P, t1) = ChE(Qh) + CrE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

d1

(
t1 +

1

d1

(e−d1t1 − 1)

)
+
d0

d1

(
ed1(T−t1) − 1

d1

− (T − t1)

)]
+CrαPf(P )e−f(P )t1ζ(P, t1) + Cs + (rm +

g

P δ1
+ η1P

δ2 + η2P
δ3)Pt1 (3.35)
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where, ζ(P, t1) =
∞∑
i=1

f i−1(P )ti+1
1

(i− 1)!(i+ 1)
for all i = 1, 2, 3, · · ·

Model-3.1E (Same as Model-3.1 with Constant defective rate and No rework)

Taking θ = 0 in the Model-3.1C, the expected production lot size without defective units
at the end of production is

Q =
d0

d1

(
ed1(T−t1) − 1

)
=
P − d0

d1

(1− e−d1t1)− αPf(P )e−f(P )t1

∞∑
i=1

di−1
1 ψi

(i− 1)!i

or, T = t1 +
1

d1

log

[
1 +

1

d0

(
(P − d0)(1− e−d1t1)− αd1Pf(P )e−f(P )t1

∞∑
i=1

di−1
1 ψi

(i− 1)!i

)]
(3.36)

where, ψi =
∞∑
k=1

[f(P )− d1]k−1tk+i
1

(k − 1)!(k + i)
; for all i = 1, 2, 3, · · ·

TC(P, t1) = ChE(Qh) + CdE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

d1

(
t1 +

1

d1

(e−d1t1 − 1)

)
− αPf(P )e−f(P )t1

∞∑
k=1

(−1)k−1dk−1
1 ξ1k

(k + 1)!

+
d0

d1

(
ed1(T−t1) − 1

d1

− (T − t1)

)]
+ CdαPf(P )e−f(P )t1ζ(P, t1)

+ Cs + (rm +
g

P δ1
+ η1P

δ2 + η2P
δ3)Pt1 (3.37)

where, ξ1k =
∞∑
i=1

f i−1(P )ti+k+1
1

(i− 1)!(i+ k + 1)
and ζ(P, t1) =

∞∑
i=1

f i−1(P )ti+1
1

(i− 1)!(i+ 1)
for all i = 1, 2, 3, · · ·

Model-3.1F (Same as Model-3.1 with Constant demand)

Letting d1 → 0 in Model-3.1 we have the expected total holding inventory in a cycle (0,
T) as

E[Qh] = lim
d1→0

(E[Qh1 ] +Qh2)

=

[
P − d0

2
t21 −

(1− θ)α
(γ + 1)(γ + 2)

P β+1f(P )e−f(P )t1ξ11(P, t1)

]
+
d0

2
(T − t1)2

and lim
d1→0

[
d0

d1

(
ed1(T−t1) − 1

)]
= Q = lim

d1→0

[
P − d0

d1

(1− e−d1t1)

− (1− θ)αP β+1f(P )e−f(P )t1

(
ψ1

γ + 1
+

d1ψ2

1!(γ + 2)
+

d2
1ψ3

2!(γ + 3)
+

d3
1ψ4

3!(γ + 4)
+ .....

)]
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or, d0(T − t1) = Q = (P − d0)t1 − (1− θ)E(N)

where ψ1(d1 = 0) = ζ(P, t1) and E(N) is given by the Eq. (3.11)
or, d0T = d0t1 + (P − d0)t1 − (1− θ)E(N) = Pt1 − (1− θ)E(N)

or, T =
Pt1
d0

[
1− (1− θ)E(N)

Pt1

]
(3.38)

TC(P, t1) = ChE(Qh) + θCrE(N) + (1− θ)CdE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

2
t21 −

(1− θ)α
(γ + 1)(γ + 2)

P β+1f(P )e−f(P )t1ξ11(P, t1) +
d0

2
(T − t1)2

]
+

(
θCr + (1− θ)Cd

)
α

γ + 1
P β+1f(P )e−f(P )t1ζ(P, t1)

+ Cs + [rm +
g

P δ1
+ η1P

δ2 + η2P
δ3 ]Pt1 (3.39)

Model-3.1G (Same as Model-3.1 with Constant demand and full rework)

Taking θ = 1 in the Model-3.1F, expected production lot size without defective units at
the end of production is

Q = (P − d0)t1 = d0(T − t1) or, T =
Pt1
d0

(3.40)

and TC(P, t1) = Ch

[
P − d0

2
t21 +

d0

2
(T − t1)2

]
+ Cs

+Cr
α

γ + 1
P β+1f(P )e−f(P )t1ζ(P, t1) + [rm +

g

P δ1
+ η1P

δ2 + η2P
δ3 ]Pt1 (3.41)

Now letting Q1 is the total production lot size and putting t1 = Q1/P, T = Q1/D, δ1 =
1, δ2 = δ, d0 = D, η1 = η and η2 = 0 in the Eqs. (3.40) and (3.41) respectively, we have
average expected total cost as

ATC(P,Q1/P ) = Ch

[
P −D

2
.
Q2

1

P 2
.
D

Q1
+
D

2

(
Q1

D
− Q1

P

)2

.
D

Q1

]
+ CrE(N).

D

Q1

+ Cs.
D

Q1
+D(rm +

g

P
+ ηP δ)

= Ch.
(P −D)Q1

2P 2
(D + P −D) + CrE(N).

D

Q1
+ Cs.

D

Q1
+D(rm +

g

P
+ ηP δ)

=
Ch
2

(1− D

P
)Q1 +

CsD

Q1
+ Cr

[
Dα

Q1(γ + 1)

]
P β+1f(P )e−f(P )Q1/P ζ(P,Q1/P )

+D(rm +
g

P
+ ηP δ) (3.42)

This is same as the average expected total cost function in the profit function of Sana
(2010).
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Model-3.1H (Same as Model-3.1 with Constant demand and No rework)

Taking θ = 0 in the Model-3.1F, expected production lot size at the end of production is

Q = d0(T − t1) = (P − d0)t1 − E(N) or, T =
Pt1
d0

[
1− E(N)

Pt1

]
(3.43)

TC(P, t1) = ChE(Qh) + CdE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

2
t21 −

α

(γ + 1)(γ + 2)
P β+1f(P )e−f(P )t1ξ11(P, t1) +

d0

2
(T − t1)2

]
+

Cdα

γ + 1
P β+1f(P )e−f(P )t1ζ(P, t1) + Cs + [rm +

g

P δ1
+ η1P

δ2 + η2P
δ3 ]Pt1 (3.44)

Model-3.1I (Same as Model-3.1 with Constant demand and defective rates)

Taking β = 0 andγ = 0 in the Model-3.1F, expected production lot size without defective
units at the end of production is

Q = (P − d0)t1 − (1− θ)E(N) = d0(T − t1) or,T =
Pt1
d0

[
1− (1− θ)E(N)

Pt1

]
(3.45)

TC(P, t1) = ChE(Qh) + θCrE(N) + (1− θ)CdE(N) + Cs + C(P )Pt1

= Ch

[(
P − d0

2
t21 −

(1− θ)α
2

Pf(P )e−f(P )t1ξ11

)
+
d0

2
(T − t1)2

]
+

[
θCr + (1− θ)Cd

]
αPf(P )e−f(P )t1ζ(P, t1) + Cs

+[rm +
g

P δ1
+ η1P

δ2 + η2P
δ3 ]Pt1 (3.46)

where,ξ11 =
t31
3

+
f(P )t41

1!4
+
f 2(P )t51

2!5
+ · · · and ζ(P, t1) =

t21
2

+
f(P )t31

1!3
+
f 2(P )t41

2!4
+ · · ·

Model-3.1J (Same as Model-3.1 with Constant demand, Constant defective rates and
full rework)

Taking θ = 1 in the Model-3.1I, the expected production lot size without defective units
at the end of production is

Q = (P − d0)t1 = d0(T − t1) or, T =
Pt1
d0

(3.47)

TC(P, t1) = ChE(Qh) + CrE(N) + Cs + C(P )Pt1

= Ch

[
P − d0

2
t21 +

d0

2
(T − t1)2

]
+ CrαPf(P )e−f(P )t1ζ(P, t1) + Cs

+[rm +
g

P δ1
+ η1P

δ2 + η2P
δ3 ]Pt1 (3.48)
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Now letting Q1 is the total production lot size and putting t1 = Q1/P, T = Q1/D, δ1 =
1, rm = 0 and η2 = 0 in the Eqs.(3.47) and (3.48) approximating up to the 2nd degree term
of the expansion of e−f(P )t1 , we have average expected total cost as

ATC(P,Q1/P ) = Ch

[
P −D

2
.
Q2

1

P 2
.
D

Q1

+
D

2

(
Q1

D
− Q1

P

)2

.
D

Q1

]
+ Cr.

1

2
αPf(P ).

Q2
1

2P 2
.
D

Q1

+ Cs.
d0

Q1

+D(
g

P
+ η1P

δ2)

= Ch.
(P −D)Q1

2P 2
(D + P −D) + CrαDf(P )

Q1

2P
+ Cs.

D

Q1

+D(
g

P
+ η1P

δ2)

=
Ch
2

(1− D

P
)Q1 +

CsD

Q1

+ CrαDf(P )
Q1

2P
+D(

g

P
+ η1P

δ2) (3.49)

This is same as the expected average total cost function of Khouja and Mehrez, (1994).

Model-3.1K (Same as Model-3.1 with Constant demand, Constant defective rates and
No rework)

Taking θ = 0 in the Model-3.1I, the expected production lot size without defective units
at the end of production is

Q = (P − d0)t1 − E(N) = d0(T − t1) or,T =
Pt1
d0

[
1− E(N)

Pt1

]
(3.50)

TC(P, t1) = ChE(Qh) + CdE(N) + Cs + C(P )Pt1

= Ch

[(
P − d0

2
t21 −

α

2
Pf(P )e−f(P )t1ξ11

)
+
d0

2
(T − t1)2

]
+ CdαPf(P )e−f(P )t1ζ(P, t1) + Cs + [rm +

g

P δ1
+ η1P

δ2 + η2P
δ3 ]Pt1 (3.51)

where, ξ11 =
t31
3

+
f(P )t41

1!4
+
f 2(P )t51

2!5
+ · · · and ζ(P, t1) =

t21
2

+
f(P )t31

1!3
+
f 2(P )t41

2!4
+ · · ·

Thus, the corresponding cost minimization problem reduces to (3.26) with the appropriate
TC(P, t1) and T for different models.

3.2.4 Solution Methodology
The above non-linear optimization problems of Models 3.1 to 3.1K are solved by a gradient
based non-linear optimization method- GRG method (cf. Lasdon et al. [136] using LINGO
Solver 11.0 for particular sets of data.
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Table 3.4: Collected data to find mean of τ

Production Average Unit Occurrences of out of control state (τ hours) at different runs Average f(P)=
rate P production cost 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th of τ(m) 1

m

520 261.52 0.26 0.24 0.24 0.25 0.27 0.26 0.21 0.23 0.28 0.27 0.25 4.0
575 261.53 0.27 0.21 0.24 0.24 0.29 0.29 0.24 0.27 0.26 0.28 0.26 3.8
440 261.50 0.30 0.29 0.25 0.30 0.29 0.26 0.27 0.28 0.27 0.30 0.28 3.6
370 261.49 0.34 0.35 0.37 0.31 0.29 0.39 0.33 0.32 0.36 0.34 0.34 2.9
395 261.50 0.29 0.25 0.29 0.29 0.26 0.27 0.28 0.29 0.28 0.30 0.28 3.6
415 261.50 0.29 0.30 0.30 0.26 0.25 0.29 0.28 0.33 0.29 0.32 0.29 3.4
480 261.51 0.25 0.29 0.28 0.33 0.29 0.32 0.37 0.31 0.27 0.29 0.30 3.3
448 261.50 0.29 0.28 0.28 0.26 0.27 0.28 0.27 0.29 0.25 0.24 0.27 3.7
450 261.50 0.26 0.27 0.30 0.29 0.29 0.25 0.29 0.27 0.28 0.30 0.28 3.6
505 261.52 0.26 0.25 0.29 0.33 0.28 0.29 0.30 0.30 0.32 0.28 0.29 3.4
510 261.54 0.26 0.28 0.29 0.24 0.27 0.26 0.27 0.21 0.24 0.29 0.26 3.8
362 261.48 0.41 0.39 0.42 0.44 0.35 0.39 0.43 0.37 0.38 0.43 0.40 2.5

3.2.5 Numerical Experiments and Results

Experiment-1: Linearly production dependent quality [f(P ) = a+ bP ] :
Practical implication: The model deals with a realistic problem of production. A
production house (toy company) produces one type of toys at different rates of production
and starting of defective units is observed at different times. The collected data are shown in
Table 3.4. Here, mean time of out-of-control state (m = 1/f(P ) depends on the production
rate. Using the regression analysis f(P) is estimated as f(P ) = 1.25 + 0.005P . The
collected relevant data for the proposed EPL models are given bellow in appropriate units:
α = 0.05, β = 0.25, θ = 0.25, γ = 1.5, ρ = 1, z = 0.04, ε = 0.02, d0 = 350, d1 = 0.01,
Ch = 2.0, Cs0 = 1000, Cs1 = 0.5, Cr = 100, Cd = 50, f(P ) = 1.25 + 0.005P and UPC as:
Case 1: C1(P ) = 250 + 2500

P
+ 0.01P + 0.03P 1/2

Case 2: C1(P ) = 250 + 2500
P

+ 0.01P
Case 3: C2(P ) = 250 + 2500

P
+ 0.000027P 2 + 0.03P 1/2

Case 4: C2(P ) = 250 + 2500
P

+ 0.000027P 2

With the above parameters and expressions, the Models -3.1 and 3.1A-3.1K are
formulated and optimized using a gradient based non-linear optimization technique- GRG
method (LINGO 11.0 software). The corresponding optimum values of production
rate(P ∗), production run time(t∗1) for minimum cost(ATC∗) and the related cycle time(T ∗),
total expected defective units(E(N∗)), inventory level of good units(Q∗), instant of
defective production(m∗), average holding(AHC∗), set-up(ASC∗), production(APC∗),
rework(ARC∗) and disposal(ADC∗) costs are evaluated for Cases 1-3 and presented in
Table 3.5. The minimum average total costs ATC for Model-3.1 due to Case-1 are plotted
in Fig. 3.2 against the different values of t1 and P. In this experiment, for Models 3.1 and
3.1A-3.1K due to Case-4, only optimal average costs are presented in Table 3.5 as the
behaviour of the other parameters of the models can be inferred from the Case-3 following
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the behaviour of the models for Cases-1 and 2.

Figure 3.2: Expected average total cost w.r.t t1 and P

Experiment-2: production independent quality [f(P ) = a] :
In this experiment, constant f(P)(=1.25) is considered, i.e. quality is independent of

production. In this evaluation, optimal average costs ATC∗ for Models 3.1 and 3.1A-3.1K
against the Cases 1-4 are given in Table 3.6. The unknown parameters , t∗1 and P ∗ for all
models due to Case-1 only are presented in this table as the behaviour of the other expressions
and parameters are same as in Exp.-1.
Experiment-3: Quality is non-linearly dependent on production [f(P ) = a+ bP 2] :
In this experiment, f(P) is a non-linear function of P, as f(P ) = 1.25 + 0.000001P 2. In this
evaluation, optimal results for only Model-3.1 for all Cases 1-4 are given in Table 3.7 as the
behaviour of optimal results for other models are same as in Exp.-1.

3.2.6 Discussion
From Tables 3.5, 3.6 and 3.7:

• For the Cases-1, 2, 3 and 4 of all the experiments, EPL Model-3.1G gives the lowest cost.
It is the model in which both demand and defective rates are constant and full rework is
done. For highest average cost, cost of Model-3.1E is maximum for Cases-1, 2, 3 and 4.
Model-3.1E is the model with stock-dependent demand and constant defective rate but no
rework. In this case, disposal cost of defective rubbish is highest. These disposal costs play
a key role in the case of highest average total costs.
• It is to be noted that the mean-time (m∗) at the beginning of “out-of-control” state is less
than the production run time for all Models 3.1 and 3.1A-3.1K in all experiments. This is a
necessary condition for the model. But it is not observed in the earlier works by Sana [227]
and Khouja and Mehrez [127] because they did not imposed the condition m∗ ≤ t∗1 through
chance constraint (cf. § 3.2.2).
• Table 3.5 reveals that amongst different cases for Exps.-1, 2 and 3, the models’ costs with
EPC (for Cases-1 and -3) are higher than those of models without EPC (for Cases-2 and -4).
Again, when wear and tear costs are proportional to the square of production rate (Cases-3
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Table 3.5: Exp.-1: Optimal values for Models 3.1 and 3.1A-3.1K with linearly production
dependent qualities (f(P ) = 1.25 + 0.005P )

Models ATC∗ t∗1 T ∗ P ∗ E(N∗) Q∗ m∗ AHC∗ ASC∗ APC∗ ARC∗ ADC∗

Case 1 : 3.1 94222 0.416 0.644 546.0 2.00 79.9 0.251 80.4 1977.0 91970.7 77.6 116.4
3.1A 93536 0.592 0.843 498.9 5.20 87.9 0.267 88.0 1481.9 91349.2 616.8 00.0

C1(P ) 3.1B 94380 0.389 0.611 555.5 1.65 78.0 0.248 78.7 2088.8 92076.9 00.0 135.7
3.1C 96199 0.285 0.406 506.6 2.80 42.5 0.264 42.9 3085.8 92639.9 172.3 258.4

= 250 3.1D 95059 0.284 0.412 508.2 2.80 44.9 0.264 44.9 3039.6 91295.7 679.2 00.0
3.1E 96587 0.285 0.404 506.0 2.79 41.6 0.264 42.2 3101.5 93096.8 00.0 346.3

+2500
P

3.1F 94095 0.416 0.683 578.7 2.18 93.5 0.241 94.0 1886.5 91915.1 79.9 119.8
3.1G 93379 0.606 0.937 540.9 6.12 115.8 0.253 115.8 1355.2 91255.0 653.1 00.0

+0.01P 3.1H 94258 0.388 0.646 586.5 1.79 90.0 0.239 90.6 2003.0 92025.2 00.0 139.2
3.1I 96135 0.279 0.411 523.5 2.82 46.3 0.258 46.7 3069.1 92589.1 172.0 258.0

+0.03P 1/2 3.1J 94995 0.278 0.418 525.4 2.83 48.8 0.258 48.8 3023.0 91245.0 678.0 00.0
3.1K 96522 0.279 0.409 522.9 2.82 45.4 0.259 46.0 3084.8 93046.0 00.0 345.7

Case 2 : 3.1 93973 0.410 0.653 562.0 2.00 85.2 0.246 85.7 1962.4 91733.4 76.6 115.0
3.1A 93299 0.582 0.853 513.7 5.16 95.0 0.262 95.0 1474.0 91124.8 605.4 00.0

C1(P ) 3.1B 94129 0.383 0.620 571.6 1.66 83.0 0.243 83.6 2072.9 91837.9 00.0 134.1
3.1C 95958 0.280 0.409 519.8 2.82 45.4 0.260 45.8 3074.3 92406.8 172.4 258.6

= 250 3.1D 94821 0.280 0.416 521.5 2.83 47.9 0.259 47.9 3028.3 91065.4 679.5 00.0
3.1E 96344 0.280 0.408 519.2 2.82 44.6 0.256 45.1 3090.0 92862.2 00.0 346.4

+2500
P

3.1F 93839 0.410 0.694 596.0 2.19 99.4 0.236 99.9 1869.5 91672.0 79.2 188.8
3.1G 93135 0.597 0.951 557.6 6.11 123.9 0.248 123.9 1344.9 91022.5 642.9 00.0

+0.01P 3.1H 93999 0.383 0.656 603.9 1.81 95.5 0.234 96.0 1984.9 91780.9 00.0 138.0
3.1I 95889 0.274 0.414 537.2 2.85 49.2 0.254 49.6 3058.4 92351.4 172.1 258.1

withoutEPC 3.1J 94752 0.274 0.421 539.2 2.85 51.8 0.253 51.8 3012.5 91009.9 678.3 00.0
3.1K 96276 0.274 0.412 536.6 2.85 48.4 0.254 48.9 3074.0 92807.3 00.0 345.9

Case 3 : 3.1 94544 0.499 0.550 388.6 2.01 17.7 0.313 18.5 2171.2 92125.7 91.4 137.0
3.1A 93719 0.712 0.748 368.0 5.60 12.8 0.324 12.8 1582.8 91375.6 748.3 00.0

C2(P ) 3.1B 94731 0.467 0.519 392.6 1.65 18.2 0.311 19.0 2303.1 92249.6 00.0 159.1
3.1C 96434 0.340 0.364 379.3 2.49 8.1 0.318 8.6 3271.4 92725.3 171.5 257.2

= 250 3.1D 95294 0.340 0.369 379.7 2.49 10.1 0.317 10.1 3223.2 91384.7 676.0 00.0
3.1E 96821 0.340 0.362 379.2 2.49 7.4 0.318 08.1 3287.8 93180.9 00.0 344.7

+2500
P

3.1F 94505 0.499 0.565 399.4 2.07 23.1 0.308 23.1 2123.5 92128.3 91.9 137.9
3.1G 93671 0.722 0.791 383.1 6.04 23.9 0.316 23.9 1506.5 91376.4 763.6 00.0

+0.000027P 2 3.1H 94694 0.466 0.532 402.7 1.70 22.9 0.306 23.7 2258.7 92251.5 00.0 159.9
3.1I 96417 0.337 0.366 386.2 2.50 10.3 0.314 10.8 3256.1 92722.7 171.2 256.8

+0.03P 1/2 3.1J 95278 0.337 0.372 386.9 2.51 12.4 0.314 12.4 3208.0 91382.3 675.0 00.0
3.1K 96805 0.337 0.364 386.0 2.50 9.6 0.314 10.3 3272.5 93178.2 00.0 344.1

Case 4 : Models 3.1 3.1A 3.1B 3.1C 3.1D 3.1E 3.1F 3.1G 3.1H 3.1I 3.1J 3.1K
withoutEPC ATC∗ 94343 93517 94520 96226 95089 96612 94293 93464 94480 96207 95071 96594

Table 3.6: Exp.-2: Optimal Average costs for Models 3.1 and 3.1A-3.1K with production
independent qualities (f(P ) = 1.25)

Models 3.1 3.1A 3.1B 3.1C 3.1D 3.1E 3.1F 3.1G 3.1H 3.1I 3.1J 3.1K
Case 1 : ATC∗ 94153 93169 94484 94314 93228 94684 94024 93016 94363 94145 93058 94514

t∗1 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842
P ∗ 443.9 462.9 437.6 478.0 476.2 478.6 489.7 514.5 481.6 532.9 531.4 533.3

Case 2 : ATC∗ 93927 92942 94259 94080 92997 94448 93787 92776 94127 93898 92814 94266
Case 3 : ATC∗ 94239 93304 94555 94491 93398 94863 94220 93275 94539 94457 93362 94830
Case 4 : ATC∗ 94037 93103 94353 94285 93195 94655 94013 93068 94332 94246 93154 94617
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Table 3.7: Exp.-3: Optimal values for Model 3.1 with non-linearly production dependent
qualities (f(P ) = 1.25 + 0.000001P 2)

Model − 3.1 ATC∗ t∗1 T ∗ P ∗ E(N∗) Q∗ m∗ AHC∗ ASC∗ APC∗ ARC∗ ADC∗

Case 1 : 93965 0.701 1.000 505.3 4.77 104.9 0.664 106.3 1252.5 92308.2 119.4 179.0
Case 2 : 93725 0.693 1.020 521.2 4.83 114.7 0.657 116.0 1235.2 92077.5 118.4 177.6
Case 3 : 94169 0.759 0.798 372.0 3.97 13.7 0.720 15.3 1485.8 92356.5 124.4 186.6
Case 4 : 93963 0.757 0.806 376.5 4.00 17.0 0.718 18.5 1474.6 92159.2 124.3 186.5

and -4), models’ costs are higher than those of the models with linearly production dependent
wear and tear costs (for Cases-1 and 2). These behaviours are as per expectation.
• From Table 3.6, when inverse mean-time of “out-of-control” state is constant (f(P)=1.25),
then the mean-time of defective production commencement (m∗ = 0.8000) and production
run time (t∗1 = 0.8420units) are also constants. It is also seen from Table 3.6 that average
total cost is minimum when full reworking is made for all defective units. This is because
per unit rework cost (100 units) is less than the UPC (min. 250 units).
•From Table 3.7 (Exp.-3), we observe that average optimal total cost ATC∗(= 93725units)
is minimum for Case-2 of Model-3.1 with maximum inventory levelQ∗(= 114.7units) with
respect to other cases. Here average production cost increases due to decrease in production
rate and the defective units E[N∗] are larger than those of Model-3.1 in Exps.-1 and 2.
• When UPC is without EPC, the optimal production run time decreases whereas optimal
production rate increases and it causes to increase inventory level and average inventory
holding cost. But it is seen from the Tables 3.5 and 3.6 that in this case, all other costs
decrease. Specially average production cost decreases as UPC is without EPC and the higher
production rate decreases labour/energy cost. Finally it is seen from the Tables 3.5 and 3.6
that the average expected total cost ATC∗ is less for all models when UPC is free from EPC.
The same behaviour is observed for all models in Exp.-3 also.
• From Tables 3.5 and 3.6, for the Models 3.1 and 3.1A-3.1E with stock-dependent demand,
the optimal average expected total costs are greater than those of the Models 3.1F-3.1K
which are with constant demand. It is observed for all cases of Exps.-1 and 2. Interesting
result is that in spite of higher demand (stock-dependent) in market, production rate is lower
to minimize the average cost. Here lower production rates (for Models 3.1 and 3.1A-3.1E
with stock-dependent demand ) increase the average production costs. The same behaviour
is noticed for all models in Exp.-3.
• For all cases in Exps.-1 and 2, the optimal average expected total costs of models with
constant defective rate are greater than those of the models with random defective rate. The
same behaviour is observed for all these types of models in Exp.-3.
• For all cases in Exps.-1 and 2, as partly mentioned earlier, the optimal average expected
total costs of models with no rework are greater than those of the models with full rework.
The same behaviour is concluded for all these types of models in Exp.-3.
• It is clear from the Tables 3.5 and 3.6 that the ATC∗ is greater for the Exp.-1 i.e., for the
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models with linearly production dependent qualities than the corresponding results obtained
from the similar models with production independent qualities (Exp.-2). But this behaviour
can not be concluded in Exp.-3, i.e. when qualities depend non-linearly on production rate
(cf. Table 3.7) because the coefficient of non-linearly dependence is different.

From Fig. 3.3:

Figure 3.3: UPC C1(P ) and C2(P ) with respect to production rate P

UPC C1(P ) for Case-1 has minimum value 260.66 units for production rate P =
483.8 units and when C1(P ) (for Case-2) free from EPC(i.e. η2 = 0), it attains minimum
value 260.00 units at P=500.0 units. The corresponding values of C2(P ) are:

Min. C2(P ) =

{
261.01 units for P=354.2 units for Case-3
260.44 units for P=359.1 units for Case-4

Now from the Tables 3.6 and 3.7, it is seen that the production rate which minimizes the
UPC is quite different from the production rate which minimizes the average expected total
cost ATC for a particular model. It is interesting to note that the production rate P which
minimizesATC is higher than the production rate P which minimizes UPC. For example, for
Model-3.1 due to Case-1 in Exp.-1, ATC has the minimum value ATC∗ = 94222 units at
P ∗ = 546.0 units, but the corresponding UPC C1(P ) attains minimum value at P ∗ = 483.8
units. For other cases, results are presented in Table 3.8.

3.2.7 Sensitivity analysis
The changes in the values of system parameters can take place due to uncertainties and
dynamic market conditions in a production-inventory system. In order to examine the
implications of these changes in the values of parameters, the sensitivity analysis is of great
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Table 3.8: Optimum results of Ci(P )

Case V alue of P ∗ forMinATC V alue of P ∗ forMinC1(P ) or C2(P )
2 562.0 500.0
3 388.6 354.2
4 393.2 359.1

help in a decision-making process. Using the result of Model-3.1 due to Case-1 in Exp.-1,
the sensitivity analyses of various parameters have been carried out. Here the changes of
optimal average expected total cost(∆ATC∗), production run time(∆t∗1), production
rate(∆P ∗), cycle time(∆T ∗), total defective units(∆E(N∗)), inventory level(∆Q∗) and
mean-time of beginning of “out-of-control” state(∆m∗) are evaluated in percentages with
respect to optimal results of Model-3.1 due to csae-1 in Exp.-1 and depicted for the changes
of α, β, γ, θ, d0, d1, η1, η2, rm, g, Cr and Cd in Figs. 3.4a-3.9b respectively. The behaviour
of the above parameters for other models due to other cases are almost same. Here the
change (in %) of an optimal value (suppose for ATC∗) is defined as
∆ATC∗ = 100 × [(ATC∗old − ATC∗new)/ATC∗old]%, where ATC∗old is the optimal
result obtained from Model-3.1 due to Case-1 in Exp.-1 and ATC∗new is the new optimal
result obtained after changing the corresponding parameter (in %) for the same experiment.
From the sensitivity analyses the following observation are made:

• (ATC∗, Q∗, m∗) and ( t∗1, T ∗, P ∗, E(N∗) )increase and decrease respectively with increase
in α (cf. Fig. 3.4a). Increasing in α helps to start the defective products early and makes a
lower stock level at the end of production. As the cycle time and inventory level decrease,
holding cost decreases. The set-up cost, rework cost, production cost and disposal cost
increase due to increase in production rate and defective units. From these figures, it is
concluded that changes in β give similar behaviour of optimal results as changes in α (cf.
Fig. 3.4b).
• From Fig. 3.5a, we see that increase in γ increases the values of t∗1, T ∗, P ∗, E(N∗) and

decreases ATC∗, Q∗, m∗. In this case only holding cost increases with increase in γ but all
other cost decrease. As a result optimal expected average total cost decreases. Again in Fig.
3.5b, increased θ gives increased values of t∗1, T ∗, E(N∗), Q∗, m∗ and decreased values of
P ∗. Holding and rework costs increase due to increase in Q∗ and E(N∗), whereas average
set-up, production, disposal cost decrease with increase in θ. Finally ATC∗ has a lower
value for higher percentage of rework.
• From Figs. 3.6a and 3.6b, production rate increases due to higher demand in the market

in both cases of constant and stock-dependent demands. The defective products increases
and stock level at the end of production decreases because of higher production and demands
rates respectively. Though production run time increases, cycle time decreases due to lower
stock. Here ATC∗ increases with increase in both constant and stock-dependent demands.
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(a) Sensitivity for key parameter α (b) Sensitivity for key parameter β

Figure 3.4: Changes of optimal results for α and β

(a) Sensitivity for key parameter γ (b) Sensitivity for key parameter θ

Figure 3.5: Changes of optimal results for γ and θ

• From Figs. 3.7a and 3.7b, t∗1, m∗ increase with increase in both wear and tear cost and
EPC whereas P ∗,T ∗,Q∗ decrease. In these cases, holding cost decreases and all other costs
increase with increase in η1 and η2. As a result, average cost ATC∗ increases with increase
in η1 and η2.
•Raw material cost is highly sensitive to unit production cost. UPC increases with increase

in rm (cf. Fig. 3.8a). In this case, average production cost APC∗ increases the average cost
ATC∗. Again from Fig. 3.8b, it is clear that P ∗,Q∗,T ∗ increase and t∗1, m∗, E(N∗) decrease
with increase in labour / energy cost g. Higher production cost increases the stock level and
due to this, holding cost increases. Average production cost increases with increase in P ∗.
As a result ATC∗ increases with increases in g.
• With increase in Cr and Cd, the values of t∗1, T ∗, E(N∗), Q∗ and m∗ increase whereas

only P ∗ decreases (cf. Figs. 3.9a and 3.9b). When Cr increases, average rework cost
ARC∗ increases and average disposal cost ADC∗ decreases. But when Cd increases, ADC∗

102



3.2. MODEL-3.1 : AN EPL MODEL FOR RANDOMLY IMPERFECT PRODUCTION
SYSTEM WITH STOCK DEPENDENT DEMAND AND REWORK

(a) Sensitivity for key parameter d0 (b) Sensitivity for key parameter d1

Figure 3.6: Changes of optimal results for d0 and d1

(a) Sensitivity for key parameter η1 (b) Sensitivity for key parameter η2

Figure 3.7: Changes of optimal results for η1 and η2

increases and ARC∗ decreases. These results are as per expectation. Holding, set-up, and
production costs increase with increase in Cr and Cd.

3.2.8 A real-life illustration
A toy-manufacturing company at Kolkata, West Bengal, India manufactures different

types of toy. For a particular toy-item, different data during the year, 2014 are collected
and presented in Table 3.4. Considering that inverse of mean of commence of imperfect
production, f(P ) is linearly dependent on P , from the data of Table 3.4, we express f(P )
in the form of f(P ) = 1.25 + 0.005P using regression analysis based on Least Square
Approximation. For the same year 2014, the raw material cost for a unit production=Rs.250
and the cost against the employed labours=Rs.2500 per day. For the said company, it is
assumed that machine repair cost is proportional to rate of production, P and cost for taking
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(a) Sensitivity for key parameter rm (b) Sensitivity for key parameter g

Figure 3.8: Changes of optimal results for rm and g

(a) Sensitivity for key parameter Cr (b) Sensitivity for key parameter Cd

Figure 3.9: Changes of optimal results for Cr and Cd

some preliminary steps for clean production for EPC as per Kolkata Municipality varies as√
P . Taking the almost constant unit production costs for different production rates from

the Table 3.4, we determine UPC using Least Square Approximation method as C(P ) =
250 + 2500

P
+ 0.01P + 0.03P 1/2. Moreover, for the constant demand rate 350 units per

day, defective units are 14 units, out of which 7 units are reworked. Other input data are:
α = 0.25, θ = 0.50, ρ = 1, z = 0.04, ε = 0.02, Ch = Rs.2, Cs0 = Rs.1000, Cs1 = 0.5,
Cr = Rs.75, Cd = Rs.50

For the above input data of the company, the Model-3.1I is formulated and evaluated.
The evaluated average total cost is Rs. 101335. This is almost same as the company’s cost
for the year 2014.
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3.3 Model-3.2 : An EPL model with reliability dependent
randomly imperfect production system over different
uncertain finite time horizons 2

3.3.1 Assumptions and Notations

Assumptions:

(i) Replenishment rate is finite and taken as a DV.

(ii) Lead time is zero.

(iii) Shortages are not allowed.

(iv) The inventory system considers a single item and the demand rate is stock-dependent.

(v) The time horizon is finite and the production time is taken as a DV.

(vi) The production process shifts from the “In-control” state to an “Out-of-control” state
at a time, which is a random variable. Imperfect units are produced in this state.

(vii) Production of defective units commences at a random time after the commencement
of production. Defective rate depends on production rate, reliability of the machinery
system producing the item and time duration from the starting of defective units’
production.

(viii) The system allows immediate partially reworking for the defective units at a certain
cost when they are produced in “out-of-control” state and the defective units which are
not reworked, are disposed off by a cost.

(ix) UPC is the sum total of per unit material cost, development cost, wear and tear cost
and EPC. Here development cost is a function of reliability parameter of the machinery
system which is also a DV.

(x) A maintenance cost is considered for the machinery system to bring to its initial
position by the maintenance operations during the each time gap between the end of
production and beginning of next production. Thus the time for maintenance is shorter
than the time gap between the end of the production and beginning of next production.

Notations:
The following notation are defined and noted for ith cycle.

2This model has been published in Journal of Intelligent and Fuzzy Systems, IOS Press, Y. 2016
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q(t) Inventory level at time t, where q(t) ≥ 0.
D[q(t)] The demand rate at time t and D[q(t)] = d0 + d1q(t) where d0 > 0, d1 is the

stock-dependent consumption rate parameter, 0 ≤ d1 ≤ 1.
P Controllable production rate in units per unit time (DV), where P−D[q(t)] ≥

0.
T Cycle time in appropriate unit.
t1 Production run-time in each period (DV).
Csi Set up cost for ith cycle which is partly constant and partly decreases in each

cycle due to learning effect of the employees and is of the form: Csi = Cs0 +
Cs1e

−k1i, where k1 > 0.
Cmi Maintenance cost for the machinery system to bring the system to its original

position after the end of each production. For the first cycle no maintenance is
required, but for the next cycles, it is increased in each cycle due to the reuse
of the system for several times. Maintenance cost for ith cycle is taken as:
Cmi = Cm0[1− e−k2(i−1)].

Ch Holding cost per unit per unit time.
Cd Cost of disposal for an imperfect unit which is not reworked.
Cr Cost for rework of an imperfect unit.
C(P, r) UPC which is considered as C(P, r) = rm + g

P δ1
+ η1P

δ2 + η2P
δ3 , where

δ1, δ2, δ3 > 0 and rm is the material cost per unit item, g is the development
cost, defined as g = g1 + g2e

(1−f)
r−rmin
rmax−r , where r is the reliability param-

eter of machinery system (DV), rmax and rmin are maximum and minimum
value of r respectively, f is the feasibility of increasing reliability, g1 is to-
tal labour/energy costs per unit time in a production system which is equally
distributed over the unit item and independent of reliability parameter r, g2

is technology, resource and design complexity costs for production. So,( g
P δ1

)
decreases with increases of P . The third term η1P

δ2 is the wear and tear cost,
proportional to the positive power of production rate P and the fourth term
η2P

δ3 is EPC, proportional to the positive power of production rate P .
1

f(P )
The mean and standard deviation of the random variable τ . Here, f(P ) is an
increasing function of P and the mean time of failure, 1/f(P ) is a decreasing
function of P .

θ Percentage of rework of defective units.
N Defective units in a production cycle.
Sq Expected production lot size (or inventory) of good units (without defective

units) at the end of production period.
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τ An exponential random variable that depends on P and denotes the time at
which the process shifts to the “out-of-control” state from “in-control” vari-
able. The distribution function of “out-of-control” state isG(τ) = 1−e−f(P )τ

such that
∫∞

0
dG(τ) = f(P )

∫∞
0
e−f(P )τdτ = 1. The exponential distribution

has often been used to describe the elapsed time to failure of the components
of a machinery system.

λ(t′, τ, P, r) Percentage of defective units produced at time t when the machine is in
the “out-of-control” state. Here λ(t′, τ, P, r)is defined as λ(t′, τ, P, r) =
αP βe(1−r)t′(t′ − τ)γ . where β ≥ 0,γ ≥ 0 and t′ ≥ τ . Generally speaking,
the percentage of defective units increases with increase of production rate
and production-run time. The formulation of the function λ(t′, τ, P, r) shows
that it is an increasing function of production rate and production-run time si-
multaneously and a decreasing function with respect to reliability parameter.
Here t′ is the time measured from the commencement of production in each
cycle and varies between (0, T). This is assumed in this way as the machinery
system is brought back to its original condition by its proper maintenance in
each cycle after each production run.

m Total number of cycles which is a DV.
H Finite time horizon.

3.3.2 Mathematical Model Development

In this production process for the ith cycle, production starts at a rate P from time t=(i-1)T
and runs up to time t = (i − 1)T + t1. The inventory piles up, during the time span [0, t1]
adjusting demand D[q(t)] in the market and the production process stocks good quality Sq
units at time t = t1 and this stock is depleted satisfying the demand in the market and it
reaches at zero level at time iT (cf. Fig. 3.10). This production system produces perfect
units up to a certain time τ (i.e., “in-control” state), after that, the production system shifts
to an “out-of-control” state. In this “out-of-control” state, some of the produced units are of
non-conforming quality (i.e., defective units) with a defective rate
λ(t, τ, P, r) = αP βe(1−r)[t−(i−1)T ][t − (i − 1)T − τ ]γ and some of these defective units are
in a condition to rework immediately when they are produced. Here we assume that after
the end of one production run, the machinery system is maintained against a cost and
brought back to its original good condition for the next production. Thus the maintenance
time is shorter than the production lay off time, T − t1. The governing differential
equations for the ith cycle are

dq(t)

dt
=


P −D[q(t)], (i− 1)T ≤ t ≤ (i− 1)T + τ
P −D[q(t)]− (1− θ)λ(t, τ, P, r)P, (i− 1)T + τ ≤ t ≤ (i− 1)T + t1
−D[q(t)], (i− 1)T + t1 ≤ t ≤ iT

(3.52)

with the boundary conditions

107



CHAPTER 3. INVENTORY PROBLEMS WITH STOCK DEPENDENT DEMAND IN
RANDOM ENVIRONMENT

Figure 3.10: Inventory versus time for ith cycle.

{
q(t) = 0, at t = (i− 1)T
q(t) = 0, at t = iT

and the continuity conditions of q(t) at t = (i− 1)T + τ and t = (i− 1)T + t1.
Using the above boundary and continuity conditions, the solutions of the above differential

equation are given by,

q(t) =


P−d0
d1

(1− e−d1[t−(i−1)T ]), (i− 1)T ≤ t ≤ (i− 1)T + τ

P−d0
d1

(1− e−d1[t−(i−1)T ])− (1− θ)αPβ+1

[∑γ−1
j=0

(−1)jγ!(t−(i−1)T−τ)γ−j
(γ−j)!uj+1 e(u−d1)[t−(i−1)T ]

+
(−1)γγ!e−d1[t−(i−1)T ]

uγ+1 (eu[t−(i−1)T ] − euτ )

]
, (i− 1)T + τ ≤ t ≤ (i− 1)T + t1,

d0
d1

(
ed1(iT−t) − 1

)
, (i− 1)T + t1 ≤ t ≤ iT

(3.53)

where u = d1 + 1− r

The total defective units during [(i− 1)T + τ, (i− 1)T + t1] is

N =

∫ (i−1)T+t1

(i−1)T+τ

λPdt = P

∫ (i−1)T+t1

(i−1)T+τ

αP β[t− (i− 1)T − τ ]γe(1−r)[t−(i−1)T ]dt

= αP β+1

[ γ∑
j=0

(−1)jγ!(t1 − τ)γ−je(1−r)t1

(γ − j)!(1− r)j+1
− (−1)γγ!e(1−r)τ

(1− r)γ+1

]
(3.54)
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Total expected defective units in a production lot size is

E(N) =

∫ t1

0

Nd

(
G(τ)

)
= αP β+1

[ γ−1∑
j=0

(−1)jγ!e(1−r)t1

(γ − j)!(1− r)j+1

( γ−j−1∑
k=0

(−1)k(γ − j)!tγ−j−k1

(γ − j − k)!fk+1(P )

− (−1)γ−j+1(γ − j)!
fγ−j+1(P )

[1− e−f(P )t1 ]

)
+

(−1)γγ!e(1−r)t1

(1− r)γ+1
N2 −

(−1)γγ!

(1− r)γ+1
N3

]
(3.55)

whereN2 =

∫ t1

0

e−f(P )τdτ =
1− e−f(P )t1

f(P )
, N3 =

∫ t1

0

e−vτdτ =
1− e−vt1

v

and v = f(P )− (1− r)

Now at time t = (i− 1)T + t1, the expected production lot size without defective units is

Sq = E[q((i− 1)T + t1)] =

∫ ∞
0

q[(i− 1)T + t1]d

(
G(τ)

)
=
P − d0

d1

(1− e−d1t1)− (1− θ)αP β+1f(P )

∫ t1

0

( γ−1∑
j=0

(−1)jγ!(t1 − τ)γ−j

(γ − j)!uj+1
e(u−d1)t1

+
(−1)γγ!e−d1t1

uγ+1
(eut1 − euτ )

)
e−f(P )τdτ

=
P − d0

d1

(1− e−d1t1)− (1− θ)αP β+1f(P )

[ γ−1∑
j=0

(−1)jγ!e(u−d1)t1

(γ − j)!uj+1( γ−j∑
k=0

(−1)k(γ − j)!tγ−j−k1

(γ − j − k)!fk+1(P )
+

(−1)γ−j+1(γ − j)!
fγ−j+1(P )

e−f(P )t1

)
+

(−1)γγ!e−d1t1

uγ+1
(eut1N2 −Q3)

]
(3.56)

where, Q3 =

∫ t1

0

e−[f(P )−u]τdτ =
1− e−[f(P )−u]t1

f(P )− u

Again from the equation (3.53), we get,

Sq = E[q((i− 1)T + t1)] =
d0

d1

(
ed1(T−t1) − 1

)
or, T = t1 +

1

d1

log[1 +
d1Sq
d0

] (3.57)
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Now during the period [(i− 1)T, (i− 1)T + t1], the inventory which are to be hold, is

Qh1 =

∫ (i−1)T+t1

(i−1)T

q(t)dt =

∫ (i−1)T+τ

(i−1)T

q(t)dt+

∫ (i−1)T+t1

(i−1)T+τ

q(t)dt

=

∫ (i−1)T+τ

(i−1)T

P − d0

d1

(1− e−d1[t−(i−1)T ])dt+

∫ (i−1)T+t1

(i−1)T+τ

[
P − d0

d1

(1− e−d1[t−(i−1)T ])

− (1− θ)αP β+1

( γ−1∑
j=0

(−1)jγ![t− (i− 1)T − τ ]γ−j

(γ − j)!uj+1
e(u−d1)[t−(i−1)T ]

+
(−1)γγ!e−d1[t−(i−1)T ]

uγ+1
(eu[t−(i−1)T ] − euτ )

)]
dt

=
P − d0

d1

(
t1 −

1

d1

(1− e−d1t1)
)

− (1− θ)αP β+1

[ γ−1∑
j=0

(−1)jγ!

(γ − j)!uj+1

( γ−j∑
k=0

(−1)k(γ − j)!(t1 − τ)γ−j−ke(u−d1)t1

(γ − j − k)!(u− d1)k+1

− (−1)γ−j(γ − j)!e(u−d1)τ

(u− d1)γ−j+1

)
+

(−1)γγ!

uγ+1

(
e(u−d1)t1 − e(u−d1)τ

u− d1

− euτ

d1

(e−d1τ − e−d1t1)
)]

(3.58)

During the period [(i− 1)T, (i− 1)T + t1], the expected quantity of holding units are

E[Qh1 ] =

∫ ∞
0

Qh1d

(
G(τ)

)
=
P − d0

d1

(
t1 −

1

d1

(1− e−d1t1)
)

− (1− θ)αP β+1f(P )

[ γ−1∑
j=0

(−1)jγ!

(γ − j)!uj+1

{ γ−j∑
k=0

(−1)k(γ − j)!e(u−d1)t1

(γ − j − k)!(u− d1)k+1( γ−j−k∑
s=0

(−1)s(γ − j − k)!tγ−j−k−s1

(γ − j − k − s)!f s+1(P )
+

(−1)γ−j−k+1(γ − j − k)!

fγ−j−k+1(P )
e−f(P )t1

)
− (−1)γ−j(γ − j)!

(u− d1)γ−j+1
N3

}
+

(−1)γγ!

uγ+1

(
e(u−d1)t1

u− d1

N2 −
N3

u− d1

− N3

d1

+
e−d1t1

d1

Q3

)]
(3.59)

Now during the period [(i− 1)T + t1, iT ], the inventory is

Qh2 =

∫ iT

(i−1)T+t1

q(t)dt =

∫ T

t1

d0

d1

(
ed1(iT−t) − 1

)
dt

=
d0

d1

[
1

d1

(
ed1(T−t1) − 1

)
− (T − t1)

]
(3.60)
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Thus during the period [(i− 1)T, iT ], the total expected quantity of holding units is

E[Qh] = E[Qh1 ] +Qh2 (3.61)
where E[Qh1 ] andQh2 are given by the equations (3.59) and (3.60) respectively.

In the ith cycle [(i− 1)T, iT ], the Expected Total cost = Expected holding cost + Rework
cost + Disposal cost + Production cost + Set-up cost + Maintenance cost.

i.e.TCi(P, t1, r) = Ch.E[Qh] + θ.Cr.E(N) + (1− θ).Cd.E(N)

+ C(P, r)Pt1 + Csi + Cmi (3.62)

Thus the Expected total cost for all cycle is

TC(P, t1, r,m) =
m∑
i=1

TCi(P, t1, r)

= m

[
Ch.E[Qh] + θ.Cr.E(N) + (1− θ).Cd.E(N) + C(P, r)Pt1

]
+

[
mCs0 + Cs1

1− e−mk1
ek1 − 1

]
+ Cm0

[
m− 1− e−mk2

1− e−k2

]
(3.63)

3.3.3 Chance constraint for the “out-of-control” state
In this production system, it is expected to have total production time greater than the begin-
ning time of “out-of-control” state in each cycle . This requirement acts as a constraint and
is expressed here as a Chance constraint. Hence, the Chance constraint is

Pr[(t1 − τ) ≥ ε] ≥ x (3.64)
where t1 ≥ 0 and x ∈ (0, 1) is a specified permissible probability

Here md[=
1

f(P )
] and σ[= 1

f(P )
] are the mean and standard deviation of the exponential

random variable τ . Then the constraint can be written as (cf. Rao [213])
Pr( τ−md

σ
≤ t1−ε−md

σ
) ≥ x

where τ−md
σ

is a standard normal variate. Considering z, where
∫ z

0
φ(t)dt = x, φ(t), being

the standard normal density function, we have, t1−ε−md
σ

≥ z

or, t1 ≥
1

f(P )
[1 + z] + ε (3.65)

where z is obtained from the normal distribution table for a particular value of x.

3.3.4 Different types of time horizons
Crisp time horizon

For the crisp finite time horizon, we consider a constraint as

mT = H (3.66)
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Random time horizon

In this consideration, the models remain same as developed above, except the time horizon
of the system. Here, H̄ is random. For this type of model, we impose the constraint as

Pr(H̄ ≥ mT ) ≥ s, where s ∈ (0, 1) is a specified permissible probability.
or,mT ≤ mh + σhΦ

−1(1− s), (cf. Rao [213]) (3.67)

where mh and σh are the expectation and standard deviation of normally distributed
random variable H̄ respectively and Φ−1(x) denotes inverse function of standard normal
distribution of standard normal variate H̄−mh

σh
.

Fuzzy time horizon

If the time horizon H̃ is fuzzy in nature, it can be expressed by the fuzzy constraint H̃ ≥ mT
which is interpreted in the setting of possibility and necessity theory (cf. Dubois and Prade,
[79]). The above constraint reduces to

Pos(H̃ ≥ mT ) ≥ ρ1, and Nes(H̃ ≥ mT ) ≥ ρ2

where ρ1 and ρ2 represent the degree of impreciseness. Let H̃ = (H1, H2, H3) be TFN
then, using Lemma 2.1 and 2.2, we get

mT ≤
{

(1− ρ1)H3 + ρ1H2, in possibility sense
(1− ρ2)H2 + ρ2H1, in necessity sense. (3.68)

Fuzzy-random time horizon

In this case, the time horizon ˜̄H is fuzzy-random in nature and the fuzzy-random constraint
is ˜̄H ≥ mT . It stands for the relations which are interpreted in the setting of possibility and
necessity theories (cf. Dubois and Prade, [79]) along with chance the constraint. The above
constraint reduces to

Pr
[
Pos( ˜̄H ≥ mT ) ≥ ρ3

]
≥ s1, and Pr

[
Nes( ˜̄H ≥ mT ) ≥ ρ4

]
≥ s2

where (ρ3 and ρ4) and (s1 and s2) represent the degrees of impreciseness and uncertainty
(due to randomness) respectively. Let ˜̄H = (H̄,Hl, Hr) be L-R fuzzy-random variable,
then according to Theorem 2.2, we get

mT ≤
{
mh + σhΦ

−1(1− s1) +R−1(ρ3)Hr, in possibility sense
mh + σhΦ

−1(1− s2)− L−1(1− ρ4)Hl, in necessity sense. (3.69)

where mh and σh are the expectation and standard deviation of normally distributed
random variable H̄ respectively and Φ−1(x) denotes inverse function of standard normal
distribution of standard normal variate H̄−mh

σh
.
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Rough time horizon

If the time horizon Ĥ is rough in nature, the rough constraint Ĥ ≥ mT is reduced to the
crisp form as

Tr(Ĥ ≥ mT ) ≥ tr1 (using Theorem 2.3).

i.e. mT ≤


H4 − tr1(H4−H3)

ξ1
, if H2 ≤ mT ≤ H4

ξ1(H2−H1)+(1−ξ1)H2(H4−H3)−tr1(H4−H3)(H2−H1)
ξ1(H2−H1)+(1−ξ1)(H4−H3)

, if H1 ≤ mT ≤ H2

H4 + (1−ξ1−tr1)(H4−H3)
ξ1

, if H3 ≤ mT ≤ H1

H3

(3.70)

where Ĥ = ([H1, H2][H3, H4]), 0 ≤ H3 ≤ H1 ≤ H2 ≤ H4, is a rough variable and
ξ1 ∈ (0, 1) and tr1 ∈ [0, 1] are the confidence levels.

Fuzzy-Rough time horizon

If the time horizon ˜̂
H is fuzzy-rough in nature, the fuzzy-rough constraint ˜̂

H ≥ mT is
reduced in the following crisp forms

Tr
[
Pos( ˜̂

H ≥ mT ) ≥ ρ5

]
≥ tr2, and Tr

[
Nes( ˜̂

H ≥ mT ) ≥ ρ6

]
≥ tr2

According to Theorem 2.4, the above constraints are finally reduced to the following forms.

mT ≤


H4 − tr2(H4−H3)

ξ2
+ (1− ρ5)HR, if H2 ≤ mT − (1− ρ5)HR ≤ H4

ξ2(H2−H1)+(1−ξ2)H2(H4−H3)−tr2(H4−H3)(H2−H1)
ξ2(H2−H1)+(1−ξ2)(H4−H3)

+ (1− ρ5)HR, if H1 ≤ mT − (1− ρ5)HR ≤ H2

H4 +
(1−ξ2−tr2)(H4−H3)

ξ2
+ (1− ρ5)HR, if H3 ≤ mT − (1− ρ5)HR ≤ H1

H3 + (1− ρ5)HR

and

mT ≤


H4 − tr2(H4−H3)

ξ2
− ρ6HL, if H2 ≤ mT + ρ6HL ≤ H4

ξ2(H2−H1)+(1−ξ2)H2(H4−H3)−tr2(H4−H3)(H2−H1)
ξ2(H2−H1)+(1−ξ2)(H4−H3)

− ρ6HL, if H1 ≤ mT + ρ6HL ≤ H2

H4 +
(1−ξ2−tr2)(H4−H3)

ξ2
+ (1− ρ6)HR, if H3 ≤ mT + ρ6HL ≤ H1

H3 − ρ6HL
(3.71)

where ˜̂
H = (Ĥ −HL, Ĥ, Ĥ +HR),Ĥ = ([H1, H2][H3, H4]), 0 ≤ H3 ≤ H1 ≤ H2 ≤ H4,

is a fuzzy-rough variable and ξ2 ∈ (0, 1) and ρ5, ρ6 ∈ [0, 1], tr2 ∈ [0, 1] are the possibility
and trust confidence levels respectively.

3.3.5 Optimization Problem
Therefore, the problem for the imperfect inventory model is finally reduced to the
minimization of the expected total cost given by (3.63) subject to the Chance constraint
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(3.65) and constraints (3.66)-(3.71) for different time horizons. Thus the problem is

Min TC(P, t1, r,m)

s.t. t1 ≥
1

f(P )
[1 + Φ(r)] + ε.

and constraints (3.66)-(3.71) for different time horizons. (3.72)

3.3.6 Particular cases
Model-3.2A: ( Model-3.2 with Constant Demand)

Letting d1 → 0 in the above Model-3.2, we have the following reduced necessary expres-
sions:

u = 1− r, Q3 = N3, Sq = (P − d0)t1 − (1− θ)E[N ], T = t1 +
Sq
d0
,

E[Qh] = P−d0
2 t21 − (1− θ)αP β+1f(P )

[∑γ−1
j=0

(−1)jγ!
(γ−j)!(1−r)j+1

{∑γ−j
k=0

(−1)k(γ−j)!e(1−r)t1
(γ−j−k)!(1−r)k+1(∑γ−j−k

s=0
(−1)s(γ−j−k)!tγ−j−k−s1

(γ−j−k−s)!fs+1(P )
+ (−1)γ−j−k+1(γ−j−k)!

fγ−j−k+1(P )
e−f(P )t1

)
− (−1)γ−j(γ−j)!

(1−r)γ−j+1 N3

}
+ (−1)γγ!

(1−r)γ+1

(
e(1−r)t1

1−r N2 − N3
1−r − t1N3

)]
+ d0

2 (T − t1)2.

(3.73)

Therefore, the problem for the imperfect inventory model with constant demand is finally
reduced to the minimization of expected total cost given by (3.63) with (3.73) subject to the
Chance constraint (3.65) and constraints (3.66)-(3.71) for different time horizons.

Model-3.2B: ( Model-3.2 with Single cycle i.e. Infinite time horizon)

For m=1, the equation (3.63) reduces to

TC(P, t1, r) = Ch.E[Qh] + θ.Cr.E(N) + (1− θ).Cd.E(N) + C(P, r)Pt1

+[Cs0 + Cs1e
−k1 ] and the expected average total cost is

ATC(P, t1, r) = TC(P,t1,r)
T

, where T is given by equation (3.57) (3.74)

Therefore, the production-inventory model for infinite time horizon is finally reduced to
the minimization of expected average total cost given by (3.74) subject to the only one
chance constraint (3.65). i.e.,

Min ATC(P, t1, r)

(
=
TC(P, t1, r)

T

)
s.t. t1 ≥

1

f(P )
[1 + z] + ε (3.75)
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3.3.7 Solution Methodology
The above non-linear optimization problems are solved by a gradient based non-linear opti-
mization method- GRG method (cf. Lasdon et al. [136]) using LINGO Solver 11.0 for par-
ticular sets of data.

3.3.8 Numerical Experiments and Results
Input Data: We consider the proposed EPL models (Models-3.2, 3.2A and 3.2B) with
following inputs parameters in appropriate units:
α = 0.25, β = 0.25, θ = 0.50, γ = 2, z = 0.40, ε = 0.10, d0 = 20, d1 = 0.10, Ch = 3.0,
Cs0 = 200,Cs1 = 150, Cm0 = 100, k1 = 0.80, k2 = 0.80, Cr = 5.0, Cd = 2.0 and unit
production cost as: C(P, r) = 20 + g

P
+ 0.10P + 0.20P 1/2, where g = 20 + 40e(1−0.75) r−0.10

0.90−r

For each model, two experiments depending on production quality are performed and the

Table 3.9: Input data of f(P) for two experiments

Experiment Production dependent quality f(P)
1 Linear 1.25+0.05P
2 Non-linear 1.25 + 0.0005P 2

corresponding inputs are presented in Table 3.9. The input parameters for different time
horizons are presented in Table 3.10.

Optimum Results: With the above parameters and expressions, the Models-3.2 ,3.2A and
3.2B are formulated and optimized using LINGO 11.0 software. The corresponding
optimum values of production rate(P ∗), production run time(t∗1), number of cycles (m∗),
reliability (r∗) for minimum total cost(TC∗), holding(CH∗), rework(CR∗), disposal(CD∗),
production (C∗p ), set-up(C∗s ) and maintenance costs(C∗m) for the total time horizon and the
instant of defective production(m∗d), total expected defective units(E(N∗)) and inventory
level of good units(S∗q ) for each production cycle are evaluated for different cases and
presented in Tables 3.11-3.16

3.3.9 Discussion
From Tables 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16

• Table 3.11 represents the optimum results of Exp.-1 (i.e. Experiment-1, when quality is
linearly production dependent) for the Model-3.2 with crisp finite time horizon. In this case,
minimum total cost is 4001 units for 3 cycles in imperfect production model with 50%
rework. This is because, with the increasing of cycle numbers, total holding, rework,
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Table 3.10: Input values for different time horizons

Time
Horizon Crisp Random

Fuzzy
(Pos&Nes Sense)

Fuzzy-Random
(Pos&Nes Sense) Rough

Fuzzy-Rough
(Pos&Nes Sense)

Related
Inputs H=5.0

mh = 5.0
σh = 0.25

s=0.70

H1 = 4.5
H2 = 5.0
H3 = 5.5
ρ1 = 0.80
ρ2 = 0.30

mh = 5.0,σh = 0.25
Hl = 0.50,Hr = 0.50
ρ3 = 0.80,ρ4 = 0.30
s1 = s2 = 0.70

L(x) = R(x) = 1− x

H1 = 4.9,H2 = 5.0
H3 = 4.8,H4 = 5.1

ξ1 = 0.50
tr1 = 0.80

H1 = 4.9,H2 = 5.0
H3 = 4.8,H4 = 5.1
ξ2 = 0.50,tr2 = 0.80
HL = 0.20,HR = 0.50
ρ5 = 0.80,ρ6 = 0.30

Table 3.11: Model-3.2(Stock-dependent demand with crisp time horizon), f(P)=a+bP

Crisp
Time
Hori
-zon

θ m TC∗ CH∗ CR∗ CD∗ C∗p C∗s C∗m P ∗ t∗1 r∗ m∗d T ∗ E(N∗) S∗q
1 6415 717.2 86.2 34.5 5309 267.4 00.0 142.6 0.98 0.75 0.12 5.00 34.5 98.7
2 4289 253.7 46.2 18.5 3418 497.7 55.0 60.7 0.97 0.63 0.23 2.50 9.2 33.0

0.50 3 4001 123.0 30.9 12.4 2989 711.0 134.8 40.3 0.91 0.51 0.30 1.67 4.1 15.7
4 4054 65.8 22.5 8.9 2814 917.4 225.8 31.5 0.84 0.38 0.35 1.25 2.2 8.2
5 4226 36.2 16.9 6.8 2724 1120 321.7 26.8 0.78 0.25 0.38 1.00 1.4 4.5

1.00 3(m∗) 3714 43.4 165.2 00.0 2659 711.3 134.8 24.4 1.38 0.43 0.40 1.67 11.0 5.7
0.00 4(m∗) 4164 86.5 00.0 12.2 2922 917.4 225.8 38.0 0.72 0.43 0.31 1.25 1.5 10.9

disposal and production costs decrease but total set up and maintenance costs increase. Up
to 3 cycles, total cost decreases as total decrease in costs for holding, rework, etc dominates
over the increase in set-up and maintenance costs but when the total no. of cycles is 4,
set-up and maintenance costs dominate over the others, hence total cost increases. For fully
rework and no rework 3714 and 4164 units are respective minimum total costs for 3 and 4
number of cycles in crisp finite time horizon models.
• Table 3.12 represents the optimum results of Exps.-1 and 2 (i.e. when quality is linearly
and non-linearly production dependent)for the Model-3.2 with crisp, fuzzy, fuzzy-random,
rough and fuzzy-rough finite time horizons. Here, for same type of time horizon as well as
rework, the minimum total cost of Exp.-1 is more than that of Exp.-2. For example,
minimum total cost TC∗ = 3522 units of Exp.-1 is greater than corresponding minimum
total cost TC∗ = 3466 units of Exp.-2 for Model-3.2 with fully rework and fuzzy-rough
time horizon for which impreciseness is measured in possibility sense.
• Table 3.13 represents the optimum results of Exp.-1 (i.e. when quality is linearly
production dependent)for the Model-3.2A with crisp finite time horizon. In this case,
minimum total cost is 3852 units for 3 cycles imperfect production model with 50% rework.
In this case, the behaviours of the different costs are the same as in Model-3.2 i.e. total cost
initially decreases with cycle numbers and then increases when total cycle no. is 4. This is
because, with the increasing of cycle numbers, total holding, rework, disposal and
production costs decrease but total set up and maintenance costs increase. For fully rework
and no rework, 3584 and 3979 units are the respective minimum total costs for 2 and 3
number of cycles in crisp finite time horizon models.
• Table 3.14 represents the optimum results of Exps.-1 and 2 (i.e. when quality is linearly
and non-linearly production dependent)for the Model-3.2A with crisp, fuzzy,
fuzzy-random, rough and fuzzy-rough finite time horizons. Here, for same type of time
horizon as well as rework, the minimum total cost of Exp.-1 is greater than the minimum
total cost of Exp.-2. This behaviour is the same as Model-3.2.
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Table 3.12: Model-3.2(Stock-dependent demand with different uncertain time horizon)

Experiment Exp-1: Linearly Production dependent quality Exp-2:Non-linearly Production dependent quality
Horizon θ m∗ TC∗ P ∗ t∗1 r∗ m∗d T ∗ E(N∗) m∗ TC∗ P ∗ t∗1 r∗ m∗d T ∗ E(N∗)

0.00 3 4082 44.5 0.84 0.53 0.44 1.67 2.6
Crisp 0.50 3 3926 36.3 1.00 0.50 0.52 1.67 3.8

1.00 3 3668 23.0 1.47 0.42 0.66 1.67 10.0
0.00 3 4056 48.9 0.74 0.54 0.27 1.62 2.6 3 3971 43.4 0.84 0.53 0.45 1.62 2.5

Random 0.50 3 3897 39.4 0.90 0.50 0.31 1.62 3.9 3 3825 35.5 0.99 0.49 0.53 1.62 3.6
1.00 3 3627 24.0 1.37 0.42 0.40 1.62 10.4 3 3586 22.6 1.44 0.40 0.66 1.62 9.3

Fuzzy 0.00 4 4242 38.7 0.72 0.44 0.31 1.28 1.6 3 4172 45.4 0.84 0.54 0.43 1.70 2.7
Pos. 0.50 3 4086 41.0 0.91 0.52 0.30 1.70 4.3 3 4008 36.9 1.00 0.50 0.51 1.70 4.0

Sense 1.00 3 3783 24.7 1.40 0.44 0.40 1.70 11.5 3 3736 23.3 1.48 0.42 0.65 1.70 10.5
Fuzzy 0.00 3 4033 48.6 0.74 0.53 0.27 1.62 2.5 3 3949 43.2 0.84 0.52 0.45 1.62 2.4
Nes. 0.50 3 3876 39.2 0.90 0.50 0.31 1.62 3.8 3 3805 35.3 0.99 0.48 0.53 1.62 3.5

Sense 1.00 3 3610 23.9 1.37 0.42 0.40 1.62 10.2 3 3569 22.6 1.44 0.40 0.66 1.62 9.2
Fuzzy 0.00 4 4144 37.9 0.72 0.43 0.32 1.24 1.5 3 4059 44.3 0.84 0.53 0.44 1.66 2.6

Random 0.50 3 3980 40.1 0.91 0.51 0.30 1.66 4.0 3 3906 36.2 1.00 0.49 0.52 1.66 3.8
Pos.sens 1.00 3 3696 24.3 1.38 0.43 0.40 1.66 10.9 3 3653 22.9 1.46 0.41 0.66 1.66 9.8
Fuzzy 0.00 3 3746 45.4 0.74 0.51 0.28 1.51 2.2 2 3939 63.1 0.85 0.63 0.30 2.26 5.1

Random 0.50 3 3614 36.9 0.89 0.48 0.32 1.51 3.4 4 3690 23.5 1.01 0.37 0.65 1.13 2.2
Nes.sens 1.00 2 3364 29.8 1.57 0.54 0.36 2.26 21.9 2 3309 27.7 1.68 0.53 0.61 2.26 20.2

0.00 3 3828 46.3 0.74 0.52 0.28 1.54 2.3 3 3752 41.4 0.83 0.51 0.47 1.54 2.2
Rough 0.50 3 3689 37.5 0.89 0.48 0.32 1.54 3.3 4 3750 24.2 1.00 0.37 0.64 1.15 2.2

1.00 2 3441 30.2 1.58 0.55 0.36 2.31 23.0 2 3384 28.1 1.69 0.54 0.61 2.31 21.2
Fuzzy 0.00 3 3916 47.3 0.74 0.53 0.28 1.57 2.4 3 3836 42.0 0.83 0.51 0.46 1.57 2.3
Rough 0.50 3 3770 38.3 0.90 0.49 0.31 1.57 3.6 3 3702 34.5 0.98 0.47 0.54 1.57 3.3

Pos.sens 1.00 3 3522 23.6 1.35 0.41 0.41 1.57 9.6 2 3466 28.6 1.71 0.55 0.60 2.36 22.3
Fuzzy 0.00 3 3776 45.7 0.74 0.51 0.28 1.52 2.2 3 3699 40.6 0.82 0.50 0.48 1.52 2.1
Rough 0.50 3 3641 37.1 0.89 0.47 0.32 1.52 3.4 3 3578 33.7 0.98 0.46 0.54 1.52 3.2

Nes.sens 1.00 2 3392 29.9 1.58 0.54 0.36 2.28 22.3 2 3336 27.9 1.68 0.53 0.61 2.28 20.6

Table 3.13: Model-3.2A(Constant demand with crisp time horizon), f(P)=a+bP

Crisp
Time
Hori
-zon

θ m TC∗ CH∗ CR∗ CD∗ C∗p C∗s C∗m P ∗ t∗1 r∗ m∗d T ∗ E(N∗) S∗q
1 4843 617.4 55.7 22.3 3880 267.4 00.0 117.8 0.94 0.72 0.14 5.00 22.3 81.1
2 3929 245.9 34.3 13.7 3082 497.7 55.0 59.6 0.89 0.59 0.23 2.50 6.8 32.0

0.50 3 3852 128.8 23.8 9.5 2844 711.3 134.8 41.9 0.83 0.46 0.30 1.67 3.2 16.7
4 3979 75.2 17.4 6.9 2736 917.4 225.8 33.8 0.76 0.32 0.34 1.25 1.7 9.7
5 4185 46.5 13.2 5.3 2678 1120 321.7 29.2 0.70 0.17 0.36 1.00 1.0 5.9

1.00 2(m∗) 3584 170.5 175.6 00.0 2685 497.7 55.0 36.7 1.36 0.51 0.32 2.50 17.6 22.7
0.00 3(m∗) 3979 148.6 00.0 13.0 2970 711.3 134.8 50.5 0.70 0.50 0.26 1.67 2.2 19.3

• Table 3.15 represents the optimum results of Exps.-1 and 2 for the Model-3.2B i.e.
imperfect production model with stock-dependent demand and infinite crisp time horizon.
In this case, for a same type of rework (say θ = 0.50), the minimum average total cost
ATC∗ = 815 units of Exp.-1 is greater than the minimum average total cost ATC∗ = 801
units of Exp.-2.
• It is to be noted from the Tables 3.11 to 3.15 that the mean-time (m∗d) of the
commencement of “out-of-control” state is less than the production run time for all Models
in all experiments. There is a necessary condition for the models imposed by chance
constraint as md∗ ≤ t∗1 (§ 3.3.3).
• For all Experiments-1 and 2, the optimal expected total costs of models Model-3.2 and
Model-3.2A with no rework from above tables are more than those of the models
corresponding with fully rework. The same behaviour is concluded for all these types
experiments for Model-3.2B.
• From Tables 3.11 to 3.14, for the Model-3.2 with stock-dependent demand, the optimal
average expected total cost is greater than that of Model-3.2A which is with constant
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Table 3.14: Model-3.2A(Constant demand with different uncertain time horizon)

Experiment Exp-1: Linearly Production dependent quality Exp-2: Non-linearly Production dependent quality
Horizon θ m∗ TC∗ P ∗ t∗1 r∗ m∗d T ∗ E(N∗) m∗ TC∗ P ∗ t∗1 r∗ m∗d T ∗ E(N∗)

0.00 3 3911 45.4 0.78 0.49 0.43 1.67 2.0
Crisp 0.50 3 3796 38.3 0.91 0.44 0.50 1.67 2.9

1.00 2 3540 34.4 1.45 0.50 0.54 2.50 16.2
0.00 3 3879 49.3 0.70 0.50 0.26 1.62 2.0 3 3813 44.7 0.78 0.49 0.44 1.62 1.9

Random 0.50 3 3760 41.1 0.82 0.45 0.30 1.62 3.0 2 3754 53.0 0.98 0.59 0.38 2.44 6.5
1.00 2 3491 36.0 1.35 0.50 0.32 2.44 16.6 2 3449 33.8 1.44 0.49 0.54 2.44 15.3

Fuzzy 0.00 3 4059 51.3 0.70 0.51 0.26 1.70 2.2 3 3989 46.2 0.78 0.50 0.43 1.70 2.1
Pos. 0.50 3 3927 42.7 0.83 0.47 0.29 1.70 3.3 3 3869 38.9 0.91 0.45 0.49 1.70 3.0

Sense 1.00 2 3659 37.2 1.37 0.52 0.32 2.55 18.3 2 3614 34.8 1.46 0.50 0.53 2.55 16.9
Fuzzy 0.00 3 3859 49.1 0.69 0.49 0.26 1.61 2.0 2 3937 65.8 0.80 0.62 0.29 2.42 4.5
Nes. 0.50 3 3742 40.9 0.82 0.45 0.30 1.61 2.9 2 3732 52.8 0.98 0.58 0.38 2.42 6.4

Sense 1.00 2 3472 35.9 1.34 0.50 0.32 2.42 16.5 2 3431 33.7 1.43 0.49 0.54 2.42 15.1
Fuzzy 0.00 3 3959 50.3 0.70 0.50 0.26 1.67 2.1 3 3891 45.2 0.78 0.49 0.44 1.67 2.0

Random 0.50 3 3834 41.8 0.83 0.46 0.29 1.67 3.1 3 3778 38.1 0.91 0.44 0.50 1.67 2.8
Pos.sens 1.00 2 3565 36.6 1.36 0.51 0.32 2.49 17.4 2 3521 34.2 1.45 0.50 0.54 2.49 16.0
Fuzzy 0.00 3 3606 46.2 0.69 0.46 0.28 1.51 1.8 3 3549 41.7 0.76 0.45 0.47 1.51 1.6

Random 0.50 3 3507 38.8 0.81 0.42 0.31 1.51 2.6 2 3452 49.5 0.97 0.56 0.40 2.26 5.5
Nes.sens 1.00 2 3236 34.4 1.31 0.48 0.33 2.26 14.3 2 3199 32.3 1.40 0.46 0.56 2.26 13.0

0.00 3 3680 47.0 0.69 0.48 0.28 1.54 1.9 3 3620 42.4 0.77 0.46 0.46 1.54 1.7
Rough 0.50 3 3575 39.5 0.81 0.43 0.31 1.54 2.7 2 3533 50.4 0.97 0.56 0.39 2.31 5.8

1.00 2 3305 34.8 1.32 0.49 0.33 2.31 14.9 2 3267 32.7 1.41 0.47 0.56 2.31 13.0
Fuzzy 0.00 3 3757 47.9 0.69 0.48 0.27 1.57 1.9 2 3809 63.9 0.80 0.61 0.30 2.36 4.2
Rough 0.50 3 3647 40.1 0.81 0.44 0.31 1.57 2.8 2 3619 51.4 0.98 0.58 0.39 2.36 6.0

Pos.sens 1.00 2 3378 35.3 1.33 0.49 0.33 2.36 15.6 2 3338 33.0 1.42 0.48 0.56 2.36 14.1
Fuzzy 0.00 3 3557 45.7 0.69 0.46 0.28 1.49 1.7 3 3500 40.4 0.78 0.45 0.48 1.49 1.6
Rough 0.50 2 3455 53.8 0.88 0.56 0.25 2.23 5.6 2 3397 48.8 0.97 0.56 0.41 2.23 5.4

Nes.sens 1.00 2 3190 34.0 1.30 0.48 0.33 2.23 13.8 2 3154 31.9 1.39 0.45 0.56 2.23 12.4

Table 3.15: Model-3.2B(Infinite time horizon)

Rework f(P)=a+bP f(P ) = a+ bP 2

θ ATC∗ P ∗ t∗1 r∗ T ∗ m∗d E(N∗) S∗q ATC∗ P ∗ t∗1 r∗ T ∗ m∗d E(N∗) S∗q
0.00 815 41.5 0.73 0.48 1.37 0.30 1.8 13.3 801 38.0 0.82 0.47 1.42 0.50 1.8 12.4
0.50 789 36.7 0.88 0.47 1.49 0.32 3.3 12.6 755 34.0 0.98 0.47 1.54 0.54 3.2 11.6
1.00 732 26.0 1.45 0.48 1.85 0.39 14.0 8.2 722 24.8 1.56 0.47 1.90 0.64 13.7 7.0

demand. It is observed for all Exps.-1 and 2. Interesting result is that in spite of higher
demand (stock-dependent) in the market, production rate is lower to minimize the average
cost. Here lower production rates (for Model-3.2 with stock-dependent demand ) increase
the average production costs.
• In Tables 3.11 to 3.14, values of T ∗ are given. As H = mT ∗ and H is known, T ∗ changes
with m i.e. number of cycle.
• Now from the Table 3.16, it is seen that the production rate and reliability of machinery
system which minimizes the UPC is quite different from the production rate which
minimizes the expected total cost TC for Exp.-1 of same model with different types of
finite time horizon. It is interesting to note that the production rate P and reliability r which
minimize TC are higher than those of which minimize unit production cost C(P,r). For
example, for Model-3.2 with crisp time horizon due to Exp-1, C(P, r) has the minimum
value for C(P ∗, r∗) = 26.88 units at P ∗ = 40.33 units, r∗ = 0.31, but the corresponding
UPC C1(P, r) attains minimum value (26.05 units) at P ∗ = 28.17 units and r∗ = 0.18.
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3.3. MODEL-3.2 : AN EPL MODEL WITH RELIABILITY DEPENDENT
RANDOMLY IMPERFECT PRODUCTION SYSTEM OVER DIFFERENT

UNCERTAIN FINITE TIME HORIZONS

Table 3.16: Optimal results of UPC, C(P, r)

Result for minimizing C(P, r) : C(P, r) = 26.05, P=28.17, r=0.18
Result for minimizing TC(P, r, t1,m) on different time horizon for Exp.-1

Model Para- Crisp Random Fuzzy Fuzzy-Random Rough Fuzzy-Rough

Name meters Pos Nes Pos Nes Pos Nes
C(P, r) 26.88 27.01 27.16 26.99 27.07 26.80 26.85 26.91 26.80

Model-3.2 P 40.33 39.41 41.08 39.22 40.15 36.87 37.55 38.27 37.12
r 0.31 0.50 0.52 0.50 0.51 0.48 0.48 0.49 0.47

C(P, r) 27.14 27.07 27.20 27.05 27.13 26.86 26.92 26.98 28.26
Model-3.2A P 41.99 41.15 42.67 40.99 41.83 38.82 39.48 40.12 53.76

r 0.46 0.45 0.47 0.45 0.46 0.42 0.43 0.44 0.56

Figure 3.11: Average total cost versus
production time and production rate when
reliability is constant.

Figure 3.12: UPC versus production rate
and reliability.

Figure 3.13: Total cost TC(P, t1, r, 3) vs
reliability r with variable P, t1.

Figure 3.14: Total cost TC(P ∗, t∗1, r, 3)
vs reliability r.

From Figs. 3.11, 3.12, 3.13 and 3.14:
• Considering the optimal value of reliability r as constant, the average total costs for the
Model-3.2B due to Exp.-1 are plotted in Fig. 3.11 against the different values of P and t1.
This figure shows that the objective function is convex.
• Fig. 3.12 is obtained by plotting the UPC against the different values of production rate
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and reliability of machinery system. This UPC is a convex function against production rate
only.
• Fig. 3.13 represents total cost against the machinery-system reliability for Exp.-1 of
Model-3.2 with crisp time horizon when m=3 and P, t1 are treated as variable. In this figure,
total cost is a convex function with respect to reliability.
• As Fig. 3.13, Fig.3.14 also represents the total cost against the machinery system
reliability for Exp.-1 of Model-3.2 with crisp time horizon when m=3 and P, t1 are the
optimal values obtained from Table 3.11. In this figure, total cost increases with reliability
of machinery system.

3.4 Conclusion
The present investigation portrays an EPL model with random imperfect production with
reliability dependent defective rate, stock dependent demand rate and rework (may be
partially) of the imperfect products over different imprecise finite time horizons. During the
production, defective units are produced from “out-of-control” state. The probability
distribution of the beginning of “out-of-control” state follows an exponential distribution
with mean and standard deviation 1

f(P )
. Here f(P ) = a, a + bP or a + bP 2 where a > 0

and b ≥ 0. It may be extended to other types of increasing function. Several sub-cases of it
are considered and compared.

Uniqueness of the first model deals with UPC taken in the form:
C(P ) = rm + g

P δ1
+ η1P

δ2 + η2P
δ3 where,δ1, δ2, δ3 > 0. Thus, it investigates the effect of

non-instantaneous imperfect production introducing a chance constraint that determines a
cost against carbon emission/ production in UPC. The quality of an item always directly
varies with the rate of production. Hence different types of variations in quality of produced
item are considered and the corresponding costs are evaluated. Finally, the developed model
presents different earlier models investigated by different authors as particular cases. Also,
the limitation of present study is that though cost against carbon emission/ production has
been taken into account, it would have better if the total amount of carbon emission/
production with respect to production rate was derived and incorporated into the analysis.
This may be a guide line for future research works.

Meanwhile, Model 3.2 inculcates with the calculation of percentage of defective units
produced at time t, λ(t′, τ, P, r) = αP βe(1−r)t′(t′ − τ)γ , γ is an integer for the convenience
of calculation. However it can be any positive value and in that case the integrations
connecting γ are to be evaluated numerically.

Henceforth, for a EPL model, the necessity of imposition of an “out-of-control” state
constraint is laid down and the above chance constraint can be used for other types of
imperfect production-inventory models such as inventory models with trade credit, two
warehouses inventory system, EPL model with price discount, etc.
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Chapter 4

Inventory Problems on Complementary
and Substitute Products in Random
Environment

4.1 Introduction

In the last few decades, both academics and practitioners have shown that effective
inventory management for a company is one of the key factors for success in challenging
business environment. There are several procedures, which can be considered to reflect
variations in the structure of the inventory control system [96]. Generally, the operating
doctrines or decision rules which guide a company’s attempts to maximize profit while
satisfying market demands depends upon sound inventory policies and the utilization of
models [29]. In spite of the emphasis in quality control, a manufacturing process may be
imperfect and results in defective items that are required reworking. Electronics items, glass
goods, pharmaceuticals items, etc. are examples of such imperfect product. Most traditional
approaches to the problem are described in the literature of the models on imperfect
production process (cf. § 1.3.2) and defective manufacturing continues from the beginning
of the process. Very few have considered the EPQ model with in control and out-of-control
state.

Now-a-days, due to strong competitive market, retailers prefer to do the
business/production of several items with the hope that due to dull market, if one item does
not fetch profit, the other one will save the situation, provided initial capital for investment
permits. Das et al. [63] formulated a multi-item inventory model with budgetary and
floor-space constraints in a fuzzy environment. In Kar et al. [123], they developed an
inventory model under the budgetary constraint for deteriorating multi-item with cost-price
dependent demand in a fuzzy environment. In marketing of several items, the demand of an
item is affected by the other in the case of complementary and substitute items. Demand of
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each complementary item increases to some extent by the other such items where as in the
case of substitute items, the demand of such an item may increase or decrease depending
upon the choice of the customers [164, 167].

Generally, there are two consequences when stock-outs happen: one is the use of
backorder and other is the lost sales. Backorder means that when stock-outs occur, the
unsatisfied customers are willing to wait and so their demands are met in the next
replenishment epoch. Lost sales means the customers are impatient and may buy their
desired items from other suppliers, and the unmet demand is therefore lost. In practice, it is
not always true that all stock-outs are back-ordered or forgoes. But in reality, some of the
unsatisfied customers may be willing to met their demands with purchasing substitute
items. One item is a substitute for another only if it can be used in exactly the same way and
serves the same need. Pasternack and Drezner [199] showed that the optimal inventory level
for two items in full substitution could either increase or decrease as transfer revenue
increases by inventory pooling. Gerchak and Mossman [86] also showed a possibility that
the inventory level can be escalated by pooling under the exponentially distributed demands
in full substitution. There have been several studies concerned with an inventory model that
allows item substitution [73, 124, 282].

Several extensions to the newsboy model have been reported in the
literature [12, 138, 139] for a single item and others are mentioned in the literature review of
the models with complementary and substitutable products (cf. § 1.3.3). Early extension for
multiple items assumed their independent demands [186]. Parlar and Goyal [198] studied a
two product single period inventory model in which substitution occurs in probabilistic
sense. More recently, single item newsboy problem is considered with random lot
size [240]. Here for the first time, a reduction is given to the selling price of the item when
it substitutes other.

Now-a-days managers recognize that effectively managing risks in their business
operations imply the successfully managing of their inventories. One of the most common
risks is demand uncertainty, a phenomenon that is widely studied in the literature.
Single-Period Problem (SPP) under probabilistic demand is reflective of many real life
situations and is often used to aid decision making in the fashion and sporting industries,
both at the wholesaler and retailer levels [84]. If the order quantity is smaller than the
realized demand, then shortages arise [129, 278] and if any inventory remains at the end of
the period, a discount is used to sell out or to dispose off [185].

In the last few years, many researchers [163, 170, 268] focused on the inventory control
system in which the demand rate is dependent on the displayed stock level. Wee [263]
considered a model where the demand rate is a convex decreasing function of the selling
price. Jaggi et al. [114] and Liang and Zhou [144] solved two warehouse inventory models
for deteriorating items with price dependent demand. It is a fact that the demand of an item
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is influenced by the selling price of that item i.e. whenever the selling price of an item
increases, the demand of that decreases and vice-verse. Maiti et al. [159] introduced the
concept of advanced payment for determining the optimal ordering policy under stochastic
lead-time and price dependent demand condition. Again time-to-time promotional
policy/advertisement through the modern mass/electronic media (well known media such as
TV, Radio, Newspaper, Magazine,etc.) helps to generate more demand in the
market [163, 193]. Cárdenas-Barrón and Sana [33, 34] proposed multi-item models in a
two-layer supply-chain with promotional effort sensitive demand and found the average
profits under channel co-ordination including both collaborative and non-collaborative
systems.

Promotional policy and its effects on sales were studied by Blattberg and Neslin [22].
Optimal design of a series of promotions (which might offer gifts, discounts, or special
services) periodically mailed to potential customers was addressed in Nair and
Tarasewich [187]. Krishnan et al. [135] obtained the promotional effort to optimize revenue
and stated that promotional strategies include displays of products, free goods, price
discounts and advertising. Tsao and Sheen [257] solved the retailer’s promotion and
replenishment decisions under retailer competition and promotional effort with the sales
learning curve. Recently, Maihami and Karimi [156] investigated an appropriate pricing
and replenishment policy model for a non-instantaneous deteriorating item with
promotional effort and stochastic demand. Cárdenas-Barrón and Sana [34] studied an EOQ
inventory model of multi-items in a two-layer supply chain where demand is sensitive to
promotional effort. But none has considered the promotional effect on the uniform random
demand and apply it a news-vendor problem with two substitute items.

Classical inventory models are usually developed over the infinite planning horizon.
According to Chung and Kim [56], the assumption of infinite planning horizon is not
realistic due to several reasons such as variation of inventory costs, change in product
specifications and designs, technological development, etc. Moreover, for seasonal products
like fruits, vegetables, warm garments, fashionable goods, etc., business period is not
infinite, rather fluctuates with each season. Hence the planning horizon for these products
varies over the years depending upon the environmental effects. Therefore, it is better to
estimate this type of products with finite time horizon as in nature. Moon and Yun [181]
and Guria et al. [94] developed an EOQ model in random planning horizon.

In a production system, better machinery and control systems, expert labours, etc. are
required to have the quality of product. So, UPC varies directly with the product’s quality.
Moreover, in every manufacturing process, it is fact that environment is polluted by the
emission of green house gases, specially CO2 in the atmosphere and for that, now-a-days
attention is paid not to pollute the environment taking some measures for it. This involves
some expenditures and hence UPC increases with this process [13, 88, 246]. So far, these
considerations are ignored by the researchers.
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Table 4.1: Literature Review for Model-4.1

Authors with year Model
type

Demand depend
on

Complementary
or Substitute
items

Quality
Depend on
Production

Constraint Set up cost

Wee [263], 1999 EOQ Selling price No No No Constant
Pal et al. [193], 2006 EOQ Stock, price &

advertisement
No No No Constant

Maiti et al. [159], 2009 EOQ Selling price No No Constant
Maity and Maiti [167], 2009 EPQ Stock Complementary

and Substitute
No Space Constant

Cárdenas-Barrón [32], 2009 EPQ Constant No No No Constant
Sana [227], 2010 EPL Constant No Yes No Constant
Mandal et al. [171], 2010 EPL Stock No No Space No
Roy et al. [220], 2010 EPL Time No No Budget Constant
Cárdenas-Barrón et al. [36] 2012 EPL No No Constant
Cárdenas-Barrón and Sana [33] 2014 EPL Sales teams’ ini-

tiatives
No No No Constant

Cárdenas-Barrón and Sana [34], 2015 EOQ Promotional
effort

No No No Constant

Present model 4.1
EPl Price and adver-

tisement
Complementary
and Substitute

Yes Budget Production de-
pendent

Due to complex nature of the objective functions, it is difficult to find the optimal strategy
of the reduced problems using traditional optimization techniques. GAs are extensively
used to face these types of situations during the last decades by several
researchers [161, 173, 179, 222, 235, 255]. Here, a GA with rough age based criteria is used
to reproduce a new chromosome at crossover level.

Summarizing the above mentioned literature, Table 4.1 presented the systematic
chronological developments in the related areas of Model 4.1.

In the context of earlier investigations as follows from Table 4.2, the new features in Model
4.2 are:

• None has considered the production-marketing system for substitutable products under
imperfect production process introducing learning effect in the set-up and maintenance
costs.

• There is no production systems (inventory) management research and the pricing de-
cisions with product substitution depending on the joint effect of price and quality or
on the basis of either price or quality.

• UPC is normally assumed to be dependent on the raw material and labour costs. But,
none has considered that quality improvement cost which is a function of quality of an
item, is a part of UPC.
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Table 4.2: Literature Review for Model-4.2

Authors with year Model
type

Demand Substitution
for

Learning
effect on

UPC Time Horizon

Chand [41], 1989 EOQ Constant No Set up No Crisp and Infinite
Moon and Yun [181], 1993 EOQ Constant No No No Random and fi-

nite
Khouja and Mehrez [127], 1994 EPL Constant No No Production

dependent
Crisp and Infinite

Das and Maiti [60], 2007 News-
boy

Random Shortage No No Infinite

Pal et al. [196], 2009 EPQ Time and price
dependent

No Production
and set-up
cost

Dynamic Fuzzy and finite

Roy et al. [221], 2009 EPQ Stock dependent No Production
and set-up
cost

No Random and fi-
nite

Hu et al. [106], 2010 EPQ Constant No No No Crisp and Infinite
Zhao et al. [291], 2012 Supply

chain
Price dependent Price No Constant Crisp and Infinite

Guria et al. [94], 2013 EOQ Inflation and sell-
ing price depen-
dent

No No No Random and fi-
nite

Rad et al. [207], 2014 Supply
chain

Price dependent Price No Constant Crisp and Infinite

Present model 4.2
EPL Price and quality

dependent
Price and
quality

Set up and
Mainte-
nance

Production and
quality dependent

Random and fi-
nite

• Several authors [1, 50, 88, 118, 246, 287] have studied the environmental effect on the
production inventory/inventory management systems, mainly considering the carbon
emission or product greening improvement. But, none introduces the EPC for EPL
models, which is again varies with the rate of production.

• In the literature, there is no model for substitutable products formulated over a random
planning horizon.

Summarizing the above mentioned literature, the systematic chronological developments
in the related areas of Model 4.3 are presented in Table 4.3.

Therefore, there is a strong motivation for further research in this area. Hence, in this
chapter, we consider all the above lacunas and formulate three models. In the first model,
we develop a randomly imperfect multi-item (complementary or substitute) production
inventory model with production dependent set-up cost, advertisement /promotional cost
and selling price dependent demand, partially reworked, disposal of defective units,
chance-constraint for commencement of imperfect production and variable production cost
including EPC. In real life EPL models, a production system remains in control at the
beginning and after some time, it goes to out-of-control state. Thus, the occurrence of
production of imperfect units is random after the lapse of certain time and is imposed here
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Table 4.3: Literature Review for Model-4.3

Authors with year No of items Type of Effect on Constraints Solved
present in & their type demand demand used on by

Parlar and Goyal [198], 1984 Two, Substitute Random - - Numerical Optimization Scheme
Pasternack and Drezne [199], 1991 Two, Substitute Random - - Analytic method
Gallego and Moon [84], 1993 Single Random - - Analytic method
Khouja [128], 1996 Two, Substitute Random - - Monte Carlo simulation
Mishra and Raghunathan [175], 2004 Two, Substitute Random - - Classical Optimization
Das and Maiti [60], 2007 Two, Substitute Random - Storage Space Genetic Algorithm
Huang et al. [108], 2011 Multi, Substitute Random - - Iterative Algorithm
Liu et al. [151], 2013 Two, Substitute Random - - Nash Game Theory
Ding [72], 2013 Multi-product Rough - Storage Space Classic Integer Programming
Wang et al. [261], 2015 Multi-item Uncertain-Random - - Analytic method

Uniform Promotional Promotional & Rough Age basedPresent Model 4.3 Two, Substitute
random effort Purchasing cost Genetic Algorithm (RAGA)

through a chance constraint. The set-up cost, UPC and defective rate are production
dependent and part of UPC is taken as EPC. The problem is formulated as a profit
maximization problem and solved using GRG through LINGO11.0. Several special cases
are derived. Numerical experiments are performed to illustrate the general and particular
models. Some sensitivity analyses are presented against few model parameters.

In the second model, we formulate an imperfect substitutable multi-item
production-inventory model with selling price and quality dependent demand, partially
reworked, disposal of not reworkable defective units incorporating environmental
protection cost over a finite time horizon. In real life EPL models, a production system
remains in control at the beginning and after some time, it goes to out-of-control state and
then defective units are produced. The UPC has four components- the raw material cost to
produce an unit, labour cost per unit production and quality improvement and EPC. Here
demands of the substitute products are defined as linear functions of the products’ selling
prices and qualities. The demand of a merchandise has downward slopping in its own price
and increasing with respect to the competitor’s price. It is reversed with respect to quality
e.g. increases in its own quality and decreases for other’s quality. There may be different
relations amongst the coefficients of demand functions. The models are formulated as profit
maximization problems in which number of cycles, selling prices, production rates and
qualities are DVs. With the different relations in demand functions, it is solved by using
FAGA. The models are illustrated with numerical examples and some results are presented
graphically.

In the last model, a newsboy type inventory control problem is considered for two
substitute items. The model is formulated for the uniform random demands of the items.
Here, promotional effort is shared to increase the demand of the items. The objective of the
problem is to find the optimal quantities and respective promotional effort to maximize the
profit. For the solution, an imprecise GA is proposed with rough age based probability of
crossover.
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4.2 Model-4.1 : EPL models for complementary and
substitute items under imperfect production process
with promotional cost and selling price dependent
demands 1

4.2.1 Assumptions and Notations
The following assumptions are used to develop the proposed model:

(i) Production rate is finite and taken as a DV.

(ii) Lead time is zero.

(iii) No shortages are allowed.

(iv) The inventory system is developed for complementary or substitute items under a bud-
get limitation and the demand rate is advertisement/promotional cost and selling price
dependent.

(v) The time horizon is infinite and the production time taken as a DV.

(vi) The production process shifts from “In-control” state to “Out-of-control” state at a
time, which is a random variable. Imperfect units are produced in this state.

(vii) Production of defective units commences at a random time after the commencement
of production. Defective rate depends on production rate and time duration from the
starting of defective units’ production.

(viii) There are partially reworking for the defective units at a cost immediately when they
are produced in ‘out-of-control’ state and the defective units which are not reworked,
are disposed off by a cost.

(ix) UPC is production dependent and one part of it is EPC.

(x) Set up cost is considered as partly production dependent.

The following notations are used for ith item to develop the proposed model:
Pi Production rate (tons/time unit) (DV).
qi(t) Inventory level at time t (tons).
Ti Cycle period (years).
t1i Production run-time in one cycle (years) (DV).
Csi Set up cost ($/cycle), Csi = Cs0i + Cs1iP

ρi
i , where Cs0i, Cs1i and ρi >0.

Chi Holding cost ($/unit/time unit).
Cdi Cost of disposal for an imperfect unit ($).

1This model has been published in OPSEARCH, SPRINGER, Y. 2015
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Cri Cost for rework of an imperfect unit ($).
Cai Advertisement cost ($/time unit).
Ci(Pi) UPC ($/unit quantity) which is considered as

Ci(Pi) = rmi + gi

P
δ1i
i

+ η1iP
δ2i
i + η2iP

δ3i
i where, δ1i, δ2i, δ3i > 0 and rmi is the

raw material cost ($) per unit quantity, gi is the total energy costs ($) per unit
time in a production system which is equally distributed over the unit quantity.
So, ( gi

P
δ1i
i

) decreases with increasing Pi. The third term η1iP
δ2i
i is the wear and

tear cost ($), proportional to the positive power of production rate Pi and the
fourth term η2iP

δ3i
i is EPC assuming that cost due to the measures taken for the

environment protection is proportional to a positive power of production rate Pi,
where the power term varies with the nature of production firms.

τi An exponential random variable that depends on Pi and denotes the time
(years) at which the process shifts to the “out-of-control” state. The dis-
tribution function of “out-of-control” state is Gi(τi) = 1 − e−fi(Pi)τi such
that

∫∞
0
dGi(τi) = fi(Pi)

∫∞
0
e−fi(Pi)τidτi = 1. The exponential distribu-

tion has often been used to describe the elapsed time to failure of many
components of the machinery system.

1
fi(Pi)

The mean and standard deviation of the random variable τi . Here, fi(Pi)
is an increasing function of Pi and the mean time of failure, 1/fi(Pi) is a
decreasing function of Pi.

λi(t, τi, Pi) Rate of defective units (tons/time unit) produced at time t when the ma-
chine is in the ’out-of-control’ state. Here λi(t, τi, Pi) is defined as
λi(t, τi, Pi) = αiP

βi
i (t − τi)γi . Where βi ≥ 0,γi ≥ 0 and t ≥ τi. Gener-

ally speaking, the percentage of defective units increases with increase of
production rate and production-run time. The formulation of the function
λi(t, τi, Pi) shows that it is an increasing function of production rate and
production-run time simultaneously.

θi Percentage of rework of defective units.
Ni Defective units in a production cycle (tons)
Qi Expected lot size (tons) without defective units at the end of production

period.
Spi Selling price ($/unit quantity) of ith item which is a mark-up (mi) of UPC

Ci(Pi). i.e., Spi = miCi(Pi).
Di The demand rate of independent item (tons/time unit), one part of it is con-

stant and other is advertisement cost and selling price dependent. Gener-
ally, demand of an item is proportional to advertisement cost and inversely
proportional to selling price. Thus we consider it as: Di = u1i+u2i

(Cai)
µ1i

(Spi)µ2i
,

where u1i ≥ 0, u2i ≥ 0, µ1i ≥ 0 and 0 ≤ µ2i ≤ 1.
Fi(D1, .., Dn) Demand rate of ith item for complementary or substitute items (tons/time unit)
ATFi(Pi, t1i) Average expected total profit for ith item ($/time unit).
B Available maximum budget ($).
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Figure 4.1: Inventory versus time for ith item.

4.2.2 Mathematical Model Formulation
In this production process for the ith item, production starts with a rate Pi at time t=0 and runs
up to time t = t1i. The inventory piles up, during the time interval [0, t1i] adjusting demand
Fi(D1, D2, ..., Dn) in the market and the production process stocks good quality Qi units at
time t = t1i and this stock is depleted satisfying the demand in the market and it reaches at
zero level at time Ti (cf. Fig. 4.1). The production system produces perfect quality up to a
certain time τi (i.e., in-control state), after the lapse of this certain time the production system
shifts to an “out-of-control” state. In this “out-of-control” state, some of the produced units
are of non-conforming quality (i.e., defective units) and some of these defective units are
reworked immediately when they are produced. The rest units are disposed at a cost. Thus
governing differential equations for the ith item of this model are:

dqi(t)

dt
=


Pi − Fi, 0 ≤ t ≤ τi
Pi − Fi − (1− θi)λiPi, τi ≤ t ≤ t1i
−Fi, t1i ≤ t ≤ Ti

(4.1)

with the boundary conditions
qi(t) = 0, at t = 0
qi(t) = qi(τi), at t = τi
qi(t) = 0, at t = Ti

The solutions of the above differential equation are :

qi(t) =


(Pi − Fi)t, 0 ≤ t ≤ τi

(Pi − Fi)t− (1−θi)αiP
βi+1
i

(γi+1)
(t− τi)γi+1, τi ≤ t ≤ t1i,

Fi(Ti − t), t1i ≤ t ≤ Ti

(4.2)

129



CHAPTER 4. INVENTORY PROBLEMS ON COMPLEMENTARY AND
SUBSTITUTE PRODUCTS IN RANDOM ENVIRONMENT

The total defective units during [τi, t1i] are

Ni = Pi

∫ t1i

τi

αiP
βi
i (t− τi)γidt =

αi
γi + 1

P βi+1
i (t1i − τi)γi+1 (4.3)

Therefore, the total expected defective units in a production lot size are

E(Ni) =

∫ ∞
0

Nid

(
Gi(τi)

)
=

αi
γi + 1

P βi+1
i

∫ t1i

0

(t1i − τi)γi+1d

(
1− e−fi(Pi)τi

)
=

αi
γi + 1

P βi+1
i fi(Pi)e

−fi(Pi)t1i
∫ t1i

0

(t1i − τi)γi+1efi(Pi)(t1i−τi)dτi

=
αi

γi + 1
P βi+1
i fi(Pi)e

−fi(P )t1iψi(Pi, t1i) (4.4)

where, ψi =
tγi+2
1i

γi + 2
+
fi(Pi)t

γi+3
1i

1!(γi + 3)
+

[fi(Pi)]
2tγi+4

1i

2!(γi + 4)
+ · · · =

∞∑
j=1

[fi(Pi)]
j−1tγi+j+1

1i

(j − 1)!(γi + j + 1)

(4.5)

Now at time t = t1i the expected production lot size without defective units are

Qi = E[q(t1i)] =

∫ ∞
0

qi(t1i)d

(
Gi(τi)

)
= (Pi − Fi)t1i

∫ ∞
0

d

(
Gi(τi)

)
− (1− θi)αiP βi+1

i

(γi + 1)
fi(Pi)e

−fi(Pi)t1i
∫ t1i

0

(t1i − τi)γi+1efi(Pi)(t1i−τi)dτi

= (Pi − Fi)t1i −
(1− θi)αiP βi+1

i

(γi + 1)
fi(Pi)e

−fi(Pi)t1iψi(Pi, t1i)

= (Pi − Fi)t1i − (1− θi)E(Ni) (4.6)

Again from the equation (4.2) we get,

Qi = Fi(Ti − t1i)
or,(Pi − Fi)t1i − (1− θi)E(Ni) = Fi(Ti − t1i)

or,Ti =
1

Fi
[Pit1i − (1− θi)E(Ni)] (4.7)

Now during the period (0, t1i) the inventory which are to be hold are

Qh1i =

∫ t1i

0

qi(t)dt

=

∫ τi

0

(Pi − Fi)tdt+

∫ t1i

τi

[(Pi − Fi)t−
(1− θi)αiP βi+1

i

(γi + 1)
(t− τi)γi+1]dt

=
Pi − Fi

2
t21i −

(1− θi)αiP βi+1
i

(γi + 1)(γi + 2)
(t1i − τi)γi+2
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During the period (0, t1i) the expected inventory which are to be hold are

E[Qh1i] =

∫ ∞
0

Qh1id

(
Gi(τi)

)
=

∫ ∞
0

[
Pi − Fi

2
t21i]d

(
Gi(τi)

)
−(1− θi)αiP βi+1

i

(γi + 1)(γi + 2)

∫ t1i

0

(t1i − τi)γi+2d

(
1− e−fi(Pi)τi

)
=
Pi − Fi

2
t21i −

(1− θi)αifi(Pi)P βi+1
i e−fi(Pi)t1i

(γi + 1)(γi + 2)

∫ t1i

0

(t1i − τi)γi+2efi(Pi)(t1i−τi)dτi

=
Pi − Fi

2
t21i −

(1− θi)αifi(Pi)P βi+1
i e−fi(Pi)t1i

(γi + 1)(γi + 2)
ξi(Pi, t1i) (4.8)

where ξi(Pi, t1i) are given by the equations as

ξi(Pi, t1i) =
tγi+3
1i

(γi + 3)
+
fi(Pi)t

γi+4
1i

1!(γi + 4)
+

[fi(Pi)]
2tγi+5

1i

2!(γi + 5)
+ · · · =

∞∑
r=1

[fi(Pi)]
r−1tγi+r+2

1i

(r − 1)!(γi + r + 2)

During the period (t1i, Ti) the inventory which are to be hold are

Qh2i =

∫ Ti

t1i

qi(t)dt =

∫ Ti

t1i

Fi(Ti − t)dt =
Fi
2

(Ti − t1i)2 (4.9)

Therefore, during the period (0, Ti) the total expected holding units are,

E[Qhi] = E[Qh1i] +Qh2i (4.10)
where E[Qh1i] andQh2i are given by the Eqs. (4.8) and (4.9) respectively.

In a cycle (0, Ti), for ith item the expected total cost = Expected holding cost + Rework
cost + Disposal cost + Set-up cost + Production cost + Advertisement cost.

i.e.TCi(Pi, t1i) = ChiE(Qhi) + θiCriE(Ni) + (1− θi)CdiE(Ni) + Csi

+ Ci(Pi)Pit1i + CaiTi

= Chi

[
Pi − Fi

2
t21i −

(1− θi)αifi(Pi)P βi+1
i e−fi(Pi)t1i

(γi + 1)(γi + 2)
ξi(Pi, t1i) +

Fi
2

(Ti − t1i)2

]
+ [θiCri + (1− θi)Cdi]

αi
γi + 1

P βi+1
i fi(Pi)e

−fi(P )t1iψi(Pi, t1i)

+ Cs0i + Cs1iP
ρi
i + [rmi +

gi

P δ1i
i

+ η1iP
δ2i
i + η2iP

δ3i
i ]Pit1i + CaiTi (4.11)

In a cycle (0, Ti) the expected average total cost for ith item is

ATCi(Pi, t1i) =
TCi(Pi, t1i)

Ti
, where Ti is obtained by Eq. (4.7)

and the expected average total selling revenue for ith item is FiSpi. Thus the average
expected total profit for ith item is

ATFi(Pi, t1i) = FiSpi − ATCi(Pi, t1i) (4.12)
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Chance constraints for “out-of-control” state

In this production system, it is expected to have total production time greater than the time
of occurrence of “out-of-control” state. This requirement acts as a constraint and expressed
here as a chance constraint. Hence, the chance constraint is

Prob
(
t1i − τi ≥ εi

)
≥ ri (4.13)

where t1i ≥ 0 and ri ∈ (0, 1) is a specified permissible probability.

Here mi

(
= 1

fi(Pi)

)
and σi

(
= 1

fi(Pi)

)
are the mean and standard deviation of the

exponential random variable τi. Then the constraint can be written as
Prob( τi−mi

σi
≤ t1i−εi−mi

σi
) ≥ ri

where τi−mi
σi

is a random normal variate. Considering zi, where
∫ zi

0
φi(t)dt = ri, φi(t),

being the standard normal density function, we have

t1i − εi −mi

σi
≥ zi

or, t1i ≥
1

fi(Pi)
[1 + zi] + εi (4.14)

where zi is obtained from the normal distribution table for a particular value of ri.

Budget Constraint

For this multi-item imperfect production system, we take a pre-assigned budget B such that

n∑
i=1

Ci(Pi)Pit1i ≤ B (4.15)

Optimization Problem

Therefore, the problem for n number of multi-items inventory model is finally reduced to the
maximization of expected average total profit subject to the chance constraints (4.14) and
budget constraint (4.15). Hence the problem is reduced to

Max
n∑
i=1

ATFi(Pi, t1i)

s.t. t1i ≥
1

fi(Pi)
[1 + zi] + εi, for all i=1,2,3,.....,n.

and,
n∑
i=1

ci(Pi)Pit1i ≤ B (4.16)

132



4.2. MODEL-4.1 : EPL MODELS FOR COMPLEMENTARY AND SUBSTITUTE
ITEMS UNDER IMPERFECT PRODUCTION PROCESS WITH PROMOTIONAL

COST AND SELLING PRICE DEPENDENT DEMANDS

Model 4.1A: Complementary items

In the case of complementary items, the demand of an item is marginally increased by other.
Hence, the demands of the ith complementary item is

Fi(D1, D2, ...., Dn) = Di +
n∑

j=1,j 6=i

kjDj,

where, kj’s are dependency levels and 0 ≤ kj < 1 for all j.

Model 4.1A1: Model for complementary items with linearly production dependent
quality.

In this formulation, the inverse of mean (= standard deviation ) of the elapsed time to
failure increases linearly with the production rate. i.e., fi(Pi) = ai + biPi, where ai , bi ≥ 0.

Model 4.1A2: Model for complementary items with non-linearly production
dependent quality.

In this case, the inverse of mean (= standard deviation ) of the elapsed time to failure
depends quadratically with the production rate. i.e., fi(Pi) = ai + biP

2
i , where ai , bi ≥ 0.

Model 4.1B: Substitute items

In the case of substitute items, original demand of an item decreases and at same time, it
gets some additional customers due to other substitute items. Thus, the demands of the ith

substitute item can be expressed as

Fi(D1, D2, ...., Dn) = kiDi +
n∑

j=1,j 6=i

(1− kj)Dj,

where kj’s are dependency levels and 0.5 < kj < 1 for all j.

As in earlier cases, Model-4.1B1 and Model-4.1B2 are formulated with fi(Pi) = ai+biPi
and fi(Pi) = ai + biP

2
i respectively.

4.2.3 Particular Cases
Model 4.1C: Items are independent to each other

In this case, the demand of the ith item is not influenced by the other items and as a result,

Fi(D1, D2, ...., Dn) = Di.

As before, Model-4.1C1 and Model-4.1C2 are developed with fi(Pi) = ai + biPi and
fi(Pi) = ai + biP

2
i respectively.
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Model 4.1D: ( Single item Model)

In this case, there is no budget constraint and i=1. As usual, models Model-4.1D1 and
Model-4.1D2 are formulated with the appropriate form of fi(Pi).

4.2.4 Solution Methodology
The above non-linear optimization problems of Models 4.1A1, 4.1A2, 4.1B1, 4.1B2, 4.1C1,
4.1C2, 4.1D1 and 4.1D2 are solved by a gradient based non-linear optimization method-
GRG method (cf. Lasdon et al. [136] using LINGO Solver 11.0 for particular sets of data.

4.2.5 Numerical Experiments and Results
Experiment-1: For multi-item
Input Data: Let n=2. We illustrate the above inventory models (4.1A, 4.1B and 4.1C)
numerically, for two complementary, substitute and independent items. Here the data for the
parameters are taken in appropriate units as mentioned in § 4.2.1. Let available maximum
budget is B=5000. The unit production costs for these two items are considered as:
C1(P1) = 25 + 100

P1
+ 0.10P1 + 0.10P

1/2
1 and C2(P2) = 20 + 90

P2
+ 0.07P2 + 0.09P

1/2
2 .

The input data for two types of production dependent quality is taken as:
fi(Pi) = 1.25 + 0.0001Pi for i=1, 2 when quality is linearly production dependent and
fi(Pi) = 1.25 + 0.00004P 2

i for i=1, 2 when quality is non-linearly production dependent.
The other relevant input data are given in Table 4.4. For the above different models, the
demand functions Fi(D1, D2) (for i=1,2) are shown in Table 4.5, where
D1 = u11 + u21

(Ca1)µ11

(Sp1)µ21
and D2 = u12 + u22

(Ca2)µ12

(Sp2)µ22
and the values of k1 and k2 for

complementary (Model 4.1A) and substitute (Model 4.1B) items are considered as
prescribed in Table 4.6. Here, all the parameters are presented in appropriate units.

Table 4.4: Input Data for Models 4.1A, 4.1B and 4.1C

i αi βi γi zi εi θi Chi Cdi Cri Cs0i Cs1i Cai u1i u2i µ1i µ2i mi

1 0.25 0.25 1.5 0.5 0.10 0.75 3.0 2.0 8.0 550 0.5 120 20 4.75 0.25 0.30 2.50
2 0.25 0.30 1.5 0.5 0.10 0.25 2.0 2.0 6.0 500 0.5 100 15 4.50 0.25 0.20 2.25

Optimal Results: With the above parameters and expressions, the above Models 4.1A1,
4.1A2, 4.1B1, 4.1B2, 4.1C1 and 4.1C2 are formulated and optimized using LINGO 11.0
solver. The corresponding optimum values of production rate (P ∗i ), production run time
(t∗1i) for maximum profit (ATF ∗) and the related cycle time (T ∗i ), demand
(F ∗i (D1, D2, ....Dn)), total expected defective units (E(N∗i )), inventory level of good units
(Q∗i ), instant of defective production ( 1

f∗i (P ∗i )
), average selling price (ASP ∗i ), average total

cost (ATC∗i ) and average total profit (ATF ∗i ) are evaluated and presented in Table 4.7.
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Table 4.5: Demand function for proposed models

Models Demand functions
Model4.1A F1 = D1 + k2D2 and F2 = D2 + k1D1

Model4.1B F1 = k1D1 + (1− k2)D2 and F2 = k2D2 + (1− k1)D1

Model4.1C F1 = D1 and F2 = D2

Table 4.6: Dependency levels of items

Items values of (k1 , k2)
Complementary (0.20 , 0.25)

Substitute (0.80 , 0.75) and (0.70 , 0.80)

Table 4.7: Optimal results for multi-item models

Models i P ∗i t∗1i T ∗i
1

f∗i (P ∗i )
F ∗i Q∗i E(N∗i ) ATC∗i ASP ∗i ATF ∗i ATF ∗

Complementary items: with k1= 0.20 and k2= 0.25
1 69.4 1.29 2.94 0.79 29.5 48.5 12.6 1466 2520 10544.1A1
2 56.8 1.29 2.47 0.79 26.1 30.6 12.0 1142 1542 400

1454

1 86.7 1.07 3.06 0.64 29.4 58.5 10.4 1507 2629 11224.1A2
2 54.0 1.20 2.41 0.73 26.1 26.5 09.4 1143 1534 391

1513

Substitute items: with k1= 0.80 and k2= 0.75
1 70.2 1.29 3.56 0.79 24.6 55.7 12.8 1268 2111 8434.1B1
2 55.7 1.29 3.04 0.79 20.8 36.3 11.7 943 1225 282

1125

1 89.7 1.05 3.73 0.64 24.6 66.0 10.6 1308 2214 9064.1B2
2 50.8 1.20 2.63 0.74 20.8 29.6 8.8 945 1215 270

1176

Substitute items: with k1= 0.70 and k2= 0.80
1 62.6 1.29 3.70 0.79 21.2 50.9 11.1 1111 1780 6694.1B1
2 65.8 1.29 3.06 0.79 24.3 42.8 14.6 1076 1458 382

1051

1 50.8 1.21 2.81 0.74 21.2 34.0 7.2 1107 1733 6264.1B2
2 103.5 0.99 3.82 0.60 24.2 68.5 13.8 1105 1580 475

1101

Independent items:
1 69.0 1.29 3.56 0.79 24.1 55.0 12.5 1245 2063 8184.1C1
2 57.3 1.29 3.05 0.79 21.3 37.5 12.2 962 1258 296

1114

1 86.5 1.06 3.72 0.64 24.0 64.0 10.4 1279 2151 8724.1C2
2 54.3 1.19 2.72 0.73 21.3 32.5 9.4 962 1252 290

1162

The non-linear UPCs with respect to production rate are also evaluated for each item for
Model 4.1A1 and their values are plotted in Fig. 4.2 and optimum results are presented in
Table 4.8. These unit costs are separately minimized and their optimum values are compared
with the corresponding values of the whole model, which maximizes the average total profit
(cf. Table 4.8).

It is believed that minimum production cost fetches the maximum profit. But, from the
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Table 4.8: Produced units for minimum UPC and maximum ATP

Minimization of UPC Maximization of ATP
Model Item i Ci(Pi) Pi Ci(Pi) Pi

1 31.88 30.0 34.21 69.44.1A1
2 25.55 34.0 26.24 56.8

Figure 4.2: Production rate versus UPC for different items.

Table 4.8 and Fig. 4.2, it is seen that the production rates for which the production costs are
minimum, are not the same for maximum average profit.
Experiment-2: For single item

Consider the proposed EPL models 4.1D1 and 4.1D2 with following input parameters in
appropriate units as mentioned in § 4.2.1.

α1 = 0.25, β1 = 01.00, γ1 = 1.5, z1 = 0.75, ε = 0.10, θ1 = 0.75, u11 = 20, u21 = 10,
µ11 = 0.25, µ21 = 0.25, Ch1 = 3.0, Cs01 = 200, Cs11 = 0.50, Cd1 = 2.0, Cr1 = 8.0, Ca1 =
120.0,m1 = 1.45, C1(P1) = 25+ 100

P1
+0.10P1+0.10P

1/2
1 and f1(P1) = 1.25+0.0001P1 and

f1(P) = 1.25 + 0.00004P 2
1 respectively for Model 4.1D1 and 4.1D2. Demands expressions

are same as Experiment-1.
For these inputs the expected average total profits for Model 4.1D1 are plotted in Fig. 4.3

against the different values of t11 and P1.

4.2.6 Discussion

• Table 4.7 reveals that profits of the models with non-linear production quality (i.e., Model
4.1A2, 4.1B2 and 4.1C2) are greater than those of the models with linear production
dependent quality (i.e., Model 4.1A1, 4.1B1 and 4.1C1). Moreover, among the linear and
non-linear production dependent quality models, the models 4.1A1 and 4.1A2 give the
highest profit respectively. This is because, in complementary item models, demand of an
item increases by the influence of the other.
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On the other hand, in the substitute item models, the demand of an item is altered by the
influence of the corresponding substitute item and in that process, the resulting demand of
each item may be more or less than the individual item’s demand depending upon the
values of dependency levels (k1, k2). In Table 4.7, for two sets of values of k1 and k2,
optimal profits are given. In one case, the profit is more and in other case, it is less than the
corresponding profit for independent items i.e. when the demand of an item is not
influenced by the other.
• It is to be noted that the mean-time ( 1

f∗i (P ∗i )
) of occurrence of out-of-control state is less

than the production run time for all models. This is a necessary condition for the models.
But it is not observed in the earlier works presented by Sana [227] and Khouja and
Mehrez [127] because they did not impose the condition 1

f∗i (P ∗i )
≤ t∗1 through a constraint.

• From Fig. 4.3, it is seen that the optimal expected average profit for the model 4.1D1(i.e.,
for 1st item only ) is concave in nature as per the expectation. It is similar for the second
item also.

Figure 4.3: ATF1 for a single item w. r. to Production rate P1 and production run-time t11.

4.2.7 Sensitivity Analysis
The changes in the values of system parameters can take place due to uncertainties and
dynamic market conditions in a production-inventory system. In order to examine the
implications of these changes in the values of parameters, the sensitivity analysis is of great
help in a decision-making process. Using the result of Model 4.1A1 and Model 4.1B1 the
sensitivity analyses due to the changes in the parameters k1 and k2 have been carried out.
Here the changes of optimal average expected total profit (∆ATF ∗) is evaluated in
percentages with respect to optimal results of Model 4.1A1 and Model 4.1B1 and depicted
in Figs. 4.4 and 4.5 for the changes of k1 and k2 respectively. The behaviour of the above
parameters for other models are almost same. Here the change (in %) of an optimal value
(suppose for ATF ∗) is defined as ∆ATF ∗ = 100 × [(ATF ∗old − ATF ∗new)/ATF ∗old]%,
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Figure 4.4: Change in % of ATF with re-
spect to changes of k1 and k2 (in %) for
complementary items.

Figure 4.5: Change in % of ATF with re-
spect to changes k1 and k2 (in %) for sub-
stitute items.

where ATF ∗old is the optimal result obtained from Model 4.1A1 or Model 4.1B1 and
ATF ∗new is the new optimal result obtained after changing the corresponding parameter (in
%) for the same models. From the sensitivity analyses the following observations are
made.:
• For complementary items, the expected average total profit ATF is directly proportional to
the level of dependencies (i.e., k1 or k2) of demand of other item. In this case demand of an
item is increased by the demand of other.
• For substitute items, the expected total profit for both items may be increased or
decreased for different pair set of dependency levels.

4.3 Model-4.2 : Quality and pricing decisions for
substitutable items under imperfect production
process over a random planning horizon2

4.3.1 Assumptions and Notations

The following notations are used for ith product to develop the proposed models:
Decision variables:
mi Number of cycles in a planning horizon
Mi Mark-up for a perfect unit
Pi Production rate in units per unit time
qi Level of quality of a product, βi ≤ qi ≤ 1 where βi is the minimum quality

level of ith product, which manufacturer intends to maintain

2This model has been accepted for publication in Hacettepe Journal of Mathematics and Statistics,
Hacettepe University, Y. 2016
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Parameters:
H̄ The length of the finite planning horizon which is random with a normal

distribution (mh, σh)
Ti Cycle time in appropriate unit
τi Time (measured from the commencement of production), at which defec-

tive unit production begins. i.e., the beginning time of the “out-of-control”
state

chi Holding cost per unit per unit time
cdi Price of disposal for an imperfect unit
cri Cost to rework an imperfect unit
λi Constant production rate of defective units per unit production. The ma-

chine produces imperfect units at this rate when the machinery system is
in “out-of-control” state

θi Percentage of rework of defective units
rmi Cost of raw materials required to produce an unit
di0 Market based original / prime demand, not taking effects of its own and

substitute product’s prices and qualities
di1, di2 Measures of responsiveness of each product’s consumer demand to its own

price and competitor’s price respectively
di3, di4 Measures of responsiveness of each product’s consumer demand to its own

quality and competitor’s quality respectively
Dependent variables:
Ii(t) Inventory level at time t
ti Production run-time in one cycle
Ci(Pi, qi)UPC
Csij The set up cost for jth cycle
Cmij The maintenance cost for jth cycle
Ni Defective units in a production cycle
si Selling price per unit perfect product. It is mark-up of raw material cost.

i.e., si = Mirmi
Di Resultant demand in the market. This is the demand of a product after

taking influence of prices and qualities of its own and substitute product
Qi Total inventory unit for a single production

HCi, PCi, RCi, SCi, MCi and TCi are the total holding, production, reworking, set-up,
maintenance and relevant total costs during (0, H̄) respectively.
PSRi, DSRi, TSRi and TPi are the sales revenue for perfect units, sales revenue for
imperfect units which are not reworked, total sales revenue and total profit during (0, H̄)
respectively.
dspi(= di1 − di2), dsqi(= di4 − di3) are proportional to Inverse Of Degree Of
Substitutability (IODOS) due to price and quality respectively.
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Dpi(= −di1si + di2sj), Dqi(= di3qi − di4qj), where j = 1, 2, j 6= i are amount of
substitution demand rates due to price and quality. Here the above variables and parameters
are taken in appropriate units.

The following assumptions are used to develop the proposed models:

(i) Multi-product imperfect production inventory models are considered. Products are
substitutable depending on their prices and qualities jointly or either of these two. Here
prices and qualities are assumed to be independent to each other.

(ii) Finite time planning horizon (random) is considered.

(iii) Production rate is finite and taken as a DV.

(iv) Lead time is zero and no shortages are allowed.

(v) The inventory system considers price and quality dependent demand rate.

(vi) The production process shifts from “In-control” state to “Out-of-control” state after a
certain time. Imperfect units are produced at a constant rate per unit production in the
“Out-of-control” state only.

(vii) There is immediate partially reworking for the defective units at a cost and the defective
units which are not reworked, are sold at a lower price.

(viii) UPC is dependent on raw material, labour and quality improvement cost and one part
of it is also spent for environment protection.

(ix) A maintenance cost is considered for the production system of each product to bring
back the system to its initial condition by some maintenance operations (these may be
mechanical, electrical, technical, replacement of parts, etc.) during the each time gap
between the end of production and beginning of next production.

(x) “Fully substitution” means the loss of customers for a product is equal to the gain of its
competitor product.

(xi) The sum of resultant demands of all substitutable products after substitution does not
exceed the total market based (i.e. prime) demands of the products.

(xii) For any type of multi-product substitution, there is either loss of customers or fully
substitution (i.e. no loss of sales) for the system if and only if the sum of resultant
demands is either strictly less or equal to the total market based demand respectively.

(xiii) During substitution, demand of a product is more or equally sensitive to the changes
due to its own price than the changes due to its competitor’s price.
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(xiv) During substitution, loss of customers of product -1 due to its own price is more or
equal than the gain of customers of product-2 due to the price of product-1.

(xv) During substitution, demand of a product is less or equally sensitive to the changes due
to its own quality than the changes due to its competitor’s quality.

(xvi) During substitution, loss of customers of product -1 due to its own quality is more or
equal than the gain of customers of product -2 due to the quality of product -1.

4.3.2 Demands based on price dependent substitution
In the case of only price dependent substitutable products, original demand of a product
decreases for the increase of its own price and at the same time, it gets some additional
customers due to its competitor’s price. Thus, the resultant demands of the two substitutable
merchandises can be expressed as

Di(si, sj) = di0 − di1si + di2sj , i, j = 1, 2, j 6= i.
where Di is the Resultant Demand (RD) for ith product at price si given that the price

of the other product j is sj . Here, the range of selling price of ith product is assumed as
rmi ≤ si ≤ di0/di1.

i.e. D1(s1, s2) = d10 − d11s1 + d12s2, rm1 ≤ s1 ≤ d10/d11,

D2(s2, s1) = d20 − d21s2 + d22s1, rm2 ≤ s2 ≤ d20/d21. (4.17)

where di0s (> 0), i=1, 2; represent the market based prime demand of product i.
di1, di2 (> 0), i=1, 2; denote the measures of the responsiveness of each product’s
consumer demand to its own price and to its competitor’s price respectively. These
parameters di0, di1 and di2 are mutually independent and non negative. According to
assumptions (xiii) and (xiv), they satisfied the conditions d11 ≥ d12, d21 ≥ d22, d11 ≥ d22

and d21 ≥ d12. The difference d11 − d12(= dsp1) is inversely related to the degree of
substitutability (IODOS) of the 1st product with respect to the 2nd product. If this
difference is smaller, then the product-1 is more substitutable with the 2nd product. i.e.
product-1 is less differentiable. Hence the price of the product is higher. Same is true for
the 2nd product with the difference d21 − d22(= dsp2).

The ranges of limit of selling prices of ith merchandise are determined on the basis of two
realistic requirements- (i) It should be more than the raw material cost per unit product and
(ii) less than di0

di1
as loss of customers due to ith product’s price should be less than or equal

to its original demand (di0 − di1si ≥ 0).

Proposition 4.1. For two products substitutable under price with demands (4.17), there is
loss of sales (i.e. customers) or no loss in the system if and only if

s1(d11 − d22) + s2(d21 − d12) > 0 or = 0 respectively. (4.18)
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Proof. Necessary part: Let us assume that for any two substitutable products, only loss of
sales or fully substitution case can arise. Therefore, from assumption (xii) we have,

Sum of resultant demands ≤ Total market based demand.

i.e., D1 +D2 ≤ d10 + d20

or, d10 − d11s1 + d12s2 + d20 − d21s2 + d22s1 ≤ d10 + d20

or, s1(d11 − d22) + s2(d21 − d12) ≥ 0.

Therefore, the necessary part is complete.
Sufficient part: Let s1(d11 − d22) + s2(d21 − d12) ≥ 0.

Sum of resultant demands = D1 +D2

= d10 − d11s1 + d12s2 + d20 − d21s2 + d22s1

= d10 + d20 − [s1(d11 − d22) + s2(d21 − d12)]

≤ d10 + d20, since s1(d11 − d22) + s2(d21 − d12) ≥ 0.

i.e., Sum of resultant demands ≤ Total market based demand.

Thus it is concluded that s1(d11 − d22) + s2(d21 − d12) ≥ 0 is the condition to be satisfied
for the above assumption. Thus the sufficient part is complete.

Hence the Proposition.

Possible relations amongst the responsivenesses:

Under the restrictions (4.18), the possible relations amongst the measures of
responsivenesses due to product’s prices are:

Case− 1P :d11 ≥ d22 and d21 ≥ d12

Case− 2P :d11 ≥ d22 and d21 < d12 satisfying (4.18).
Case− 3P :d11 < d22 and d21 ≤ d12 satisfying (4.18)

Here the cases -2P and -3P are not feasible due to assumption (xiv). Dissecting the case
-1P, we have

case -1P1: d11 > d22 and d21 > d12 case -1P3: d11 = d22 and d21 > d12

case -1P2: d11 > d22 and d21 = d12 case -1P4: d11 = d22 and d21 = d12.

Again, satisfying the assumptions (xiii) and (xiv), we dissect the cases -1P1, -1P2, -1P3
and -1P4 and presented in Table 4.9.

4.3.3 Demands based on quality dependent substitution
In the case of only quality dependent substitution, demand of an product increases due to
increase of its own quality and at same time, it looses some customers due to its competitor’s
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Table 4.9: Relations amongst the responsivenesses due to prices

Cases Subcases Relations Subcases Relations

1P1 :

1P11: d11 > d21 > d12 > d22

1P12: d11 > d21 > d12 = d22

1P13: d11 > d21 > d22 > d12

1P14: d11 = d21 > d12 > d22

1P15: d11 = d21 > d12 = d22

1P16: d11 = d21 > d22 > d12

1P17: d21 > d11 > d12 > d22

1P18: d21 > d11 > d12 = d22

1P19: d21 > d11 > d22 > d12

1P110: d11 > d22 = d21 > d12

1P111: d21 > d11 = d12 > d22

1P2 :
1P21: d11 = d21 = d12 > d22

1P22: d11 > d21 = d12 > d22

1P23: d11 > d21 = d12 = d22

1P3 :
1P31: d21 = d11 = d22 > d12

1P32: d21 > d11 = d22 > d12

1P33: d21 > d11 = d22 = d12

1P4 : 1P41: d11 = d12 = d21 = d22

quality. Thus, the RD functions for the two substitutable products are expressed as

D1(q1, q2) = d10 + d13q1 − d14q2,

D2(q2, q1) = d20 + d23q2 − d24q1; βi ≤ qi ≤ 1 for i = 1, 2. (4.19)

where di3, di4 (> 0), i=1, 2; denote the measures of the responsiveness of each product’s
consumer demand to its own quality and to its competitor’s quality respectively. These
parameters di0, di3 and di4 are mutually independent and non negative. According to
assumptions (xv) and (xvi), they satisfied the conditions d13 ≤ d14 , d23 ≤ d24, d13 ≤ d24

and d23 ≤ d14. The difference d14 − d13(= dsq1) is inversely related to the degree of
substitutability (IODOS) of the 1st product with the 2nd product. If this difference is
smaller, the the product -1 is more substitutable with the 2nd product. i.e. product -1 is less
differentiable. Same is true for the 2nd product with the difference d24 − d23(= dsq2). Here
it is assumed that qualities q1 and q2 lies within [βi, 1.0].

Proposition 4.2. For two substitutable products under quality with demands (4.19), there is
loss of sales (i.e. customers) or no loss in the system if and only if

q1(d13 − d24) + q2(d23 − d14) < 0 or = 0 respectively. (4.20)

Proof. Proceeding as Proposition 4.1, this proposition can be proved.

Possible relations amongst the responsivenesses:

Under the restrictions (4.20), the possible relations amongst measures of responsiveness due
to product’s qualities are:
case -1q: d13 ≤ d24 and d23 ≤ d14 case -3q: d13 > d24 and d23 ≤ d14

case -2q: d13 ≤ d24 and d23 > d14 .
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Table 4.10: Relations amongst the responsivenesses due to qualities

Cases Subcases Relations Subcases Relations

1q1 :

1q11: d14 > d24 > d13 > d23

1q12: d14 > d24 > d13 = d23

1q13: d14 > d24 > d23 > d13

1q14: d14 = d24 > d13 > d23

1q15: d14 = d24 > d13 = d23

1q16: d14 = d24 > d23 > d13

1q17: d24 > d14 > d13 > d23

1q18: d24 > d14 > d13 = d23

1q19: d24 > d14 > d23 > d13

1q110: d14 > d23 = d24 > d13

1q111: d24 > d14 = d13 > d23

1q2 :
1q21: d14 = d24 = d13 > d23

1q22: d14 > d24 = d13 > d23

1q23: d14 > d24 = d13 = d23

1q3 :
1q31: d24 = d14 = d23 > d13

1q32: d24 > d14 = d23 > d13

1q33: d24 > d14 = d23 = d13

1q4 : 1q41: d14 = d13 = d24 = d23

Here the cases -2q and -3q are not feasible due to assumption (xvi). Dissecting the case
-1q, we have
case -1q1: d13 < d24 and d23 < d14 case -1q3: d13 < d24 and d23 = d14

case -1q2: d13 = d24 and d23 < d14 case -1q4: d13 = d24 and d23 = d14.
Again, dissecting the case -1q1, -1q2, -1q3 and -1q4 satisfying the assumptions (xv) and

(xvi), we present the sub-cases in Table 4.10.

4.3.4 Demands based on both price and quality dependent substitution
Here, we assume that price and quality of a product are independent to each other. Then,
in the case of both price and quality dependent substitutable items, the original demand of
an item is downward slopping in its own price and at same time, it gets some additional
customers due to its competitor’s price. It is reversed with respect to quality e.g. increases
in its own quality and decreases for other’s quality. Thus, RDs of the substitutable items on
joint effect of price and quality can be expressed as

D1(s1, s2, q1, q2) = d10 − d11s1 + d12s2 + d13q1 − d14q2,

D2(s1, s2, q1, q2) = d20 − d21s2 + d22s1 + d23q2 − d24q1 (4.21)

with rmi ≤ si ≤
di0
di1

and βi ≤ qi ≤ 1.

where di0, di1, di2, di3, di4 for i=1, 2 have the meanings as earlier. These parameters are
mutually independent.

Proposition 4.3. For two substitutable products under both price and quality with demands
(4.21), there is loss of sales (i.e. customers) or no loss in the system if and only if

[−s1(d11 − d22)− s2(d21 − d12) + q1(d13 − d24) + q2(d23 − d14)] < 0 or = 0 (4.22)
respectively.
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Table 4.11: Relations amongst the responsivenesses due to prices and qualities (case-A)

Cases Relations Cases Relations
A1: d11 > d21 > d12 > d22 and d14 > d24 > d13 > d23
A2: d11 > d21 > d12 > d22 and d14 > d24 > d23 > d13
A3: d11 > d21 > d12 > d22 and d24 > d14 > d13 > d23
A4: d11 > d21 > d12 > d22 and d24 > d14 > d23 > d13
A5: d11 = d21 > d12 > d22 and d14 = d24 > d13 > d23
A6: d11 = d21 > d12 > d22 and d14 = d24 > d23 > d13
A7: d11 = d21 > d22 > d12 and d14 > d24 > d13 > d23
A8: d11 = d21 > d12 > d22 and d24 > d14 > d23 > d13
A9: d11 > d21 > d12 > d22 and d14 = d24 > d23 > d13

A10: d11 > d21 > d12 > d22 and d14 = d24 > d13 > d23

A11: d11 > d21 > d12 > d22 and d14 = d24 = d23 > d13
A12: d11 > d21 > d12 > d22 and d14 = d24 = d13 > d23
A13: d21 = d11 = d22 > d12 and d14 > d24 > d13 > d23
A14: d11 = d21 = d12 > d22 and d14 > d24 > d13 > d23
A15: d21 = d11 = d22 > d12 and d14 = d24 > d13 > d23
A16: d11 = d21 = d12 > d22 and d14 = d24 > d13 > d23
A17: d11 = d21 > d12 > d22 and d14 = d24 = d23 > d13
A18: d11 = d21 > d22 > d12 and d14 = d24 = d23 > d13
A19: d21 = d11 = d22 > d12 and d14 = d24 = d23 > d13
A20: d11 = d21 = d12 > d22 and d14 = d24 = d23 > d13

Table 4.12: Relations amongst the responsivenesses due to prices and qualities (case-B)

Cases Relations Cases Relations
B1: d11 > d21 > d22 > d12 and d23 = d24 > d13 > d14
B2: d11 > d21 > d22 > d12 and d13 > d24 = d14 > d23
B3: d11 > d21 > d22 > d12 and d13 > d23 > d24 > d14
B4: d11 = d12 > d21 > d22 and d24 > d14 = d13 > d23
B5: d11 = d12 > d21 > d22 and d23 = d24 > d13 > d14
B6: d11 = d12 > d21 > d22 and d13 > d24 = d14 > d23
B7: d11 = d12 > d21 > d22 and d13 > d23 > d24 > d14

B8: d22 > d11 > d21 > d12 and d24 > d14 = d13 > d23
B9: d22 > d11 > d21 > d12 and d23 = d24 > d13 > d14
B10: d22 > d11 > d21 > d12 and d13 > d24 = d14 > d23
B11: d22 > d11 > d21 > d12 and d13 > d23 > d24 > d14
B12: d22 > d11 = d12 > d21 and d24 > d14 = d13 > d23
B13: d22 > d11 = d12 > d21 and d23 = d24 > d13 > d14
B14: d22 > d11 = d12 > d21 and d13 > d24 = d14 > d23

Proof. The proof is similar as Propositions 4.1 and 4.2.

Possible relations amongst the responsiveness:
Possible relations amongst measures of responsivenesses due to both prices and qualities

satisfying the condition (4.35) are:
Case-A : Let us assume that the effects in the changes of the demands due to prices and
qualities are independent. In this case, dijs (i=1,2; j=1,2,3,4) satisfy the Proposition 4.3 and
assumptions (xiii) to (xvi) together. Dissecting this case we have 324 cases combining the
cases of prices and qualities dependent substitution. Some of these cases are followed in
Table-4.11.

Case-B : Here, the effects in the changes of the demands due to prices and qualities are not
independent. i.e. the effect of changes of demand due to price (quality) may influence the
changes of demand due to quality (price). These cases are observed in reality due to the
joint effect of prices and qualities on the demand substitutions but they do not satisfy all the
Proposition 4.3 and assumptions (xiii) to (xvi) at a time. Some of these cases are given in
Table 4.12.

4.3.5 Mathematical Model Development
In this investigation, an imperfect EPL model for ith item is assumed over a finite random
planning horizon of length H̄ in which time mi number of full cycles are completed. In this
production process, for jth cycle, the production starts with a rate Pi at time t = (j − 1)Ti
and runs up to time t = (j − 1)Ti + ti. The system produces perfect quality units up to
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a certain time (j − 1)Ti + τi (i.e., in-control state), after that, the production system shifts
to an “out-of-control” state [(j − 1)Ti + τi, (j − 1)Ti + ti]. In this “out-of-control” state,
some of the produced units are of non-conforming quality (i.e., defective units) and some
of these defective units are reworked immediately. The inventory piles up, during the time
interval [(j− 1)Ti, (j− 1)Ti + ti] adjusting demand Di in the market and the production and
reworking processes produce perfect productQi units upto time t = (j−1)Ti+ ti, i.e., when
the system stops the production. The stock at t = (j − 1)Ti + ti is depleted satisfying the
demand Di in the market and it reaches zero level at time jTi (cf. Fig. 4.6). After the end of
one production run, we assume that the machinery system is maintained against a cost and
brought back to its original good condition before the next production.

Figure 4.6: Inventory versus time for ith item.

For the multi-item imperfect production process with different demand functions, the
governing differential equations for the jth cycle of ith (i=1,2) item are:

dIi(t)

dt
=


Pi −Di, (j − 1)Ti ≤ t ≤ (j − 1)Ti + τi
Pi −Di − (1− θi)λiPi, (j − 1)Ti + τi ≤ t ≤ (j − 1)Ti + ti
−Di, (j − 1)Ti + ti ≤ t ≤ jTi

(4.23)

with the boundary conditions{
Ii(t) = 0, at t = (j − 1)Ti
Ii(t) = 0, at t = jTi

The solutions of the above differential equations are :

Ii(t) =


(Pi −Di){t− (j − 1)Ti}, (j − 1)Ti ≤ t ≤ (j − 1)Ti + τi
(Pi −Di){t− (j − 1)Ti}
−(1− θi)λiPi{t− (j − 1)Ti − τi}, (j − 1)Ti + τi ≤ t ≤ (j − 1)Ti + ti,
Di(jTi − t, ) (j − 1)Ti + ti ≤ t ≤ jTi

where ti = DiTi−(1−θi)λiPiτi
Pi{1−(1−θi)λi} and Qi = Piti − (1− θi)λiPi(ti − τi)
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Holding cost

The total holding cost in the time horizon H is HCi =
∑mi

j=1 chi(Ih1i + Ih2i + Ih3i) where,

Ih1i =

∫ (j−1)Ti+τi

(j−1)Ti

Ii(t)dt =

∫ (j−1)Ti+τi

(j−1)Ti

(Pi −Di){t− (j − 1)Ti}dt =
Pi −Di

2
τ 2
i .

Ih2i =

∫ (j−1)Ti+ti

(j−1)Ti+τi

Ii(t)dt

=

∫ (j−1)Ti+ti

(j−1)Ti+τi

[(Pi −Di){t− (j − 1)Ti} − (1− θi)λiPi{t− (j − 1)Ti − τi}]dt

=
Pi −Di

2
(t2i − τ 2

i )− (1− θi)λiPi
2

(ti − τi)2.

Ih3i =

∫ jTi

(j−1)Ti+ti

Ii(t)dt =

∫ jTi

(j−1)Ti+ti

Di(jTi − t, )dt =
Di

2
(Ti − ti)2.

Rework cost

The total rework cost (RCi) in the time horizon H is RCi =
∑mi

j=1 criθiNi, where Ni are
the defective units during [(j − 1)Ti + τi, (j − 1)Ti + ti] for i=1,2 and expressed as

Ni =

∫ (j−1)Ti+ti

(j−1)Ti+τi

λiPidt = λiPi(ti − τi).

Production cost

UPC is considered for ith item (i=1,2) as

Ci(Pi, qi) = rmi +
g1i

Pi
+

g2iqi
1− aiqi

+ g3iP
1
2
i ,

where rmi is the raw material cost per unit item, g1i is the total labour/energy costs per unit
time in a production system which is equally distributed over the unit item. So,( gi

Pi
) decreases

with increases of Pi. The third term g2iqi
1−aiqi is quality improvement cost, proportional to the

positive power of quality of a product and the fourth term g3iP
1
2
i is EPC assuming that the

cost due to the measures taken for the environment protection is proportional to square root
of production rate Pi, where the power term varies with the nature of production firms.

Therefore, the total production cost for ith item is

PCi =

mi∑
j=1

Ci(Pi, qi)Piti.
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Setup cost

Some researchers [41, 53, 196] considered the learning effect modelling into the set up cost
in different forms. Here, the set up cost for jth cycle (j = 1, 2, ...,mi) of ith item (i=1,2)
is partly constant and partly decreases in each cycle due to learning effect of the employees
and is of the form: Csij = Cs0i +Cs1ie

−jci , where ci > 0. Therefore total set up cost for mi

number of cycle is

SCi =

mi∑
j=1

Csij = miCs0i + Cs1i
1− e−mici
eci − 1

.

Maintenance cost

Maintenance cost for the machinery system is used to bring the system to its original
position after the end of each production. In Tarakci et al. [250], a manufacturer contracts
to an external contractor who is responsible for scheduling and performing preventive
maintenance and carrying out minimal repairs when the process fails. Here, learning occurs
in both cost and time of preventive maintenance. For the first cycle no maintenance is
required, but for the next cycles on wards, it is increased in each cycle due to the reuse of
the system for several times. Maintenance cost for jth cycle of the ith item is taken as:
Cmij = Cm0i[1− e−(j−1)c′i ], where c′i > 0. Therefore total maintenance cost for mi number
of cycle is

MCi =

mi∑
j=1

Cmij = Cm0i[mi −
1− e−mic′i
1− e−c′i

].

Total Relevant Model cost

As a result, the total model cost = Holding cost + Rework cost + Production cost + Set-up
cost + Maintenance cost.

i.e.TCi = HCi +RCi + PCi + SCi +MCi. (4.24)

Total Sale Revenue

Revenue for perfect units: Total sales revenue of perfect products for mi number of cycles
is

PSRi =

mi∑
j=1

si

∫ jTi

(j−1)Ti

Didt =

mi∑
j=1

siDiTi,

where, si = Mirmi is the selling price of each product which is mark-up of raw material cost
rmi
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Sales Revenue for imperfect units: The defective products which are not to be reworked is
disposed by a lower price and total sales revenue for mi number of cycles is

DSRi =
∑mi

j=1 cdi(1− θi)Ni, where cdi = xisi, 0 < xi < 1.
Therefore, total sales revenue for this model is

TSRi = PSRi +DSRi. (4.25)

Total Profit

Total profit during the whole planning horizon for ith item is

TPi = TSRi − TCi =
∑mi

j=1Mirmi[DiTi + xi(1− θi)λiPi(ti − τi)]
−
∑mi

j=1 chi[
Pi−Di

2 t2i −
(1−θi)λiPi

2 (ti − τi)2 + Di
2 (Ti − ti)2]−

∑mi
j=1 criθiλiPi(ti − τi)

−
∑mi

j=1[rmi + g1i
Pi

+ g2iqi
1−aiqi + g3iP

1
2
i ]Piti − [miCs0i + Cs1i

1−e−mici
eci−1 ]− Cm0i[mi − 1−e−mic

′
i

1−e−c
′
i

]

(4.26)

4.3.6 Model Constraints
Chance Constraint for Random Time Horizon

For the random time horizon, we consider two constraints as H̄ ≥ miTi for i=1, 2. In this
consideration, constraints are expressed as Chance constraints which are

Pr(H̄ ≥ miTi) ≥ r, for i=1, 2; where r ∈ (0, 1) is a specified probability.
or, miTi ≤ mh + σhΦ

−1(1− r), for i=1, 2 (cf. Rao, [213]) (4.27)

where mh and σh are the expectation and standard deviation of normally distributed
random variable H̄ respectively and Φ−1(x) denotes inverse function of standard normal
distribution of standard normal variate H̄−mh

σh
.

Demand function Constraints

In reality, the consumer demandsDi(si, qi) are non negative. Sum of RDs of all substitutable
items under any type substitution does not exceed the total market based demand of those
items. Thus,

Di(si, qi) > 0, for i = 1, 2;

and
∑2

i=1Di(si, qi) ≤ d10 + d20.
(4.28)

Ranges of mark-up and quality

According to Yao and Wu [281], we have ranges of the best prices for i=1, 2 as

rmi ≤ si ≤ di0/di1 or, rmi ≤Mirmi ≤ di0/di1 or, 1 ≤Mi ≤
di0

di1rmi
(4.29)
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From our earlier assumption, we take the ranges of quality as

βi ≤ qi ≤ 1 for i=1, 2 (4.30)

4.3.7 Optimization Problems
Model 4.2A

Considering the demand is measured only on selling price, the problem for multi-items
inventory model is finally reduced to the maximization of total profit subject to Chance
constraints on the Random Time Horizon and Demand constraints. Hence the problem is
reduced to {

Maximize Z1 =
∑2

i=1 TPi(m1,m2,M1,M2, P1, P2)
with constraints (4.27), (4.28) and (4.29).

(4.31)

where Di(si) is given by the equation (4.17) and

TPi = TSRi − TCi =
∑mi

j=1 Mirmi[DiTi + xi(1− θi)λiPi(ti − τi)]
−
∑mi

j=1 chi[
Pi−Di

2
t2i −

(1−θi)λiPi
2

(ti − τi)2 + Di
2

(Ti − ti)2]−
∑mi

j=1 criθiλiPi(ti − τi)
−
∑mi

j=1[rmi + g1i
Pi

+ g3iP
1
2
i ]Piti − [miCs0i + Cs1i

1−e−mici
eci−1

]− Cm0i[mi − 1−e−mic
′
i

1−e−c
′
i

]

(4.32)

Model 4.2B

Similarly, considering the demand is measured only on quality, the problem is reduced to{
Maximize Z2 =

∑2
i=1 TPi(m1,m2, P1, P2, q1, q2)

with constraints (4.27), (4.28) and (4.30).
(4.33)

Di(qi) and TPi are given by the equations (4.19) and (4.26) respectively.

Model 4.2C

Considering the demand is measured on the joint effect of selling price and quality, the
problem for multi-items inventory model is finally reduced to{

Maximize Z3 =
∑2

i=1 TPi(m1,m2,M1,M2, P1, P2, q1, q2)
with constraints (4.27), (4.28), (4.29) and (4.30).

(4.34)

where Di(si, qi) and TPi are given by the equations (4.21) and (4.26) respectively.

4.3.8 Solution Methodology
To solve above maximization problems, we have applied the Fuzzy Age based Genetic
Algorithm (FAGA) as described in § 2.2.3.2.
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4.3.9 Numerical Experiments and Results

Input Data: We consider the proposed EPL models(Model 4.2A, 4.2B and 4.2C) with
following inputs parameters in appropriate units:
mh = 25, σh = 2.0, r = 0.70;
Cs01 = 1000, Cs11 = 200, c1 = 0.70, Cm01 = 210, c′1 = 0.75, ch1 = 1.80, cr1 = 2.50,
θ1 = 0.75, λ1 = 0.35, x1 = 0.50, τ1 = 0.75, d10 = 55, β1 = 0.50;
Cs02 = 1150, Cs12 = 225, c2 = 0.75, Cm02 = 220, c′2 = 0.80, ch2 = 1.75, cr2 = 2.75,
θ2 = 0.70, λ2 = 0.30, x2 = 0.45, τ2 = 0.80, d20 = 60, β2 = 0.50 for Models 4.2A, 4.2B
and 4.2C.
C1(P1, q1) = 20 + 450

P1
+ 8.00q1

1−0.50q1
+ 0.20P

1
2

1 , C2(P2, q2) = 22 + 460
P2

+ 8.50q2
1−0.55q2

+ 0.18P
1
2

2 for

Models 4.2B and 4.2C and C1(P1) = 20 + 450
P1

+ 0.20P
1
2

1 , C2(P2) = 22 + 460
P2

+ 0.18P
1
2

2 for
Model 4.2A. The bounds of DVs Mi and qi are considered using constraints (4.29) and
(4.30) and the bounds of other DVs are considered as Pi ∈ [50, 250] and mi ∈ [1, 8].
Optimum results: With the above parameters and expressions, the Models 4.2A, 4.2B and
4.2C are formulated and optimized using FAGA. The corresponding ith item’s optimum
values - number of cycles (m∗i ), Mark-ups (Mi), production rates (P ∗i ), qualities (qi), selling
prices s∗i per unit perfect product, amount of substitution demand rates due to price (Dp∗i =
−di1s∗i +di2s

∗
3−i) and quality (Dq∗i = di3q

∗
i −di4q∗3−i), resultant demand (Di) and production

run time (t∗i ), defective units (N∗i ), total produced good inventories (Q∗i ) for each production
cycle and maximum total profit (Z∗1 , Z∗2 and Z∗3 ) for whole time horizon are evaluated for the
different set values of di1, di2, di3 and di4 which are satisfied the assumptions (xiii) to (xvi)
and Propositions 4.1 to 4.3. For every set of these parameter, we treat it as a case of the
corresponding model. The obtained results are presented in Tables 4.13, 4.14, 4.15, 4.16,
4.17, 4.18 and 4.19.

4.3.10 Discussion

Effect of IODOSs (with respect to price) on profit for Model 4.2A

(i) We perform some experiments with Model 4.2A in which substitutability occurs due
price only and the results with different marks-up for the sale of the items are presented
in Table 4.13. Here, the different mark-ups for the products -1 and -2 are bounded
by the expression (4.29) i.e. 1 ≤ Mi ≤ di0/(di1rmi), i=1,2. As di0 and rmi are
constants, mark-up changes with di1, i=1,2, i.e. the measure of responsiveness of the
products to their own prices. Here, the responsivenesses have been assumed to be
less than 1 (i.e. 0 < di1 < 1) and therefore, smaller the resposiveness, larger the
mark-up. The optimum mark-ups change the respective prices and as a consequence,
alter the demands, production rates and finally the maximum profits. Here, for the
cases -1P17, -1P18, -1P111, -1P32 and -1P33, mark-ups are almost same. Similarly,
cases -1P11 and -1P12 have nearly same mark-up. Comparing these two cases, the
IODOS of the 2nd product is reduced from 0.25 to 0.20 where IODOS of 1st product
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Table 4.13: Results (optimum quantities) for Model 4.2A with different mark-ups

Responsiveness IODOS Optimum results
Case d11 d12 dsp1 m∗1 M∗1 P ∗1 s∗1 Dp∗1 D∗1 t∗1 N∗1 Q∗1

d21 d22 dsp2 m∗2 M∗2 P ∗2
Z∗1 s∗2 Dp∗2 D∗2 t∗2 N∗2 Q∗2

0.50 0.25 0.25 3 5.50 120 110 -22 33 2.32 66 2611P11
0.45 0.20 0.25 2 5.94 121

110382
131 -37 23 2.46 60 279

0.50 0.25 0.25 3 5.49 118 110 -22 33 2.40 68 2671P12
0.45 0.25 0.20 3 6.05 125

123869
133 -32 28 1.86 40 220

0.50 0.15 0.35 3 5.26 133 105 -35 20 1.26 24 1611P13
0.45 0.20 0.25 3 5.38 136

86029
118 -32 28 1.72 38 223

0.50 0.25 0.25 3 5.50 122 110 -25 30 2.05 55 2361P14
0.50 0.20 0.30 3 5.37 137

96429
118 -37 23 1.39 24 184

0.50 0.25 0.25 3 5.49 124 110 -25 30 2.06 57 2411P15
0.50 0.25 0.25 3 5.45 135

108216
120 -33 27 1.71 37 219

0.50 0.15 0.35 3 5.05 137 101 -35 20 1.23 23 1641P16
0.50 0.20 0.30 3 4.85 147

74920
107 -33 27 1.53 32 215

0.40 0.25 0.15 3 6.85 106 137 -22 33 2.70 72 2681P17
0.45 0.20 0.25 3 6.04 124

146451
133 -32 28 1.87 40 221

0.40 0.25 0.15 3 6.87 104 137 -22 33 2.73 72 2671P18
0.45 0.25 0.20 3 6.05 117

163852
133 -26 34 2.51 60 275

0.40 0.15 0.25 3 6.60 115 132 -34 21 1.57 33 1721P19
0.45 0.20 0.25 3 5.84 127

111396
128 -31 29 1.90 42 229

0.50 0.25 0.25 3 5.49 111 110 -17 38 2.90 83 3001P110
0.40 0.40 0.00 3 6.81 98

192123
150 -16 44 3.87 90 352

0.40 0.40 0.00 1 6.85 59 137 -2 53 23.93 475 12821P111
0.45 0.20 0.25 3 6.05 124

203829
133 -32 28 1.87 40 220

0.50 0.50 0.00 1 5.50 66 110 5 60 23.88 533 14391P21
0.50 0.20 0.30 2 5.45 129

160715
120 -38 22 2.18 53 265

0.50 0.45 0.05 1 5.50 66 110 5 60 23.84 532 14371P22
0.45 0.20 0.25 2 6.06 120

167830
133 -39 22 2.36 56 266

0.50 0.45 0.05 1 5.47 66 109 5 60 23.99 534 14411P23
0.45 0.45 0.00 3 6.04 88

236598
133 -11 49 4.87 107 396

0.50 0.25 0.25 3 5.49 123 110 -25 30 2.06 57 2401P31
0.50 0.50 0.00 1 5.45 61

171945
120 -5 55 23.80 419 1320

0.40 0.25 0.15 3 6.86 111 137 -22 33 2.57 71 2671P32
0.45 0.40 0.05 1 6.05 60

219616
133 -5 55 23.93 419 1319

0.40 0.40 0.00 1 6.87 59 137 -2 53 23.88 475 12811P33
0.45 0.40 0.05 1 6.06 62

276713
133 -5 55 23.12 418 1319

0.50 0.50 0.00 1 5.46 56 109 -4 51 23.90 451 12171P41
0.50 0.50 0.00 1 4.57 72

206095
101 4 64 23.61 490 1543

remains same(i.e. 0.25) and as a consequence, RD of the 2nd product increases from
23 to 28 units whereas the RD of 1st item remains unaltered at 33 units. It can be
seen from the values of d11s1, d12s2, d21s2, d22s1 as (=55, 33, 59, 22) and (=55, 33,
60, 27) for the cases -1P11 and -1P12 respectively that more customers of the 1st
product adapt for the 2nd product i.e. 2nd product is more substitutable. Same
observation can be made from the cases -(1P14 and 1P15) and the cases -(1P17 and
1P18). The opposite observations are observed in cases -(1P32 and 1P33). Here, from
the values of d11s1, d12s2, d21s2, d22s1 as (=55, 33, 60,55) and (=55, 53, 60, 55) for the
cases -1P32 and -1P33 respectively and it can be said as before that the 1st product
is more substitutable. Thus it can be concluded that lower IODOS increase the
corresponding RD and vice versa. i.e. it makes the products more substitutable.
If the mark-ups remain same, lower IODOS fetches more profit. This observation is
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Table 4.14: Results (optimum quantities) for Model 4.2A with same mark-ups in each case

Responsiveness IODOS Optimum results
Case d11 d12 dsp1 m∗1 P ∗1 s∗1 Dp∗1 D∗1 t∗1 N∗1 Q∗1

d21 d22 dsp2 m∗2
M∗

P ∗2
Z∗1 s∗2 Dp∗2 D∗2 t∗2 N∗2 Q∗2

0.50 0.25 0.25 3 122 110 -25 30 2.10 58 2421P11
0.45 0.20 0.25 3

5.50
134

109546
121 -32 28 1.73 37 221

0.50 0.25 0.25 3 122 110 -25 30 2.10 58 2421P12
0.45 0.25 0.20 3

5.50
128

121704
121 -27 33 2.20 53 264

0.50 0.15 0.35 3 132 106 -36 19 1.21 21 1551P13
0.45 0.20 0.25 3

5.32
135

85984
117 -31 29 1.78 40 229

0.50 0.25 0.25 3 123 109 -25 30 2.10 58 2441P14
0.50 0.20 0.30 2

5.45
129

96277
120 -38 22 2.15 52 262

0.50 0.25 0.25 3 123 109 -25 30 2.10 58 2441P15
0.50 0.25 0.25 3

5.45
135

108011
120 -33 27 1.70 36 218

0.50 0.15 0.35 3 139 99 -33 22 1.31 27 1751P16
0.50 0.20 0.30 3

4.94
146

74768
109 -35 25 1.46 29 203

0.40 0.25 0.15 3 100 121 -15 40 3.42 94 3191P17
0.45 0.20 0.25 3

6.06
126

139991
133 -36 24 1.62 31 194

0.40 0.25 0.15 3 101 121 -15 40 3.40 93 3191P18
0.45 0.25 0.20 3

6.06
124

155147
133 -30 30 2.07 47 243

0.40 0.15 0.25 3 119 121 -28 27 1.88 47 2121P19
0.45 0.20 0.25 3

6.05
125

109585
133 -36 24 1.63 31 194

0.50 0.25 0.25 3 123 110 -25 30 2.09 58 2421P110
0.40 0.40 0.00 1

5.49
61

173838
121 -5 55 23.75 420 1321

0.40 0.40 0.00 1 66 121 5 60 23.85 532 14361P111
0.45 0.20 0.25 3

6.05
126

189661
133 -36 24 1.61 31 195

0.50 0.50 0.00 1 67 109 5 60 23.65 537 14511P21
0.50 0.20 0.30 2

5.45
129

159833
120 -38 22 2.16 52 262

0.50 0.45 0.05 1 60 110 -1 54 23.68 484 13071P22
0.45 0.20 0.25 3

5.50
135

161339
121 -32 28 1.72 37 221

0.50 0.45 0.05 1 62 110 -1 54 23.16 484 13071P23
0.45 0.45 0.00 1

5.49
60

225059
121 -5 55 23.98 420 1321

0.50 0.25 0.25 3 124 109 -25 30 2.09 58 2441P31
0.50 0.50 0.00 1

5.45
60

171231
120 -5 55 23.93 416 1309

0.40 0.25 0.15 3 100 121 -15 40 3.41 93 3191P32
0.45 0.40 0.05 1

6.05
54

203436
133 -11 49 23.78 370 1164

0.40 0.40 0.00 1 66 121 5 60 23.95 532 14361P33
0.45 0.40 0.05 1

6.05
55

253083
133 -11 49 23.14 369 1164

0.50 0.50 0.00 1 67 109 5 60 23.66 537 14511P41
0.50 0.50 0.00 1

5.45
60

234912
120 -5 55 23.75 416 1309

also substantiated from the following cases. The cases -1P31 and -1P21 with respective
IODOSs (0.25, 0.00) and (0.00, 0.30) furnish that the RDs of 1st and 2nd products in
the case -1P21 respectively increase and decrease than those of the case -1P31. This
is because the values of Di’s change from 30 to 60 units for the 1st product and from
55 to 22 units for the 2nd product. But when the mark-ups are different in two cases,
it is difficult to predict the behaviour of RDs. This can be seen from the cases -1P15
and -1P19. In these cases, both IODOSs are (0.25, 0.25), but the RDs are different and
as a result, profits are different. This is because, in these cases, mark-ups are different.
From this table, it is also observed that when IODOSs are high, the production rates for
the products are high, but the production times are much small (cases -1P13,-1P14,-
1P15 and -1P16). On the other hand, for the cases with low IODOSs, the product rates
are much small but the production time are very high (cases -1P23, -1P33, -1P41, etc).
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Total defective products are more for the cases with higher profits (cases -1P33, -1P41,
-1P23, etc) and in these cases, salvage amounts contribute more than the rework costs.

(ii) We evaluate the profits of Model 4.2A with the same marks-up for the sale of the
units and the optimum results are presented in Table 4.14. Here, the expression (4.29)
is modified as 1 ≤ M ≤ Min[d10/(d11rm1), d20/(d21rm2)]. The observation made
from Table 4.13 are also true with respect to Table 4.14. In addition it is observed
in this table that lower IODOSs are related to less number of cycles required for the
system. For example, the cases -1P23, -1P33 and -1P41 with corresponding IODOSs
(0.05, 0.00), (0.00, 0.05) and (0.00, 0.00) have the single time cycle for both products.
i.e. m1 = 1 = m2. The cases -1P22, -1P32, -1P110, -1P31, -1P111 and -1P21 with
corresponding IODOSs (0.05, 0.25), (0.15, 0.05), (0.25, 0.00), (0.25, 0.00), (0.00, 0.25)
and (0.00, 0.30)have the cycles for 1st and 2nd products as (1,3), (3, 1), (3, 1), (3, 1),
(1, 3) and (1, 2) respectively. The other cases in Table 4.14 with higher IODOSs are
having no. of cycles as (3, 3) for both products. Though in the cases -1P110 and -
1P31, d22 and d21 are different, their IODOSs are same (0.25, 0.00) and all optimum
parameters are almost same. Here the cases (-1P11, -1P12, -1P14, -1P15, -1P22, -
1P110, -1P23, -1P31, -1P41) with same or almost same mark-ups have the different
optimum parametric values with different IODOSs. Comparing the Tables 4.13 and
4.14, case -1P110 have the same IODOS (0.25, 0.00), but all other results are different
including the cycle numbers as (3, 3) and (3, 1). The Table 4.14 with same mark-up
fetches the lower profits in all cases than the corresponding profits in Table 4.13 with
different mark-ups. The main reasons for this are that the mark-ups in Table 4.14 are
selected following modified (4.29) as mentioned above.

Effect of IODOSs (with respect to quality) on profit for Model 4.2B
For the Model 4.2B, which is developed substitutability due to qualities, some

experiments like Model 4.2A are performed and the optimum results are presented in Table
4.15. Here, mark-ups are same (5.00, 5.00), because mark-ups are related to selling prices
only. For all cases, number of cycles are less, most of the cases are having only one cycle.
With these values of di3, di4, i = 1, 2; profits are more than those in Tables 4.13 and 4.14
except few cases. In all cases, quality level goes down to the lowest value as a cost is
involved for the improvement of quality of the products. This is a part of UPC. Here, losses
of sales are minimum, rates of production are moderate and durations of production are
high in most of all the cases. For the cases -1q22 and -1q32 with IODOSs (5, 10) and (10,
5) respectively, there is a single number of cycle in both cases but the losses of sales due to
qualities are just reversed as expected. All other observations made for the IODOSes with
respect to prices in Tables 4.13 and 4.14 are also true in this case.

Effect of IODOSs (with respect to both prices and qualities) on profits for Model 4.2C
and its comparison with other models
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Table 4.15: Results (optimum quantities) for Model 4.2B with same mark-ups (5.0, 5.0)

Responsiveness IODOS Optimum results
Case d13 d14 dsq1 m∗1 P ∗1 q∗1 Dq∗1 D∗1 t∗1 N∗1 Q∗1

d23 d24 dsq2 m∗2 P ∗2 q∗2
Z∗2 Dq∗2 D∗2 t∗2 N∗2 Q∗2

20 30 10 1 55 0.50 -5 50 23.82 444 11991q11
15 25 10 1 61 0.50

173260
-5 55 23.93 419 1320

20 30 10 1 56 0.50 -5 50 23.40 444 12011q12
20 25 05 1 63 0.50

177847
-3 57 2386 438 1379

10 30 20 3 102 0.50 -10 45 3.82 109 3601q13
15 25 10 1 60 0.50

162794
-5 55 23.95 419 1319

20 30 10 3 83 0.50 -5 50 5.20 130 4001q14
15 30 15 1 58 0.50

166088
-8 52 23.72 400 1259

20 30 10 1 55 0.51 -5 50 23.91 445 12021q15
20 30 10 1 60 0.50

173201
-5 55 23.95 418 1316

10 30 20 3 95 0.50 -10 45 4.10 111 3601q16
15 30 15 1 58 0.50

157471
-8 52 23.64 399 1257

20 30 10 1 55 0.50 -5 50 23.96 445 12021q17
15 35 20 3 100 0.50

161139
-10 50 4.29 105 398

20 30 10 1 55 0.50 -5 50 23.78 444 12001q18
20 35 15 1 58 0.50

168190
-8 52 23.89 400 1259

10 30 20 1 52 0.50 -10 45 22.88 399 10781q19
15 35 20 3 99 0.50

151841
-10 50 4.36 106 400

20 30 10 3 84 0.50 -5 50 5.14 129 4001q110
25 25 00 1 66 0.50

180863
0 60 23.85 457 1440

30 30 00 1 60 0.50 0 55 23.94 489 13211q111
15 35 20 3 99 0.50

170117
-10 50 4.34 105 400

30 30 00 1 60 0.50 0 55 23.88 489 13211q21
15 30 15 3 90 0.50

174700
-8 52 5.02 114 419

25 30 05 1 58 0.50 -2 53 23.90 467 12621q22
15 25 10 1 61 0.50

177396
-5 55 23.50 418 1318

25 30 05 1 57 0.50 -2 53 24.00 467 12611q23
25 25 00 1 66 0.50

187521
0 60 23.86 457 1439

20 30 10 1 55 0.50 -5 50 23.98 443 11961q31
30 30 00 1 66 0.50

183048
0 60 23.99 458 1443

20 30 10 1 55 0.50 -5 50 23.95 445 12011q32
30 35 05 1 64 0.50

177999
-3 57 23.69 438 1379

30 30 00 1 60 0.50 0 55 23.99 486 13131q33
30 35 05 1 64 0.51

186827
-2 58 23.75 441 1387

30 30 00 1 56 0.50 -4 51 23.97 453 12221q41
30 30 00 1 72 0.64

188047
4 64 23.49 488 1538

(i) In Model 4.2C, the substitutability among the items are due to both prices and
qualities. By changing both these parameters, optimum parameters of the Model 4.2C
are evaluated and presented in Table 4.16. Here, it is assumed that the customers who
adopt for substitution on the basis of prices are not influenced by the quality and vice
versa. Due to this assumption, Dp1, Dp2, Dq1 and Dq2 all are not positive and in such
cases, there is loss of sales. Depending on the relations amongst the responsivenesses
due to prices and qualities jointly, there will be in total 324 cases. Here results of
some cases are presented in Table 4.16. In this table, profit of all cases are less than
those of the corresponding cases in Table 4.13 in which only prices have been
considered for substitution. This is because in the combined (both price and quality)
effect on substitution, the effect of quality reduces the profit, whereas in Table 4.13,
this effect is not considered. But, against the profit values in Table 4.15, no conclusion
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can be made as in this case(Table 4.15), mark-ups, instead of being calculated, have
been assumed and taken as 5.00. For this reason, in some cases, profits in Table 4.16
are less than the corresponding profits in Table 4.15 and in few cases (cases -A13,
-A14), it does not hold.

Table 4.16: Results (optimum quantities) for Model 4.2C (case-A)

Responsiveness Optimum results
Case d11 d12 d13 d14 m∗1 M∗

1 P ∗1 q∗1 s∗1 Dp∗1 Dq∗1 D∗1 t∗1 N∗1 Q∗1
d21 d22 d23 d24 m∗2 M∗

2 P ∗2 q∗2
Z∗3 s∗2 Dp∗2 Dq∗2 D∗2 t∗2 N∗2 Q∗2

0.50 0.25 20 30 3 5.49 135 0.50 110 -23 -5 27 1.66 43 214A1
0.45 0.20 15 25 2 5.73 137 0.50

82174
126 -35 -5 20 1.85 43 241

0.50 0.25 10 30 3 5.45 140 0.50 109 -23 -10 22 1.29 26 174A2
0.45 0.20 15 25 2 5.68 137 0.50

73146
125 -34 -5 21 1.89 45 246

0.50 0.25 20 30 3 5.49 137 0.50 110 -25 -5 25 1.55 38 203A3
0.45 0.20 15 35 2 5.49 147 0.50

72018
121 -32 -10 17 1.49 30 210

050 0.25 10 30 3 5.43 139 0.50 109 -24 -10 21 1.24 24 167A4
0.45 0.20 15 35 2 5.50 146 0.50

62973
121 -33 -10 17 1.48 30 207

0.50 0.25 20 30 3 5.46 139 0.50 109 -26 -5 24 1.42 33 189A5
0.50 0.20 15 30 2 5.14 156 0.50

65808
113 -35 -7 18 1.43 29 213

0.50 0.25 10 30 3 5.21 146 0.50 104 -24 -10 21 1.17 21 165A6
0.50 0.20 15 30 2 5.05 158 0.50

56938
111 -35 -7 18 1.40 29 213

0.50 0.15 20 30 2 4.90 150 0.50 98 -34 -5 16 1.36 32 197A7
0.50 0.20 15 25 3 4.67 174 0.50

52315
103 -32 -5 23 1.09 15 186

0.50 0.25 10 30 3 5.11 148 0.50 102 -24 -10 21 1.16 21 166A8
0.50 0.20 15 35 2 4.90 162 0.50

52869
108 -33 -10 17 1.27 23 199

0.50 0.25 10 30 3 5.49 137 0.50 110 -24 -10 21 1.27 25 167A9
0.45 0.20 15 30 2 5.60 144 0.50

68026
123 -34 -7 19 1.66 37 228

0.50 0.25 20 30 3 5.50 136 0.50 110 -24 -5 26 1.60 41 208A10
0.45 0.20 15 30 2 5.64 140 0.50

77108
124 -34 -7 19 1.68 37 224

0.50 0.25 20 30 3 5.48 140 0.50 110 -22 -9 24 1.46 35 196A11
0.45 0.20 30 30 3 6.02 144 0.63

93572
132 -38 4 26 1.52 31 209

0.50 0.25 30 30 2 5.49 135 0.50 110 -24 0 31 1.94 56 247A12
0.45 0.20 15 30 2 5.60 144 0.50

86239
123 -34 -7 19 1.66 37 228

0.50 0.25 20 30 3 5.49 137 0.50 110 -25 -5 25 1.53 37 200A13
0.50 0.50 15 25 3 5.44 96 0.50

136769
120 -5 -5 50 4.48 106 400

0.50 0.50 20 30 1 5.49 61 0.50 110 5 -5 55 23.56 487 1316A14
0.50 0.20 15 25 2 5.43 150 0.50

128684
119 -38 -5 17 1.43 28 206

0.50 0.25 20 30 3 5.50 136 0.50 110 -25 -5 25 1.52 37 198A15
0.50 0.50 15 30 1 5.42 53 0.50

133443
119 -5 -7 48 23.94 365 1149

0.50 0.50 20 30 1 5.49 59 0.50 110 4 -5 54 23.89 480 1295A16
0.50 0.20 15 30 2 5.35 115 0.50

123473
118 -37 -7 16 1.25 21 187

0.50 0.25 20 30 3 5.43 140 0.50 109 -25 -5 25 1.52 38 204A17
0.50 0.20 30 30 3 5.42 149 0.50

79743
119 -38 0 22 1.22 19 177

0.50 0.15 20 30 2 4.98 148 0.50 100 -34 -5 16 1.37 32 196A18
0.50 0.20 30 30 3 4.90 163 0.50

60485
108 -34 0 26 1.32 26 208

0.50 0.25 20 30 3 5.47 140 0.50 109 -25 -5 25 1.50 37 200A19
0.50 0.50 30 30 1 5.41 63 0.50

148763
119 -5 0 55 23.17 420 1325

0.50 0.50 20 30 1 5.49 61 0.50 110 5 -5 55 23.62 487 1315A20
0.50 0.20 30 30 3 5.43 149 0.50

138471
119 -38 0 22 1.23 19 178
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(ii) The customers attracted or buck away due to prices may be attracted by the qualities of
the products also. In this case, some of Dp1, Dp2, Dq1 and Dq2 may be positive. On
the basis of this assumption, optimum results are presented in Table 4.17 taking both
prices and qualities into consideration for substitution. For this reason, in all cases, the
quality levels do not reach to the bottom level of their values (0.50).

Table 4.17: Results (optimum quantities) for Model 4.2C (case-B)

Responsiveness Optimum results
Case d11 d12 d13 d14 m∗1 M∗

1 P ∗1 q∗1 s∗1 Dp∗1 Dq∗1 D∗1 t∗1 N∗1 Q∗1
d21 d22 d23 d24 m∗2 M∗

2 P ∗2 q∗2
Z∗3 s∗2 Dp∗2 Dq∗2 D∗2 t∗2 N∗2 Q∗2

0.50 0.15 20 15 3 5.33 143 0.50 107 -33 -4 18 1.04 15 145B1
0.45 0.20 25 25 3 6.06 148 0.91

87721
133 -39 10 31 1.79 44 252

0.50 0.15 35 20 3 5.50 129 0.87 110 -38 20 37 2.44 76 296B2
0.45 0.20 15 20 3 5.03 163 0.50

91063
111 -28 -10 22 1.13 16 179

0.50 0.15 35 15 3 5.46 132 0.78 109 -35 14 34 2.17 66 271B3
0.45 0.20 25 20 3 6.01 154 0.92

108212
132 -38 7 29 1.62 38 238

Results using Wolfram Mathematica 9.0
3 5.46 133 0.78 109 -35 13 34 2.16 65 270
3 6.02 154 0.92

108198
132 -38 7 29 1.62 38 238

0.50 0.50 20 20 1 5.48 72 0.50 110 11 0 66 23.97 588 1587B4
0.45 0.20 15 25 2 6.00 133 0.50

157470
132 -37 -5 18 1.66 34 211

0.50 0.50 20 15 1 5.49 70 0.50 110 12 -3 64 23.99 568 1533B5
0.45 0.20 25 25 3 6.04 141 0.84

178342
133 -39 9 30 1.84 44 246

0.50 0.50 35 20 1 5.48 84 0.58 110 12 10 77 23.99 682 1841B6
0.45 0.20 15 20 2 6.03 135 0.50

178136
133 -38 -4 18 1.71 37 219

0.50 0.50 35 15 1 5.48 83 0.62 110 11 10 76 23.99 677 1828B7
0.45 0.20 25 20 3 6.03 146 0.80

198014
133 -38 8 30 1.72 40 238

0.50 0.15 20 20 3 5.50 141 0.50 110 -35 0.0 20 1.16 20 159B8
0.45 0.55 15 25 1 6.01 62 0.50

160170
132 1 -5 56 23.70 426 1343

0.50 0.15 20 15 3 5.48 141 0.51 110 -35 0 20 1.17 121 160B9
0.45 0.55 25 25 1 6.05 71 0.70

177995
133 0 5 65 23.98 496 1560

0.50 0.15 35 20 3 5.48 134 0.51 110 -35 8 28 1.75 47 223B10
0.45 0.55 15 20 1 6.06 63 0.51

180587
133 0 -3 57 23.95 440 1385

0.50 0.15 35 15 3 5.44 134 0.55 109 -34 9 30 1.87 53 237B11
0.45 0.55 25 20 1 6.02 72 0.66

196960
132 0 6 66 23.95 502 1580

0.50 0.50 20 20 1 4.79 63 0.96 96 0 0 55 23.13 491 1328B12
0.45 0.55 15 25 1 4.42 63 0.97

133937
97 9.0 -9 60 23.78 455 1432

0.50 0.50 20 15
0.45 0.55 25 25

No Feasible Solution
B13

0.50 0.50 20 15 1 5.33 63 0.98 107 -10 12 57 23.74 510 1376
0.45 0.55 25 35 1 3.96 63 0.50

152543
87 19 -22 57 23.95 439 1383

0.50 0.50 35 20
0.45 0.55 15 20

No Feasible Solution
B14

0.50 0.50 35 35 1 4.93 59 0.50 99 12 -15 52 23.35 463 1250
0.45 0.55 15 20 1 5.58 69 0.93

193061
123 -1 4 63 23.93 479 1510

In case -B3, contribution of qualities to the demand functions for two products are
positive i.e. Dq1 = 14 and Dq2 = 7. This is because of the contributions of prices i.e.
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Dp1 = −35 and Dp2 = −38 (these buck-aways customers due to prices again go back
to the items due to qualities and for that Dq1 = 14, Dq2 = 7 ) and as a result, resultant
demands are D1 = 34, D2 = 29 which are less than the prime demands d10 = 55,
d20 = 60 units. It is interesting to note that in case -B12, the contribution of prices
and qualities are reversed (+9 and -9 due to prices and qualities respectively) and sum
total of both contribution is zero. As a result, the RDs are equal to the prime / base
demands (55 and 60 units). In this case, qualities are almost equal to 1. In the cases
-B4, -B5, -B6, -B7, -B9 and -B11, one of the RDs is more than the corresponding base
demand but the sum total of RDs is less than that of base demands of two products.
This condition holds good due to assumption -(xi). Due to this assumption, for some
values of dij, i = 1, 2; j = 1, 2, 3, 4, there is no feasible solution for same cases (-B13
and -B14).

Comparison of optimum results by two methods

Optimum results of the system for different cases with different parametric values have been
evaluated by the proposed Genetic Algorithm (cf. Table 4.17). To verify the results, the
problem given by case-B3 of the Model 4.2C have been solved by Wolfram Mathematica
9.0 (Random Search Method) and the results are presented in Table 4.17. It is seen that the
proposed GA gives better result than the Mathematica.

Effect of learning parameter on Model 4.2C (case-B3)

To evaluate the effect of learning parameter introduced in the set-up and maintenance costs,
we took the most general Model 4.2C. The Model 4.2C was evaluated with and without
learning effects in the above costs and the optimum results are presented in Table 4.18. It is
observed that as expected, profits are less in all cases without learning effects.

Table 4.18: Results without learning effect for Model 4.2C (case-B3)

Responsiveness Optimum results
Case d11 d12 d13 d14 m∗1 M∗

1 P ∗1 q∗1 s∗1 Dp∗1 Dq∗1 D∗1 t∗1 N∗1 Q∗1
d21 d22 d23 d24 m∗2 M∗

2 P ∗2 q∗2
Z∗3 s∗2 Dp∗2 Dq∗2 D∗2 t∗2 N∗2 Q∗2

Results without learning effect on set-up cost
0.50 0.15 35 15 3 5.48 1323 0.78 110 -35 14 34 2.17 66 270B3
0.45 0.20 25 20 3 6.01 156 0.91

107448
132 -38 7 29 1.59 37 237

Results without learning effect on maintenance cost
3 5.49 128 0.80 110 -35 15 35 2.28 68 278
3 5.94 154 0.91

107635
131 -37 7 30 1.62 38 238

Results without learning effect on both set-up and maintenance cost
3 5.49 131 0.79 110 -35 14 34 2.20 67 272
3 6.00 155 0.91

106762
132 -38 7 29 1.60 37 236
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Table 4.19: Results of Model 4.2C (case-B3) without pm reduction

Responsiveness Optimum results
pm d11 d12 d13 d14 m∗1 M∗

1 P ∗1 q∗1 s∗1 Dp∗1 Dq∗1 D∗1 t∗1 N∗1 Q∗1
d21 d22 d23 d24 m∗2 M∗

2 P ∗2 q∗2
Z∗3 s∗2 Dp∗2 Dq∗2 D∗2 t∗2 N∗2 Q∗2

0.50 0.15 35 15 3 5.44 125 0.78 109 -35 14 34 2.31 68 2730.90
0.45 0.20 25 20 3 5.92 168 0.89

107884
130 -37 7 30 1.48 34 239

0.50 0.15 35 15 3 5.48 116 0.78 110 -35 14 34 2.46 70 2690.70
0.45 0.20 25 20 3 5.92 188 0.89

108149
130 -37 7 30 1.32 3 240

0.50 0.15 35 15 3 5.48 136 0.78 110 -35 14 34 2.10 64 2690.50
0.45 0.20 25 20 3 5.92 169 0.92

108186
130 -37 7 30 1.48 34 240

0.50 0.15 35 15 3 5.48 119 0.80 110 -35 15 35 2.44 71 2740.30
0.45 0.20 25 20 3 5.90 156 0.89

108164
130 -37 6 29 1.60 37 238

0.50 0.15 35 15 3 5.48 121 0.80 110 -35 15 35 2.42 70 2740.10
0.45 0.20 25 20 3 5.91 149 0.89

108152
130 -37 6 29 1.67 39 238

Effect of pm reduction on optimum profit for Model 4.2C in case B3

It is difficult to choose the system parameters of a GA. Normally, probability of mutation for
a problem is assumed to be low (≤ 0.50). We performed the optimization of the case-B3 of
Model 4.2C with different values pm from 0.90 to 0.10 (cf. Table 4.19). It is seen that as pm
reduces from 0.90 to 0.10 by 0.20, the optimum value of Z3 (objective) increases initially
and becomes maximum at pm = 0.50 and then decreases. Thus the optimum value of pm
for the present model is 0.50. It may be noted that the optimum results are obtained with
a particular value of pm throughout the optimization of the system. But, in our proposed
GA, the value of pm has been reduced at each iteration of the execution of the optimization
process from 0.90 to 0.01 and it yields better result (cf. Table 4.17) than the result obtained
with fixed pm (cf. Table 4.19).

Pictorial representations of optimum results for Model 4.2C

(i) Considering the case-B3 from Table 4.17 of the Model 4.2C, optimum profit
Z∗3 = 108212 units is obtained for m∗1 = 3, m∗2 = 3, M∗

1 = 5.46, M∗
2 = 6.01,

P ∗1 = 132, P ∗2 = 154, q∗1 = 0.78 and q∗2 = 0.92. Taking number of cycles as variable
and others by their optimum values, the total profit for the Model 4.2C is plotted in
Fig.4.7 against the different values of m1 and m2. In the similar fashion Fig. 4.8 is
plotted against the mark-ups (M1, M2) of two products. In this figure, it is noted that
global optimum values (Z∗1 =112341, M∗

1 =6.44, M∗
2 =6.46 ) lie on Feasible

Unconstrained Solution Space(FUSS) but within Feasible Constrained Solution
Space(FCSS) region Z∗1 =108212 units is the local optimum for M∗

1 =5.46,M∗
2 =6.01.

Figs. 4.9 and 4.10 are plotted for the total profit against production rates (P1, P2) and
quality levels (q1, q2) as variables and others as constant by their optimum values
respectively. These figures show that the objective function is concave.
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Figure 4.7: Total profit against the num-
ber of cycles.

Figure 4.8: Total profit against the Mark-
ups.

Figure 4.9: Total profit against the Pro-
duction Rates.

Figure 4.10: Total profit against the
Quality levels.

Figure 4.11: UPC against the production
rate and quality level of a product.

Figure 4.12: UPC against the quality
level of a product.

(ii) Fig. 4.11 is obtained by plotting the UPC C1(P1, q1) = 20 + 450
P1

+ 8.00q1
1−0.50q1

+ 0.20P
1
2

1

against the different values of production rate and quality of product-1. This UPC is a
convex function against production rate only (cf. Figs. 4.13 and 4.14).
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(iii) Fig. 4.12 represents UPC C1(q1) = 20+ 450
P1

+ 8.00q1
1−0.50q1

+0.20
√
P1 against the quality of

product-1 when production rate P1 = 272. This figure suggests that UPC is increasing
function with respect to quality.

Figure 4.13: UPC including quality im-
provement cost against production rate.

Figure 4.14: UPC without quality im-
provement cost against production rate.

(iv) Fig. 4.13 and Fig. 4.14 represent the UPC against the production rate with and without
quality improvement cost in the UPC respectively. HereC1(P1) = 20+ 450

P1
+ 8.00∗q1

1−0.50∗q1 +

0.20P
1
2

1 (taking q1 = 0.90) for Fig. 4.13 and C1(P1) = 20+ 450
P1

+0.20P
1
2

1 for Fig. 4.14
are considered. In these figures, UPC is a convex function with respect to production
rate. C1(P ∗1 ) have the minimum values 38.04 and 24.95 at P ∗1 = 272 for the above
two cases respectively. Though normally it is assumed that minimum value of UPC
(C1(P1)) leads to maximum profit, in this case, the above value of P ∗1 is not equal to the
corresponding optimal values obtained by optimizing total profits. (example-P ∗1 = 129
for the case -B2 in Table 4.17).

4.3.11 Practical Implication

In a sugar mill where two types of sugar- good quality sugar and low quality sugar are
produced or in the rice mills where two types of rice- fine quality and raw quality rices
are produced, the products are substitutable and the customers (i.e. retailers) very often
change the brand on the basis of prices and qualities. This analysis will be helpful for the
production managers of the said mills to fix the optimum prices, qualities, production rates,
etc for maximum profit. The responsiveness parameters (d11, d12, d13, d14, d21, d22, d23, d24)
to prices and qualities can be obtained from the experts or may be calculated from past data.
The present problem can also be applied for the managers of big departmental stores like
Big Bazar, Pentaloons, etc, where several substitutable products are sold. In these stores
also, customers of one brand very often change over to other brand. Here, the replenishment
may be considered as procurements/ productions with infinite rate.
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4.4 Model-4.3 : Optimum ordering for two substitute items
in a news-vendor management with promotional effort
on demand using Rough Age based Genetic Algorithm3

4.4.1 Assumptions and Notations
The models are formulated with the help of following assumptions.

(i) Demands of the items are assumed to be uniform and random.

(ii) Shortages are allowed

(iii) Promotional effort does not affect the basic demand but affects the effort-induced
demand.

(iv) Items are substitutable. Substitution are made only when a item is exhausted and other
excessed.

(v) Selling price of substitutable items is lower than the normal selling price.

The models are formulated with the help of following notations.
i A subscript identifying item’s index (i=1, 2).
Qi Order quantity (units/cycle) (DV).
Pi Purchasing cost per unit item ($/unit).
ξiDi Random continuous demand which follows uniform distribution. Here, Di is

the base demand (units/cycle) and ξi ≥ 1 is the promotional effort (unit/effort)
(DV). The expected effort induced demand is E[ξiDi].

Si Selling price per unit item ($/unit).
Ssi Selling price per unit item for substitution ($/unit).
Sci Shortage cost per unit item ($/unit).
Hi Holding cost per unit item per unit time ($/unit/time unit).
Ti Time when inventory reaches to zero (time unit).
T Inventory cycle time for both items (time unit).
Pc Purchasing cost of the items ($).
Pm Promotional cost ($).
B1 Budget amount on purchasing cost ($).
B2 Budget amount on promotional cost ($).
B Total budget amount on both purchasing and promotional cost ($).
PF

(Rk)
j Profit function of jth scenario in the Rk region ($).

EPF Expected total profit ($).

3This model has been communicated in International Journal of Industrial Engineering-Theory, Appli-
cation and Practice, Univ. Cincinnati Industrial Engineering
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4.4.2 Mathematical Model Development
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Figure 4.15: Eight regions giving rise to the total expected profit function.

Let the ordered quantity for ith item beQi. Then total purchasing cost is Pc = P1Q1+P2Q2

and promotional cost is Pm = M1(ξ1 − 1)2Dα1
1 +M2(ξ2 − 1)2Dα2

2 where, Mi > 0 and αi’s
are constants. A higher value of Mi or αi means a greater difficulty in attracting customers.
This cost is convex in promotional effort ξi, by which the basic demand Di is enhanced.

The derivation of the profit function is based on considering the six possible events in
eight regions R1-R8 depicted in Fig. 4.15. In the first of three regions R1-R3, the system
is with excess quantity and in the last five regions R4-R8, the system is under shortage. i.e.
Q1 +Q2− (ξ1D1 + ξ2D2) > 0 and < 0 respectively. In these regions, the possible mutually
exclusive six events are described as follows:

R1 : Demands for both items are less than their stock levels, (ξiDi < Qi, for i = 1, 2) .

R2 : Demand for item 1 exceeds its inventory level and the excess demand can be fully
satisfied by item 2, (ξ1D1 > Q1, ξ2D2 < Q2, Q1 +Q2 − (ξ1D1 + ξ2D2) > 0).

R3 : Demand for item 2 exceeds its inventory level and the excess demand can be fully
satisfied by item 1, (ξ1D1 < Q1, ξ2D2 > Q2, Q1 +Q2 − (ξ1D1 + ξ2D2) > 0).

R4 &R5 : Demand for item 1 exceeds its inventory level but the excess demand can only be
partially satisfied by item 2, (ξ1D1 > Q1, ξ2D2 < Q2, Q1 +Q2− (ξ1D1 + ξ2D2) < 0).

R6 &R7 : Demand for item 2 exceeds its inventory level but the excess demand can only be
partially satisfied by item 1, (ξ1D1 < Q1, ξ2D2 > Q2, Q1 +Q2− (ξ1D1 + ξ2D2) < 0).

R8 : Demands for both items are greater than their inventory levels (ξiDi > Qi, for i =
1, 2).
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There will be six scenarios for six different events depicted in Figs. 4.16 - 4.19. Profit
function for all scenarios are obtained subtracting cost price from selling price, where sales
process includes the normal and substitution salvage sale and cost price appear due to the
purchasing and holding of the items and promotional effort. The purchasing cost of retailers
is the sale’s proceeds of the wholesaler and promotional cost is spent by retailer due to more
sale of the items. According to our assumption, the six different events/scenarios (depicted
in Figs. 4.16, 4.17, 4.18 and 4.19) are observed in the above described eight regions. These
six events are mutually exclusive. The profit function obtained for these different scenarios
are as follows:

Scenario 1: In the region R1={ξ1D1 < Q1, ξ2D2 < Q2} both the items are in excess and
the excess units are lost, i.e. retailer does not get any sales revenue for these excess units (cf.
Fig. 4.16). In this case, the profit function is

PF
(R1)
1 = S1ξ1D1 + S2ξ2D2 −

H1

2
(2Q1 − ξ1D1)T − H2

2
(2Q2 − ξ2D2)T − Pc − Pm

= (S1 +
H1

2
T )ξ1D1 + (S2 +

H2

2
T )ξ2D2 − (H1Q1T +H2Q2T + Pc + Pm)

(4.35)

[See the Appendix A.1 for details calculation.]
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Figure 4.16: Scenario-1 : The system is excess for both item.

Scenario 2: In the region R2={ξ1D1 > Q1, ξ2D2 < Q2 and Q2 − ξ2D2 > ξ1D1 −Q1}, the
excess units of item 2 is sufficient to fill up shortages of the item 1 and after fulfilling the
shortages at substitution price, the rest excess units of item 2 are considered as lost sale (cf.
Fig. 4.17). Therefore, profit function in this case is

PF
(R2)
2 = S1Q1 + S2ξ2D2 + Ss2(ξ1D1 −Q1)− H1Q

2
1

2ξ1D1

T − H2

2
(2Q2 − ξ2D2)T
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+
H2(ξ1D1 −Q1)2

2ξ1D1

T − Pc − Pm [See the Appendix A.2 for details calculation.]

= (S2 +
H2

2
T )ξ2D2 + (Ss2 +

H2

2
T )ξ1D1 + (S1Q1 − Ss2Q1

−H2Q2T −H2Q1T − Pc − Pm) +
1

2ξ1D1

(H2 −H1)Q2
1T (4.36)
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Figure 4.17: Scenario-2 and 3 : Excess units are sufficient to fill the shortage.

Scenario 3: In the region R3={ξ1D1 < Q1, ξ2D2 > Q2 and Q1 − ξ1D1 > ξ2D2 −Q2}, the
excess units of item 1 is sufficient to fill the shortages of item 2 (it is like Scenario 2). Thus
profit is

PF
(R3)
3 = S1ξ1D1 + S2Q2 + Ss1(ξ2D2 −Q2)− H1

2
(2Q1 − ξ1D1)T − H2Q

2
2

2ξ2D2

T

+
H1(ξ2D2 −Q2)2

2ξ2D2

T − Pc − Pm

= (S1 +
H1

2
T )ξ1D1 + (Ss1 +

H1

2
T )ξ2D2 + (S2Q2 − Ss1Q2

−H1Q1T −H1Q2T − Pc − Pm) +
1

2ξ2D2

(H1 −H2)Q2
2T (4.37)

Scenario 4: In the regions R4 and R5={ξ1D1 > Q1, ξ2D2 < Q2 and Q2 − ξ2D2 < ξ1D1 −
Q1}, the excess units of item 2 is not sufficient to fill the shortages of item 1. i.e., the
system is under shortage for item 1 and after fulfilling the customer’s demand of item 2, it is
substituted for shortages of item 1 and rate of shortages will remain same as before in spite
of this partial substitution. [cf. Fig. 4.18]. Against these assumptions the profit function is,
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PF
(R4&R5)
4 = S2ξ2D2 + S1Q1 + Ss2(Q2 − ξ2D2)− H2

2
(2Q2 − ξ2D2)T − H1Q

2
1

2ξ1D1

T

+
H2

2

[
(ξ1D1 −Q1)2

ξ1D1

− {(ξ1D1 −Q1)− (Q2 − ξ2D2)}2

ξ1D1

]
T

− Sc1{(ξ1D1 −Q1)− (Q2 − ξ2D2)} − Pc − Pm [See Appendix A.3 for details]

= (S2 −
H2

2
T − Sc1 − Ss2)ξ2D2 − Sc1ξ1D1 + (Ss2Q2 + S1Q1 + Sc1(Q2 +Q1)− Pc

− Pm)− 1

ξ1D1

(
H2

2
Q2

2T +H2Q2Q1T +
H1

2
Q2

1T ) +
ξ2D2

ξ1D1

H2(Q2 +Q1)T − ξ2
2D

2
2

2ξ1D1

H2T

(4.38)
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Figure 4.18: Scenario-4 and 5 : Excess units are not sufficient to fill the shortage.

Scenario 5: In the regions R6 and R7={ξ1D1 < Q1, ξ2D2 > Q2 and Q1 − ξ1D1 < ξ2D2 −
Q2}, the excess units of item 1 is not sufficient to fill the shortages of item 2. The profit is
like scenario 4. i.e.,

PF
(R6&R7)
5 = S1ξ1D1 + S2Q2 + Ss1(Q1 − ξ1D1)− H1

2
(2Q1 − ξ1D1)T − H2Q

2
2

2ξ2D2

T

+
H1

2

[
(ξ2D2 −Q2)2

ξ2D2

− {(ξ2D2 −Q2)− (Q1 − ξ1D1)}2

ξ2D2

]
T

− Sc2{(ξ2D2 −Q2)− (Q1 − ξ1D1)} − Pc − Pm

= (S1 −
H1

2
T − Sc2 − Ss1)ξ1D1 − Sc2ξ2D2 + (Ss1Q1 + S2Q2 + Sc2(Q1 +Q2)− Pc

− Pm)− 1

ξ2D2

(
H1

2
Q2

1T +H1Q1Q2T +
H2

2
Q2

2T ) +
ξ1D1

ξ2D2

H1(Q1 +Q2)T − ξ2
1D

2
1

2ξ2D2

H1T

(4.39)
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Scenario 6: For the R8={ξ1D1 > Q1, ξ2D2 > Q2}, the system is under shortages for both
items (cf. Fig. 4.19). In this scenario, profit is obtained as

PF
(R8)
6 = S1Q1 + S2Q2 −

H1Q
2
1

2ξ1D1

T − H2Q
2
2

2ξ2D2

T

− Sc1(ξ1D1 −Q1)− Sc2(ξ2D2 −Q2)− Pc − Pm
= (S1Q1 + S2Q2 + Sc1Q1 + Sc2Q2 − Pc − Pm)− Sc1ξ1D1 − Sc2ξ2D2

− H1

2ξ1D1

Q2
1T −

H2

2ξ2D2

Q2
2T [cf. Appendix A.4 for details.] (4.40)
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Figure 4.19: Scenario-6 : The system is under shortage for both item.

Expected profit

If the joint probability density function of demand is of the form

f(D1, D2) =

{ 1
(b−a)(d−c) , for a ≤ D1 ≤ b, c ≤ D2 ≤ d

0, elsewhere.

then the expression for the total expected profit is obtained by integrating the corresponding
profit expressions over their respective regions. The expected profit EPF (Q1, Q2, ξ1, ξ2)
for the retailer is

EPF (Q1, Q2, ξ1, ξ2) =

[ ∫ Q1/ξ1
a

∫ Q2/ξ2
c

PF
(R1)
1 +

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫ (Q1+Q2−ξ1D1)/ξ2
c

PF
(R2)
2

+
∫ Q1/ξ1
a

∫ (Q1+Q2−ξ1D1)/ξ2
Q2/ξ2

PF
(R3)
3 +

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫ Q2/ξ2
(Q1+Q2−ξ1D1)/ξ2

PF
(R4)
4

+
∫ b

(Q1+Q2−ξ2c)/ξ1

∫ Q2/ξ2
c

PF
(R5)
4 +

∫ Q1/ξ1
(Q1+Q2−ξ2D2)/ξ1

∫ (Q1+Q2−ξ1a)/ξ2
Q2/ξ2

PF
(R6)
5

+
∫ Q1/ξ1
a

∫ d
(Q1+Q2−ξ1a)/ξ2

PF
(R7)
5 +

∫ b
Q1/ξ1

∫ d
Q2/ξ2

PF
(R8)
6

]
f(D1, D2)d(D1)d(D2)
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[
(S1 + H1

2
T )ξ1I
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−H1

2ξ1
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1TI
(R8)
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2TI
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−P1Q1 − P2Q2 − [M1(ξ1−1)2(bα1+1−aα1+1)

(α1+1)(b−a)
+ M2(ξ2−1)2(dα2+1−cα2+1)

(α2+1)(d−c) ]

(4.41)

where I1, I2, I3, I4, I5 and I6 with their respective regions are calculated in Appendix A.5.
Mathematical expressions of the models under different conditions and constraints are as
follows:
Model 4.3A1 : With promotional effort and with budget constraint on purchasing cost

Maximize EPF (Q1, Q2, ξ1, ξ2),
Subject to Pc i.e. P1Q1 + P2Q2 ≤ B1,

Q1 ≥ a, Q2 ≥ c and ξ1, ξ2 > 1.
(4.42)

Model 4.3A2 : With promotional effort and with budget constraint on promotional cost

Maximize EPF (Q1, Q2, ξ1, ξ2),

Subject to Pm i.e. M1(ξ1−1)2(bα1+1−aα1+1)
(α1+1)(b−a)

+ M2(ξ2−1)2(dα2+1−cα2+1)
(α2+1)(d−c) ≤ B2,

Q1 ≥ a, Q2 ≥ c and ξ1, ξ2 > 1.

(4.43)

168



4.4. MODEL-4.3 : OPTIMUM ORDERING FOR TWO SUBSTITUTE ITEMS IN A
NEWS-VENDOR MANAGEMENT WITH PROMOTIONAL EFFORT ON DEMAND

USING ROUGH AGE BASED GENETIC ALGORITHM

Model 4.3A3 : With promotional effort and with budget constraint on both purchasing
and promotional cost

Maximize EPF (Q1, Q2, ξ1, ξ2),
Subject to Pc + Pm ≤ B,

Q1 ≥ a, Q2 ≥ c and ξ1, ξ2 > 1.
(4.44)

Model 4.3A4 : With promotional effort and without budget constraint

Maximize EPF (Q1, Q2, ξ1, ξ2),
Subject to Q1 ≥ a, Q2 ≥ c and ξ1, ξ2 > 1.

(4.45)

Model 4.3B1 : Without promotional effort and with budget constraint on purchasing
cost

Maximize EPF (Q1, Q2),
Subject to P1Q1 + P2Q2 ≤ B1,

Q1 ≥ a, Q2 ≥ c and ξ1 = ξ2 = 1.
(4.46)

Model 4.3B2 : Without promotional effort and without budget constraint

Maximize EPF (Q1, Q2),
Subject to Q1 ≥ a, Q2 ≥ c and ξ1 = ξ2 = 1.

(4.47)

4.4.3 Solutions methodology
To solve above maximization problems, we have applied the Rough Age based Genetic Al-
gorithm (RAGA) as described in § 2.3.2.3.

4.4.4 Numerical Experiments and Results
In this section, we perform two real life experiments to illustrate the proposed models.

Experiment 1: A fish merchant at the railway city market, Kharagpur, India sells two types
of fishes- “Rui” and “Katla” for the customers every morning from 6:00 A.M. to 12:00
Noon. The random demand of rui and katla are same and follows an uniform distribution
within 25 and 900 kilogram (kg). He purchases rui at the rate $5.20/kg and katla at $5.25/kg
from a wholesaler and sells the said fishes to the customers at $8.65/kg and $8.70/kg
respectively. If one type of fish is exhausted, shortage fishes are substituted by the available
one at lower prices at $7.65/kg and $7.70/kg respectively. He offers lower prices for
substitution to the customer for maintaining the goodwill. The shortages cost for the said
fishes are at $0.55/kg and $0.65/kg respectively. To preserve the fishes with a temporary
cooling system, $0.50 and $0.60 are spent per kg per hour. Again, he spends some money
to boost the demand. From previous experience, the parameters of promotional cost are as
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M1 = 25.0, M2 = 30.0, α1 = 0.75 and α2 = 0.60. Now the decisions to be taken by the
merchant are (i) How much does he order for these fishes to get maximum profit? (ii) How
much to spend on promotional effort to boost the demand in the market?

Fish merchant also wants to make the above decisions under the budget constraints on
purchase or promotional cost or jointly on both. These decisions are derived for the above
input data using RAGA and the optimal results for the models 4.3A1 - 4.3A4, 4.3B1 and
4.3B2 are presented in Table 4.20.

Table 4.20: Optimum results of Experiment 1 for different models

Budget constraint Model Budget Q∗1 Q∗2 ξ∗1 ξ∗2 EPF ∗ P ∗c P ∗m
4.3A4 498.62 426.38 1.3148 1.6392 951.69 4831.32 704.20Without
4.3B2 347.64 241.80 732.54 3077.20
4.3A1 4500 474.43 387.22 1.2545 1.5061 873.48 447.94

On 4.3A1 3000 330.25 244.32 1.0682 1.1083 759.49 24.59
purchasing 4.3A1 2276 ....Infeasible Solution....
cost (B1) 4.3B1 2800 313.42 222.89 720.15

4.3B1 2000 217.60 165.41 554.07
4.3B1 812 ....Infeasible Solution....

On 4.3A2 600 502.55 422.44 1.2910 1.5896 947.24 4831.12
Promotional 4.3A2 500 507.14 417.85 1.2661 1.5378 933.05 4830.89
Cost (B2) 4.3A2 400 512.81 412.18 1.2385 1.4804 905.96 4830.61
On both 4.3A3 5100 492.60 399.67 1.2512 1.5029 897.24 4659.85 440.15

Purchasing and 4.3A3 3500 375.70 281.85 1.1055 1.1869 794.02 3433.38 66.62
Promotional Cost (B) 4.3A3 2276 ....Infeasible Solution....

Experiment 2: In the above mentioned problem (Experiment 1), let the fish merchant sales
the substitute items with current price instead of reduced price. i.e., Ss1 = S1 = 8.65,
Ss2 = S2 = 8.70. Other input data remain same. The optimal results for the models 4.3A1
- 4.3A4, 4.3B1 and 4.3B2 are presented in Table 4.21.

4.4.5 Discussion
• Tables 4.20 and 4.21 furnish the following optimal policies for the fish merchant.

(i) Promotional effort gives more expected profit due to the increase of demands,
henceforth order should be placed for more quantities of the items (By comparing the
Models 4.3A1, 4.3A2, 4.3A3, 4.3A4 with Models 4.3B1, 4.3B2).

(ii) As expected, it is also seen that, more investment on purchasing cost yields more profit.

(iii) As expected, the expected profit is maximum when the system has no constraint and
expected profit decreases with the increasing of the number of constraints, which
suggests that, more number of constraints reduce the feasibility of the region.
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Table 4.21: Optimum results of Experiment 2 for different models

Budget constraint Model Budget Q∗1 Q∗2 ξ∗1 ξ∗2 EPF ∗ P ∗c P ∗m
4.3A4 562.53 362.46 1.3146 1.6586 1073.69 4828.12 32.52Without
4.3B2 395.09 211.75 - - 788.05 3166.20 -
4.3A1 4500 534.95 327.27 1.2523 1.5192 974.25 460.50

On 4.3A1 3000 357.20 217.62 1.0645 1.1038 808.69 22.30
purchasing 4.3A1 2319 ....Infeasible Solution....
cost (B1) 4.3B1 2800 338.53 198.01 - - 766.34 -

4.3B1 2000 227.62 155.50 - - 578.80 -
4.3B1 807 ....Infeasible Solution....

On 4.3A2 600 570.38 354.61 1.2849 1.5958 1066.73 4827.73
Promotional 4.3A2 500 578.12 346.87 1.2603 1.5437 1050.35 4827.31
Cost (B2) 4.3A2 400 588.20 386.79 1.2330 1.4861 1021.01 4826.84
On both 4.3A3 5100 562.73 331.87 1.2430 1.5038 1005.53 4668.56 431.44

Purchasing and 4.3A3 3500 413.47 245.33 1.1001 1.1821 854.72 3438.08 61.92
Promotional Cost (B) 4.3A3 2319 ....Infeasible Solution....

(iv) Here, for the given set of input data, the promotional budget is less important than the
budget of purchasing.

(v) The infeasible solution also reveals the need of minimum budget on purchasing cost
or both purchasing and promotional cost. Therefore, a minimum budget is required to
introduce a new business.

(vi) Comparing the results between Tables 4.20 and 4.21, the profits of Experiment 2 are
higher than those of Experiment 1 for all models because of higher selling prices of the
substitute items.

Figure 4.20: Expected profit against pro-
motional efforts for Model 4.3A4

Figure 4.21: Expected profit against or-
der quantities for Model 4.3B2

• Considering the order quantities as constant at optimum values (Q∗1 = 498.62, Q∗2 =
426.38) for Model 4.3A4, the expected profit function is drawn as in Fig. 4.20 with respect
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to promotional efforts ξ1 and ξ2. The Fig. 4.20 depicts that the expected profit function is
concave against promotional efforts.
• Fig. 4.21 represents the concavity property of expected profit with respect to order quanti-
ties (Q1, Q2) for Model 4.3B2.

Table 4.22: Optimum results of Model 4.3A4 for different values of M1 and M2

M1 M2 Q∗1 Q∗2 ξ∗1 ξ∗2 EPF ∗ P ∗m
10 10 473.58 451.41 1.7399 2.7846 2141.94 1736.64
10 20 496.29 428.70 1.7489 1.9262 1514.66 1191.87
10 30 521.48 403.51 1.7553 1.6244 1295.09 993.88
20 10 465.79 459.20 1.3779 2.7857 1872.77 1485.72
20 20 477.76 447.23 1.3840 1.9387 1237.63 953.24
20 30 505.33 419.66 1.3905 1.6357 1010.95 754.30
30 10 462.12 462.85 1.2545 2.7853 1780.06 1397.15
30 20 467.29 457.70 1.2585 1.9444 1141.95 870.34
30 30 493.34 431.65 1.2637 1.6419 911.67 670.32
40 10 460.12 464.12 1.1920 2.7848 1732.94 1351.37
40 20 461.19 463.80 1.1949 1.9475 1093.38 828.00
40 30 485.78 439.31 1.1991 1.6455 861.06 627.38

4.4.6 Sensitivity Analysis
Considering the different values of the promotional cost parameters M1,M2 and α1, α2 for
the Model 4.3A4, the optimal results are presented in Table 4.22 and Table 4.23 respectively.

(i) From Table 4.22, we conclude that asMi’s increase, ξi’s decrease i.e. total demand ξiDi

decreases, therefore order quantities decrease and finally expected profit is decreased.

(ii) The increasing values of αi’s decrease the values of ξi’s, hence the quantities Qi’s also
decrease. Therefore, expected profit decreases (cf. Table 4.23).

4.5 Conclusion
This investigation is proposed for the substitute products in random environment using
various inventory models including :

• The first model proposed here derives production policies of multi-item imperfect
production inventory systems with complementary, substitute or independent items under
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Table 4.23: Optimum results of Model 4.3A4 for different values of α1 and α2

α1 α2 Q∗1 Q∗2 ξ∗1 ξ∗2 EPF ∗ P ∗m
0.30 0.30 443.13 481.86 5.4693 4.6527 6049.76 5426.24
0.30 0.50 410.59 514.02 5.4048 2.1507 4256.07 3739.15
0.30 0.70 398.81 526.18 5.3662 1.3598 3641.59 3148.93
0.50 0.30 495.77 429.22 2.3724 4.5881 3860.09 3293.91
0.50 0.50 489.27 435.72 2.3625 2.1264 2125.11 1729.92
0.50 0.70 530.97 394.02 2.3597 1.3394 1553.05 1190.42
0.70 0.30 511.28 413.71 1.4196 4.5515 3145.63 2593.22
0.70 0.50 470.22 454.77 1.4152 2.1442 1419.13 1108.61
0.70 0.70 435.56 291.70 1.2091 1.1548 789.35 128.03
0.90 0.30 516.97 408.02 1.2449 4.5322 2915.85 2353.83
0.90 0.50 448.70 476.26 1.1217 2.1545 1197.16 910.09
0.90 0.70 365.34 266.77 1.0403 1.0952 755.73 29.25

out-of-control state production and budget constraints. Here, both UPC and quality of an
item are production dependent. For the first time, these types of production-inventory
systems for complementary and substitute items with resource constraint has been
formulated and solved via GRG technique. The optimum production policies for the
imperfect production system and decision on the prices, qualities and greenness of the
complementary and substitute items while assuming that the customers’ behaviour
arbitrarily can be outlined.

• The second model proposed here shows the production cum sale of imperfect products
substitute on the basis of the prices and qualities considered over a random time horizon
and the optimum prices, qualities, production rates and cycles are determined so that total
profit is maximum. Joint and separate effects of price and quality on the substitution are
taken into account in this production-marketing system. Here it is assumed that price and
quality of a product are independent. The virgin ideas presented in this paper are (i)
imperfect production cum sale of two substitute products with the provision of repair of
imperfect products, (ii) substitutability of the products on the basis of selling prices and
qualities separately and jointly, (iii) allotment of some expenditure against improvement of
quality and environment protection and (iv) uncertain planning horizon with normal
distribution. This model upholds the following factors: (i) reliability for the production
process, (ii) more substitute products and (iii) supply-chain system incorporating retailers
and customers. New investigation also can be performed introducing price discounts
(AUD/IQD) on the substitute products, taking imprecise time horizon, etc.

• Finally in the third model, it is assumed that the news-vendor management system for
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two substitute items with uniform stochastic demand in open market and a cost was spent
for both items to promote the items for more sale. We further have found the maximum
expected profit for two models- with and without promotional effort under with and without
budget constraint using a Rough Age based Genetic Algorithm developed for single objective
optimization. Moreover, the discussion of the models and results give a way-out for the
introduction of new business system for such type of substitute items having random demand
like daily newspapers, X-mass trees, fishes, etc. The models can be illustrated with other
types of probability distribution functions. Moreover, the present solution procedure also
can be applied to other types of EOQ, EPQ and supply-chain models.
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Chapter 5

Inventory Problems with Carbon
Emission in Fuzzy Environment

5.1 Introduction

In recent years, besides economic criteria (cost minimization or profit maximization), the
social impact of production system for a long period has become a major topic in research
and industrial application. The environmental concerns are becoming increasingly relevant
for firms due to more stringent various rules and regulations on carbon particles imposed by
government and growing customer’s awareness to the social welfare. Recently, in 2015
United Nations Climate Change Conference held in Paris, France, 196 parties attending it
made a global agreement on the reduction of green house gas emission. To improve the
environmental performance as well as economic criteria, it has become important and
challenging for firms worldwide to incorporate CE management (minimization of emission)
into their production system and business decisions. Many countries have enacted
legislations to mitigate global warming by reducing CE. A number of countries have
imposed carbon taxes for every unit of CE whatever be the amount- low or high. Some
countries have introduced carbon cap and trade scheme for their industries. Emission
trading i.e. cap and trade is a market based approach used to control pollution by providing
economic incentives for achieving reductions in the emission of pollutants. “Cap” means a
legal limit on the quantity of carbon which an industry can emit each year. Now two cases
may arise- (i) if the emission is exceeded by cap, additional amount over the cap may be
bought from trade market or paid penalty to the government; (ii) firms that keep their
emission levels below their allotted level (i.e. cap), may sell their surplus permit to other
firms or use them to offset excess emission in other parts of their facilities. Again, some
manufacturing firms don’t like to be involved with carbon cap and trade system. They
prefer to produce the exact amount of the product so that emission is almost equal to the
allowed cap. In this case, the cap is used as a constraint. These four cases are considered in
the present investigation.
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Moreover, in a production system, all produced units are not perfect and the production of
imperfect units commences after the passage of some time from the start of the production.
This instant is uncertain- may be taken as fuzzy. This leads the mathematical formulation of
the system to FDE and the objective function (maximization / minimization) also becomes
fuzzy. The solution of FDE and optimization of objective function require some special
techniques. Till now, the carbon management in fuzzy production system has not been
reported in the literature. The above realistic phenomena promoted us to take up the present
investigation. Here production policies for maximum profit for a firm in a developed or
developing country producing imperfect units with time-dependent fuzzy defective rate
under the four possible CE regulations are outlined and illustrated.

5.2 Literature Review
There are some fuzzy inventory/fuzzy production inventory models taking demand [71],
deterioration [66], etc. as fuzzy. Normally, these problems have been formulated with crisp
differential equation and solved using extension principle and/ or defuzzification
techniques. But this is not correct. If a parameter involving in the differential equation is
fuzzy, the said differential equation becomes a FDE which has been ignored by previous
several researchers. A few researchers solved the FDEs using different techniques during
last two decades [4, 26, 27, 40, 176]. Buckley and Feuring [27] presented a new solution
technique to solve the governing FDE. Using this technique, the α-cut of the fuzzy average
profit i.e. the equivalent crisp multi-objective problem (MOP) is obtained. Recently some
investigators [92, 178] have tackled this type of inventory models formulating as FDE
models and solved using α-cuts technique. The earlier formulation and analysis furnish
approximate solutions where as FDE formulation gives better results. In the present
investigation, FDE technique following Buckley and Feuring [27] is implemented. Recently
some works on stability, consistency and convergence of FDE [83] are also available in the
literature.

The concept of an intuitionistic fuzzy set (IFS) can be seen as an alternative approach to
define a fuzzy set in cases where available information is not sufficient for the definition of
an imprecise concept by means of conventional fuzzy sets. Therefore it is expected that IFS
could be used to simulate the human decision-making process and any activity requiring
human expertise and knowledge which are inevitably imprecise or not totally reliable. Here
the degrees of rejection and satisfaction are such that the sum of both values is always less
than one. Angelov [6] implemented the optimization in an intuitionistic fuzzy environment.
Wei [266] used the maximizing deviation methods to solve the intuitionistic fuzzy multiple
attribute decision making problems with incomplete weight information. Pramanik and
Roy [204] solved a vector optimization problem using an intuitionistic fuzzy goal
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programming. A transportation model was solved by Jana and Roy [116] using
multi-objective intuitionistic fuzzy linear programming. The advantage of the IFOT is
twofold: It gives the richest apparatus for formulation of optimization problems and the
solutions of intuitionistic fuzzy optimization problems can satisfy the objective(s) in greater
degree compared to the analogous fuzzy optimization problem and the crisp one. Recently,
Dutta and Guha [81] presented an approach to derive the weights of the decision criteria or
alternatives in multi-attribute decision making with goals described by IFNs. In the
proposed method, aggregation of fuzzy goals and application of the max-min principle lead
to a non-linear optimization problem whose solution gives the desired crisp priorities. Till
now, very few might [38] have used IFOT for the optimization of fuzzy decision making
problem with constraint, specially in the area of fuzzy production system with CE
regulations.

Due to complex nature of the objective functions, it is difficult to find the optimal strategy
of the reduced problems using traditional optimization techniques. GAs are extensively
used to face these types of situations during the last decades by researchers (cf. Mondal and
Maiti [179], Roy et al. [222], Maiti [161], Sawyerr et al. [235], Thakur et al. [255]). Here, a
GA with rough age based criteria is used to reproduce a new chromosome in crossover
level.

In the literature of models with imperfect production process (cf. § 1.3.2), several EPL
models are available for imperfect units. Taleizadeh et al. [249] presented an algorithm to
determine the optimum values of manufacturing lot size and unit price to have maximum
profit for an EPQ inventory model with reworkable defective items under a given
multi-shipment policy. Recently, Manna et al. [172] developed an EPQ model with
promotional demand in random planning horizon with reworking of the imperfect items
including waste disposal and vending the units. Wang and Tang [262] investigated the EPQ
model characterizing the set-up cost, holding cost and elapsed time as fuzzy variables. Till
now, none has considered the production-inventory system with time-dependent imprecise
i.e. fuzzy defective rate.

In the literature, some inventory models have been formulated and analysed under distinct
CE regulation policies. Unlike the previous research (cf. § 1.3.4), Absi et al. [1] did not
consider a global emission limit but an average limit per item. Zhang and Xu [290]
investigated the multi-item production planning problem with carbon cap and trade
mechanism, where the firm can buy or sell the right to emit carbon in a trading market of
CE. They presented a profit-maximization model to characterize the optimization problem
and analysed the optimal policy of production and carbon trading decisions. Benjaafar et
al. [17] considered three different carbon footprint policies and showed how CE concerns
can be integrated into operational decision-making. He et al. [101] investigated the impact
of production and regulation (i.e. cap-and-trade and carbon tax) parameters on the optimal
lot-size and CEs and compared the firm’s optimal CEs under the above two regulations. But
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Table 5.1: Literature Review for Model-5.1

Authors with year Environmental UPC Single/ Multi Method of solution
effect objective

Khouja and Mehrez [127], 1994 No Production rate dependent Single Analytic
Hayek and Salameh [100], 2001 No Constant Single Analytic

Ben-Daya [16], 2002 No No Single Pattern Search Technique
Chiu [55], 2003 No Constant Single Analytic
Sana [227], 2010 No Production rate dependent Single Analytic

Hua et al. [107], 2011 Carbon footprints No Single Analytic
Guchhait et al. [92], 2012 No Constant Multi Interval compared Genetic Algorithm(ICGA)
Bouchery et al. [25], 2012 CE No Multi Interactive procedure
Mondal et al., [178], 2013 No Production rate dependent Multi Genetic Algorithm

Chen et al. [50], 2013 CE No Single Analytic
Zhang and Xu [290], 2013 CE Constant Single Analytic

Du et al., [75], 2013 CE Constant Single Stackelberg game
Benjaafar et al. [17], 2013 CE No Single ILOG CPLEX version 11.1

Present Model 5.1 CE Production rate dependent Single & Multi RMOGA

none considered/ determined the carbon policies under fuzzy production system.
Summarizing the above mentioned literature, the systematic chronological developments

of the Model 5.1 in the related areas are presented in Table 5.1. These vacuums promoted
us to consider the Model 5.1 and to present a guideline for a firm.

Identifying the gaps in the above developments as presented in Table 5.2, some new
concepts have been introduced in the Model 5.2., after formulating the model as a FDE.

Table 5.2: Literature Review for Model-5.2

Authors with year Out of control Environmental UPC Formulation Single/ Multi Method of solution
State effect using FDE objective

Khouja and Mehrez [127], 1994 Random No Production rate dependent No Single Analytic
Hayek and Salameh [100], 2001 Random No Constant No Single Analytic

Ben-Daya [16], 2002 Random No No No Single Pattern Search Technique
Chiu [55], 2003 Random No Constant No Single Analytic

Wang and Tang [262], 2009 Fuzzy No Constant No Single Numerical search Procedure
Zhang et al. [289], 2009 Random fuzzy No No No Single Random fuzzy simulation(SPSA)

Sana [227], 2010 Random No Production rate dependent No Single Analytic
Hu et al. [106], 2011 Fuzzy random No No No Single Analytic
Hua et al. [107], 2011 No Carbon footprints No No Single Analytic

Guchhait et al. [92], 2012 Fuzzy No Constant Yes Multi Interval compared Genetic Algorithm(ICGA)
Bouchery et al. [25], 2012 No CE No No Multi Interactive procedure
Mondal et al. [178], 2013 No No Production rate dependent Yes Multi Genetic Algorithm

Chen et al. [50], 2013 No CE No No Single Analytic
Zhang and Xu [290], 2013 No CE Constant No Single Analytic

Du et al. [75], 2013 No CE Constant No Single Stackelberg game
Benjaafar et al. [17], 2013 No CE No No Single ILOG CPLEX version 11.1

Present Model 5.2 Fuzzy CE Production rate dependent Yes Multi IFOT

There may be some firms producing the imperfect products after the passage of some
time from the commencement of production and at the same time, facing the problem of CE
under government regulations. At beginning, a firm does not know what should be its CE
for optimum production and which government regulation will be most beneficial for its
maximum profit. Till now, there is no systematic procedures/ algorithms which a firm
should follow for its maximum benefit following the various rules and regulations of a
government. This vacuum promoted us to develop two models to present a guideline for a
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firm.

In the first model, an imperfect EPL model is considered with time dependent defective
rate. Produced defective units are partially reworked and are sold as fresh units. Under the
environmental regulation, a cost (say carbon tax) which is charged by the government to
mitigate global warming by reducing CEs is taken into account. The models are formulated
as a profit maximization problem. The models are illustrated with some numerical
examples.

In the second model, objective is to present the appropriate production schemes for firms
to achieve maximum profit when the production system is imperfect with time dependent
fuzzy defective production rate and forced to follow the country’s CE rules. Here produced
defective units are partially reworked instantly and treated as fresh units. Rest defective
units are sold at a reduced price. Under the environmental regulation, a cost (say carbon tax)
which is charged by the government to mitigate global warming by reducing CE is taken into
account. The models are formulated as profit maximization using FDE and the corresponding
inventory and environmental costs are derived using fuzzy Riemann-integration. α-cuts of
average profits are obtained and the reduced multi-objective crisp problems are solved using
IFOT. The models are illustrated with some numerical experiments. For different values
of α (α-cut), pictorial representations of average profit and CE are presented. A general
algorithm to be followed by a production firm for maximum profit is outlined under the
cloud of country’s CE rules. For illustration, two different firms- one from developed and
other from developing countries are considered and optimum carbon policies for maximum
profit are outlined. Thus the present investigation helps a firm to determine its carbon policy
taking the appropriate rules and regulations in vogue in that country for the firm’s maximum
profit.

5.3 Model-5.1 : Green logistics under imperfect
production system: A Rough age based
Multi-Objective Genetic Algorithm approach 1

5.3.1 Assumptions and Notations
The following assumptions are used to develop the proposed models:

(i) Single item production with infinite time horizon.

(ii) Production run time is taken as DV.

1This model has been communicated in Computers & Industrial Engineering , ELSEVIER
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(iii) Production rate is finite and taken as a DV.

(iv) Lead time is zero and no shortages are allowed.

(v) Demand is constant.

(vi) The production process shifts from “In-control” state to “Out-of-control” state after a
certain period of time. Imperfect units are produced during the “Out-of-control” state
only.

(vii) There is immediate partial reworking for the defective units at a cost and the defective
units which are not reworked, are sold at a lower price and reworked units are treated
as fresh ones.

(viii) UPC is raw material, labour cost dependent and one part of it is spent against wear and
tear of the equipments also.

The following notations are used to develop the proposed models:
P Production rate (tons/time unit) (DV).
t1 Production run-time in one cycle (years) (DV).
D Market demand (tons/time unit).
T Cycle time (years).
τ elapsed time (years), measured from the commencement of production, at

which defective production begins. i.e., the beginning time of the “out-of-
control” state.

λ The machine produces imperfect units at this rate (tons/time unit) when the
machinery system is in “out-of-control” state. Here λ is defined as λ(t, τ) =
γ(t− τ), γ > 0.

θ Percentage of reworked defective units.
S Selling price per unit perfect product ($/unit).
Sa Salvage price per unit imperfect product which are not reworked ($/unit).
N Defective units in a production cycle (tons).
Q Total perfect units (tons).
I(t) Inventory level at time t (tons).
C(P ) UPC ($) , C(P ) = r + g

P δ1
+ ηP δ2 where, δ1, δ2 > 0 and r is the raw

material cost ($) per unit, g is the total labour/energy costs ($) per unit time
in a production system which is equally distributed over the produced units.
So,( g

P δ1
) decreases with increases of P . The third term ηP δ2 is the wear and

tear cost ($), proportional to the positive power of production rate P .
Ch Holding cost ($/unit/time unit).
Cr Cost to rework an imperfect unit ($/unit).
Cs Set up cost ($/cycle).
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˜̂
Ch Fuzzy amount of CE associated per unit held inventory per unit time

(tons/unit/time unit).˜̂
Cr Fuzzy amount of CE associated to rework an imperfect product (tons/unit).˜̂
Cs Fuzzy amount of CE associated per set-up (tons/cycle).˜̂r, ˜̂g, ˜̂η Fuzzy amounts of CE (tons) associated with raw material, energy/ labour and

wear and tear per unit product per unit time respectively.
HC,PC,RC Holding, Production, Rework cost ($) respectively.
TC, TR Total cost and Total sale revenue ($) respectively.
C̃O2 Fuzzy CE amount (tons).
C̃EC, C̃ER Fuzzy CE cost and CE reward ($) respectively.
ÃTP Fuzzy Average Total Profit (ATP)
ÃCEC, ÃCER Fuzzy Average Carbon Emission Cost (ACEC) and Revenue (ACER) ($) re-

spectively.
,̂˜ These are used on the top of some parameters to represent CE and fuzzy

nature respectively.

5.3.2 Mathematical Model Development

Figure 5.1: Inventory versus time.

In this investigation, an imperfect EPL model is assumed over an infinite planning horizon.
In this production process, the production starts at a rate P at time t = 0 and runs up to
time t = t1. The system produces perfect quality units up to a certain time τ (i.e., “in-
control” state), after that, the production system shifts to an “out-of-control” state [τ, t1]. In
this ”out-of-control” state, some of the produced units are of non-conforming quality (i.e.,
defective units) and some of these defective units are reworked immediately. The inventory
piles up during the time interval [0, t1] adjusting market demand D against the production
and reworking processes, upto the perfect product Q units, i.e., when the system stops the
production. The stock at t = t1 is depleted satisfying the demand D in the market and it
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reaches zero level at time T (cf. Fig. 5.1). For the single item imperfect production process,
the governing differential equations are:

dI(t)

dt
=


P −D, 0 ≤ t ≤ τ
P −D − (1− θ)γP (t− τ), τ ≤ t ≤ t1
−D, t1 ≤ t ≤ T

(5.1)

with the boundary conditions I(t) = 0, at t = 0 and T . The solution I(t) of the above
differential equations are given by

I(t) =


(P −D)t, 0 ≤ t ≤ τ

(P −D)t− (1−θ)γP
2

(t− τ)2, τ ≤ t ≤ t1
D(T − t), t1 ≤ t ≤ T

(5.2)

Applying continuity condition at t1 we have,

T =
1

D
{Pt1 −

(1− θ)γP
2

(t1 − τ)2} (5.3)

Holding cost

Holding cost during [0, T ] is

HC =Ch

∫ T

0

I(t)dt = Ch[

∫ τ

0

I(t)dt+

∫ t1

τ

I(t)dt+

∫ T

t1

I(t)dt]

= Ch

[
P −D

2
t21 −

(1− θ)γP
6

(t1 − τ)3 +
D

2
(T − t1)2

]
(5.4)

Production cost

The production cost during [0, t1] is

PC = C(P )

∫ t1

0

Pdt = C(P )P [

∫ τ

0

dt+

∫ t1

τ

dt] = C(P )Pt1 (5.5)

Rework cost

The rework cost during the time span [τ, t1] is RC = CrθN , where N =
∫ t1
τ
λ(t, τ)Pdt =

1
2
γP (t1 − τ)2 then,

RC =
1

2
CrθγP (t1 − τ)2 (5.6)

Therefore, the total fresh units including reworked products are

Q = Pt1 −
1

2
(1− θ)γP (t1 − τ)2 (5.7)
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Total cost (without CE part)

As a result, due inventory the total cost = Set-up cost + Holding cost + Production cost +
Rework cost. i.e.,

TC = Cs+HC + PC +RC

= Cs+ Ch

[
P −D

2
t21 −

(1− θ)γP
6

(t1 − τ)3 +
D

2
(T − t1)2

]
+(r +

g

P δ1
+ ηP δ2)Pt1 +

1

2
CrθγP (t1 − τ)2 (5.8)

Cost due to CE

The CE associated with set-upping, inventory holding, producing, reworking is as C̃O2 =˜̂
Cs+

˜̂
HC +

˜̂
PC +

˜̂
RC. Then,

C̃O2 =
˜̂
Cs+

˜̂
Ch

[
P −D

2
t21 −

(1− θ)γP
6

(t1 − τ)3 +
D

2
(T − t1)2

]
+(˜̂r +

˜̂g
P δ1

+ ˜̂ηP δ2)Pt1 +
1

2
˜̂
CrθγP (t1 − τ)2 (5.9)

In practice, there are several ways to deal with the CE. These are as follows:

Penalty due to CE

In this case, regulatory authority simply imposes some penalty for CE, irrespective of the
emission amount. The objective is to bring the CE to zero level. The CEC is

C̃EC = tax ∗ C̃O2 (5.10)

where ’tax’ is the penalty ($/ton) per unit of carbon emitted.

Under carbon trading

In this system, the production firm is permitted to emit a fixed amount C (i.e. cap) of carbon
per unit time by the regulatory authority. Normally a heavy penalty is charged by the
authority if the emission by the firm is more than permitted cap. Here, again two cases may
arise:

Case 1 - Cap and penalty / purchase: In this case, a penalty (fixed by the regulatory
authority) or purchasing price (purchasing from other firms emitting less carbon) for per unit
excess emitted carbon is paid by the firm. This amount of cost is evaluated as

C̃EC = tax ∗ (C̃O2 − CT ) (5.11)
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where ‘tax’ is the penalty / purchasing price ($/ton) per unit excess of carbon.
Case 2 - Cap and reward / sale: To encourage the less CE, regulatory authority gives cash
rewards to the firm which emits less carbon than the cap. Some times, the firm may sale its
excess carbon to the co-firms, not claiming the rewards from regulatory authority. In this
case,

C̃ER = rew ∗ (CT − C̃O2) (5.12)

is the CE rewards or revenue, where ‘rew’ is per unit carbon reward or selling price
($/ton).

Strictly under permitted cap

In this case, regulatory authority strictly impose the restriction of emission upto cap. i.e.
if emission exceeds cap the firm will be asked to close. Hence the firm is compelled to
maximize the profit subject to the constraint,

C̃O2 ≤ CT (5.13)

Total Sale Revenue

Revenue for perfect products: Total sales revenue of perfect products is

SRP = S

∫ T

0

Ddt = SDT

Sales Revenue for imperfect products: The defective products which are not reworked is
disposed by a lower price and total sales revenue is

SRD = Sa(1− θ)N

. Therefore, total sales revenue TR = SRP + SRD for the system is as

TR = SDT +
1

2
Sa(1− θ)γP (t1 − τ)2 (5.14)

Constraint for “Out-of-control” state

In this production system, it is expected to have total production time greater than the time
of occurrence of out-of-control state. This requirement acts as a constraint and is expressed
as

t1 ≥ τ (5.15)
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5.3.3 Optimization Problems
Model 5.1A (EPL with carbon tax)

Model 5.1A is formulated considering CEC in § 5.3.2 (Penalty due to CE). Here, average
total profit ÃTP (P, t1) for the system is

ÃTP (P, t1) =
TR− TC − C̃EC

T
(5.16)

where TR, TC, C̃EC and T are given by Eqs. (5.14), (5.8), (5.10) and (5.3) respectively.
Now the problem is to find (P, t1) for which objective ÃTP (P, t1) given by Eq. (5.16), is
maximized subject to the constraint (5.15).

Model 5.1B(EPL with cap and penalty)

Model 5.1B is formulated considering the CEC as describe in § 5.3.2 (Cap and penalty /
purchase) for case 1. This model is same as Model 5.1A except the expressions of C̃EC.
This expression is changed by Eq. (5.11).

Model 5.1C (EPL with cap and reward)

As describe about CEC in § 5.3.2 for case 2 (Cap and reward / sale), Model 5.1C is formu-
lated. In this model, average total profit ÃTP (P, t1) for the system is as

ÃTP (P, t1) =
TR− TC + C̃ER

T
(5.17)

where TR, TC, C̃ER and T are given by Eqs. (5.14), (5.8), (5.12) and (5.3) respectively.
The problem is to find (P, t1) for which objective ÃTP (P, t1) given by Eq. (5.17), is maxi-
mized subject to the constraint (5.15).

Model 5.1D (EPL with carbon constraint)

Model 5.1D is formulated when CE is strictly under permitted cap as described in § 5.3.2.
Average total profit ATP (P, t1) for this system is

ATP (P, t1) =
TR− TC

T
(5.18)

where TR, TC and T are given by Eqs. (5.14), (5.8) and (5.3) respectively.

Thus the problem is to find (P, t1) for which objective ATP (P, t1) given by Eq. (5.18), is
maximized subject to the constraint (5.15) and (5.13).
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Model 5.1E (EPL with unlimited emission)

Model 5.1E is developed when the firm is permitted to emit unlimited carbon. Thus the
profit function is maximized without CE i.e., there is no penalty (tax=$0.0) for CE i.e. cap
(C) tends to infinity. Hence, Model 5.1E is formulated by either putting tax=$0.0 in Model
5.1A or without carbon constraint (5.13) of Model 5.1D.

5.3.4 Solution Methodology
Now, the objective functions for the Models 5.1A-5.2E are defuzzified by taking fuzzy
expectation (cf. § 2.1.2 using Lemma 2.8) and optimized using the RMOGA (cf. § 2.3.2.3).

5.3.5 Numerical Experiments and Results
In this section, we develop numerical experiments and results which illustrate the application
of the proposed models.

Table 5.3: Optimal results for Models 5.1A, 5.1B, 5.1C, 5.1D and 5.1E

Models P ∗ t∗1 E[ÃTP
∗
] N∗ Q∗ T ∗ E[ÃCO2

∗
] E[ÃCEC

∗
]/E[ÃCER

∗
]

5.1A 618.43 3.40 3679.96 357.86 2014.18 13.42 6791.36 5093.52
5.1B 618.43 3.40 7429.96 357.86 2014.18 13.42 6791.36 1343.52
5.1C 640.38 3.58 9588.95 436.69 2187.04 14.58 6863.47 784.13
5.1D 622.66 3.42 8779.43 366.89 2038.49 13.58 6800.00
5.1E 659.20 3.99 8820.99 617.58 2474.30 16.49 7034.84

Experiment 1 (Model 5.1A)

For the Model 5.1A, we consider the following input data in appropriate units as mentioned
in § 5.3.1.
θ = 0.75, γ = 0.25, d = 150, τ = 1.25, S = 100, Sa = 20, Cs = 15000, Ch = 0.60,

Cr = 2.0, ˜̂Cs = (28000, 30000, 32000), ˜̂Ch = (2.5, 3.0, 3.5), ˜̂Cr = (5.0, 6.0, 7.0),
tax = $0.75 and UPC as: C(P ) = 5.0 + 8000

P
+ 0.02P , CE per unit production:

Ĉ(P ) = (3.0, 4.0, 5.0) + (2500,3000,3500)
P

+ (0.007, 0.008, 0.009)P . With these input data, we
find the optimum production rate, optimum production run time and optimum profit which
are presented in Table 5.3.

Experiment 2 (Model 5.1B), 3 (Model 5.1C), 4 (Model 5.1D) and 5 (Model 5.1E)

Taking all the input data same as Model 5.1A, we solve Models 5.1B, 5.1C, 5.1D and 5.1E
with C=5000.00,(C=10000.00, rew=$0.25), C=6800.00 and tax=$0.0 respectively. The
optimal results of these models are presented in Table 5.3.
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Experiment 6

We now construct the objective functions Average Carbon Emission Cost (ACEC) and
Average Carbon Emission Revenue (ACER) as ÃCEC(P, t1) = C̃EC

T
and

ÃCER(P, t1) = C̃ER
T

where C̃EC, C̃ER and T are given by Eqs. (5.10), (5.12) and (5.3)

respectively. Considering the same input data we minimize E[ÃCEC(P, t1)] for Model
5.1A and 5.1B and maximize E[ÃCER(P, t1)] for Model 5.1C, as single-objective
optimization problems with constraint (5.15). The optimum results of this experiment are
presented in Table 5.4 and compared with optimum results of the earlier models.

Table 5.4: Optimum of results of Experiment 6

Objective Model P ∗ t∗1 E[ÃTP
∗
] N∗ Q∗ T ∗ E[ÃCO2

∗
] E[ÃCEC

∗
]/E[ÃCER

∗
]

Min E[ÃCEC] 5.1A 521..92 3.66 3574.44 379.81 1816.76 12.11 6740.87 5055.65
Min E[ÃCEC] 5.1B 521..92 3.66 7324.44 379.81 1816.76 12.11 6740.87 1305.65
Max E[ÃCER] 5.1C 521..92 3.66 9444.88 379.81 1816.76 12.11 6740.87 814.78

Experiment 7

Considering the same input data as in Experiment 1, we construct the new problems for the
Models 5.1A, 5.1B and 5.1C in the following forms respectively.

Max E[ÃTP (P, t1)]

Min E[ÃCEC(P, t1)]
Sub to constraint (5.15) for Model 5.1A and 5.1B

(5.19)


Max E[ÃTP (P, t1)]

Max E[ÃCER(P, t1)]
Sub to constraint (5.15) for Model 5.1C

(5.20)

The optimum results for the above constructed problems (5.19) and (5.20) are presented in
Table 5.5.

Table 5.5: Optimal results for Model 5.1A, 5.1B and 5.1C for Experiment 7

Model 5.1A Model 5.1B Model 5.1C

P ∗ t∗1 E[ÃTP
∗
] E[ÃCEC

∗
]

616.94 3.41 3679.94 5092.47
535.02 3.58 3598.06 5056.09
581.70 3.35 3654.82 5064.50

P ∗ t∗1 E[ÃTP
∗
] E[ÃCEC

∗
]

607.55 3.40 7428.35 1333.93
561.05 3.40 7379.12 1309.02
593.30 3.36 7417.46 1320.41

P ∗ t∗1 E[ÃTP
∗
] E[ÃCER

∗
]

626.86 3.49 9584.85 795.26
567.33 3.42 9515.54 813.07
614.11 3.38 9571.01 804.19
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5.3.6 Discussion

Table 5.3 presents the optimal result of Models 5.1A, 5.1B, 5.1C, 5.1D and 5.1E. Here, the
profit $3679.96 is obtained for optimum values of P∗ = 618.43 tons/year and t∗1 = 3.40
years. Average 6791.36 tons carbon is emitted in the system and the CE tax is charged @
$0.75 per ton CE per year. Total 357.86 tons defective products are produced and 75% of
these defectives are reworked immediately. When CEC is not taken into account (i.e. Model
5.1E or Model 5.1A with tax=$0.0), the profit increases to $8820.99. This result is obtained
for P ∗ = 659.20 tons/year and t∗1 = 3.99 year and corresponding defective units are
617.58 tons which is more than Model 5.1A. These results are as per expectation. Once tax
on CE is removed, the system is free from any restriction on production and has worked for
unlimited CE. As a result, the rate of production has gone up, profit is higher and
production time is marginally more.

Profits of Models 5.1B and 5.1C are greater than that of Model 5.1A because of zero cap
(C=0.0 ton) has been considered in Model 5.1A. Model 5.1C gives the highest profit among
all models as the firm gets some rewards from regulatory authority i.e. earns by selling left
out CE to other firm for less CE than cap. On the other hand, for other models, the firm
pays penalty for CE. Model 5.1D gives the satisfactory profit $8779.43 under the strict
carbon cap (C=6800.00 tons) constraint. It is to be noted that these results of Model 5.1D
are in between the results of Models 5.1B and 5.1C. It is as per expectation. In Model 5.1D,
the inequality C̃O2 ≤ CT is taken in equality sense of CT where Models 5.1B and 5.1C
assume C̃O2, more and less than CT respectively.

The results furnished in the Table 5.4 are due to the carbon minimization/maximization
only of Models 5.1A, 5.1B and 5.1C and the corresponding profits E[ÃTP

∗
] are given. It is

to be noted that for all models, system optimization furnish more profits that the E[ÃCEC]
optimization. This means that in the system, production-inventory plays an important role
along with the CE part.

Now from the Table 5.4, it is seen that the production rate P and production run time t1
which minimize the E[ÃCEC] are quite different from P and t1 which are obtained
maximizing the profit E[ÃTP ] for Models 5.1A, 5.1B and 5.1C. It is interesting to note that
for the optimum production rate P ∗ = 521.92 tons/year and production run time t∗1 = 3.66

years which minimize E[ÃCEC], the corresponding profit $3574.44 is lower than the
profit E[ATP ] =$3679.96 obtained maximizing E[ÃTP ] directly, although for the
optimum values, P ∗ = 618.43 tons/year and t∗1 = 3.40 years which maximize E[ÃTP ],
corresponding E[ÃCEC] $5093.52 is higher than the minimum value $5055.65 of
E[ÃCEC]. Therefore with respect to Model 5.1A, it is a better choice for a firm’s manager
to take the profit function E[ÃTP ] as the objective to get more profit for the system.
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Similar behaviours are observed for Models 5.1B and 5.1C.

Normally, no production-inventory firm management prefers any restriction on CE
produced by the firm. From Table 5.4, it is interesting to note that the Model 5.1E in which
CE is not taken into consideration, fetches a profit from the production-inventory point of
view only, which is not the maximum profit for all possible systems. Rather, under the
carbon restriction (i.e. present cap), if the firm management decides for less CE than cap
and sells the saved carbon to others or gets the reward for this, then the profit is maximum.
In the case of Model 5.1E, rate of production is highest and the duration of production is
longest. This means that adjusting the production rate and production time, a firm can fulfil
its social responsibility by emitting less carbon and at the same time, achieve its target by
making maximum profit. However, all these depend on the permitted cap.

Following pictorial representations about the system are presented:

Figure 5.2: Concavity of E[ÃTP ] and
convexity of E[ÃCEC] against P for
Model 5.1A.

Figure 5.3: Concavity of E[ÃTP ] and
convexity of E[ÃCEC] against t1 for
Model 5.1A.

• For the given set of parameters in the above Experiment 1 for Model 5.1A, Fig. 5.2
represents the concavity property of the objective function E[ÃTP ] and convexity property
of E[ÃCEC] against the production rate (P).

• For the given set of parameters in the above Experiment 1 for Model 5.1A, Fig. 5.3
represents the concavity property of the objective function E[ÃTP ] and convexity property
of E[ÃCEC] against the production run time (t1).
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Figure 5.4: Concavity ÃTP against P
and t1 for Model 5.1A.

Figure 5.5: Convexity of ÃCEC against
P and t1 for Model 5.1A.

• For the given set of parameters in the above Experiment 1 for Model 5.1A, Fig. 5.4
represents the concavity property of the objective function E[ÃTP ] against the production
rate (P) and production run time (t1) jointly.

• Fig. 5.5 represents the convexity property of E[ÃCEC] against the production rate (P)
and production run time (t1) for input data of Model 5.1A.

Figure 5.6: Concavity of ÃTP and convexity of ÃCEC against P and t1 for Model 5.1A.

• For the given set of parameters in the Experiment 1 for Model 5.1A, Fig. 5.6 represents
the concavity property of the objective function E[ÃTP ] and convexity property of
E[ÃCEC] against the production rate (P) and production run time (t1).
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Figure 5.7: Optimum profits for Model
5.1A due to Experiment 7

Figure 5.8: Optimum carbon cost for
Model 5.1A due to Experiment 7

The results furnished in the Table 5.5 are obtained due to Experiment 7 for Models 5.1A,
5.1B and 5.1C. As the Experiment 7 is a multi-objective optimization problem, it gives
pareto solution and is difficult to choose most optimum solutions. Here, three optimum
solutions are given depending on the importance (priority) given to the objectives. Two
results are for highest priority to one objective and lowest to other and third result with in
between priorities. It is seen that the results of an objective taking as a single objective is
also available in this pareto solution set when its takes the priorities for the objectives as (1,
0). Otherwise, it gives the compromise solutions. Here also, Model 5.1C furnishes
maximum profit than the Models 5.1A and 5.1B, as revenue from carbon sale is taken into
account in Model 5.1C. The fronts of pareto solutions of the multi-objectives for Models
5.1A, 5.1B and 5.1C are pictorially presented in Figs. 5.7 to 5.12.

Figure 5.9: Optimum profits for Model
5.1B due to Experiment 7

Figure 5.10: Optimum carbon cost for
Model 5.1B due to Experiment 7
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Figure 5.11: Optimum profits for Model
5.1C due to Experiment 7

Figure 5.12: Optimum carbon reward for
Model 5.1C due to Experiment 7

5.3.7 Practical Implication

In different countries, different types of regulations for CE are in vogue. There may be four
types of regulations- (i) average tax on CE, whatever be the amount, (ii) & (iii) carbon
trading- purchase (penalty) or sale (revenue) and (iv) no restriction on CE (i.e. unlimited
CE is permitted). Thus, a production firm management is in a fix i.e. does not know which
regulation should be followed so that firm’s profit is maximum. Considering this situation,
an algorithm (with example) for the management is given for his/her maximum profit in
Algorithm 3.

Example: Let a company A from Annex I countries (Australia, Austria, Belgium, Canada,
Germany, Italy, etc.) produces iron bars using coal based production system. Initially,
perfect bars were produced upto 1.25 years from the commencement of production. After
that, some imperfect bars were produced (25%), some of which were reworked (75%) and
sold as a new one ($100 per bar). The rest were sold at a reduced price $20 per bar. There
are 250 units demand per year in the open market.

Let P units be the production rate per year and production process continues up to t1. To
produce one unit of iron bar, the required raw material costs $2.50; total energy $4000 and
minor repair cost $0.02. The set-up cost for one business cycle is $15000, storage cost per
unit bar is $0.50 per year, rework cost is $2.50 per defective unit. Let CEs due to set-up be
(18000, 20000, 22000) tons per cycle, holding (1.0, 2.0, 3.0) tons per unit bar per year,
rework (0.5, 1.0, 1.5) tons per unit, raw material (4.0, 5.0, 6.0) tons per amount of raw
materials required to produce one unit, (4000, 5000, 6000) tonnes per year for total energy,
(0.07, 0.08, 0.09) ton per one unit for wear and tear.

Let the country has the following clean energy regulation. The country allows a firm to
emit carbon of 20000 tonnes per year and permits 1 tonne of CO2 at the cost $1.0 and
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rewarded for less CE at $0.25.
Algorithm 3: MANAGERIAL DECISIONS TO CHOOSE A MODEL FOR HIGHEST

PROFIT

1 Step 1: Check the regulatory system
2 if No restriction on CE i.e., Unlimited cap then
3 Use Model 5.1E : EPL with unlimited CE

4 else if Tax is imposed due to CE (whatever be the amount) then
5 Use Model 5.1A : EPL with carbon tax

6 else
7 Go to step 2

8 Step 2: Check CE with limited carbon cap C
9 Calculate the total CE using Model 5.1E

10 if CE < C then
11 Use Model 5.1C : EPL with cap and reward

12 else
13 Go to step 3

14 Step 3: Check Optimum profit due to paying penalty for excess CE or use cap as a
constraint

15 Find optimum profit for Model 5.1B
16 Find optimum profit for Model 5.1D
17 if Profit of Model 5.1B > Profit of Model 5.1D then
18 Use Model 5.1B : EPL with cap and penalty

19 else
20 Use Model 5.1D : EPL with carbon constraint

21 End

Table 5.6: Optimal results of practical implication for Model 5.1E and 5.1C

Model P ∗ t∗1 E[ÃTP
∗
] N∗ Q∗ T ∗ E[ÃCO

]

2∗ E[ÃCER]
5.1E 483.86 7.76 17938.55 2565.54 3114.79 12.46 19402.57 149.50
5.1C 406.55 6.66 18389.10 1490.41 2337.28 09.34 17492.79 626.80

The objective of this firm is to determine P and t1 following the existing emission rule
of the country so that the profit of the firm is maximum. The detailed optimum results are
presented in Table 5.6 and following the prescribed Algorithm 3, the steps are:
Step 1: Since the regulatory system imposes limited carbon cap 20000.00 tons, go to Step 2.
Step 2: Average CE 19402.57 tons is obtained from optimizing Model 5.1E, which is less
than limited carbon cap 20000.00 tons. Therefore, the firm use the Model 5.1C.

From Table 5.6, it is seen that the average CE per year is 19402.57 tons, (obtaining from
optimizing the Model 5.1E) which is less than the permitted cap 20000.00 tons. It is also
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noted that if the firm management use the Model 5.1E, he/she gets reward or can sell the
save-carbon to its co-firm in amount $149.50 which is less than the amount $626.80
obtained by using Model 5.1C. In that case, the average profit for Model 5.1C is $18389.10
whereas $18088.05(= 17938.55 + 149.50) is the profit for Model 5.1E. Therefore, the firm
management uses the Model 5.1C for highest profit. This means that adjusting the
production rate and production time, a firm can fulfil its social responsibility by emitting
less carbon and at the same time, can achieve its target by making maximum profit.

5.4 Model-5.2 : EPL models with fuzzy imperfect produc-
tion system including carbon emission : A fuzzy differ-
ential equation approach 2

In the present model, an imperfect EPL model is developed over an infinite planning
horizon. In this production process, the production starts at time t=0 with a particular fixed
production rate, P, say and runs upto a time, say t1. During this production period, the
system initially produces perfect units upto an uncertain (fuzzy) time, say t = τ̃ (i.e.
“in-control” state) and after that, the system goes to “out-of-control” state producing some
imperfect/defective units. Some of these units are reworked instantly and treated as fresh
units. Rest defective units are sold at a reduced price. In this way, the built-up stock are
depleted at a demand rate D and exhausted after some uncertain (fuzzy) time, T̃ say. This
whole process is repeated again. Here, UPC is raw material, total energy and wear and tear
costs dependent following Khouja and Mehrez [127].

The production firm emits CO2 in the process of production and pays tax / accepts carbon
trading following the country’s energy regulation. The purpose of this investigation is to
find the optimum production rate so that the total profit out of production and carbon trading
is maximum. To have a mathematical presentation of the above production process, the
following notations and assumptions are used.

5.4.1 Assumptions and Notations
Assumptions:

(i) Single item production with infinite time horizon.

(ii) Production run time is taken as DV.

(iii) Production rate is finite and taken as a DV.

(iv) Lead time is zero and no shortages are allowed.

2This model has been communicated in Journal of Intelligent Manufacturing, SPRINGER
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(v) Demand is constant.

(vi) The production process shifts from “In-control” state to “Out-of-control” state after
an uncertain period of time. Imperfect units are produced during the “Out-of-control”
state only.

(vii) There is immediate partial reworking for the defective units at a cost and the defective
units which are not reworked, are sold at a lower price and reworked units are treated
as fresh ones.

(viii) UPC is raw material, total energy and wear and tear cost dependent.

Notations:
Decision variables:
P Production rate in units per unit time.
t1 Production run-time in one cycle.
Parameters:
D Market demand.
T̃ Cycle time.
τ̃ Fuzzy time (measured from the commencement of production), at which de-

fective production begins. i.e., beginning time of the “out-of-control” state.
λ̃ The machine produces imperfect units at this rate when the machinery system

is in “out-of-control” state. Here λ̃ is defined as λ̃(t, τ̃) = γ(t− τ̃), γ > 0.
θ Percentage of reworked defective units.
S Selling price per unit perfect product.
Sa Salvage price per unit imperfect products which are not reworked.
Ñ Defective units in a production cycle.
Q̃ Total good quantities.
Ĩ(t) Inventory level at time t.
C(P ) UPC, C(P ) = r+ g

P δ1
+ηP δ2 where, δ1, δ2(> 0) are the elasticity parameters

and so chosen to provide the feasible solution of the models. and r is the raw
material cost per unit item, g is the total labour/energy costs per unit time
in a production system which is equally distributed over the produced units.
So,( g

P δ1
) decreases with increases of P . The third term ηP δ2 is the wear and

tear cost, proportional to the positive power of production rate P .
Ch Holding cost per unit per unit time.
Cr Cost to rework an imperfect unit.
Cs Set up cost.
Ĉh Amount of CE associated per unit held inventory per unit time.
Ĉr Amount of CE associated to rework an imperfect product.
Ĉs Amount of CE associated per set-up.
r̂, ĝ, η̂ Amounts of CE associated with raw material, energy/ labour and wear and

tear per unit product per unit time respectively.
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Figure 5.13: Inventory versus time.

H̃C, P̃C, R̃C, T̃C, T̃RFuzzy Holding, Production, Rework, Total cost and Total sale revenue
respectively.

C̃O2, C̃EC, C̃ER Fuzzy CE amount, CE Cost (CEC) and CE reward respectively.
ÃTP , ÃCEC Fuzzy Average Total Profit (ATP) and Average Carbon Emission Cost

(ACEC) for the system respectively.
,̃ˆ These symbols are used on the top of some parameters to represent fuzzy

parameters and CE respectively.
Here parameters and variables are in appropriate units.

5.4.2 Mathematical Model Formulation

Using the above notations and assumptions, the production-inventory process with respect
to time is given in Fig. 5.13 where Q̃ is the maximum perfect stock at t = t1. This is built
up at P −D rate upto t = τ̃ , then at rate P −D − (1− θ)λ̃P upto t = t1 and then depleted
to zero at D rate by t = T̃ . Therefore, for the single item imperfect production process, the
governing differential equations are:

dĨ(t)

dt
=


P −D, 0 ≤ t ≤ τ̃
P −D − (1− θ)γP (t− τ̃), τ̃ ≤ t ≤ t1
−D, t1 ≤ t ≤ T̃

(5.21)

with the boundary conditions Ĩ(t) = 0, at t = 0 and T̃ . According to Buckley and
Feuring [27], α-cut of the solution Ĩ(t) of the above differential equations are given by
Ĩ(t)[α] = [IL(α, t), IR(α, t)], where,

IL(α, t) =


(P −D)t, 0 ≤ t ≤ τ̃

(P −D)t− (1−θ)γP
2

(t− τL)2, τ̃ ≤ t ≤ t1
D(TL − t), t1 ≤ t ≤ T̃

(5.22)
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IR(α, t) =


(P −D)t, 0 ≤ t ≤ τ̃

(P −D)t− (1−θ)γP
2

(t− τR)2, τ̃ ≤ t ≤ t1
D(TR − t), t1 ≤ t ≤ T̃

(5.23)

Applying continuity condition at t1 we have,{
TL = 1

D
{Pt1 − (1−θ)γP

2
(t1 − τL)2}

TR = 1
D
{Pt1 − (1−θ)γP

2
(t1 − τR)2}

(5.24)

Here Ĩ(t)[α] = [IL(α, t), IR(α, t)] satisfies all the conditions given by (2.20) and (2.15)
[cf. Appendix B.1] according to Buckley and Feuring [27] in the interval [0, T̃ ], so Ĩ(t)[α] is
a valid solution of equation (5.21). [For details see Appendix B.2]
Holding cost

Holding cost during [0, T̃ ] is

H̃C = Ch
∫ T̃

0
Ĩ(t)dt = Ch[

∫ τ̃
0
Ĩ(t)dt +

∫ t1
τ̃
Ĩ(t)dt +

∫ T̃
t1
Ĩ(t)dt]. Let α-cut set of total

holding cost H̃C is H̃C[α] = [HCL(α), HCR(α)]. Then

HCL(α) = Ch[
∫ τL

0 IL(α, t)dt+
∫ t1
τR
IL(α, t)dt+

∫ TL
t1

IL(α, t)dt]

= Ch

[
P−D

2 τ2
L + P−D

2 (t21 − τ2
R)− (1−θ)γP

6 {(t1 − τL)3 − (τR − τL)3}+ D
2 (TL − t1)2

]
HCR(α) = Ch[

∫ τR
0 IR(α, t)dt+

∫ t1
τL
IR(α, t)dt+

∫ TR
t1

IR(α, t)dt]

= Ch

[
P−D

2 τ2
R + P−D

2 (t21 − τ2
L)− (1−θ)γP

6 {(t1 − τR)3 − (τL − τR)3}+ D
2 (TR − t1)2

]
(5.25)

Production cost

The production cost during [0, t1] is P̃C = C(P )
∫ t1

0
Pdt = C(P )P [

∫ τ̃
0
dt +

∫ t1
τ̃
dt]. Let

α-cut set of the above said cost is P̃Ci[α] = [PCL(α), PCR(α)].Then,{
PCL(α) = C(P )P [

∫ τL
0
dt+

∫ t1
τR
dt = C(P )P [t1 − (τR − τL)]

PCR(α) = C(P )P [
∫ τR

0
dt+

∫ t1
τL
dt = C(P )P [t1 − (τL − τR)]

(5.26)

Rework cost

The rework cost during the time span [τ̃ , t1] is R̃C = CrθÑ where Ñ =
∫ t1
τ̃
λ̃(t, τ̃)Pdt.

Let α-cut set of the above said cost and the integral are R̃C[α] = [RCL(α), RCR(α)] and
Ñ [α] = [NL(α), NR(α)]. Then,

RCL(α) = CrθNL(α), RCR(α) = CrθNR(α) (5.27)
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and according to Wu [270] the integrals NL(α) and NR(α) are evaluated as{
NL(α) = γP

∫ t1
τR

(t− τR)dt = γP
2

(t1 − τR)2

NR(α) = γP
∫ t1
τL

(t− τL)dt = γP
2

(t1 − τL)2
(5.28)

Therefore, the total α-cut set of good inventory including reworked products are{
QL(α) = Pt1 − (1− θ)NR(α)
QR(α) = Pt1 − (1− θ)NL(α)

(5.29)

Total cost (without CEC)

As a result, due inventory the total cost = Set-up cost + Holding cost + Production cost +
Rework cost. i.e. T̃C = Cs + H̃C + P̃C + R̃C. Let α-cut set of the above said cost is
T̃C[α] = [TCL(α), TCR(α)]. Then{

TCL(α) = Cs+HCL(α) + PCL(α) +RCL(α)
TCR(α) = Cs+HCR(α) + PCR(α) +RCR(α)

(5.30)

Cost due to CE

The CE associated with set-upping, inventory holding, producing, reworking is as

C̃O2 = Ĉs +
˜̂
HC +

˜̂
PC +

˜̂
RC. Let α-cut sets of the above said emission is

C̃O2[α] = [CO2L(α), CO2R(α)]. Then,

CO2L(α) = Ĉs+ Ĉh

[
P−D

2 τ2
L + P−D

2 (t21 − τ2
R)− (1−θ)γP

6 {(t1 − τL)3

−(τR − τL)3}+ D
2 (TL − t1)2

]
+ P (r̂ + ĝ

P δ1
+ η̂P δ2){t1 − (τR − τL)}+ ĈrθγP

2 (t1 − τR)2

CO2R(α) = Ĉs+ Ĉh

[
P−D

2 τ2
R + P−D

2 (t21 − τ2
L)− (1−θ)γP

6 {(t1 − τR)3

−(τL − τR)3}+ D
2 (TR − t1)2

]
+ P (r̂ + ĝ

P δ1
+ η̂P δ2){t1 − (τL − τR)}+ ĈrθγP

2 (t1 − τL)2

(5.31)

In practice, there are several ways to deal with the CE. These are as follows:

Penalty due to CE

In this case, regulatory authority simply imposes some penalty for CE, irrespective of the
emission amount. The objective is to bring the CE to zero level. The CE cost C̃EC =

tax ∗ C̃O2, where ’tax’ is the penalty per unit of carbon emitted. Let α-cut sets of the above
said emission cost is C̃EC[α] = [CECL(α), CECR(α)]. Then{

CECL(α) = tax ∗ CO2L(α)
CECR(α) = tax ∗ CO2R(α)

(5.32)
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Under carbon trading

In this system, the production firm is permitted to emit a fixed amount C (i.e. cap) of carbon
per unit time by the regulatory authority. Normally a heavy penalty is charged by the
authority if the emission by the firm is more than permitted cap. Here, again two cases may
arise:

Case 1 - Cap and penalty / purchase: In this case, a penalty (fixed by the regulatory
authority) or purchasing price (purchasing from other firm emitting less carbon) for per unit
excess emitted carbon is paid by the firm. This amount of cost is evaluated as C̃EC =

tax ∗ (C̃O2 − CT̃ ), where ’tax’ is the penalty / purchasing price per unit excess of carbon.
Thus {

CECL(α) = tax ∗ (CO2L(α)− CTR)
CECR(α) = tax ∗ (CO2R(α)− CTL)

(5.33)

Case 2 - Cap and reward / sale: To encourage the less CE, regulatory authority gives
cash rewards to the firm which emits less carbon than the cap. Some times, the form may
sale its excess carbon to the co-firms, not claiming the rewards from regulatory authority. In
this case, C̃ER = rew ∗ (CT̃ − C̃O2) is the CE rewards or revenue, where ’rew’ is per unit
carbon reward or selling price. Therefore, we have equivalent crisp form as{

CERL(α) = rew ∗ (CTL − CO2R(α))
CERR(α) = rew ∗ (CTR − CO2L(α))

(5.34)

Strictly under permitted cap

In this case, regulatory authority strictly impose the restriction of emission upto cap. If
emission exceeds cap the firm will asked to close. Hence the firm is compelled to maximize
the profit subject to the constraint,

C̃O2 ≤ CT̃ . i.e.,
{
CO2L(α) ≤ CTR
CO2R(α) ≤ CTL

(5.35)

Total Sale Revenue

Revenue for perfect products: Total sales revenue of perfect products is P̃SR =

S
∫ T̃

0
Ddt = SD[

∫ τ̃
0
dt+

∫ t1
τ̃
dt+

∫ T̃
t1
dt] = [SD{TL − (τR − τL)}, SD{TR − (τL − τR)}].

Sales Revenue for imperfect products: The defective products which are not reworked is
disposed by a lower price and total sales revenue is
D̃SR = [Sa(1 − θ)NL(α), Sa(1 − θ)NR(α)]. Therefore, total sales revenue
T̃R = [TRL(α), TRR(α)] for the system is{

TRL(α) = SD{TL − (τR − τL)}+ Sa(1− θ)NL(α)
TRR(α) = SD{TR − (τL − τR)}+ Sa(1− θ)NR(α)

(5.36)
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Constraint for “Out of control” state

In this production system, it is expected to have total production time greater than the time of
occurrence of out-of-control state. This requirement acts as a constraint and is expressed as
t1− τ̃ ≥ β, β > 0 which is interpreted in the setting of possibility and necessity theory [79].
The above constraint reduces to

Pos(t1 − τ̃ ≥ β) ≥ ρ1, and Nes(t1 − τ̃ ≥ β) ≥ ρ2

where ρ1 and ρ2 represent the degree of impreciseness. For τ̃ = (τ1, τ2, τ3) being a TFN,
using Lemma 2.1 and 2.2, we get

t1 ≥
{
β + τ1 + ρ1(τ2 − τ1), in possibility sense
β + τ3 − (1− ρ2)(τ3 − τ2), in necessity sense. (5.37)

5.4.3 Optimization Problems

Model 5.2A (EPL with carbon tax)

Model 5.2A is formulated considering CEC in § 5.4.2 (Penalty due to CE). Here, average
total profit ÃTP for the system is

ÃTP =
T̃R− T̃C − C̃EC

T̃
or, [ATPL(α), ATPR(α)]

=
[TRL(α), TRR(α)]− [TCL(α), TCR(α)]− [CECL(α), CECR(α)]

[TL(α), TR(α)]

or, ATPL(α) =
TRL(α)− TCR(α)− CECR(α)

TR(α)
(5.38)

and ATPR(α) =
TRR(α)− TCL(α)− CECL(α)

TL(α)
(5.39)

Now we construct an objective function for better approximate solutions as

ATPC(α) =
ATPL(α) + ATPR(α)

2
(5.40)

where [TRL(α), TRR(α)], [TCL(α), TCR(α)], [CECL(α), CECR(α)] and [TL(α), TR(α)]
are given by Eqs. (5.36), (5.30), (5.32) and (5.24) respectively.

Now the problem is to find (P, t1) for which multi objectives ATPk(α) ( for all k=L, C, R)
given by Eqs. (5.38), (5.40) and (5.39) respectively, are maximized subject to the constraints
(5.37).
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Model 5.2B(EPL with cap and penalty)

Model 5.2B is formulated considering the CEC as describe in § 5.4.2 (Cap and penalty /
purchase) for case 1. This model is same as Model 5.2A except the expressions of
[CECL(α), CECR(α)]. These expressions are changed by Eq. (5.33).

Model 5.2C (EPL with cap and reward)

As describe about CEC in § 5.4.2 for case 2 (Cap and reward / sale), Model 5.2C is formu-
lated. In this model, average total profit ÃTP for the system is as

ÃTP =
T̃R + C̃ER− T̃C

T̃

or, ATPL(α) =
TRL(α) + CERL(α)− TCR(α)

TR(α)
(5.41)

and ATPR(α) =
TRR(α) + CERR(α)− TCL(α)

TL(α)
(5.42)

Now we construct a new objective function for better approximate solutions as

ATPC(α) =
ATPL(α) + ATPR(α)

2
(5.43)

where [TRL(α), TRR(α)], [TCL(α), TCR(α)], [CERL(α), CERR(α)] and [TL(α), TR(α)]
are given by Eqs. (5.36), (5.30), (5.34) and (5.24) respectively.

The problem is to find (P, t1) for which multi objectives ATPk(α) ( for all k=L, C, R)
given by Eqs. (5.41), (5.43) and (5.42) respectively, are maximized subject to the constraints
(5.37).

Model 5.2D (EPL with carbon constraint)

Model 5.2D is formulated when CE is strictly under permitted cap as described in § 5.4.2.
Average total profit ÃTP for this system is

ÃTP =
T̃R− T̃C

T̃

or, ATPL(α) =
TRL(α)− TCR(α)

TR(α)
(5.44)

and ATPR(α) =
TRR(α)− TCL(α)

TL(α)
(5.45)

Now we construct a new objective function for better approximate solutions as

ATPC(α) =
ATPL(α) + ATPR(α)

2
(5.46)
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where [TRL(α), TRR(α)], [TCL(α), TCR(α)], [CECL(α), CECR(α)] and [TL(α), TR(α)]
are given by Eqs. (5.36), (5.30), (5.35) and (5.24) respectively.

Thus the problem is to find (P, t1) for which multi objectivesATPk(α) ( for all k=L, C, R)
given by Eqs. (5.44), (5.46) and (5.45) respectively, are maximized subject to the constraints
(5.37) and (5.35).

Model 5.2E (EPL with unlimited emission)

Model 5.2E is developed when the firm is permitted to emit unlimited carbon. Thus the
profit function is maximized without CE i.e., there is no penalty (tax=0.0) for CE i.e. cap (C)
tends to infinity. Hence, Model 5.2E is formulated by either putting tax=0.0 in Model 5.2A
or without carbon constraint (5.35) of Model 5.2D.

5.4.4 Solution Methodology

To solve multi-objective maximization problems for Models 5.2A-5.2E, we have used the
IFOT (cf. § 2.4.2.1).

5.4.5 Numerical Experiments and Results

In this section, we develop numerical experiments and results which illustrate the application
of the proposed models.

Experiment 1 (Model 5.2A)

For the Model 5.2A, we consider the following input data:
α = 0.50, θ = 0.750, γ = 0.25, d = 150, τ1 = 1.00year, τ2 = 1.25years, τ3 = 1.50years,
S = $100, Sa = $20, Cs = $15000, Ch = $0.60, Cr = $2.0, Ĉs = 30000.00tonnes,
Ĉh = 3.0tonnes, Ĉr = 6.0tonnes, β = 0.25, ρ1 = 0.90, ρ2 = 0.10, tax = $0.75,
w = 0.10 and unit production cost as: C(P ) = $(5.0+ 8000

P
+0.02P ), CE per unit production:

Ĉ(P ) = (4.0+ 3000
P

+0.008P )tonnes. With these input data, we find the optimum production
rate, optimum production run time and optimum profit.
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Table 5.7: Individual minimum and maximum of objective functions

Objective optimize optimize optimize
functions ATPL ATPC ATPR
ATPL ATP ∗L = 2791.73 ATPL = 2754.08 ATPL = 2534.56
ATPC ATPC = 3652.27 ATP ∗C = 3683.78 ATPC = 3603.69
ATPR ATPR = 4512.81 ATPR = 4613.48 ATP ∗R = 4672.83

Variables
(P ∗, t∗1)

(588.47,3.96) (618.18,3.40) (681.80,2.66)

Individual maximum of the objective functions ATPk for k = L,C,R are obtained and
given in Table 5.7. Now we calculate LL = 2534.56, LC = 3603.69, LR = 4512.81,
UL = 2791.73, UC = 3683.78, UR = 4672.83. Using the equation (2.70), we formulate the
following problem as :

max (µ− ν)

sub to µ ≤ e

−w

(
2791.73−ATPL
2791.73−2534.56

)
−e−w

1−e−w ; ν ≥
(

2791.73−ATPL
2791.73−2534.56

)2

µ ≤ e

−w

(
3683.78−ATPC
3683.78−3603.69

)
−e−w

1−e−w ; ν ≥
(

3683.78−ATPC
3683.78−3603.69

)2

µ ≤ e

−w

(
4672.83−ATPR
4672.83−4512.81

)
−e−w

1−e−w ; ν ≥
(

4672.83−ATPR
4672.83−4512.81

)2

t1 ≥
{
β + τ1 + ρ1(τ2 − τ1), in possibility sense
β + τ3 − (1− ρ2)(τ3 − τ2), in necessity sense.

µ ≥ ν and µ+ ν ≤ 1; µ, ν ≥ 0.



(5.47)

The solutions obtained for Eq. (5.47) are given in Table 5.8.

Table 5.8: Optimum results of Eq. (5.47) for w=0.10

µ∗ ν∗ P ∗ t∗1 [ATP ∗L, ATP ∗C , ATP ∗R] [N∗L, N∗R] [Q∗L, Q∗R] [CO∗2L, CO∗2R]
0.7451 0.0603 628.29 3.25 [2728.59, 3681.07, 4633.54] [277.17, 355.85] [1953.28, 1972.91] [85777.91, 92004.06]

Now we perform the Pareto-Optimal Solution test for strong or weak solutions. The Pareto-
Optimal results are presented in Table 5.9. In Table 5.9, the value of V ∗ is quite small
and hence, the optimal results in Table 5.9 are strong Pareto-optimal solution and can be
accepted.
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Table 5.9: Pareto-Optimal results

V ∗ P ∗ t∗1 [ATP ∗L, ATP ∗C , ATP ∗R] [N∗L, N∗R] [Q∗L, Q∗R] [CO∗2L, CO∗2R]
0.0000 627.48 3.25 [2728.59, 3681.06, 4633.53] [277.33, 355.98] [1950.76, 1970.37] [85700.90, 91918.67]

Experiment 2 (Model 5.2B), 3 (Model 5.2C), 4 (Model 5.2D) and 5 (Model 5.2E)

Taking all the input data same as Model 5.2A, we solve Models 5.2B, 5.2C, 5.2D and 5.2E
with C=7500.00 tonnes, ( C=20000.00 tonnes, rew=$0.25), C=7000.00 tonnes and tax=$0.0
respectively. The optimal results of these models are presented in Table 5.10.

Table 5.10: Optimal results for Model 5.2B, 5.2C, 5.2D and 5.2E

Model P ∗ t∗1 [ATP ∗L, ATP ∗C , ATP ∗R] [N∗L, N∗R] [Q∗L, Q∗R] [CO∗2L, CO∗2R]
5.2B 558.97 1.70 [5902.40, 7536.62, 9170.84] [7.26, 22.89] [943.11, 947.01] [47350.92, 52111.93]
5.2C 647.81 3.40 [11217.54, 12090.03, 12962.52] [331.02, 417.05] [2096.05, 2117.78] [92732.74, 99295.30]
5.2D 535.26 3.71 [7888.76, 8674.84, 9460.92] [365.24, 447.58] [1874.69, 1895.28] [82053.46, 87485.37]
5.2E 680.04 3.38 [8045.07, 8807.12, 9569.18] [341.72, 432.25] [2190.47, 2213.10] [97705.31, 104655.30]

Experiment 6

We now construct the objective functions Average Carbon Emission Cost (ACEC) and
Average Carbon Emission Revenue as ACECL(α) = CECL(α)

TR(α)
, ACECR(α) = CECR(α)

TL(α)

and ACECC = ACECL(α)+ACECR(α)
2

and ACERL(α) = CERL(α)
TR(α)

, ACERR(α) = CERR(α)
TL(α)

and ACERC = ACERL(α)+ACERR(α)
2

, where [CECL(α), CECR(α)], [CERL(α),
CERR(α)] and [TL(α), TR(α)] are given by Eqs. (5.32), (5.34) and (5.24) respectively.
Considering the same input data we minimize ÃCEC =[ACECL, ACECC , ACECR] for
Model 5.2A and 5.2B and maximize ÃCER =[ACERL, ACERC , ACERR] for Model
5.2C, as multi-objective optimization problems with constraints (5.37) using IFOT (see
Appendix B.3 for solution procedure for minimization problem). The optimum results of
this experiment are presented in Table 5.11 and compared with optimum results of the
earlier models.

Table 5.11: Comparison of results optimising individually ÃCEC and ÃTP for Model 5.2A

Objective P ∗ t∗1 [T ∗L, T ∗R] [CO∗2L, CO∗2R] [TC∗L, TC∗R] [ACEC∗L, ACEC∗R] [ATP ∗L, ATP ∗R]

Min ÃCEC 529.67 3.59 [12.01, 12.13] [78711.12, 84012.93] [74328.26, 82828.56] [4865.61, 5249.18] [2646.23, 4532.46]
Max ÃTP 627.48 3.25 [13.00, 13.14] [85700.90, 91918.67] [78117.89, 88047.81] [4885.71, 5292.94] [2728.59, 4633.53]

5.4.6 Discussion
• Table 5.9 presents the optimal results of Model 5.2A. Here, the profit span $[2728.59,
4633.53] is obtained for optimum values of P∗ = 627.48 and t∗1 = 3.25years. Total
[85700.90, 91918.67] tonnes carbon is emitted in the system and the CE tax is charged @
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$0.75 per unit emission per unit time. Total [277.33, 355.98] units defective products are
produced and 75% of these defectives are reworked immediately. When CEC is not taken
into account (i.e. Model 5.2E or Model 5.2A with tax=$0.0), the profit is increased and its
span is $[8045.00, 9569.00]. This result is obtained for P∗ = 680.04 and t∗1 = 3.38years
and corresponding defective units are [340.70, 431.10] (cf. Table 5.10) which is more than
Model 5.2A. These results are as per expectation. Once tax on CE is removed, the system is
free from any restriction on production and has worked with unlimited CE. As a result, the
rate of production has gone up, profit is higher and production time is marginally more.

• For the given set of parameters in the above Experiment 1 for Model 5.2A, Fig. 5.14
represents the concavity property of the objective function ATPC against the production rate
(P) and production run time (t1).
• Fig. 5.15 represents the convexity property of ACEC,ACECC = ACECL+ACECR

2
against

the production rate (P) and production run time (t1) for input data of Model 5.2A.

Figure 5.14: Concavity ATPC against P
and t1 for Model 5.2A.

Figure 5.15: Convexity of ACECc
against P and t1 for Model 5.2A.

• α-cuts [ATPL(α), ATPR(α)] and [ACECL(α), ACECR(α)] of observed profit (ÃTP )
and ACEC (ÃCEC) for the Model 5.2A due to Experiment 1 are plotted in Figs. 5.16 and
5.17 respectively . It is interesting to note that the figures represent almost triangular fuzzy
numbers for fuzzy profit and carbon cost. Assuming these fuzzy quantities to be perfect
triangular numbers, the corresponding membership functions µ

ÃTP
(x) and µ

ÃCEC
(x) for

profit and carbon cost respectively are formulated as

µ
ÃTP

(x) =

{
x−1427.21

2252.75
, 1427.21 ≤ x ≤ 3679.96

5767.30−x
2087.34

, 3679.96 ≤ x ≤ 5767.30
(5.48)

µ
ÃCEC

(x) =

{
x−4653.45

440.00
, 4653.45 ≤ x ≤ 5093.45

5571.04−x
477.59

, 5093.45 ≤ x ≤ 5571.04
(5.49)
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Figure 5.16: Membership function of
ÃTP for Model 5.2A.

Figure 5.17: Membership function of
ÃCEC for Model 5.2A.

In the formulation of proposed model, we started with TFN membership function of τ ,
out-of-control time. Thus, it is expected that the optimum results- profit and ACEC will be
also fuzzy in nature and represented by a TFN. Hence, the expressions (5.48) and (5.49) are
as per expectation and the justification valid formulation and analysis.

• Fig. 5.18 represents the changes in % of optimum P ∗, t∗1, α-cut of ÃTP ∗ and ÃCEC∗
with respect to change of α in %. With increase of α, right spreads of both ATP and ACEC
decreases, but the rate of decrease of ATP is more than ACEC. With α, the left spreads of
these two quantities increase and rate of increase of ATP is higher than that of ACEC.
Again production P and production time t1 decreases and increases respectively with α. It is
expected that if rate of production is reduced, then production period will be higher. Hence
the system behaviour is normal.

• Table 5.10 gives the optimum results solving the Models 5.2B, 5.2C, 5.2D and 5.2E.
Profits of Models 5.2B and 5.2C are greater than the profit of Model 5.2A because of zero
cap (C=0.0tonnes) has been considered in Model 5.2A. Model 5.2C gives the highest profit
among all models as the firm gets some rewards from regulatory authority for less CE than
cap. On the other hand, for other models, the firm pays penalty for CE. Model 5.2D gives
the satisfactory profit $[7888.76, 8674.84, 9460.92] under the strict carbon cap
(C=7000.00tonnes) constraint. It is to be noted that these results of Model 5.2D are in
between the results of Models 5.2B and 5.2C. It is as per expectation in Model 5.2D, the
inequality CE ≤ C is taken in equality sense of C where Models 5.2B and 5.2C assume
CE, more and less than C respectively.

• Now from the Table 5.11, it is seen that the production rate P and production run time t1
which minimize the ÃCEC are quite different from P and t1 which are obtained maximizing
the profit ÃTP for Models 5.2A, 5.2B and 5.2C. It is interesting to note that for the optimum
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Figure 5.18: Sensitivity of α for Model 5.2A

production rate P ∗ = 529.67 and production run time t∗1 = 3.59years which minimize
ÃCEC, the corresponding profit $[2646.23, 3589.34, 4532.46] are lower than the profit
ÃTP =$[2728.59, 3681.06, 4633.53] obtained maximizing ÃTP directly, although for the
optimum values, P ∗ = 627.48 and t∗1 = 3.25years which maximize ÃTP , corresponding
ÃCEC $[4885.71, 5089.32, 5292.94] is higher than the minimum value $[4865.61, 5057.39,
5249.18] of ÃCEC. Therefore with respect to Model 5.2A, it is a better choice for a firm’s
manager to take the profit function ÃTP as the objective to get more profit for the system.

5.4.7 Practical Implication

In different countries, different types of regulations for CE are in vogue. To the best of our
knowledge, there may be four types of regulation- (i) no restriction on CE (i.e. unlimited CE
is permitted), (ii) average tax on CE, whatever be the amount, carbon trading- (iii)purchase
(penalty) or (iv) sale (revenue). Thus, a production firm management is in a fix i.e. does not
know which regulation should be followed so that firm’s profit is maximum. Considering
this situation, an algorithm (with example) for the management is given for his/her maximum
profit in Algorithm 3.

5.4.8 Real-life Illustration

Example 1: For firms from Annex I countries
Let a company ABC from Annex I countries (Australia, Austria, Belgium, Canada,

Germany, Italy, etc.) produces iron bars using coal based production system. Initially,
perfect bars were produced upto nearly [1.00, 1.25, 1.50] years from the commencement of
production. After that, some imperfect (25%) bars were produced, some (75%) of which
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were reworked and sold as a new one ($100 per bar). The rest were sold at a reduced price
$20 per bar at the open market with demand 150 units per year.

Let P units be production rate per year and production process is continued up to t1. To
produce one unit of iron bar, the required raw material costs $5.0; total energy $8000 and
minor repair/replacement cost $0.02. The set-up cost for one production/ business cycle is
$25000, storage cost per unit bar is $0.30 per year, rework cost is $2.0 per defective unit.
Let CEs due to set-up be 10000 tonnes, holding 0.50 tonne per unit bar per year, rework 2.0
tonne per unit, raw material 55.00 tonnes per amount of raw materials required to produce
one unit, total energy 30000 tonnes per year, wear and tear 0.08 tonne per one unit.

Let the country has the following clean energy regulation. The country allows a firm to
emit carbon of 25000 tonnes per year and permits 1 tonne of CO2 at the cost $2.0.

The objective of this firm is to determine P and t1 following the existing emission rule of
the country so that the profit of the firm is maximum. Following the prescribed algorithm 3,
the detailed optimum results are presented in Table 5.12 and its implementation is given in
Table 5.13.

Table 5.12: Optimal results of practical implication for Example 1 and 2

Example Model P ∗ t∗1 [ATP ∗L, ATP ∗C , ATP ∗R] Average Emission [NL, NR] [QL, QR]
5 712.01 5.648 [8093.26, 8672.86, 9252.45] 27120.39 [1625, 1821] [3566, 3615]

1 2 653.75 5.082 [2357.65, 5801.90, 9246.14] 26431.34 [1123, 1280] [3002, 3042]
4 689.51 3.012 [7456.18, 8261.58, 9066.98] 25000.00 [231, 307] [2000, 2019]

2 1 300.28 8.840 [2377.98, 4842.41, 7306.84] 11163.24 [2106, 2249] [2110, 2146]

Therefore, the firm management chooses Model 5.2D to achieve maximum profit as well
as it plays an important role for social welfare.
Example 2: For firms from the developing country like India In the developing
country, India, to improve the environmental performance in future following Kyoto
protocol, the government imposes some penalty on the firms for every units of CE,
whatever be the amount- high or low.

Let a big iron producing firm from Durgapur, India produces iron bars using coal based
production system. Initially, perfect bars were produced upto nearly [1.00, 1.25, 1.50] years
from the commencement of production. After that, some imperfect (25%) bars were
produced, some (75%) of which were reworked and sold as a new one ($200 per bar). The
rest were sold at a reduced price $100 per bar at the open market with demand 200 units per
year. To produce one unit of iron bar, the required raw material costs $2.50; total energy
$10000 and minor repair cost $0.02. The set-up cost for one production/ business cycle is
$15000, storage cost per unit bar is $0.50 per year, rework cost is $2.50 per defective unit.
Let CEs due to set-up be 20000 tonnes, holding 0.50 tonne per unit bar per year, rework 1.0
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Table 5.13: Algorithm-wise Implementation

ImplementationAlgorithm
Example 1 Example 2

Step 1: Check the regulatory system : Under Carbon Cap and Trading : Penalty due to CE
if No restriction on CE i.e., Unlimited cap then : NO : NO

Use Model 5.2E : EPL with unlimited CE : NOT APPLICABLE (NA) : NA
else if Tax is imposed due to CE (whatever be the amount) then : NO : YES

Use Model 5.2A : EPL with carbon tax : NA : APPLICABLE (EXIT)
else

Go to step 2 : YES
Step 2: Check CE with limited carbon cap C : YES, C=25000.00 tonnes

Calculate the Average CE using Model 5.2E : 27120.39 tonnes of CE
if CE < C then : NO

Use Model 5.2C : EPL with cap and reward : NA
else

Go to step 3 : YES
Step 3: Check Optimum profit due to paying penalty for

excess CE or use cap as a constraint : YES
Find optimum profit for Model 5.2B : ATPC = $5801.90
Find optimum profit for Model 5.2D : ATPC = $8261.58

if Profit of Model 5.2B > Profit of Model 5.2D then : NO
Use Model 5.2B : EPL with cap and penalty : NA

else
Use Model 5.2D : EPL with carbon constraint :APPLICABLE (EXIT)

End

tonne per unit, raw material 5.00 tonnes per amount of raw materials required to produce
one unit, total energy 2000 tonnes per year, wear and tear 0.08 tonne per one unit.

Let the government of India introduces a nationwide carbon tax of $2.0 per tonne CE.
Following the prescribed algorithm 3, the firm management is compelled to use the Model
5.2A. The detailed optimum results are presented in Table 5.12 and the supporting
implementation is given in Table 5.13.

5.5 Conclusion
This investigation is proposed for the CE in fuzzy environment using various inventory
models including :

• The first model proposed here is a production inventory model where defective
production rate and CEC are considered in the model formulation. All possible regulations
for CE are considered and maximum profits of a firm under each regulation are evaluated.
An algorithm for a firm management for maximum profit taking all possible management
decisions into consideration against different regulations are given. There is an example
with a real life practical case faced by the production firms of different countries.

Here, for multi-objective optimization technique, RMOGA is also presented. It is
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interesting to note that maximum production does not always fetch maximum profit for a
firm. Rather, regulated production in which carbon sale (i.e. carbon trade) is permitted /
done, gives maximum profit for the system along with the performance of its social
responsibilities.

Thus, it is a practical solution to prevent global pollution. Here, all illustrations are with
the hypothetical data. Once the real life practical data are available, a firm can implement it
following the Algorithm 3 in § 5.3.7.

• The second model proposed here is an imperfect production inventory model where
defective production rate is imprecise in nature and CEC is included in it’s cost. Using FDE
and FRI, an approach is proposed, where α-cuts of fuzzy profit are optimized through IFOT
to get optimal decision. Optimal profit functions and CEC have been graphically presented
as TFNs.

Thus the outcomes of the present investigation is two fold.

(i) For defective/ imperfect production system, deterministic model formulation and the
corresponding solutions are approximate ones as the time at which imperfect
production begins is normally uncertain. Here the consideration of uncertain
(imprecise) imperfect production instant, formulation of the models through FDE and
its solutions furnish much more realistic and correct solutions of the imperfect
production problem.

(ii) For the first time, almost all possible regulations for CE are considered and production
rate and production duration for a firm to have maximum profit under each regulation
are evaluated. An algorithm for a firm management for the maximum profit taking all
possible management decisions into consideration against different regulations is
given. This is also illustrated with examples. Now-a-days, these are the real-life
emergent problems faced by the production firms throughout the world. In the present
formulation, four carbon policies have been outlined which appears to be exhaustive.
If in a country, any other type of CO2 policy is in vogue, that can be easily
incorporated in the presented algorithm and optimum production rate and duration for
maximum profit can be obtained.

Here for a feasible solution of the production system, a fuzzy constraint on the uncertain
imperfect production instant is imposed and transformed to a crisp one using possibility and
necessity measures. However, in these cases, fuzziness also can be removed using credibility
measure. Moreover, for the MOOP, here IFOT has been used. This method is quite young
for the solution of MOOPs. The use of IFOT is quite general and can be used for MOOPs in
others research areas such as supply-chain, transportation, portfolio management, etc. The
present investigation can be extended to include the CE due to transportation of raw materials
to production firms, transportation of finish goods to sales counter, etc.
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Chapter 6

Inventory Problems with Trade Credit
Policy in Fuzzy Environment

6.1 Introduction

In today’s highly competitive commercial market, many suppliers and manufacturers would
like to make a co-operative relationship to get tensionless steady sources of supply,
production and demand of goods to maximize profits and improve overall quality.
Normally, payments are made for goods immediately after receiving the consignment. To
avoid stiff price competition, business houses use credit as part of the pricing strategy and
provide credit terms to their customers to gain a competitive edge. They often provide
credit terms to allow their customers to make purchases today and pay at a later date
without any additional charges. Therefore, trade credit plays an important role in a broad
range of modern industries and economies. Today, the suppliers offer to
manufacturer-cum-retailers a delay period known as trade credit to encourage sales,
promote market share, and reduce on-hand stock levels of raw materials within the fixed
permitted settlement period. During this period, as the supplier does not charge any interest,
manufacturer-cum-retailer can earn interest by depositing the generated sales revenue into
an interest bearing account. However, if the payment is not paid in full by the end of the
permissible delay period, then suppliers charge the manufacturer-cum-retailers an interest
on the outstanding amount. In real practice, manufacturer-cum-retailer also offers a credit
period to his/her customers to stimulate own demand. Generally, credit period offered by
the supplier is greater than or equal to credit period offered by manufacturer to customers.
As in reality, demands of the customers during credit period increases and depends on the
credit period. Normally, as mentioned above, a retailer shares a part of supplier’s offered
credit period with the customers, thus credit offered by the retailer is less than the supplier’s
credit. But, in some cases, to get the cash quickly or to avoid the deterioration of the item,
etc, retailer may give more credit period than that given by the supplier to create high
demand for the item so that the item is sold quickly.
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Conventionally, if there is any due after the credit period, the manufacturer cum retailer
clears the dues at the end of the business period. As it is assumed that the unit selling price
is greater than the unit purchasing cost, the manufacturer must have sufficient amounts
before the end of business period and he may pay that amount to the supplier some time
before the end of the total cycle and in this situation, he will have to pay less interest to the
supplier. Moreover,the manufacturer can earn more interest after that time till the end of the
business period. This new approach to calculate the interest earned by the retailer is
considered in this paper and the result is compared with the above mentioned conventional
approach also. Till now, very few have used this new approach in the analysis of inventory
model with trade credit.

It has been recognized that one’s ability to make precise statement concerning different
parameters of an inventory model diminishes with the increasing complexities of world
economy throughout the year. As a result it is very difficult to estimate the parameters of an
inventory model precisely. Here, we consider that manufacturer cum retailer’s demand is
trade credit dependent and its parameters are fuzzy in nature. Further more, the rate of
producing defective units is fuzzy.

In the formulation of the model, presence of fuzzy demand as well as fuzzy defective
production rate leads to fuzzy differential equation of instantaneous state of inventory level.
Till now fuzzy differential equation formulation is not much used to solve fuzzy inventory
models though the topics on fuzzy differential equations have been rapidly growing in the
recent years.

Present investigation is motivated by the fact that many sales organizations offer trade
credit periods and production firms produce and sell the produced items in imprecise
environment. In developing countries, vendor’s providing credit to their buyers is an
important form of financing for business and particularly role of trade credit is immense
where growth of financial institutions is less compared to developed nations. Moreover, the
volume of trade credit in aggregate represents 17.8% of total assets for US firms, 22% for
UK firms, and more than 25% for the countries such as Germany, France and Italy [208].

6.2 Literature Review
The main objective of inventory management deals with maximization of the total inventory
profit for which it is required to determine the optimal inventory policy to meet the future
demand. Generally a manufacturer produces an item and it is sold at different markets. But
at-times, it has been observed that the markets have different selling seasons. Hence,
manufacturer/supplier has to adopt the appropriate management policies/strategies in the
business with the different markets. In a production inventory model with deteriorating
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items, He et al. [102] considered multiple-market demands. Krichen et al. [132] described a
single supplier and multiple cooperative retailers inventory model under permissible delay
in payments. Then Pal et al. [194] researched on multi-echelon supply chain model in
multiple markets with supply disruption. Many researchers (as mentioned in §
1.3.5)incorporated the idea of trade credit in different types of inventory models (EOQ,
EPQ, EPL, etc.) in one or two level policy. One of the drawbacks of the
models [89, 111, 154] is that the assumed demand during retailer’s credit period is constant,
which is not realistic. Teng et al. [253] obtained the optimal ordering policy for
stock-dependent demand under progressive payment scheme. Further, Teng et al. [254]
extended the demand from constant to non-decreasing pattern. Lately, Dye and Yang [74]
considered issues of sustainability in the context of joint trade credit and inventory
management in which the demand depends on the length of the credit period offered by the
retailer to its customers.

As mentioned in § 1.3.2, Salameh and Jaber [225], Maddah and Jaber [153], Sana [227],
Ouyang and Chang [188], Sarkar et al. [228] and others are addressed the production
inventory model for imperfect item with either lost sale or repairing, but till now, none has
considered the production-inventory system with fuzzy defective rate. During last few
decades, due to high inflation and consequent sharp decline in the purchasing power of
money in the developing countries like India, Bangladesh etc., the financial situation has
been changed and it is not possible to ignore the effect of inflation and time value of money
any further. Recently, Tiwari et al. [256] developed a two warehouse inventory model for
non-instantaneous deteriorating items with permissible delay in payments under inflationary
conditions. Mousavi et al. [183] presented a seasonal multi-product multi-period inventory
control model with inventory costs obtained under inflation and all-unit discount policy.

Table 6.1: Literature Review for Model-6.1

Authors with year Model type Item’s character Credit
period

Learning
effect

Inflation Multiple
markets

Goyal [90], 1985 EOQ Perfect Crisp No No No
Teng [251], 2002 EOQ Perfect Crisp No No No
Mahata and Goswami [155], 2010 EPQ Deterioration Crisp No No No
He et al. [102], 2010 Supply chain Deterioration No No No Yes
Krichen et al. [132], 2011 EOQ Perfect Crisp No No No
Pal et al. [194], 2012 Supply chain Defective No No No Yes
Ouyang and Chang [188], 2013 EPQ Defective Crisp No No No
Sarkar et al. [228], 2014 Supply chain Defective Crisp No No No
Das et al. [62], 2015 Supply chain Deterioration Fuzzy No No Yes
Tiwari et al. [256], 2016 EOQ Deterioration Crisp No Yes No
Mousavi et al. [183], 2016 EOQ Perfect No No Yes No
Present Model 6.1

EPL Defective Fuzzy on Transporta-
tion

Yes Yes

The first impetus on solving fuzzy differential equation was made by Kandel and Byatt
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Table 6.2: Literature Review for Model-6.2

Author(s) with year Model type Product’s character Demand Trade credit Payment type

Huang [109], 2006 EOQ Perfect Constant Two-levels Conventional
Ho [104], 2011 Supply chain Perfect Price and credit linked Two-levels Conventional
Mahata [154], 2012 Supply chain Deterioration Constant Two-levels Conventional
Chen and Wang [51], 2012 Supply chain Perfect Random Two-levels Conventional
Chung and Cárdenas-Barrón [57], 2013 Supply chain Deterioration Stock-dependent Two-levels Conventional
Ouyang et al. [188], 2013 EPQ Imperfect Constant Two-levels Conventional
Ouyang et al. [192] Supply chain Perfect Constant Two-levels Conventional
Liao et al. [142], 2013 Supply chain Deterioration Constant Single-level Conventional
Chung et al. [58], 2014 Supply chain Deterioration Constant Two-levels Conventional
Wu et al. [271], 2014 Supply chain Deterioration Trade credit dependent Two-levels Conventional
Mohini and Pakkala [177], 2015 EOQ Deterioration Random Single-level Against delivery, within

trade credit, at the trade
credit limit and beyond
trade credit limit

Majumder et al. [166], 2016 EPQ Deterioration Constant Two-levels Conventional and be-
yond trade credit limit

Present Model 6.2 EPL Imperfect Trade credit & fuzzy Two-levels
Conventional and be-
yond trade credit limit

[121]. An extended version of their work was published after 2 years. After that different
approaches have been used by several authors to solve fuzzy differential equations [27, 40,
119, 260].

Thus, the comparison investigations of the Model 6.1 are presented in Table 6.1.

Again in the context of earlier investigations as presented in Table 6.2, the new considera-
tions in Model 6.2 are as follows:

• Two levels trade credit offered by supplier and manufacturer-cum-retailer is
considered.

• A new approach for maximum profit is proposed and compared with the conventional
method.

• Assuming fuzzy demand, the proposed inventory model is formulated through FDE
and the appropriate solution is obtained.

6.3 Model-6.1 : A learning effected imperfect production
inventory model for several markets with fuzzy trade
credit period and inflation 1

In this model, it has been considered that manufacturer produces finished goods along with a
constant imperfect rate and delivered it to different seasonal markets where the demand rate

1This model has been communicated in International journal of Uncertainty, Fuzziness and Knowledge
based system, World Scientific
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PERIOD AND INFLATION

and time duration of each market are different. The manufacturer gives an opportunity of
initial part payment to those markets who receive the goods during the production run time
and the remaining amount paid at the end of the business period. To produce the finished
goods, manufacturer received the raw-material instantly rate from the supplier who offers an
imprecise credit period to the manufacturer. The proposed model is formulated in terms of
integrated total profit under the following assumptions and notations:

6.3.1 Assumptions and Notations

Notations:
I(t) Inventory level at time t.
P Manufacturer’s production rate per year.
t1 Length of time from the beginning and end of production. It has been taken

as DV.
M Manufacturer’s trade credit period offered by raw materials supplier in years.
f Unit usage of raw materials per finished product.
λ Percentage of defective rate.
Csp Manufacturer’s set up cost.
Csm Market’s set up cost.
Cr Unit purchasing price of raw materials.
Cp Unit production cost.
Sp Manufacturer’s unit selling price.
Sm Unit selling price of markets.
Hr Unit stock holding cost of raw materials.
Hp Unit stock holding cost per perfect finished product of manufacturer.
Hm Unit stock holding cost per perfect finished product at markets.
ie Interest earned per quantity per year by the the retailer.
ic Interest charged per quantity in stocks per year by the raw materials supplier.
r The discount rate.
i The inflation rate, which is varied by the social economical situations (e.g.,

consumer price index (CPI)and producer price index (PPI)), and the company
operation status(e.g.,operation cost index,and productivity index).

R = r − i, is the difference between discount rate and inflation rate.
di Customers’ demand rate per year for ith market.
Ti Starting time of the business of ith market.
Tei Time at which the selling season ends for ith market.
n Number of markets where the products are transported from the manufacturer.
Qi Quantity received by ith market from the manufacturer.
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WTP Total manufacturer’s profit.
MTP Total markets’ profit.
ITP Total profit for the integrated system.
Assumptions:
(i) A single manufacturer-cum-retailer and multiple markets have been assumed

for the flow of single product.
(ii) Shortages are not allowed and lead time is negligible.
(iii) Time horizon is finite.
(iv) Interest charged per quantity (ic) is greater or equal to interest earned per

quantity (ie) i.e., (ic ≥ ie).
(v) The manufacturer offers an opportunity of initial part payment to those mar-

kets who receive the item before the end of production run and the remaining
part should be paid at the end of their individual business session. But the
markets who receive their required items after the production run time (t1),
don’t get this opportunity. Every market receives all items at the starting time
of their business period to fulfil their fixed customers’ demand.

(vi) Market selling price (Sm) is greater or equal to manufacturer’s selling price
(Sp) which is also greater than the unit purchase price of raw materials (Cr).
i.e., Sm ≥ Sp ≥ Cr.

(vii) The credit period (M) is offered by the supplier to the manufacturer is not
fixed i.e., it changes due to various factors according to his/her business pol-
icy. So in nature, it is vague and imprecise. For this reason here, it has been
considered that raw material supplier offers a fuzzy credit period to the man-
ufacturer.

(viii) Learning effect of the manufacturer-cum-retailer reduced transportation cost
in each time of markets’ order is reduced at a rate γ.

6.3.2 Raw material’s inventory for manufacturer

The manufacturer receives all the required quantity of raw materials instantaneously from
the raw material supplier to produce the finished good when he/she is going to start his/her
production (cf. Fig. 6.1). Then the inventory of raw materials depletes gradually with time
due to production and completely depleted at time t1. So, the raw material’s inventory Ir(t)
at time t satisfies

dIr(t)

dt
= −fP (6.1)

with the boundary condition Ir(t1) = 0. Hence, the inventory level Ir(t) at time t is

Ir(t) = fP (t1 − t) (6.2)
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Figure 6.1: Raw material’s inventory vs. time

The quantity of raw materials received by the manufacturer is

Qr = Ir(0) = fPt1 (6.3)

Present value of raw material’s holding cost is

HCr = Hr

∫ t1

0

e−RtIr(t)dt = Hr

∫ t1

0

e−RtfP (t1 − t)dt

= HrfP

{
t1
R
− 1− e−Rt1

R2

}
(6.4)

The manufacturer needs to make the full payments of the raw-material at the end of the
credit period M, otherwise manufacturer will have to pay an interest to the supplier. So,
present value of interest payable by the manufacturer is

IPr = Cric

∫ t1

M

e−RtIr(t)dt = Cric

∫ t1

M

e−RtfP (t1 − t)dt

= CricfP

{
(t1 −M)e−RM

R
− e−RM − e−Rt1

R2

}
(6.5)

Present value of manufacturer’s purchase cost for the raw materials will be

PCr = Cr

∫ t1

0

fPe−Rtdt =
CrfP (1− e−Rt1)

R
(6.6)
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Figure 6.2: Manufacturer’s finished product inventory vs. time

6.3.3 Manufacturer’s finished products’ inventory

The manufacturer starts production of the finished product along with a constant defective
rate λ from t = 0 and then the inventory level increases over time. After time T1, the first
market receives its required quantity Q1 instantaneously, then at time T2, the second market
receives its required quantity Q2 instantaneously and so on. Gradually, as the production
ceases at time t1, the inventory level decreases due to the remaining markets’ instantaneous
replenishment and the inventory completely depleted after the receipt of the quantity Qn by
the last market. Let the manufacturer’s inventory level in the interval [Tk−1, Tk]
(k = 1, 2, · · · , n) be Ik(t) and Im−(t), Im+(t) be the inventory levels in time intervals
[Tm−1, t1], [t1, Tm] respectively. Then the differential equations of the finished products’
inventory levels at time t in [0, Tn] are as follows ( cf. Fig. 6.2):

dI1(t)

dt
= (1− λ)P, 0 ≤ t ≤ T1

dIk(t)

dt
= (1− λ)P, Tk−1 ≤ t ≤ Tk [k = 2, 3, · · · ,m− 1]

dIm−(t)

dt
= (1− λ)P, Tm−1 ≤ t ≤ t1

dIm+(t)

dt
= 0, t1 ≤ t ≤ Tm

dIk(t)

dt
= 0, Tk−1 ≤ t ≤ Tk [k = m+ 1,m+ 2, · · · , n]
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with boundary conditions

I1(0) = 0,

Ik(Tk−1) = Ik−1(Tk−1)−Qk−1, [k = 2, 3, · · · ,m− 1]

Im−(Tm−1) = Im−1(Tm−1)−Qm−1,

Im+(Tm) = Im+1(Tm) +Qm,

Ik(Tk−1) = Ik−1(Tk−1)−Qk−1, [k = m+ 1,m+ 2, · · · , n]

and In(Tn) = Qn

Solving these equations, we get the level of inventory at different time t as

Ik(t) = (1− λ)Pt−
k−1∑
i=1

Qi Tk−1 ≤ t ≤ Tk [k = 1, 2, · · · ,m− 1], (6.7)

Im−(t) = (1− λ)Pt−
m−1∑
i=1

Qi Tm−1 ≤ t ≤ t1 (6.8)

Im+(t) =
n∑

i=m

Qi, t1 ≤ t ≤ Tm (6.9)

Ik(t) =
n∑
i=k

Qi Tk−1 ≤ t ≤ Tk [k = m+ 1,m+ 2, · · · , n] (6.10)

Using the continuity condition at t = t1, we have

Im−(t1) = Im+(t1) or, (1− λ)Pt1 −
m−1∑
i=1

Qi =
n∑

i=m

Qi or, P =
1

(1− λ)t1

n∑
i=1

Qi (6.11)

which gives the relation between the two variables P and t1.
The present value of holding cost for the manufacturer’s finished product is

HCp = Hp

[m−1∑
k=1

Lk + Lm− + Lm+ +
n∑

k=m+1

L′k

]
where,

Lk =

∫ Tk

Tk−1

{
(1− λ)Pt−

k−1∑
i=1

Qi

}
e−Rtdt, k = 1, 2, · · · ,m− 1

= (1− λ)P

{
Tk−1e

−RTk−1 − Tke−RTk
R

+
e−RTk−1 − e−RTk

R2

}
− e−RTk−1 − e−RTk

R

k−1∑
i=1

Qi
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Lm− =

∫ t1

Tm−1

{
(1− λ)Pt−

m−1∑
i=1

Qi

}
e−Rtdt

= (1− λ)P

{
Tm−1e

−RTm−1 − t1e−Rt1
R

+
e−RTm−1 − e−Rt1

R2

}
− e−RTm−1 − e−Rt1

R

m−1∑
i=1

Qi

Lm+ =

∫ Tm

t1

n∑
i=m

Qie
−Rtdt =

e−Rt1 − e−RTm
R

n∑
i=m

Qi

L′k =

∫ Tk

Tk−1

n∑
i=k

Qie
−Rtdt =

e−RTk−1 − e−RTk
R

n∑
i=k

Qi, k = m+ 1,m+ 2, · · · , n

Therefore,

HCp = Hp

[
(1− λ)P

{
1− e−Rt1

R2
− t1e

−Rt1

R

}
−
m−1∑
k=1

e−RTk−1 − e−RTk
R

k−1∑
i=1

Qi

−e
−RTm−1 − e−Rt1

R

m−1∑
i=1

Qi +
e−Rt1 − e−RTm

R

n∑
i=m

Qi

+
n∑

k=m+1

e−RTk−1 − e−RTk
R

n∑
i=k

Qi

]
(6.12)

The present value of manufacturer’s production cost is

PCp = CpPe
−Rtdt =

CpP (1− e−Rt1)
R

(6.13)

The present value for transportation cost of perfect products ordered by the market which is
reduced at a learning rate γ is

TCp =
n∑
i=1

{Tr0 + Tr1e
−γ(i−1)Qi}e−RTi (6.14)

The present value of manufacturer’s sales revenue is

SRp = Sp

n∑
i=1

Qie
−RTi (6.15)
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The present value of manufacturer’s interest earned is

IEp =

m−1∑
i=1
Ti≤t1

ieSpρQi

∫ Tn

Ti

e−Rtdt+

m−1∑
i=1
Ti≤t1

ieSp(1− ρ)Qi

∫ Tn

Tei

e−Rtdt+

n∑
i=m
Ti>t1

ieSpQi

∫ Tn

Ti

e−Rtdt

=

m−1∑
i=1
Ti≤t1

ieSpρQi
e−RTi − e−RTn

R
+

m−1∑
i=1
Ti≤t1

ieSp(1− ρ)Qi
e−RTei − e−RTn

R
+

n∑
i=m
Ti>t1

ieSpQi
e−RTi − e−RTn

R
(6.16)

The present value for manufacturer’s total profit is given by WTP (t1) = sales revenue +
interest earned - set-up cost - raw material’s purchase cost - raw material’s holding cost -
production cost - finished products holding cost - transportation cost - interest payable. i.e.

WTP (t1) = SRp + IEp − Csp − PCr −HCr − PCp −HCp − TCp − IPr

= Sp

n∑
i=1

Qie
−RTi +

m−1∑
i=1
Ti≤t1

ieSpρQi
e−RTi − e−RTn

R
+

m−1∑
i=1
Ti≤t1

ieSp(1− ρ)Qi
e−RTei − e−RTn

R

+
n∑

i=m
Ti>t1

ieSpQi
e−RTi − e−RTn

R
− Csp −

CrfP (1− e−Rt1)
R

−HrfP

{
t1
R
− 1− e−Rt1

R2

}

− CpP (1− e−Rt1)
R

−Hp

[
(1− λ)P

{
1− e−Rt1

R2
− t1e

−Rt1

R

}
−

m−1∑
k=1

e−RTk−1 − e−RTk
R

k−1∑
i=1

Qi

− e−RTm−1 − e−Rt1
R

m−1∑
i=1

Qi +
e−Rt1 − e−RTm

R

n∑
i=m

Qi +
n∑

k=m+1

e−RTk−1 − e−RTk
R

n∑
i=k

Qi

]

−
n∑
i=1

{Tr0 + Tr1e
−γ(i−1)Qi}e−RTi − CricfP

{
(t1 −M)e−RM

R
− e−RM − e−Rt1

R2

}
(6.17)

6.3.4 The markets’ inventory

The ith market receives its total required quantity Qi of finished good from the manufacturer
at the beginning of its selling season to fulfil the customers’ demand rate di. These markets
start their business on or before the production run time t1, by paying ρ portion of the price
amount initially and the remaining (1 − ρ) portion at the end of his business period. But
these markets take the delivery after the production run time t1, by paying the total amount
at their business starting time. They pay the initial amount by getting loan from a bank at
the rate of interest of ic per year. Every market earns interest at the rate of id by depositing
sales revenue continuously. The inventory level Ji(t) for the ith market is governed by the
following differential equation (cf. Fig. 6.3):

dJi(t)

dt
= −di, i = 1, 2, 3, · · · , n. (6.18)
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Figure 6.3: ith market’s inventory vs. time

with the boundary condition Ji(Tei) = 0. Using these boundary conditions, the solutions of
the Eqs. (6.18) are

Ji(t) = di(Tei − t) (6.19)

The quantity of products received by the each market is

Qi = Ji(Ti) = di(Tei − Ti) (6.20)

The present value of holding cost for all markets is

HCm =
n∑
i=1

Hm

∫ Tei

Ti

Ji(t)e
−Rtdt =

n∑
i=1

Hm

∫ Tei

Ti

di(Tei − t)e−Rtdt

=
n∑
i=1

Hmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}
(6.21)

The present value of all markets’ total sales revenue is

SRm =
n∑
i=1

Smdi

∫ Tei

Ti

e−Rtdt =
n∑
i=1

Smdi
e−RTi − e−RTei

R
(6.22)

The present value of all markets’ purchase cost PCm is equal to present value of sales rev-
enue SRp of the manufacturer.
The present value of all markets’ total interest payable is

IPm =
m−1∑
i=1
Ti≤t1

icSpρQi

∫ Tei

Ti

e−Rtdt+
n∑

i=m
Ti>t1

icSpQi

∫ Tei

Ti

e−Rtdt

=
m−1∑
i=1
Ti≤t1

icSpρQi
e−RTi − e−RTei

R
+

n∑
i=m
Ti>t1

icSpQi
e−RTi − e−RTei

R
(6.23)
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The present value of all markets’ total interest earned is

IEm =
n∑
i=1

ieSmdi

∫ Tei

Ti

(Tei − t)e−Rtdt

=
n∑
i=1

ieSmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}
(6.24)

Therefore, the total profit of all markets is given by

MTP (t1) = SRm + IEm − PCm −HCm − IPm − nCsm

=
n∑
i=1

Smdi
e−RTi − e−RTei

R
+

n∑
i=1

ieSmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}
− Sp

n∑
i=1

Qie
−RTi −

n∑
i=1

Hmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}

−
m−1∑
i=1
Ti≤t1

icSpρQi
e−RTi − e−RTei

R
+

n∑
i=m
Ti>t1

icSpQi
e−RTi − e−RTei

R
− nCsm (6.25)

6.3.5 Model 6.1A : An imperfect production inventory model for a
manufacturer-cum-retailer and several seasonal markets

The total profit of the above described model for the integrated system is written as

ITP (t1) = WTP (t1) +MTP (t1)

=

m−1∑
i=1
Ti≤t1

ieSpρQi
e−RTi − e−RTn

R
+

m−1∑
i=1
Ti≤t1

ieSp(1− ρ)Qi
e−RTei − e−RTn

R

+
n∑

i=m
Ti>t1

ieSpQi
e−RTi − e−RTn

R
− Csp −

CrfP (1− e−Rt1)

R
−HrfP

{
t1
R
− 1− e−Rt1

R2

}

− CpP (1− e−Rt1)

R
−Hp

[
(1− λ)P

{
1− e−Rt1

R2
− t1e

−Rt1

R

}
−
m−1∑
k=1

e−RTk−1 − e−RTk
R

k−1∑
i=1

Qi
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− e−RTm−1 − e−Rt1
R

m−1∑
i=1

Qi +
e−Rt1 − e−RTm

R

n∑
i=m

Qi +
n∑

k=m+1

e−RTk−1 − e−RTk
R

n∑
i=k

Qi

]

−
n∑
i=1

{Tr0 + Tr1e
−γ(i−1)Qi}e−RTi − CricfP

{
(t1 −M)e−RM

R
− e−RM − e−Rt1

R2

}

+

n∑
i=1

Smdi
e−RTi − e−RTei

R
+

n∑
i=1

ieSmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}

−
n∑
i=1

Hmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}
−

m−1∑
i=1
Ti≤t1

icSpρQi
e−RTi − e−RTei

R

+

n∑
i=m
Ti>t1

icSpQi
e−RTi − e−RTei

R
− nCsm (6.26)

Substituting the value of P from Eq. (6.11) to the above integrated profit function (6.26)
we have,

ITP (t1) =
m−1∑
i=1
Ti≤t1

ieSpρQi
e−RTi − e−RTn

R
+

m−1∑
i=1
Ti≤t1

ieSp(1− ρ)Qi
e−RTei − e−RTn

R

+
n∑

i=m
Ti>t1

ieSpQi
e−RTi − e−RTn

R
− Csp −

Crf(1− e−Rt1)

(1− λ)Rt1

n∑
i=1

Qi −
Hrf

(1− λ)

{
1

R
− (1− e−Rt1)

R2t1

} n∑
i=1

Qi

− Cp(1− e−Rt1)

(1− λ)Rt1

n∑
i=1

Qi −Hp

[{
1− e−Rt1
R2t1

− e−Rt1

R

} n∑
i=1

Qi −
m−1∑
k=1

e−RTk−1 − e−RTk
R

k−1∑
i=1

Qi

− e−RTm−1 − e−Rt1
R

m−1∑
i=1

Qi +
e−Rt1 − e−RTm

R

n∑
i=m

Qi +

n∑
k=m+1

e−RTk−1 − e−RTk
R

n∑
i=k

Qi

]

−
n∑
i=1

{Tr0 + Tr1e
−γ(i−1)Qi}e−RTi −

Cricf

(1− λ)

{
(t1 −M)e−RM

Rt1
− e−RM − e−Rt1

R2t1

} n∑
i=1

Qi

+
n∑
i=1

Smdi
e−RTi − e−RTei

R
+

n∑
i=1

ieSmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}

−
n∑
i=1

Hmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}
−

m−1∑
i=1
Ti≤t1

icSpρQi
e−RTi − e−RTei

R

+
n∑

i=m
Ti>t1

icSpQi
e−RTi − e−RTei

R
− nCsm (6.27)
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6.3.6 Model 6.1B: Model 6.1A without inflation
Taking R→ 0 in the integrated profit function Eq. (6.27) we get,

ITP (t1) =
m−1∑
i=1
Ti≤t1

ieSpρQi(Tn − Ti) +
m−1∑
i=1
Ti≤t1

ieSp(1− ρ)Qi(Tn − Tei)

+
n∑

i=m
Ti>t1

ieSpQi(Tn − Ti)− Csp −
Crf

(1− λ)

n∑
i=1

Qi −
Hrft1

2(1− λ)

n∑
i=1

Qi −
Cp

(1− λ)

n∑
i=1

Qi

−Hp

[
1

2
t1

n∑
i=1

Qi −
m−1∑
k=1

(Tk − Tk−1)
k−1∑
i=1

Qi − (t1 − Tm−1)
m−1∑
i=1

Qi + (Tm − t1)
n∑

i=m

Qi

+
n∑

k=m+1

(Tk − Tk−1)
n∑
i=k

Qi

]
−

n∑
i=1

{Tr0 + Tr1e
−γ(i−1)Qi} −

Cricf(t1 −M)2

2(1− λ)t1

n∑
i=1

Qi

+
n∑
i=1

Smdi(Tei − Ti) +
n∑
i=1

ieSmdi(Tei − Ti)2

2
−

n∑
i=1

Hmdi(Tei − Ti)2

2

−
m−1∑
i=1
Ti≤t1

icSpρQi(Tei − Ti) +
n∑

i=m
Ti>t1

icSpQi(Tei − Ti)− nCsm (6.28)

6.3.7 Model 6.1C: Model 6.1A without both defective and inflation
Taking λ = 0 in the Eq. (6.11) and integrated profit function’s Eq. (6.28) we get,

P =
1

t1

n∑
i=1

Qi (6.29)

and ITP (t1) =
m−1∑
i=1
Ti≤t1

ieSpρQi(Tn − Ti) +
m−1∑
i=1
Ti≤t1

ieSp(1− ρ)Qi(Tn − Tei)

+
n∑

i=m
Ti>t1

ieSpQi(Tn − Ti)− Csp − Crf
n∑
i=1

Qi −
Hrft1

2

n∑
i=1

Qi − Cp
n∑
i=1

Qi

−Hp

[
1

2
t1

n∑
i=1

Qi −
m−1∑
k=1

(Tk − Tk−1)
k−1∑
i=1

Qi − (t1 − Tm−1)
m−1∑
i=1

Qi + (Tm − t1)
n∑

i=m

Qi

+
n∑

k=m+1

(Tk − Tk−1)
n∑
i=k

Qi

]
−

n∑
i=1

{Tr0 + Tr1e
−γ(i−1)Qi} −

Cricf(t1 −M)2

2t1

n∑
i=1

Qi
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+
n∑
i=1

Smdi(Tei − Ti) +
n∑
i=1

ieSmdi(Tei − Ti)2

2
−

n∑
i=1

Hmdi(Tei − Ti)2

2

−
m−1∑
i=1
Ti≤t1

icSpρQi(Tei − Ti) +
n∑

i=m
Ti>t1

icSpQi(Tei − Ti)− nCsm (6.30)

Our objective is to find out optimal values of t1 such that the integrated total profit functions
ITP (t1) given by Eqs. (6.27), (6.28) and (6.30) are maximum for the Models-6.1A, 6.1B
and 6.1C respectively.

Lemma 6.1. Manufacturer’s production run time (t1) must satisfy the condition 1 ≤ t1
Tk
≤∑n

i=1Qi/
∑k

i=1 Qi for all k=1, 2, · · · , m-1.

Proof. According to our assumption, for k=1, 2, · · · , m-1 we have Tk ≤ t1 and Ik(t) =
(1 − λ)Pt −

∑k−1
i=1 Qi. As shortages are not allowed for the system, for each k=1, 2, · · · ,

m-1 we have

Ik(Tk) ≥ Qk or, (1− λ)PTk −
k−1∑
i=1

Qi ≥ Qk

or,
∑n

i=1Qi

t1
Tk ≥

k−1∑
i=1

Qi +Qk [Using Eq. (6.11)]

or, Tk ≤ t1 ≤ Tk

∑n
i=1 Qi∑k
i=1 Qi

[Since Tk ≤ t1], or, 1 ≤ t1
Tk
≤
∑n

i=1 Qi∑k
i=1Qi

Lemma 6.2. The integrated profit function ITP (t1) given by Eq. (6.27) is maximum when
{CrfR−Hrf +CpR+ (1− λ)Hp}(1− e−Rt1 −Rt1e−Rt1)−Crfic(e−RM +RMe−RM −
e−Rt1−Rt1e−Rt1) = 0 and [{CrfR−Hrf+CpR+(1−λ)Hp}{1−(1+Rt1+R2t21)e−Rt1}+
Crfic(R

2t21e
−Rt1 +Rt1e

−Rt1 −RMe−RM + e−RM − e−Rt1)] > 0.

Proof. Taking the first and second order derivatives of ITP (t1) given by Eq. (6.27) with
respect to t1 and setting first derivative equal to 0 gives:

dITP (t1)

dt1
=

{
− Crf

(1− λ)R
+

Hrf

(1− λ)R2
− Cp

(1− λ)R
− Hp

R2

}(
Re−Rt1

t1
− 1− e−Rt1

t21

) n∑
i=1

Qi

− Crfic
(1− λ)

(
Me−RM

Rt21
− e−Rt1

Rt1
+
e−RM − e−Rt1

R2t21

) n∑
i=1

Qi −Hpe
−Rt1

( n∑
i=1

Qi −
m−1∑
i=1

Qi −
n∑

i=m

Qi

)
= 0

or, {CrfR−Hrf + CpR+ (1− λ)Hp}(1− e−Rt1 −Rt1e−Rt1)

− Crfic(e−RM +RMe−RM − e−Rt1 −Rt1e−Rt1) = 0 (6.31)
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d2ITP (t1)

dt21
=

{
− Crf

(1− λ)R
+

Hrf

(1− λ)R2
− Cp

(1− λ)R
− Hp

R2

}(
− R2e−Rt1

t1
− 2Re−Rt1

t21

+
2(1− e−Rt1)

t31

) n∑
i=1

Qi −−
Crfic

(1− λ)

(
− 2Me−RM

Rt31
+

2e−Rt1

Rt21
− 2(e−RM − e−Rt1)

R2t31
+
e−Rt1

t1

) n∑
i=1

Qi

= −
∑n

i=1Qi
(1− λ)R2t31

[
{CrfR−Hrf + CpR+ (1− λ)Hp}(1− e−Rt1 −Rt1e−Rt1)− Crfic(e−RM

+RMe−RM − e−Rt1 −Rt1e−Rt1) + {CrfR−Hrf + CpR+ (1− λ)Hp}(1− e−Rt1 −Rt1e−Rt1

−R2t21e
−Rt1) + Crfic(R

2t21e
−Rt1 +Rt1e

−Rt1 −RMe−RM + e−RM − e−Rt1)

]
= −

∑n
i=1Qi

(1− λ)R2t31

[
{CrfR−Hrf + CpR+ (1− λ)Hp}{1− (1 +Rt1 +R2t21)e−Rt1}

+ Crfic(R
2t21e

−Rt1 +Rt1e
−Rt1 −RMe−RM + e−RM − e−Rt1)

]
[Using Eq. (6.31)] (6.32)

For the maximum value of ITP (t1), we have d2ITP (t1)

dt21
< 0. Hence, above expression of

d2ITP (t1)

dt21
is negative if [{CrfR−Hrf +CpR+ (1− λ)Hp}{1− (1 +Rt1 +R2t21)e−Rt1}+

Crfic(R
2t21e

−Rt1 +Rt1e
−Rt1 −RMe−RM + e−RM − e−Rt1)] > 0.

Lemma 6.3. The integrated profit function ITP (t1) given by Eq. (6.28) is maximum at

t∗1 = M
√

Crfic
Hrf+Crfic−(1−λ)Hp

and t∗1 is feasible if Hrf < (1− λ)Hp < Hrf + Crfic.

Proof. Taking the first and second order derivatives of ITP (t1) given by Eq. (6.28) with
respect to t1 and setting first derivative equal to 0 gives:

dITP (t1)

dt1
= − Hrf

2(1− λ)

n∑
i=1

Qi −
Crfic

2(1− λ)
(1− M2

t21
)

n∑
i=1

Qi

−Hp(
1

2

n∑
i=1

Qi −
m−1∑
i=1

Qi −
n∑

i=m

Qi) = 0

or, t1 = M

√
Crfic

Hrf + Crfic − (1− λ)Hp

(6.33)

Again,
d2ITP (t1)

dt21
= − Crfic

(1− λ)t31

n∑
i=1

Qi < 0, for all t1 > 0.

Therefore, ITP (t1) attends maximum at t∗1 = M
√

Crfic
Hrf+Crfic−(1−λ)Hp

. Now, according to
our assumption, the value t1 obtained from Eq. (6.33), is feasible

if t1 < M and Hrf + Crfic − (1− λ)Hp > 0
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or, if M
√

Crfic
Hrf+Crfic−(1−λ)Hp

< M and (1− λ)Hp < Hrf + Crfic [Using Eq. (6.33)]
or, if Hrf < (1− λ)Hp and (1− λ)Hp < Hrf + Crfic
or, if Hrf < (1− λ)Hp < Hrf + Crfic.

Lemma 6.4. The integrated profit function ITP (t1) given by Eq. (6.30) is maximum at

t∗1 = M
√

Crfic
Hrf+Crfic−Hp and t∗1 is feasible if Hrf < Hp < Hrf + Crfic.

Proof. The proof is similar as Lemma 6.3 with taking λ = 0 and corresponding optimum
value of t1 is

t1 = M

√
Crfic

Hrf + Crfic −Hp

(6.34)

6.3.8 Mathematical Models Formulation with fuzzy credit period
Let us consider that the raw material supplier gives an opportunity to the manufacturer-cum-
retailer by offering a fuzzy credit period (M̃). Here, the credit period M̃ is represented as
TFN and TrFN. So due to fuzzy credit period (M̃), the optimum values of integrated profit
function ITP (t1) in Eq. (6.27) will be different for various values of M with some degree
of belongingness. Therefore in such situation, the profit function will be fuzzy in nature and
it is denoted by ĨTP (t1), where

ĨTP (t1) =

m−1∑
i=1
Ti≤t1

ieSpρQi
e−RTi − e−RTn

R
+

m−1∑
i=1
Ti≤t1

ieSp(1− ρ)Qi
e−RTei − e−RTn

R

+
n∑

i=m
Ti>t1

ieSpQi
e−RTi − e−RTn

R
− Csp −

Crf(1− e−Rt1)

(1− λ)Rt1

n∑
i=1

Qi −
Hrf

(1− λ)

{
1

R
− (1− e−Rt1)

R2t1

} n∑
i=1

Qi

− Cp(1− e−Rt1)

(1− λ)Rt1

n∑
i=1

Qi −Hp

[{
1− e−Rt1
R2t1

− e−Rt1

R

} n∑
i=1

Qi −
m−1∑
k=1

e−RTk−1 − e−RTk
R

k−1∑
i=1

Qi

− e−RTm−1 − e−Rt1
R

m−1∑
i=1

Qi +
e−Rt1 − e−RTm

R

n∑
i=m

Qi +
n∑

k=m+1

e−RTk−1 − e−RTk
R

n∑
i=k

Qi

]

−
n∑
i=1

{Tr0 + Tr1e
−γ(i−1)Qi}e−RTi −

Cricf

(1− λ)

{
(t1 − M̃)e−RM̃

Rt1
− e−RM̃ − e−Rt1

R2t1

} n∑
i=1

Qi

+
n∑
i=1

Smdi
e−RTi − e−RTei

R
+

n∑
i=1

ieSmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}

−
n∑
i=1

Hmdi

{
(Tei − Ti)e−RTi

R
− e−RTi − e−RTei

R2

}
−

m−1∑
i=1
Ti≤t1

icSpρQi
e−RTi − e−RTei

R
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+

n∑
i=m
Ti>t1

icSpQi
e−RTi − e−RTei

R
− nCsm

The expected value of the DV t1 is obtained from the following equation

{CrfR−Hrf + CpR + (1− λ)Hp}(1− e−Rt1 −Rt1e−Rt1)
− Crfic(e−RE[M ] +RE[M ]e−RE[M ] − e−Rt1 −Rt1e−Rt1) = 0 (6.35)

and the corresponding concavity condition is reduced to

[{CrfR−Hrf + CpR + (1− λ)Hp}{1− (1 +Rt1 +R2t21)e−Rt1}
+ Crfic(R

2t21e
−Rt1 +Rt1e

−Rt1 −RE[M ]e−RE[M ] + e−RE[M ] − e−Rt1)] > 0 (6.36)

Similarly, ĨTP (t1) for the model without inflation (Model 6.1B) and the model without
both inflation and defective (Model 6.1C) are obtained by substituting M by M̃ in the Eqs.
(6.28) and (6.30) respectively.

6.3.9 Defuzzification algorithm to get the optimum value of t1
To get the optimum value of the production run time (t1) in the proposed integrated models
with fuzzy credit period, the following steps are used.

Step 1: At first to get the expression of fuzzy integrated profit ĨTP (t1), M is replaced by
M̃ .

Step 2: Calculate the expected value of E[ĨTP (t1)] for the fuzzy credit period M̃ by us-
ing the fuzzy extension principle and other necessary expressions (Eqs. (6.35) and
(6.36)).

Step 3: To get the optimal value of t1, solve modified expected Eq. (6.35) through the
standard LINGO software.

Step 4: Putting the value of t1, check the Lemma 6.1 and concavity condition of objective
function presented by inequality (6.36)

Step 5: If both Lemma 6.1 and concavity condition (6.36) are satisfied by t1, putting the
value of t1 in the expected profit function to obtain the maximum profit.

Similar procedure is applied to get the optimal solution for the model without inflation
(Model 6.1B) and the model without both inflation and defective rate (Model 6.1C).

6.3.10 Numerical Experiments and Results
To illustrate the proposed models, three different types of trade credit periods are considered.
In Experiment 1, deterministic model and in other two experiments Experiment 2 and
Experiment 3, fuzzy models with as triangular and trapezoidal fuzzy trade credit period are
considered respectively. The solutions to these experiments are obtained by using the GRG
method (LINGO 14.0) and the corresponding figures (Figs. 6.4, 6.5 and 6.6) are drawn by
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Mathematica software.
Experiment 1: Let a manufacturer-cum-retailer sells the finished perfect product to three
different markets in different selling seasons. The required raw-material is procured by the
supplier. Here, the supplier offers a crisp credit period to the manufacturer to settle the
account. We consider such a supply chain situation with the following data:
M = 0.25year, f = 1.75units, Hr = $2.00/unit, Cr = $5.00/unit, Csp = $5000.00/cycle,
Cp = $1.50/unit, Hp = $4.0/unit/year, ic = 0.15/$/unit, ie = 0.10/$/unit, R = 0.10,
λ = 0.10, ρ = 0.50, Sp = $30/unit, Tr0 = $100.00/transport, Tr1 = $2.50/unit, γ = 0.25,
T1 = 0.20year, T2 = 0.45year, T3 = 1.00year, Te1 = 0.60year, Te2 = 0.95year, Te3 =
1.40year, Csm = $2000/order, Sm = $40/unit, Hm = $6.0/unit/year, d1 = 2000unit/year,
d2 = 4000unit/year, d3 = 4000unit/year.

Table 6.3: Optimum results for Models 6.1A, 6.1B and 6.1C under Experiment 1

Model t∗1 ITP ∗ P ∗ IP ∗r IE∗p PC∗r HC∗r PC∗p HC∗p TR∗p
6.1A 0.6707 79437 7288 814 3018 41374 5612 7093 4471 8162
6.1B 0.2601 90371 18796 1 4740 42778 2225 7333 8351 8620
6.1C 0.3177 95628 13847 42 4740 38500 2446 6600 7843 8620

Now, the manufacturer-cum-retailer is interested to find out the optimal profits jointly
with the markets along with optimal production run time. The optimal solution are
presented in Table 6.3 and the concavity property of the models are graphically shown in
Figs. 6.4-6.6.

Experiment 2: Let supplier’s offered trade credit period be a triangular fuzzy number & is
defined as M̃ = (M0 − ∆1,M0,M0 + ∆2), where M0 = 0.25years, 0 < ∆1 < M0 and
0 < ∆2. For different values of ∆1 and ∆2, Model 6.1A, 6.1B and 6.1C are optimized for
the same input data as in Experiment 1 and optimum results are presented in Table 6.4.

Table 6.4: Optimum results for Models 6.1A, 6.1B and 6.1C under Experiment 2

Model 6.1A Model 6.1B Model 6.1C

∆1 ∆2 t∗1 ITP ∗ P ∗ t∗1 ITP ∗ P ∗ t∗1 ITP ∗ P ∗

0.01 0.05 0.6980 79477 7004 0.2705 90374 18073 0.3304 95640 13315
0.02 0.04 0.6843 79457 7144 0.2653 90372 18427 0.3241 95634 13576
0.03 0.03 0.6707 79437 7288 0.2601 90371 18796 0.3177 95627 13847
0.04 0.02 0.6571 79418 7439 0.2549 90370 19179 0.3114 95621 14130
0.05 0.01 0.6435 79398 7597 0.2497 90368 19579 0.3050 95615 14424

Experiment 3: This experiment’s input are similar as Experiment 1 with considering
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supplier’s offered trade credit period be a trapezoidal fuzzy number which is represented as
M̃ = (M0 − ∆1,M0 − ∆2,M0 + ∆3,M0 + ∆4), where M0 = 0.25years,
0 < ∆2 < ∆1 < M0 and 0 < ∆3 < ∆4. For different values of ∆1, ∆2, ∆3 and ∆4, Model
6.1A, 6.1B and 6.1C are optimized and optimum results are presented in Table 6.5.

Table 6.5: Optimum results for Models 6.1A, 6.1B and 6.1C under Experiment 3

Model 6.1A Model 6.1B Model 6.1C

∆1 ∆2 ∆3 ∆4 t∗1 ITP ∗ P ∗ t∗1 ITP ∗ P ∗ t∗1 ITP ∗ P ∗

0.01 0.006 0.010 0.05 0.7006 79481 6977 0.2715 90374 18004 0.3317 95641 13264
0.02 0.007 0.009 0.04 0.6857 79459 7129 0.2658 90372 18391 0.3247 95634 13549
0.03 0.008 0.008 0.03 0.6707 79437 7288 0.2601 90371 19796 0.3177 95628 13847
0.04 0.009 0.007 0.02 0.6558 79416 7455 0.2543 90370 19219 0.3107 95620 14159
0.05 0.010 0.006 0.01 0.6408 79394 7629 0.2486 90368 19661 0.3037 95614 14485

6.3.11 Sensitivity Analysis

Here the effect of the parameters duration of creditM , rate of defective λ, rate of inflationR,
interest paid amount ρ, interest charged ic and interest earned id have been shown in Table
6.6.

Table 6.6: Sensitivity analysis on parameters for Model 6.1A

On trade credit (M) On defective rate (λ) On inflation (R)

M t∗1 ITP ∗ P ∗ λ t∗1 ITP ∗ P ∗ R t∗1 ITP ∗ P ∗

0.15 0.4001 79044 12217 0.11 0.6076 78824 8136 0.05 0.3428 85032 14259
0.17 0.4540 79122 10767 0.12 0.5594 78202 8937 0.06 0.3714 83866 13162
0.19 0.5080 79201 9623 0.13 0.5211 77569 9704 0.07 0.4086 82719 11965
0.21 0.5621 79280 8697 0.14 0.4897 76925 10447 0.08 0.4597 81596 10634
0.23 0.6163 79359 7932 0.15 0.4633 76270 11171 0.09 0.5364 80499 9114

On paid amount in % (ρ) On Interest charge (ic) On Interest earned (id)

ρ t∗1 ITP ∗ P ∗ ic t∗1 ITP ∗ P ∗ id t∗1 ITP ∗ P ∗

0.20 0.6707 79996 7288 0.16 0.5701 79036 8575 0.05 0.6707 76107 7288
0.30 0.6707 79809 7288 0.17 0.5108 78648 9570 0.06 0.6707 76773 7288
0.40 0.6707 79623 7288 0.18 0.4712 78268 10376 0.07 0.6707 77439 7288
0.60 0.6707 79252 7288 0.19 0.4425 77892 11048 0.08 0.6707 78105 7288
0.70 0.6707 79066 7288 0.20 0.4207 77520 11621 0.09 0.6707 78771 7288
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6.3.12 Managerial Insights

Figure 6.4: Integrated profit against pro-
duction run time for Model 6.1A

Figure 6.5: Integrated profit against pro-
duction run time for Model 6.1B

Figure 6.6: Integrated profit against production run time for Model 6.1C

(i) Table 6.3 reveals that Model 6.1C gives the highest profit i.e. model without both
defective and inflation is more profitable then the other. This is as per our expectation.
We have observed that the raw material’s purchase cost, production cost and holding
cost of finished products decrease for this model without inflation while interest paid
and holding cost of raw material increase. Also, interest earned and transportation cost
remain same whilst the total decreasing cost value dominates all other increasing costs.
For the obvious reason, model with defective gives the worse profit than the model
without defective. Comparing the optimal results of Model 6.1A with Models 6.1B
and 6.1C, we observe that production run time is largest in Model 6.1A and all the
costs and revenue are less than those of Models 6.1B and 6.1C. Thus, the profit is also
less due to the presence of inflation.

(ii) It is observed from the Figs. 6.4, 6.5 and 6.6 that for a fixed value of credit period (M),
the integrated total profits (ITP) initially increase with the increase of production run
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time (t1). As it approaches to its peak level of production run-time, it decreases. Thus
integrated profit is concave in nature.

(iii) By taking impreciseness in trade credit, decision-makers absorb all the turbulence in
the costs due to market fluctuation. From Tables 6.4 and 6.5, it is also concluded that,
the trade credit period is proportional to the production run time rate (t1) and inversely
proportional to production rate P . Therefore, results of the numerical experiments 2
and 3 presented in Tables 6.4 and 6.5, confirm that the fuzzy trade credit, in general,
has a positive role on improving the integrated supply chain’s performance.

(iv) Considering the results of sensitivity, it is clear that, as the trade credit period (M)
increases, the replenishment cycle length t1 increases significantly (cf. Table 6.6), but
the total profit strictly increases. Thus, from these results, we can conclude that the
trade credit strategy has a positive impact on reducing the total cost and improving the
supply chain’s performance which is as per our expectation.

(v) Through Table 6.6, we have tried to analyse the effect of the defective rate λ on t1, P
and on the profit ITP of the system. It is observed that as the defective rate λ
increases, profit ITP and production run time t1 decrease with the increase in
production rate P . Hence as per manufacturer point of view, decreasing the
production run time, the manufacturer tries to decrease the defective quantity and
increases his profit. Hence, if the manufacturer can effectively reduce the defective
rate of the product by improving the production process, the profit earned by the
manufacturer will automatically increase.

(vi) Also, it is found from the literature that inflation rate and credit period have significant
decisive effects on the production time, production rate and profit. From the analysis
of Table 6.6, it is found correct. Inflation is the state of a continuous increase in the
price of goods and service. Hence, it is obvious that the increase in the rate of inflation
causes the total profit of the system to go down.

(vii) These markets start their business on or before the production run time, initially pay
a part of total payment against the purchase of products. From Table 6.6, we observe
that increase of ρ does not change the value of t1 (DV) but the profit decreases due to
the increase of interest charged by the bank at market’s level.

(viii) From Table 6.6, it is again observed that as the interest paid per unit item increases
from 0.16 to 0.20, then the production time and profit of the system decrease. Hence
from a managerial viewpoint, it implies that when the interest paid is high, then the
production manager should produce less amount of goods.

(ix) From Table 6.6, we see that there is no change in optimum decision t1 and P against
the increase of id. Rather profit of the integrated system increases. This is because,
more interest is earned from sales revenue by manufacturer and markets’ retailer.
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6.4 Model-6.2 : A fuzzy imperfect EPL model with
dynamic demand under bi-level trade credit policy 2

6.4.1 Assumptions and Notations

The following notations are used to develop the proposed model:
Ĩ(t) Fuzzy inventory level at time t
P Production rate per year
λ̃ Fuzzy defective rate
Cs Set up cost per order
r Unit purchasing price of raw materials
s Unit selling price
h Unit stock holding cost per item per year excluding interest charges
ie interest earned per order quantity per year by the the retailer
ip interest charged per order quantity in stocks per year by the supplier
M Retailer’s trade credit period offered by supplier in years
N Customers trade credit period offered by retailer
D̃(t) Fuzzy demand rate per year
T̃ Fuzzy cycle length in years
t1 Length of time up to stop the production. It is taken as DV
T̃P ij ( for i=1,2 ; j=1,2,...,6) Fuzzy annual total profit, which is a function of t1,

where annual total Profit=Sales revenue - Purchasing cost - Ordering cost -
Holding cost - Interest to be paid + Interest earned

The following assumptions are used to develop the proposed model:
(i) Demand rate D̃(t) increases with time during credit period of customers and

is of the form D̃(t) = ã − b̃e−ct if 0 < t ≤ N and ã − b̃e−cN if N ≤ t ≤ T ,
where ã, b̃, c are positive constants.

(ii) Shortages are not allowed and lead time is negligible.
(iii) Time horizon is infinite.
(iv) Interest charged per order quantity (ip) is greater than or equal to interest

earned per order quantity (ie) i.e., (ip ≥ ie). Selling price (s) is greater than or
equal to purchasing price (r) of unit raw materials. i.e., s ≥ r.

(v) Production rate P, is known and constant.
(vi) Production run time (t1) is taken as DV.
(vii) When N < M , the retailer can accumulate revenue and earn interest during

the period N to M with rate ie under the condition of trade credit. When
N ≥M , retailer does not earn any interest.

2This model has been communicated in Applied Mathematical Modelling, ELSEVIER.
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6.4.2 Mathematical Model Development
Here a fuzzy imperfect production inventory model of an item is developed where the raw
materials of the item are supplied to the manufacturer-cum-retailer for production. The
supplier offers the retailer a delay period (M) for payment and the manufacturer also offers
his/her customers a delay period (N) for payment to stimulate his/her customer’s demand.
i.e., item purchased by the customers during this period has to pay final payment at time N.
As effective credit period of a customer purchasing item at t (0 < t < N) is (N-t), it is
assumed that demand increases at a decreasing rate during [0, N]. After the trade credit
period [0, N], demand at t=N, prevails for the rest of the period. Inventory builds up to t1
(maximum stock level) at the rate (1 − λ̃)P − D̃(t) and then it reaches to zero at T̃ .
Depending on different values of M, N, t1 and T̃ , twelve scenarios are observed to develop
the model in conventional approach. For all the scenarios, production, screening cost and
total sale revenue are same as described below:
Production-cum-Purchasing cost: The purchasing cost of the raw materials during [0, t1]

is P̃C = r(1 − λ̃)
∫ t1

0
Pdt. Let α-cut set of the above said cost is

P̃C[α] = [PCL(α), PCR(α)] = [r(1− λR)Pt1, r(1− λL)Pt1].
Screening cost: The screening cost to find the defective product for one cycle is
SC = u.P t1
Total Sale Revenue: Total sales revenue of perfect products is S̃P [α]. Then α-cut set of
the above said revenue is S̃P [α] = [SPL(α), SPR(α)] = [s(1− λR)Pt1, s(1− λL)Pt1].

Conventional Approach
Depending on the values of M and N two cases arise- Case-1: N < M and Case-2:

N ≥M . Under these two cases, six subcases may arise which are presented below:

Case-1: N < M Case-2: N ≥M
Subcases Criteria Subcases Criteria

1.1 N < M ≤ t1 < T̃ 2.1 M < N ≤ t1 < T̃

1.2 N ≤ t1 < M < T̃ 2.2 M ≤ t1 < N < T̃

1.3 N ≤ t1 < T̃ < M 2.3 M ≤ t1 < T̃ < N

1.4 t1 ≤ N < M ≤ T̃ 2.4 t1 ≤M < N ≤ T̃

1.5 t1 ≤ N ≤ T̃ < M 2.5 t1 ≤M ≤ T̃ < N

1.6 t1 < T̃ ≤ N < M 2.6 t1 < T̃ ≤M < N

Subcase-1.1: N < M ≤ t1 < T̃

For a single item imperfect production process, the governing differential equations are:

dĨ(t)

dt
=


(1− λ̃)P − (ã− b̃e−ct), 0 ≤ t ≤ N

(1− λ̃)P − (ã− b̃e−cN), N ≤ t ≤ t1
−(ã− b̃e−cN), t1 ≤ t ≤ T̃

(6.37)
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with the boundary conditions Ĩ(0) = 0 = Ĩ(T̃ ) and maximum inventory occur at t = t1. To
solve the above FDE (6.37), we use the solution procedure of Chalco-Cano [39] as describe
in the preliminaries section. Since I(t) ≥ 0 for all t, dĨ

dt
is the first form (I) of H-derivative.

Thus, the corresponding crisp differential equations in α-cut form are

dIL(t)

dt
=


(1− λR)P − (aR − bLe−ct), 0 ≤ t ≤ N
(1− λR)P − (aR − bLe−cN), N ≤ t ≤ t1
−(aR − bLe−cN), t1 ≤ t ≤ TL

(6.38)

dIR(t)

dt
=


(1− λL)P − (aL − bRe−ct), 0 ≤ t ≤ N
(1− λL)P − (aL − bRe−cN), N ≤ t ≤ t1
−(aL − bRe−cN), t1 ≤ t ≤ TR

(6.39)

In 0 ≤ t ≤ N with initial conditions IL(0) = 0 = IR(0), the solutions are{
IL(t) = {(1− λR)P − aR}t+ bL

c
(1− e−ct)

IR(t) = {(1− λL)P − aL}t+ bR
c

(1− e−ct) (6.40)

Now IR(t) − IL(t) = (λR − λL)Pt + (aR − aL)t + bR−bL
c

(1 − e−ct) =

(1 − α){(λ3 − λ1)Pt + (a3 − a1)t + (b3−b1)
c

(1 − e−ct)} ≥ 0 for all 0 ≤ α ≤ 1. As
IL(t) ≤ IR(t) for all 0 ≤ t ≤ N , the solutions (6.40) are valid.

In N ≤ t ≤ t1 with initial conditions IL(N) = {(1− λR)P − aR}N + bL
c

(1− e−cN) and
IR(N) = {(1− λL)P − aL}N + bR

c
(1− e−cN), the solutions are{

IL(t) = {(1− λR)P − aR}t+ bLe
−cN(t−N) + bL

c
(1− e−cN)

IR(t) = {(1− λL)P − aL}t+ bRe
−cN(t−N) + bR

c
(1− e−cN)

(6.41)

Now
IR(t)− IL(t) = (λR − λL)Pt+ (aR − aL)t+ (bR − bL)e−cN(t−N) + bR−bL

c
(1− e−cN) =

(1− α){(λ3 − λ1)Pt+ (a3 − a1)t+ (b3 − b1)e−cN(t−N) + (b3−b1)
c

(1− e−cN)} ≥ 0 for all
0 ≤ α ≤ 1 and N ≤ t ≤ t1. As IL(t) ≤ IR(t), the solutions (6.41) are valid.

In t1 ≤ t ≤ T̃ with initial conditions IL(t1) = {(1− λR)P − aR}t1 + bLe
−cN(t1 −N) +

bL
c

(1 − e−cN) and IR(t1) = {(1 − λL)P − aL}t1 + bRe
−cN(t1 − N) + bR

c
(1 − e−cN), the

corresponding solutions are{
IL(t) = (1− λR)Pt1 + (−aR + bLe

−cN)t− bLNe−cN + bL
c

(1− e−cN)
IR(t) = (1− λL)Pt1 + (−aL + bRe

−cN)t− bRNe−cN + bR
c

(1− e−cN)
(6.42)

Now IR(t)−IL(t) = (λR−λL)Pt1+(aR−aL)t+(bR−bL)e−cN(t−N)+ bR−bL
c

(1−e−cN) =

(1 − α){(λ3 − λ1)Pt1 + (a3 − a1)t + (b3 − b1)e−cN(t −N) + (b3−b1)
c

(1 − e−cN)} ≥ 0 for
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all 0 ≤ α ≤ 1 and t1 ≤ t ≤ T̃ . As IL(t) ≤ IR(t), the solutions (6.42) are valid.
Applying the boundary conditions IL(TL) = 0 = IR(TR) we get,

 TL =
(1−λR)Pt1−bLNe−cN+

bL
c

(1−e−cN )

aR−bLe−cN

TR =
(1−λL)Pt1−bRNe−cN+

bR
c

(1−e−cN )

aL−bRe−cN

(6.43)

Holding cost: Holding cost during [0, T̃ ] is

H̃C11 = h
∫ T̃

0
Ĩ(t)dt = h[

∫ N
0
Ĩ(t)dt+

∫ t1
N
Ĩ(t)dt+

∫ T̃
t1
Ĩ(t)dt]. Let α-cut set of total holding

cost H̃C11 is H̃C11[α] = [HC11L(α), HC11R(α)]. Then



HC11L(α) = h[
∫ N

0 IL(α, t)dt+
∫ t1
N IL(α, t)dt+

∫ TL
t1

IL(α, t)dt]

= h

[
1
2{(1− λR)P − aR}t21 + bLN

c −
bL
c2

(1− e−cN ) + 1
2bLe

−cN (t1 −N)2

+ bL
c (1− e−cN )(t1 −N) + 1

2(−aR + bLe
−cN )(T 2

L − t21) + {(1− λR)Pt1 − bLNe−cN

+ bL
c (1− e−cN )}(TL − t1)

]
HC11R(α) = h

[
1
2{(1− λL)P − aL}t21 + bRN

c −
bR
c2

(1− e−cN ) + 1
2bRe

−cN (t1 −N)2

+ bR
c (1− e−cN )(t1 −N) + 1

2(−aL + bRe
−cN )(T 2

R − t21) + {(1− λL)Pt1 − bRNe−cN

+ bR
c (1− e−cN )}(TR − t1)

]

Interest Calculation: Interest to be paid during [M, T̃ ] is given by

ĨP 11 = r.ip
∫ T̃
M
Ĩ(t)dt = r.ip[

∫ t1
M
Ĩ(t)dt +

∫ T̃
t1
Ĩ(t)dt]. Let α-cut set of interest to be paid

ĨP 11 is ĨP 11[α] = [IP11L(α), IP11R(α)]. Then



IP11L(α) = r.ip[
∫ t1
M IL(α, t)dt+

∫ TL
t1

IL(α, t)dt]

= r.ip

[
1
2{(1− λR)P − aR + bLe

−cN}(t21 −M2) + { bLc (1− e−cN )− bLNe−cN}(t1 −M)

+1
2(−aR + bLe

−cN )(T 2
L − t21) + {(1− λR)Pt1 − bLNe−cN + bL

c (1− e−cN )}(TL − t1)

]
IP11RL(α) = r.ip[

∫ t1
M IR(α, t)dt+

∫ TR
t1

IR(α, t)dt]

= r.ip

[
1
2{(1− λL)P − aL + bRe

−cN}(t21 −M2) + { bRc (1− e−cN )− bRNe−cN}(t1 −M)

+1
2(−aL + bRe

−cN )(T 2
R − t21) + {(1− λL)Pt1 − bRNe−cN + bR

c (1− e−cN )}(TR − t1)

]

Interest earned during [0,M ] is given by
ĨE11 = s.ie

∫M
0
D̃(t)dt = s.ie[

∫ N
0
D̃(t)dt +

∫M
N
D̃(t)dt]. Let α-cut set of interest earned
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is ĨE11 is ĨE11[α] = [IE11L(α), IE11R(α)]. Then
IE11L(α) = s.ie[

∫ N
0 DL(α, t)(M −N)dt+

∫M
N DL(α, t)(M − t)dt]

= s.ie

[
{aLN − bR

c (1− e−cN )}(M −N) + 1
2(aL − bRe−cN )(M −N)2

]
IE11R(α) = s.ie

[
{aRN − bL

c (1− e−cN )}(M −N) + 1
2(aR − bLe−cN )(M −N)2

] (6.44)

Subcase-1.2: N ≤ t1 < M < T̃
In this case, inventory level Ĩ(t), holding cost H̃C12, interest earned ĨE12 are same as the

expressions of subcase-1.1. Interest paid is given as ĨP 12 = r.ip
∫ T̃
M
Ĩ(t)dt. i.e.,

IP12L(α) = r.ip

[
1
2(−aR + bLe

−cN )(T 2
L −M2) + {(1− λR)Pt1 − bLNe−cN

+ bL
c (1− e−cN )}(TL −M)

]
IP12RL(α) = r.ip

[
1
2(−aL + bRe

−cN )(T 2
R −M2) + {(1− λL)Pt1 − bRNe−cN

+ bR
c (1− e−cN )}(TR −M)

]
(6.45)

Subcase-1.3: N ≤ t1 < T̃ ≤M
In this case, inventory level Ĩ(t) and holding cost H̃C13 are same as the expressions of

subcase-1.1. Interest paid is ĨP 13 = 0. Interest earned ĨE13 = s.ie

[ ∫ N
0
D̃(t)dt(T̃ − N) +∫ T̃

N
D̃(t)dt(T̃ − t) +

∫ T̃
0
D̃(t)dt(M − T̃ ). i.e.,

IE13L(α) = s.ie

[
{aLN − bR

c
(1− e−cN)}{(TL −N) + (M − TR)}

+(aL − bRe−cN){ (TL−N)2

2
+ (TL −N)}

]
IE13R(α) = s.ie

[
{aRN − bL

c
(1− e−cN)}{(TR −N) + (M − TL)}

+(aR − bLe−cN){ (TR−N)2

2
+ (TR −N)}

]
(6.46)

Subcase-1.4: t1 ≤ N < M ≤ T̃
The governing differential equations are:

dĨ(t)

dt
=


(1− λ̃)P − (ã− b̃e−ct), 0 ≤ t ≤ t1
−(ã− b̃e−ct), t1 ≤ t ≤ N

−(ã− b̃e−cN), N ≤ t ≤ T̃

(6.47)
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with the boundary conditions Ĩ(0) = 0 = Ĩ(T̃ ) and maximum inventory occur at t = t1.
According to Chalco-Cano’s [39] solution technique, the corresponding crisp differential
equations in α-cut form are

dIL(t)

dt
=


(1− λR)P − (aR − bLe−ct), 0 ≤ t ≤ t1
−(aR − bLe−ct), t1 ≤ t ≤ N
−(aR − bLe−cN), N ≤ t ≤ TL

(6.48)

dIR(t)

dt
=


(1− λL)P − (aL − bRe−ct), 0 ≤ t ≤ t1
−(aL − bRe−ct), t1 ≤ t ≤ N
−(aL − bRe−cN), N ≤ t ≤ TR

(6.49)

In 0 ≤ t ≤ t1 with initial conditions IL(0) = 0 = IR(0), The solutions are

{
IL(t) = {(1− λR)P − aR}t+ bL

c
(1− e−ct)

IR(t) = {(1− λL)P − aL}t+ bR
c

(1− e−ct) (6.50)

In t1 ≤ t ≤ N with initial conditions IL(t1) = {(1 − λR)P − aR}t1 + bL
c

(1 − e−ct1) and
IR(t1) = {(1− λL)P − aL}t1 + bR

c
(1− e−ct1), the solutions are

{
IL(t) = (1− λR)Pt1 − aRt+ bL

c
(1− e−ct)

IR(t) = (1− λL)Pt1 − aLt+ bR
c

(1− e−ct) (6.51)

In N ≤ t ≤ T̃ with initial conditions IL(N) = (1 − λR)Pt1 − aRN + bL
c

(1 − e−cN) and
IR(N) = (1− λL)Pt1 − aLN + bR

c
(1− e−cN), the corresponding solutions are

{
IL(t) = (1− λR)Pt1 + (−aR + bLe

−cN)t− bLNe−cN + bL
c

(1− e−cN)
IR(t) = (1− λL)Pt1 + (−aL + bRe

−cN)t− bRNe−cN + bR
c

(1− e−cN)
(6.52)

The above solutions (6.50)-(6.52) of FDE (6.47) are valid solutions. The validities are
checked as in subcase-1.1.

Applying the boundary conditions IL(TL) = 0 = IR(TR) we get, the expressions of
[TL, TR] and which are given by (6.43) as obtained in subcase-1.1.

Holding cost: Holding cost during [0, T̃ ] is

H̃C14 = h
∫ T̃

0
Ĩ(t)dt = h[

∫ t1
0
Ĩ(t)dt +

∫ N
t1
Ĩ(t)dt +

∫ T̃
N
Ĩ(t)dt]. Let α-cut set of total
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holding cost H̃C11 is H̃C14[α] = [HC14L(α), HC14R(α)]. Then

HC14L(α) = h[
∫ t1

0 IL(α, t)dt+
∫ N
t1
IL(α, t)dt+

∫ TL
N IL(α, t)dt]

= h

[
1
2{(1− λR)P − aR}t21 + bLt1

c −
bL
c2

(1− e−ct1) + (1− λR)Pt1(N − t1)

−aR
2 (N2 − t21) + bL

2 (N − t1) + bL
c2

(e−cN − e−ct1)
+1

2(−aR + bLe
−cN )(T 2

L −N2) + {(1− λR)Pt1 − bLNe−cN

+ bL
c (1− e−cN )}(TL −N)

]
HC14R(α) = h

[
1
2{(1− λL)P − aL}t21 + bRt1

c −
bR
c2

(1− e−ct1)

+(1− λL)Pt1(N − t1)− aL
2 (N2 − t21) + bR

2 (N − t1) + bR
c2

(e−cN − e−ct1)
+1

2(−aL + bRe
−cN )(T 2

R −N2) + {(1− λL)Pt1 − bRNe−cN

+ bR
c (1− e−cN )}(TR −N)

]

(6.53)

Interest Calculation: Interest to be paid during [0,M ] is given by ĨP 14 = r.ip
∫ T̃
M
Ĩ(t)dt.

Let α-cut set of interest to be paid ĨP 14 is ĨP 14[α] = [IP14L(α), IP14R(α)]. Then

IP14L(α) = r.ip
∫ TL
M IL(α, t)dt

= r.ip

[
1
2{−aR + bLe

−cN}(T 2
L −M2) + {(1− λR)Pt1 − bLNe−cN

+ bL
c (1− e−cN )}(TL −M)

]
IP14RL(α) = r.ip

[
1
2{−aL + bRe

−cN}(T 2
R −M2) + {(1− λL)Pt1 − bRNe−cN

+ bR
c (1− e−cN )}(TR −M)

]
(6.54)

Interest earned during [0,M ] is given by ĨE14 which is same as in subcase-1.1.

Subcase-1.5: t1 ≤ N < T̃ ≤M

In this case, inventory level Ĩ(t) and holding cost H̃C15 are same as the expressions of
subcase-1.4. Interest paid is ĨP 15 = 0. Interest earned ĨE15 is same as in subcase-1.3.

Subcase-1.6: t1 ≤ T̃ ≤ N < M

The governing differential equations are:

dĨ(t)

dt
=

{
(1− λ̃)P − (ã− b̃e−ct), 0 ≤ t ≤ t1
−(ã− b̃e−ct), t1 ≤ t ≤ T̃

(6.55)

with the boundary conditions Ĩ(0) = 0 = Ĩ(T̃ ) and maximum inventory occur at t = t1.
The corresponding crisp differential equations in α-cut form are
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dIL(t)

dt
=

{
(1− λR)P − (aR − bLe−ct), 0 ≤ t ≤ t1
−(aR − bLe−ct), t1 ≤ t ≤ TL

(6.56)

dIR(t)

dt
=

{
(1− λL)P − (aL − bRe−ct), 0 ≤ t ≤ t1
−(aL − bRe−ct), t1 ≤ t ≤ TR

(6.57)

In 0 ≤ t ≤ t1 with initial conditions IL(0) = 0 = IR(0), The solutions are{
IL(t) = {(1− λR)P − aR}t+ bL

c
(1− e−ct)

IR(t) = {(1− λL)P − aL}t+ bR
c

(1− e−ct) (6.58)

In t1 ≤ t ≤ T̃ with initial conditions IL(t1) = {(1 − λR)P − aR}t1 + bL
c

(1 − e−ct1) and
IR(t1) = {(1− λL)P − aL}t1 + bR

c
(1− e−ct1), the solutions are{

IL(t) = (1− λR)Pt1 − aRt+ bL
c

(1− e−ct)
IR(t) = (1− λL)Pt1 − aLt+ bR

c
(1− e−ct) (6.59)

The validities of above solutions (6.58) and (6.59) are checked by same procedure as
present in subcase-1.1. Now applying the boundary conditions IL(TL) = 0 = IR(TR) we
get, the expressions of [TL, TR], which are given by

{
aRTL + bL

c
e−cTL = (1− λR)Pt1 + bL

c

aLTR + bR
c
e−cTR = (1− λL)Pt1 + bR

c

(6.60)

Holding cost: Holding cost during [0, T̃ ] is

H̃C16 = h
∫ T̃

0
Ĩ(t)dt = h[

∫ t1
0
Ĩ(t)dt+

∫ T̃
t1
Ĩ(t)dt]. Let α-cut set of total holding cost H̃C16

is H̃C16[α] = [HC16L(α), HC16R(α)]. Then

HC16L(α) = h[
∫ t1

0 IL(α, t)dt+
∫ TL
t1

IL(α, t)dt]

= h

[
1
2{(1− λR)P − aR}t21 + bLt1

c −
bL
c2

(1− e−ct1)

+{(1− λR)Pt1 + bL
c }(TL − t1)− aR

2 (T 2
L − t21) + bL

c2
(e−cTL − e−ct1)

]
HC16R(α) = h

[
1
2{(1− λL)P − aL}t21 + bRt1

c −
bR
c2

(1− e−ct1)

+{(1− λL)Pt1 + bR
c }(TR − t1)− aL

2 (T 2
R − t21) + bR

c2
(e−cTR − e−ct1)

]
]

(6.61)

Interest Calculation: Interest to be paid during [0,M ] is given by ĨP 16 = 0. Interest
earned is given by{

IE16L(α) = s.ie
∫ TL

0 DL(t)dt(M −N) = s.ie(M −N){aLTL − bR
c (1− e−cTL)}

IE16L(α) = s.ie
∫ TR

0 DR(t)dt(M −N) = s.ie(M −N){aRTR − bL
c (1− e−cTR)}

(6.62)
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Subcase-2.1: M < N ≤ t1 < T̃
In this case, inventory level Ĩ(t) and holding cost H̃C21 are same as the expressions of

subcase-1.1. Interest earned is ĨE21 = 0 and interest paid ĨP 21 is given by

IP21L(α) = r.ip[(1− λR)PM(N −M) +
∫ N
M P (N − t)dt

+
∫ t1
N IL(α, t)dt+

∫ TL
t1

IL(α, t)dt]

= r.ip

[
(1− λR)PM(N −M) + 1

2(1− λR)P (N −M)2 + (1−λR)P−aR
2 (t21 −N2)

+ bLe
−cN

2 (t1 −N)2 + bL
c (1− e−cN )(t1 −N) + 1

2(−aR + bLe
−cN )(T 2

L − t21)

+{(1− λR)Pt1 − bLNe−cN + bL
c (1− e−cN )}(TL − t1)

]
IP21R(α) = r.ip

[
(1− λL)PM(N −M) + 1

2(1− λL)P (N −M)2

+ (1−λL)P−aL
2 (t21 −N2) + bRe

−cN

2 (t1 −N)2 + bR
c (1− e−cN )(t1 −N)

+1
2(−aL + bRe

−cN )(T 2
R − t21) + {(1− λL)Pt1 − bRNe−cN

+ bR
c (1− e−cN )}(TR − t1)

]

(6.63)

Subcase-2.2: M ≤ t1 ≤ N < T̃
Here, inventory level Ĩ(t) and holding cost H̃C22 are same as the expressions of subcase-

1.4. Interest earned is ĨE22 = 0 and interest paid ĨP 22 is given by

IP22L(α) = r.ip[(1− λR)PM(N −M) +
∫ t1
M P (t1 − t)dt+ (1− λR)P (t1 −M)(N − t1)

+
∫ TL
N IL(α, t)dt]

= r.ip

[
(1− λR)PM(N −M) + 1

2(1− λR)P (t1 −M)2 + (1− λR)P (t1 −M)(N − t1)

+1
2(−aR + bLe

−cN )(T 2
L −N2) + {(1− λR)Pt1 − bLNe−cN + bL

c (1− e−cN )}(TL −N)

]
IP22R(α) = r.ip

[
(1− λL)PM(N −M) + 1

2(1− λL)P (t1 −M)2

+(1− λL)P (t1 −M)(N − t1) + 1
2(−aL + bRe

−cN )(T 2
R −N2) + {(1− λL)Pt1 − bRNe−cN

+ bR
c (1− e−cN )}(TR −N)

]
Subcase-2.3: M ≤ t1 < T̃ < N

Here, inventory level Ĩ(t) and holding cost H̃C23 are same as the expressions of subcase-
1.6. Interest earned is ĨE23 = 0 and interest paid ĨP 23 is given by

IP23L(α) = r.ip[(1− λR)PM(N −M) +
∫ t1
M P (t1 − t)dt+ P (t1 −M)(N − t1)]

= r.ip

[
(1− λR)PM(N −M) + 1

2(1− λR)P (t1 −M)2 + P (t1 −M)(N − t1)

]
IP23R(α) = r.ip

[
(1− λL)PM(N −M) + 1

2(1− λL)P (t1 −M)2

+P (t1 −M)(N − t1)

] (6.64)
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Subcase-2.4: t1 ≤M < N ≤ T̃

Here, inventory level Ĩ(t) and holding cost H̃C24 are same as the expressions of subcase-1.4.
Interest earned is ĨE24 = 0 and interest paid ĨP 24 is given by

IP24L(α) = r.ip[(1− λR)Pt1(N −M) +
∫ TL
N PIL(t)dt]

= r.ip

[
(1− λR)Pt1(N −M) + 1

2(−aR + bLe
−cN )(T 2

L −N2)

+{(1− λR)Pt1 − bLNe−cN + bL
c (1− e−cN )}(TL −N)

]
IP24R(α) = r.ip

[
(1− λL)Pt1(N −M) + 1

2(−aL + bRe
−cN )(T 2

R −N2)

+{(1− λL)Pt1 − bRNe−cN + bR
c (1− e−cN )}(TR −N)

]
(6.65)

Subcase-2.5: t1 ≤M ≤ T̃ < N

Here, inventory level Ĩ(t) and holding cost H̃C25 are same as the expressions of subcase-1.6.
Interest earned is ĨE25 = 0 and interest paid ĨP 25 is given by{

IP25L(α) = r.ip(1− λR)Pt1(N −M)
IP25R(α) = r.ip(1− λL)Pt1(N −M)

(6.66)

Subcase-2.6: t1 < T̃ ≤M < N

Here, inventory level Ĩ(t) and holding cost H̃C26 are same as the expressions of subcase-1.6.
Interest earned is ĨE26 = 0 and interest paid ĨP 26 is given by{

IP26L(α) = r.ip(1− λR)Pt1(N −M)
IP26R(α) = r.ip(1− λL)Pt1(N −M)

(6.67)

6.4.3 Optimization Problems
Total profit=Sales revenue + Interest earned - Set-up cost - Purchasing cost - Screening cost
- Holding cost - Interest paid. From the above discussion, the α-cut set of average profit in
j-th subcase of i-th case is given by

T̃P ij = S̃P + ĨEij − Cs− P̃C − SC − H̃Cij − ĨP ij

TPijL = SPL + IEijL − Cs− PCR − SC −HCijR − IPijR
TPijR = SPR + IEijR − Cs− PCL − SC −HCijL − IPijL

(6.68)

and average total profit ÃTP ij =
T̃ P ij

T̃
, which is expressed as

[ATPijL, ATPijR] = [
TPijL
TR

,
TPijR
TL

] (6.69)
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Now our problem is to determine optimal value of t1 to maximize the average profit ÃTP ij

(i=1,2; j=1,2,...,6).

New Approach

Let T̃ ′ be the time for final payment for the remaining dues after the credit period (M) by
the retailer to the supplier. Now we formulate two models as described in the following
subcases.

Subcase 3.1: N < M ≤ T̃ ′ < T̃

During [0,M]: Revenue earned from sale is R̃E
(1)

31 = s[
∫ N

0
(ã−b̃e−ct)dt+

∫M
N

(ã−b̃e−cN)dt].
Then we have,

RE
(1)
31L = s{aLM − bR

c
(1− e−cN)− (M −N)bRe

−cN}
RE

(1)
31R = s{aRM − bL

c
(1− e−cN)− (M −N)bLe

−cN}
(6.70)

Interest earned on this revenue is ĨER
(1)

31 = s.ie[(M − N)
∫ N

0
(ã − b̃e−ct)dt +

∫M
N

(ã −
b̃e−cN)(M − t)dt]. Then

IER
(1)
31L = s.ie[(M −N){aLN − bR

c (1− e−cN )}+ 1
2(aL − bRe−cN )(M −N)2

IER
(1)
31R = s.ie[(M −N){aRN − bL

c (1− e−cN )}+ 1
2(aR − bLe−cN )(M −N)2

(6.71)

At t=M, the due/remaining payment is D̃P 31 = r(1− λ̃)Pt1 − (R̃E
(1)

31 + ĨER
(1)

31 ). i.e.,

DP31L = r(1− λR)Pt1 − (RE
(1)
31R + IER

(1)
31R)

DP31R = r(1− λL)Pt1 − (RE
(1)
31L + IER

(1)
31L)

(6.72)

Amount of due payment with interest at T̃ ′ paid to the supplier is ÃDP 31 = D̃P 31 +

ip.D̃P 31(T̃ ′ −M). The equivalent α-cut set is

ADP31L = DP31L{1 + ip(T
′
L −M)}

ADP31R = DP31R{1 + ip(T
′
R −M)} (6.73)

During [M, T̃ ′]: Revenue earned from sale is R̃E
(2)

31 = s
∫ T̃ ′
M

(ã− b̃e−cN)dt. Then,

RE
(2)
31L = s(aL − bRe−cN)(T ′L −M)

RE
(2)
31R = s(aR − bLe−cN)(T ′R −M)

(6.74)

Interest earned on this revenue is ĨER
(2)

31 = s.ie
∫ T̃ ′
M

(ã− b̃e−cN)(T̃ ′ − t)dt]. Then

IER
(2)
31L = 1

2
s.ie(aL − bRe−cN)(T ′L −M)2

IER
(1)
31R = 1

2
s.ie(aR − bLe−cN)(T ′R −M)2

(6.75)
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According to our assumption

ADP31L = RE
(2)
31L + IER

(2)
31L

ADP31R = RE
(2)
31R + IER

(2)
31R

(6.76)

Profit of the system T̃P 31= Revenue during [T̃ ′, T̃ ]+Interest earned on it - Holding cost -

Set up cost -Screening cost= s
∫ T̃
T̃ ′

(ã− b̃e−cN)dt+s.ie
∫ T̃
T̃ ′

(ã− b̃e−cN)(T̃ − t)dt. It is reduced
as

TP31L = s(aL − bRe−cN )(TL − T ′R) + 1
2s.ie(aL − bRe

−cN )(TL − T ′R)2

−HC11R − Cs− u.P t1
TP31R = s(aR − bLe−cN )(TR − T ′L) + 1

2s.ie(aR − bLe
−cN )(TR − T ′L)2

−HC11L − Cs− u.P t1

(6.77)

Now our problem is to determine optimal value of t1 to maximize the average profit
ÃTP 31 = T̃ P 31

T̃
with respect to constraints (6.76) and (6.43).

Subcase 3.2: M < N ≤ T̃ ′ < T̃

During [0,N]: Revenue earned from sale is R̃E
(1)

32 = s[
∫ N

0
(ã− b̃e−ct)dt]. Then we have,

RE
(1)
32L = s{aLN − bR

c
(1− e−cN)}

RE
(1)
32R = s{aRN − bL

c
(1− e−cN)}

(6.78)

At t=N, the due/remaining payment is D̃P 32 = r(1− λ̃)Pt1 + r(1− λ̃)PMip(N −M)−
R̃E

(1)

32 . i.e.,

DP32L = r(1− λR)Pt1 + r(1− λR)PMip(N −M)−RE(1)
32R

DP32R = r(1− λL)Pt1 + r(1− λL)PMip(N −M)−RE(1)
32L

(6.79)

Amount of due payment with interest at T̃ ′ paid to the supplier is ÃDP 32 = D̃P 32 +

ip.D̃P 32(T̃ ′ −N). The equivalent α-cut set is

ADP32L = DP32L{1 + ip(T
′
L −N)}

ADP32R = DP32R{1 + ip(T
′
R −N)} (6.80)

During [N, T̃ ′]: Revenue earned from sale is R̃E
(2)

32 = s
∫ T̃ ′
N

(ã− b̃e−cN)dt. Then,

RE
(2)
32L = s(aL − bRe−cN)(T ′L −N)

RE
(2)
32R = s(aR − bLe−cN)(T ′R −N)

(6.81)
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Interest earned on this revenue is ĨER
(2)

32 = s.ie
∫ T̃ ′
N

(ã− b̃e−cN)(T̃ ′ − t)dt]. Then

IER
(2)
32L = 1

2
s.ie(aL − bRe−cN)(T ′L −N)2

IER
(1)
32R = 1

2
s.ie(aR − bLe−cN)(T ′R −N)2

(6.82)

According to our assumption

ADP32L = RE
(2)
32L + IER

(2)
32L

ADP32R = RE
(2)
32R + IER

(2)
32R

(6.83)

Profit of the system T̃P 32 is same as equations (6.77). Now our problem is to determine
optimal value of t1 to maximize the average profit ÃTP 32 = T̃P 32

T̃
with respect to constraints

(6.83) and (6.43).

6.4.4 Solution Methodology

The profit maximization problems are multi-objective optimization problems. To convert it
as a single objective optimization problem we use weighted sum method. The problem
reduces to:
Maximize ATPij=δ1ATPijL + δ2ATPijR subject to δ1 + δ2 = 1.

The above non-linear optimization problems are solved by TLBO (cf.§ 2.2.3.3) for
particular sets of data.

6.4.5 Numerical Experiments and Results

In this section, we perform numerical experiments and present the results. For the
conventional approach, Experiment-1 is performed for twelve different subcases and
Experiment-2 is done using the new approach.
Experiment-1: We consider the following input data:
α = 0.750, λ̃ = (0.25, 0.30, 0.35), ã = (1000, 1200, 1400), ã = (200, 300, 400), c = 2.50,
s = 50, r = 25,u = 05, h = 0.750, ie = 0.10, ip = 0.15, P = 2000, δ1 = 0.50 and
δ2 = 0.50. For twelve different subcases, the inputs of M and N and the corresponding
optimum production run times, optimum profits and cycle times are presented in Table 6.7.
Experiment-2: Considering same input data of Experiment-1, we obtain the optimum
results of subcases-3.1 and 3.2 only, which are presented in Table 6.8.
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Table 6.7: Optimum results of different subcases for conventional approach

Input Optimum resultsSubcases
M N t∗1 [ATP ∗ijL, ATP

∗
ijR] [T ∗L, T

∗
R] Avg.Profit Avg. Int. paid Avg. Int. earned

1.1 0.50 0.25 0.9980 [14024, 19990] [1.2573, 1.4744] 17007 613 346
1.2 0.75 0.25 0.6477 [15014, 20935] [0.8205, 0.9630] 17975 51 1428
1.3 1.25 0.25 0.6387 [16547, 24893] [0.8093, 0.9499] 20720 – 4152
1.4 1.85 1.75 1.7113 [17091, 22971] [1.9699, 2.2338] 17091 88 489
1.5 1.20 0.65 0.6500 [16570, 24215] [0.7918, 0.9107] 20393 – 2972
1.6 0.90 0.70 0.4895 [14792, 20431] [0.6072, 0.7000] 17612 – 1071

2.1 0.25 0.50 1.7399 [14490, 20692] [2.0760, 2.3896] 17591 1248 –
2.2 0.85 1.25 1.2500 [14729, 20298] [1.4611, 1.6621] 17513 1865 –
2.3 0.75 1.60 1.2016 [12931, 18104] [1.4072, 1.6000] 15518 3497 –
2.4 0.85 0.90 0.8500 [15162, 20666] [1.0164, 1.1622] 17914 290 –
2.5 1.00 2.00 1.0000 [11914, 16987] [1.1834, 1.3482] 14451 4169 –
2.6 1.75 1.90 1.3222 [15809, 21310] [1.5405, 1.7500] 18560 636 –

Table 6.8: Optimum results of different subcases for new approach

Sub- Input Optimum results
cases M N t∗1 [T

′∗
L , T

′∗
R ] [ATP ∗ijL, ATP

∗
ijR] [T ∗L, T

∗
R] Avg.Profit Avg. Int. paid Avg. Int. earned

3.1 0.50 0.25 1.1471 [0.7537, 0.8155] [10802, 28420] [1.4432, 1.6921] 19611 412 443
3.2 0.25 0.50 1.4713 [0.9664, 1.0135] [11975, 27818] [1.7607, 2.0275] 19897 1207 361

6.4.6 Discussion
(i) It is revealed from Table 6.7 that the Subcase 1.3 is the most profitable scenario, since

in this case, (M-N) is largest, so retailer can earn more interest than the other sub-cases
and Subcase 2.5 is worst for the opposite reason.

(ii) Average profits for the Subcases 1.1, 1.2 and 1.3 gradually increase because of
constant N and gradual increase of M. In these sub-cases, average interest paid to
supplier decreases and average interest earned by retailer increases. These results are
as per our expectation.

(iii) Comparing the optimum results between conventional and new approach, we observe
from Table 6.8 that new approach gives better profits. Since all due payments are paid
at a time T̃ ′ before cycle length T̃ , the amount of interest paid to supplier is less as well
as interest earned is more in new approach than the conventional approach.

(iv) For the given set of parameters in the above Experiment 1, Figs. 6.7-6.11 represent the
concavity property of the average profit function against the production run time (t1)
for different subcases.

(v) α-cuts of observed average profit, interest paid, interest earned and cycle time for the
subcases 1.1 and 2.1 due to Experiment 1 are plotted in Figs. 6.12-6.18. It is interesting
to note that the figures represent almost TFNs.
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Figure 6.7: Average profit against pro-
duction run time for subcase 1.1

Figure 6.8: Average profit against pro-
duction run time for subcase 1.2

Figure 6.9: Average profit against pro-
duction run time for subcase 1.3

Figure 6.10: Average profit against pro-
duction run time for subcase 1.4

Figure 6.11: Average profit against pro-
duction run time for subcase 1.5

Figure 6.12: Cycle time against α for
subcase 2.1
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Figure 6.13: Average profit against α for
subcase 1.1

Figure 6.14: Average interest paid
against α for subcase 1.1

Figure 6.15: Average interest earned
against α for subcase 1.1

Figure 6.16: Cycle time against α for
subcase 1.1

Figure 6.17: Average profit against α for
subcase 2.1

Figure 6.18: Average interest paid
against α for subcase 2.1
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6.5 Conclusion
The present investigation is proposed for the Trade Credit Policy in Fuzzy Environment
using various inventory models and the observations are as follows:

• For the first model proposed here, by rigorous mathematical derivation, the concavity of
the objective function of the model is depicted and the closed-form optimal solution of the
model is obtained. The numerical illustration and sensitivity analysis of the problem are
given on the framework described and an optimal solution procedure for finding optimal
production policy is presented. Also, it is seen that changes in the different parameters lead
to significant effects on the optimal production time and optimal total profit

At the end, we would like to point out that most of researchers on fuzzy inventory
problems often employed the centroid method to obtain the estimate of total cost in the
fuzzy sense. To achieve this task, the membership function of fuzzy total cost has to be
found first using the extension principle, while the derivation is very complex. To avoid this
complex mathematical deduction, we have used fuzzy expectation method for
defuzzification in this study. The model presented in this study provides a basis for several
possible extensions.

For future research, this model can be extended such as

(i) Shortages and variable ordering cost can be considered in more details.

(ii) Another possible extension would be with the time dependent or stock dependent
holding cost and others.

(iii) The results presented here not only provide a valuable references for the
decision-makers in planning and controlling the inventory but also furnish a useful
model for many organisations such as shops dealing with domestic items and retail
business industries. It can be used for domestic goods, fashion cloths, electronics
components, medicines and other products.

• The second model proposed here addresses a production inventory model with fuzzy
dynamic demand under bi-level trade credit policy in imprecise environment. However in a
real market place, it is common that the retailer is not able to pay consistently at the fixed
time point every time. Normally, under the condition of trade credit, it is beneficial to pay
only at the trade credit limit point rather than before. Sometimes in extreme cases payment
is made after trade credit period.

As explained under numerical illustration, there is difference in optimal policies which
also result in significant differences in average profit in new approach. This new approach
i.e. the clearance of all dues before the end of time period, as and when it is feasible is a
new payment policy for the retailer for more profit.
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For future research, this model can be extended as

(i) Retailer’s model has wide range of applications in supplier-retail-customer business
where the competition is stiff, especially in grocery, stationary goods, building
materials shop etc.

(ii) Further, it is possible to incorporate the proposed model with more realistic
assumptions, such as random demand, deteriorating items, allowable shortages,
multi-supplier, multi-retailer, etc.

(iii) This two-level trade credit model can be extended to three-level trade credit model for
supplier-wholesaler-retailer-customer supply chain system.
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Chapter 7

Summary and Future Extension

7.1 Summary of the Thesis

In this thesis, total nine virgin uncertain inventory /production-inventory models, of which
five in random and four in fuzzy environments are formulated and solved.

• The models are developed for different types of demands like stock dependent demand,
price and quality dependent demand, promotional effort and advertisement dependent
demand, credit period dependent dynamic demand and news-boy type probabilistic
demand.

• The models are formulated with in-control and out-control states, effects of learning
and forgetting, carbon emission, advanced payment, trade credit policy, inflation of
money and many more criteria which are visible in recent management system.

• The models are simplified (may be converted from fuzzy to crisp, random to non-
random, etc.) by using methods of Fuzzy Differential Equation (FDE), Possibility,
Necessity, Credibility, Trust measures, method of chance constraint, etc.

• Different techniques are developed/presented to transform the imprecise
parameters/objectives to corresponding deterministic ones. For the solution of single
and multi-objective with/without constraints, different optimization techniques such
as Generalised Reduced Gradient method (GRG), Genetic Algorithm (GA), Fuzzy
Age based GA (FAGA), Multi-objective GA (MOGA), Rough Age based GA
(RAGA), Teaching and Learning Based Optimization (TLBO), Intuitionistic Fuzzy
Optimization Technique (IFOT), etc. are developed / presented and used.

• The models are illustrated with appropriate numerical examples and the optimum
results are presented graphically. Moreover, the obtained results are discussed with
respect to managerial insights.
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• In some cases, sensitivity analyses are made with respect to some model parameters
and presented graphically and in tabular forms to look deep into the models.

7.2 Future Extension
• Each model presented in the thesis has an impact to its future extensions. The models

can be formulated in other type of uncertain environments, such as- fuzzy-rough,
rough-fuzzy, random-fuzzy, etc.

• The models also can be extended with different types of uncertain parameters and/or
variables like bi-fuzzy, type-2 fuzzy, rough, bi-rough etc.

• Different types of optimization techniques (Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), Geometric Programming (GP), etc) can also be applied
to the models.

• Moreover, other recent development criteria like risk management, just-in-time
inventory control, different forms of supply-chain, etc. also can be incorporated to the
models.

• In the models, intension expression of customer to purchase the goods knowing the
selling price at that time may be incorporated.

• CE due to transportation can be included in the models (presented in this dissertation)
along with CE due to production.

Therefore, there is a huge scope to extend the research works presented in this thesis.
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Appendix A

For Model 4.3

A.1 Scenario 1
From Fig. 4.16, inventory area of OABC for item 1 is 1

2
(AB +OC)OA (area of trapezium)

= 1
2
(Q1 − ξ1D1 +Q1)T = 1

2
(2Q1 − ξ1D1)T .

Similarly, inventory area of OADE for item 2 is = 1
2
(2Q2 − ξ2D2)T .

A.2 Scenario 2
From Fig. 4.17, by the property of similar triangles ∆EOA and ∆EDC, we have
EO
ED

= OA
DC

or, Q1

ξ1D1
= T1

T
or, T1 = Q1T

ξ1D1
.

Inventory area of ∆EOA for item 1 is 1
2
OA.OE =

Q2
1T

2ξ1D1
.

Shortage area of ∆ABC for item 1 is 1
2
AB.BC = 1

2
(OB − OA).BC

= 1
2
(T − T1)(ξ1D1 −Q1) = (ξ1D1−Q1)2T

2ξ1D1
. [Using the value of T1]

Inventory area of OBGF for item 2 is 1
2
(Q2 +Q2 − ξ1D1)T = 1

2
(2Q2 − ξ2D2)T .

Since shortages of item 1 are fully substituted by item 2, holding inventory area of
OBHIFO for item 2 is finally reduced to 1

2
(2Q2 − ξ2D2)T − (ξ1D1−Q1)2T

2ξ1D1
.

A.3 Scenario 4
From Fig. 4.18, by the property of similar triangles ∆HOA and ∆HFE, we have
HO
HF

= OA
FE

or, Q1

ξ1D1
= T1

T
or, T1 = Q1T

ξ1D1
or, T − T1 = (ξ1D1−Q1)T

ξ1D1
.
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In order to reserve the stock of item 2 to meet its usual demand ξ2D2/T in the market
upto the pre-defined time T, the sale of the substitute item 1 is closed at B. This shortage
rate ξ1D1/T is same as before. As AE ‖ BD, ∆ACE and ∆BCD are similar triangles.
Thus, by the property of similar triangles we have, AC

BC
= CE

CD
or, BC = AC.CD

CE

= (T−T1){(ξ1D1−Q1)−(Q2−ξ2D2)}
(ξ1D1−Q1)

= {(ξ1D1−Q1)−(Q2−ξ2D2)}T
ξ1D1

.

Inventory area of ∆OHA for item 1 is Q2
1T

2ξ1D1
.

Shortage area of ABDEA for item 1 which is substituted by item 2 is ∆ACE − ∆BCD
= 1

2
AC.CE − 1

2
BC.CD

= 1
2
(T − T1)(ξ1D1 −Q1)− 1

2
{(ξ1D1−Q1)−(Q2−ξ2D2)}T

ξ1D1
{(ξ1D1 −Q1)− (Q2 − ξ2D2)}

= 1
2
[ (ξ1D1−Q1)2T

ξ1D1
− {(ξ1D1−Q1)−(Q2−ξ2D2)}2T

ξ1D1
].

Hence, holding inventory area of OCJKIO for item 2 finally reduced to
1
2
(2Q2 − ξ2D2)T − 1

2
[ (ξ1D1−Q1)2T

ξ1D1
− {(ξ1D1−Q1)−(Q2−ξ2D2)}2T

ξ1D1
].

A.4 Scenario 6

From Fig. 4.19, by the property of similar triangles (∆OBE and ∆GCE) and (∆OAF and
∆HDF ), we have T1 = Q1T

ξ1D1
and T2 = Q2T

ξ2D2
respectively.

Hence, inventory area of ∆OBE and ∆OAF for item 1 and 2 are Q2
1T

2ξ1D1
and Q2

2T

2ξ2D2

respectively.

A.5 Integral values in different regions

Substitute D1 and D2 by x and y variables respectively the integrations are calculated as
follows:

I
(R1)
1 =

∫Q1/ξ1
a

∫Q2/ξ2
c xdxdy = 1

2
(
Q2

1

ξ21
− a2)(Q2

ξ2
− c), I

(R1)
2 =

∫Q1/ξ1
a

∫Q2/ξ2
c ydxdy = 1

2
(Q1
ξ1
− a)(

Q2
2

ξ22
− c2),

I
(R1)
3 =

∫Q1/ξ1
a

∫Q2/ξ2
c dxdy = (Q1

ξ1
− a)(Q2

ξ2
− c),
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I
(R2)
1 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫ (Q1+Q2−ξ1x)/ξ2
c xdxdy = 1

ξ2

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

x(Q1 +Q2 − ξ2c− ξ1x)dx

= 1
ξ21ξ2

[
(Q1+Q2−ξ2c)3

6
− Q3

1
6
− Q2

1(Q2−ξ2c)
2

],

I
(R2)
2 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫ (Q1+Q2−ξ1x)/ξ2
c ydxdy = 1

2

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

{(Q1+Q2−ξ1x
ξ2

)2 − c2}dx

= ξ2c
3

3ξ1
+

Q3
2

6ξ1ξ
2
2
− c2Q2

ξ1
,

I
(R2)
3 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫ (Q1+Q2−ξ1x)/ξ2
c dxdy =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

(Q1+Q2−ξ1x
ξ2

− c)dx
= 1

2ξ1ξ2
(Q2 − ξ2c)2,

I
(R2)
4 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫ (Q1+Q2−ξ1x)/ξ2
c

1
x
dxdy = 1

ξ2

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

{Q1+Q2−ξ2c
x

− ξ1}dx
= 1

ξ2
{(Q1 +Q2 − ξ2c)log(Q1+Q2−ξ2c

Q1
)− (Q2 − ξ2c)}

As in the region R2, the integrals in region R3 are evaluated interchanging the items. Hence,

I
(R3)
1 = ξ1a

3

2ξ2
+

Q3
1

6ξ2ξ
2
1
− a2Q1

ξ2
, I

(R3)
2 = 1

ξ21ξ2
[
(Q1+Q2−ξ1a)3

6
− Q3

2
6
− Q2

2(Q1−ξ1a)
2

],

I
(R3)
3 = 1

2ξ1ξ2
(Q1 − ξ1a)2, I

(R3)
4 = 1

ξ1
{(Q1 +Q2 − ξ1a)log(Q1+Q2−ξ1a

Q2
)− (Q1 − ξ1a)}

I
(R4)
1 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫Q2/ξ2
(Q1+Q2−ξ1x)/ξ2

xdxdy = 1
ξ2

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

x(ξ1x−Q1)dx

= 1
ξ21ξ2

[
(Q1+Q2−ξ2c)3

3
− Q1(Q1+Q2−ξ2c)2

2
+
Q3

1
6

];

I
(R4)
2 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫Q2/ξ2
(Q1+Q2−ξ1x)/ξ2

ydxdy = 1
2ξ22

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

{Q2
2 − (Q1 +Q2 − ξ1x)2}dx

= 1
ξ1ξ

2
2

[
ξ32c

3

6
+
Q3

2
3
− ξ2cQ

2
2

2
]

I
(R4)
3 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫Q2/ξ2
(Q1+Q2−ξ1x)/ξ2

dxdy = 1
ξ2

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

(ξ1x−Q1)dx

= 1
2ξ1ξ2

(Q2 − ξ2c)2

I
(R4)
4 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫Q2/ξ2
(Q1+Q2−ξ1x)/ξ2

1
x
dxdy = 1

ξ2

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

1
x

(ξ1x−Q1)dx

= 1
ξ2

[(Q2 − ξ2c)−Q1log(
Q1+Q2−ξ2c

Q1
)]

I
(R4)
5 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫Q2/ξ2
(Q1+Q2−ξ1x)/ξ2

y
x
dxdy = 1

2ξ22

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

1
x
{Q2

2 − (Q1 +Q2 − ξ1x)2}dx

= 1
ξ22

[2(Q1 +Q2)(Q2 − ξ2c)− 1
2
{(Q1 +Q2 − ξ2c)2 −Q2

1} − (Q2
1 + 2Q1Q2)log(Q1+Q2−ξ2c

Q1
)]

I
(R4)
6 =

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

∫Q2/ξ2
(Q1+Q2−ξ1x)/ξ2

y2

x
dxdy

= 1
3ξ32

∫ (Q1+Q2−ξ2c)/ξ1
Q1/ξ1

1
x
{−Q3

1 − 3Q1Q2(Q1 +Q2) + 3(Q1 +Q2)2ξ1x− 3(Q1 +Q2)ξ21x
2 + ξ31x

3}dx

= 1
3ξ32

[3(Q1 +Q2)2(Q2 − ξ2c)− 3(Q1+Q2)
2

{(Q1 +Q2 − ξ2c)2 −Q2
1}+ 1

3
{(Q1 +Q2 − ξ2c)3 −Q3

1}

−{Q3
1 + 3Q1Q2(Q1 +Q2)}log(Q1+Q2−ξ2c

Q1
)]

I
(R5)
1 =

∫ b
(Q1+Q2−ξ2c)/ξ1

∫Q2/ξ2
c xdxdy = 1

ξ2

∫ b
(Q1+Q2−ξ2c)/ξ1

x(Q2 − ξ2c) = Q2−ξ2c
2ξ2

{b2 − (Q1+Q2−ξ2c)2

ξ21
}

I
(R5)
2 =

∫ b
(Q1+Q2−ξ2c)/ξ1

∫Q2/ξ2
c ydxdy =

Q2
2−c

2

2ξ22
{b− Q1+Q2−ξ2c

ξ1
}

I
(R5)
3 =

∫ b
(Q1+Q2−ξ2c)/ξ1

∫Q2/ξ2
c dxdy = 1

ξ1ξ2
{ξ1b− (Q1 +Q2 − ξ2c)}(Q2 − ξ2c)

I
(R5)
4 =

∫ b
(Q1+Q2−ξ2c)/ξ1

∫Q2/ξ2
c

1
x
dxdy = (Q2

ξ2
− c)log( ξ1b

Q1+Q2−ξ2c
)

I
(R5)
5 =

∫ b
(Q1+Q2−ξ2c)/ξ1

∫Q2/ξ2
c

y
x
dxdy = 1

2ξ22
(Q2

2 − ξ22c2)log( ξ1b
Q1+Q2−ξ2c

)

I
(R5)
6 =

∫ b
(Q1+Q2−ξ2c)/ξ1

∫Q2/ξ2
c

y2

x
dxdy = 1

3ξ32
(Q3

2 − ξ32c3)log( ξ1b
Q1+Q2−ξ2c

)

As in the region R4, the integrals in region R6 are evaluated interchanging the items. Hence,

I
(R6)
1 = 1

ξ2ξ
2
1

[
ξ31a

3

6
+
Q3

1
3
− ξ1cQ

2
1

2
], I

(R6)
2 = 1

ξ22ξ1
[
(Q1+Q2−ξ1a)3

3
− Q1(Q1+Q2−ξ1a)2

2
+
Q3

2
6

]

I
(R6)
3 = 1

2ξ1ξ2
(Q1 − ξ1a)2 I

(R6)
4 = 1

ξ1
[(Q1 − ξ1a)−Q2log(

Q1+Q2−ξ1a
Q2

)]

I
(R6)
5 = 1

ξ21
[2(Q1 +Q2)(Q1 − ξ1a)− 1

2
{(Q1 +Q2 − ξ1a)2 −Q2

2} − (Q2
2 + 2Q1Q2)log(Q1+Q2−ξ1a

Q2
)]

I
(R6)
6 = 1

3ξ31
[3(Q1 +Q2)2(Q1 − ξ1a)− 3(Q1+Q2)

2
{(Q1 +Q2 − ξ1a)2 −Q2

2}+ 1
3
{(Q1 +Q2 − ξ1a)3 −Q3

2}

−{Q3
2 + 3Q1Q2(Q1 +Q2)}log(Q1+Q2−ξ1a

Q2
)]
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As in the region R5, the integrals in region R7 are evaluated interchanging the items. Hence,

I
(R7)
1 =

Q2
1−a

2

2ξ21
{d− Q1+Q2−ξ1a

ξ2
}, I

(R7)
2 = Q1−ξ1a

2ξ1
{d2 − (Q1+Q2−ξ1a)2

ξ22
}

I
(R7)
3 = 1

ξ1ξ2
{ξ2d− (Q1 +Q2 − ξ1a)}(Q1 − ξ1a), I

(R7)
4 = (Q1

ξ1
− a)log( ξ2d

Q1+Q2−ξ1a
)

I
(R7)
5 = 1

2ξ21
(Q2

1 − ξ21a2)log( ξ2d
Q1+Q2−ξ1a

), I
(R7)
6 = 1

3ξ31
(Q3

1 − ξ31a3)log( ξ2d
Q1+Q2−ξ1a

)

I
(R8)
1 =

∫ b
Q1/ξ1

∫ d
Q2/ξ2

xdxdy = 1
2

(b2 − Q2
1

ξ21
)(d− Q2

ξ2
), I
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∫ b
Q1/ξ1

∫ d
Q2/ξ2
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2

(d2 − Q2
2

ξ22
)(b− Q1

ξ1
)

I
(R8)
3 =

∫ b
Q1/ξ1

∫ d
Q2/ξ2

dxdy = (b− Q1
ξ1

)(d− Q2
ξ2

), I
(R8)
4 =

∫ b
Q1/ξ1

∫ d
Q2/ξ2

1
x
dxdy = (d− Q2

ξ2
)log( ξ1b

Q1
)

I
(R8)
5 =

∫ b
Q1/ξ1

∫ d
Q2/ξ2

1
y
dxdy = (b− Q1

ξ1
)log( ξ2d

Q2
)
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Appendix B

For Model 5.2

B.1 Solution Procedure of FDE
In the interval [0, τ̃ ]:
dI(t)
dt

= P −D with the initial condition I(0)=0. Solving this equation in crisp environment
we get, I(t) = (P −D)t.
In the interval [τ̃ , t1]:
The fuzzy differential equation is dĨ(t)

dt
= P − D − (1 − θ)γP (t − τ̃) with fuzzy initial

condition Ĩ(τ̃) = (P −D)τ̃ . Solving this fuzzy differential equation we get,{
IL(α, t) = (P −D)t− (1−θ)γP

2
(t− τL)2

IR(α, t) = (P −D)t− (1−θ)γP
2

(t− τR)2
(B.1)

In the interval [t1, T̃ ]:
The differential equation is dI(t)

dt
= −D with boundary condition I(T ) = 0. Solving the

above equation we get, I(t) = D(T − t). If T̃ is fuzzy in nature then using the Jadeh’s
Extension Principle we have, {

IL(α, t) = D(TL − t)
IR(α, t) = D(TR − t)

(B.2)

B.2 Checking of Buckley-Feuring Conditions
In the interval [τ̃ , t1]:
Here τ̃ = (τ1, τ2, τ3) is a tri-angular fuzzy number having α-cut τ̃ [α] = [τL, τR], where
τL = τ1 + α(τ2 − τ1) and τR = τ3 − α(τ3 − τ2). Also, Ĩ(t)[α] = [IL(α, t), IR(α, t)], where
IL(α, t) = (P −D)t− (1−θ)γP

2
(t− τL)2 and IR(α, t) = (P −D)t− (1−θ)γP

2
(t− τR)2.

Therefore, dIL(α,t)
dt

= (P−D)−(1−θ)γP (t−τL) and dIR(α,t)
dt

= (P−D)−(1−θ)γP (t−τR).
Differentiating the above equations with respect to α we get,
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d
dα

(
dIL(α,t)

dt

)
= (1−θ)γP d

dα
(τL) = (1−θ)γP d

dα
{τ1+α(τ2−τ1)} = (1−θ)γP (τ2−τ1) > 0.

and
d
dα

(
dIR(α,t)

dt

)
= (1−θ)γP d

dα
(τR) = (1−θ)γP d

dα
{τ3−α(τ3−τ2)} = −(1−θ)γP (τ3−τ2) <

0.
Also, dIL(1,t)

dt
= dIR(1,t)

dt
= (P −D)− (1− θ)γP (t− τ2).

Hence, all the equations and conditions defined by (2.20) and (2.15) respectively are satisfied.

B.3 IFOT for minimization problem
Individual minimum of the objective functions ACECk for all k = L,C,R are obtained
and given in Table B.1. Now we calculate LL = 4862.07, LC = 5057.22, LR = 5243.88,
UL = 4876.38, UC = 5063.69, UR = 5265.32. we formulate the following problem as :

max (µ− ν)

sub to µ ≤ e

−w

(
ACECL−4862.07
4876.38−4862.07

)
−e−w

1−e−w ; ν ≥
(
ACECL−4862.07
4876.38−4862.07

)2

µ ≤ e

−w

(
ACECC−5057.22
5063.69−5057.22

)
−e−w

1−e−w ; ν ≥
(
ACECC−5057.22
5063.69−5057.22

)2

µ ≤ e

−w

(
ACECR−5243.88
5265.32−5243.88

)
−e−w

1−e−w ; ν ≥
(
ACECR−5243.88
5265.32−5243.88

)2

t1 ≥
{
β + τ1 + ρ1(τ2 − τ1), in possibility sense
β + τ3 − (1− ρ2)(τ3 − τ2), in necessity sense.

µ ≥ ν and µ+ ν ≤ 1; µ, ν ≥ 0.



(B.3)

Table B.1: Individual minimum and maximum of objective functions

Objective Minimize Minimize Minimize
functions ACECL ACECC ACECR
ACECL ACEC∗L = 4862.07 ACECL = 4867.14 ACECL = 4876.38
ACECC ACECC = 5063.69 ACEC∗C = 5057.22 ACECC = 5060.13
ACECR ACECR = 5265.32 ACECR = 5247.29 ACEC∗R = 5243.88
Variables
(P ∗, t∗1)

(572.27, 3.23) (521.85, 3.66) (491.60, 3.98)

The solutions obtained for Eq. (B.3) are given in Table B.2.
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Table B.2: Optimum results of Eq. (B.3) for w=0.10

µ∗ ν∗ P ∗ t∗1 ACEC∗L ACEC∗C ACEC∗R
0.7431 0.0612 529.67 3.59 4865.61 5057.39 5249.18

Now we perform the Pareto-Optimal Solution test for strong or weak solutions. The Pareto-
Optimal results are presented in Table B.3. In Table B.3, the value of V ∗ is quite small hence,
the optimal results in Table B.3 are strong Pareto-optimal solution and can be accepted.

Table B.3: Pareto-Optimal results

V ∗ P ∗ t∗1 ACEC∗L ACEC∗C ACEC∗R
0.0000 529.67 3.59 4865.61 5057.39 5249.18
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