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Abstract

Transportation problems sustain economic and social activity and are treated
as central nerve system to operations research and management science. Based
on day-by-day competitive market scenario several types of decision making
problems are introduced using the classical sense of transportation problem to
find better decisions. Although, the classical transportation problem defines
the way to minimize total cost of a transportation system, but nowadays it
is used for several objectives like optimizing profit, minimizing transportation
time, fixing of cost of goods, etc. by using several methodologies. Considering
the real-world situations, transportation problems are developed in many de-
cision making problems under several uncertain environments. Optimization
under multi-choice environment is also a kind of uncertain programming prob-
lem which mainly occurred due to the presence of multi-choice parameter in
optimizing function or in the feasibility conditions or in both. Incorporating
the daily-life transportation situations for selection of route under multiple
choice possibilities in a transportation problem, the multi-choice TP is devel-
oped. This thesis is devoted to transportation problem under the different
environments considering the multi-choice programming framework.
The single-objective TP is not adequate to handle real-life decision making
problems, owing to present competitive market scenario, we consider our study
in multi-objective window. To cover all real-life situations on TPs, we intro-
duce the multi-objective function in our considered TP in this thesis.
Again, linear programming problems are not sufficient for formulating all types
of decision making problem in real-life situations. As a result, non-linear
programming problems have been incorporated into the multi-objective TPs.
Here, in the thesis, the non-linear objective function is occurred in the TP
due to some goods are left after distributing the goods from the origin to the
destination points.
An optimization problem becomes a goal programming problem if the objective
functions have some specific aspiration level of satisfaction which are known
as the goal of the objective functions. Goal programming approach is a well
known technique to solve multi-objective transportation problems. But GP is
not always producing better optimal solutions. Here, we propose a new way
to solve MOTP by revised multi-choice goal programming and utility function



approach. In this study, we present a better result of MOTP using utility
function approach in compare to GP or RMCGP. Again, conic scalarization
function is incorporated to solve the multi-choice MOTP. The CSF is presented
as much better technique in compare to GP and RMCGP technique.
Transportation time is also an important factor in a TP and so it is also re-
quired to minimize transportation time along with the minimization of trans-
portation cost. In this research contents, we introduce a new procedure to
solve bi-objective transportation problem namely time and cost minimizing
TP under multi-choice interval cost parameters.
Considering the real-life situations, we develop a transportation problem under
fuzzy decision variable. Considering the fuzzy multi-choice goal corresponding
to each of the allocations, we incorporate a new class of TP namely FTP. We
extend the study into multi-objective environment for better results of FTP.
We initiate the study of cost reliability in the multi-objective transportation
problem under uncertain environment. Assuming the uncertainty in real-life
decision making problems, the concept of reliability is incorporated in the
transportation cost and the effectiveness is justified through the proposed
MOTP. Furthermore, considering the real phenomenon in the MOTP, we treat
the transportation parameters, like as supply and demand as uncertain vari-
ables and obtain a better solution in compare to traditional TPs.
In this thesis, we attempt to formulate the mathematical model of Two-Stage
multi-objective transportation problem where we design the feasibility space
based on the selection of goal values. Considering the uncertainty in real-life
situations, we incorporate the interval grey parameters for supply and demand
in the Two-Stage MOTP, and a procedure is applied to reduce the interval
grey numbers into real numbers.
Choosing several modes of transportation in a TP, a new method is designed
for solving transportation problem by introducing the multi-modal transport
systems. Here we incorporate the situation of multi-mode of transportation
and analyze the way to solve TP under this situation and propose a better
mode of transportation for optimal solution.
Again, we consider the study of multi-choice multi-item TP in the inventory
optimization problem. Two different classes of TP such as inventory optimiza-
tion and transportation optimization made under the consideration of a single
mathematical model and noted as a new model namely IOIT.
The proposed mathematical models and methodologies are justified by con-
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structing the real-life examples. Finally, conclusions are described according
to the studies and the new ways are sighted for the future scope of studies.

Key Words: Transportation Problem, Multi-Choice Programming, Fuzzy
Programming, Fuzzy Decision Variable, Multi-Objective Optimization, Deci-
sion Making Problem, Interval Number, Goal Programming, Revised Multi-
Choice Goal Programming, Conic Scalarization Function, Utility Function,
Linear Programming Problem, Multi-modal Transportation Problem, Both-
Stage Transportation Problem, Uncertain Programming, Cost Reliability, Grey
Number.
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Chapter 1

Introduction and Literature
Survey

This chapter depicts on mathematical programming, more specifically in the

field of Transportation Problem (TP). Different types of TP are presented un-

der various environments, such as multi-objective, multi-choice, fuzzy, interval,

stochastic environments, etc. Several methodologies such as fuzzy program-

ming, goal programming, revised multi-choice goal programming, conic scalar-

ization approach, etc. are introduced according to the mathematical point of

view. A brief literature survey of the proposed research work, objective, scope

and organization of the thesis are included in this chapter.

1.1 Introduction

Operations Research (OR) is a discipline which encompasses a wide range of

real-life problem involving solution techniques and methods applied in pursuit

of improved decision-making and efficiency such as mathematical optimization,

econometric methods, simulation, neural networks, data envelopment analysis,

decision analysis and the analytic hierarchy process, etc. The modern ground

of OR arose during World War II. In the World War II, OR was defined as

a scientific method for providing executive departments with a quantitative

1



Chapter 1: Introduction and Literature Survey

basis for decisions regarding the operations under the control. The term “opti-

mization” is the root of the study of OR. The optimization is used in different

areas of study like Mathematical optimization, Engineering optimization, Eco-

nomics and business, Information technology, etc.

A mathematical problem is an Optimization Problem (OP) where the objec-

tive function is maximized or minimized with or without some prescribed set

of constraints. Requirements in real-life decision making situations enlarge

the area of Mathematical optimization problems in different fields like Multi-

Objective Optimization (MOO) problem, Multi-Choice Optimization Problem

(MCOP), Multi-Modal Optimization Problem (MMOP), Optimization under

uncertainty, Transportation Problem (TP), etc.

1.1.1 Optimization problem

Optimization is the mathematical discipline which is concerned with finding

the maximum and minimum of functions with or without constraints. In

the study of optimization, basically we need to optimize a real function of

n variables f(x1, x2, . . . , xn) with or without constraints. In an Optimization

Problem (OP) for modeling a physical system, if there be only one objec-

tive function, and the task is to find the optimal solution, then it is called

a single-objective optimization problem. The general form of single-objective

optimization problem is as follows:

minimize/maximize f(x1, x2, . . . , xn)

subject to g(x1, x2, . . . , xn) ≤ 0,

h(x1, x2, . . . , xn) ≥ 0,

l(x1, x2, . . . , xn) = 0,

∀ (x1, x2, . . . , xn) ∈ F ∈ Rn, F is the feasible region.

2



1.1. Introduction

Furthermore, single objective OP can be broadly divided into two different

types of problem, namely, linear OP and non-linear OP. If the objective func-

tion or a constraint or a set of constraints or both be of non-linear type, then

the OP is a non-linear OP otherwise it is a linear OP. Again, according to

real-life situations, OP may be deterministic or fuzzy or interval order relation

or multi-choice programming depending on parameter space.

Many real-world OPs cannot be formulated by a single objective function.

When an OP is used for modeling a real-life problem which involves more

than one objective function, the task of finding the optimal solution is called

the MOO problem. It has been observed that the parameters which form a pa-

rameter space may be multiple types in which only one is to be selected which

optimizes the objective functions. The most general mathematical model of

the MOO problem is as follows:

minimize/maximize f = f(f1, f2, . . . , fn) (1.1)

subject to g(x1, x2, . . . , xn) ≤ 0, (1.2)

h(x1, x2, . . . , xn) ≥ 0, (1.3)

l(x1, x2, . . . , xn) = 0, (1.4)

∀ (x1, x2, . . . , xn) ∈ F, (1.5)

where f1, f2, . . . , fn are the objective functions of the decision variables x1, x2,

. . . , xn are called decision variables. Here, MOO problem is also studied in

different environments.

1.1.2 Transportation problem

The TP is a kind decision making problem which may be considered as the

central nerve system to keep the balance in economical world from ancient day

to till today. It can be delineated as a special case of a Linear Programming

Problem (LPP). The classical sense of TP determines how many units of a

3



Chapter 1: Introduction and Literature Survey

commodity are to be shipped from each point of origin to various destinations,

satisfying source availabilities and destination demands, while minimizing the

total cost of transportation along with cutting down the costs per unit of items

for the purchasers.

The mathematical model of transportation problem is as follows:

minimize Z =
m∑
i=1

n∑
j=1

Cijxij

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n),

xij ≥ 0 ∀ i and j,

where xij is the decision variable which represents how much amount of goods

delivered from the i-th origin to the j-th destination. Cij is the transportation

cost per unit commodity. ai and bj are supply and demand at the i-th origin

and the j-th destination respectively and
∑m

i=1 ai ≥
∑n

j=1 bj is the feasibility

condition.

Multi-choice transportation problem:

Due to presence of multiple routes of transportation or fluctuation of the mar-

ket, the transportation parameters like cost, supply and demand may not fixed

always. Keeping the points of view, if we consider all or few of cost, supply

and demand parameters as multi-choice nature, then the TP becomes a multi-

choice TP. In the atmosphere of multi-choice transportation parameters, the

mathematical model of the Multi-Choice Transportation Problem (MCTP) is

defined as follows:

minimize Z =
m∑
i=1

n∑
j=1

(C1
ij or C

2
ij or . . . or C

r
ij)xij

4



1.1. Introduction

subject to
n∑
j=1

xij ≤ (a1
i or a

2
i or . . . or a

p
i ) (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ (b1
j or b

2
j or . . . or b

q
j) (j = 1, 2, . . . , n),

xij ≥ 0 ∀ i and j.

Multi-objective transportation problem:

Single objective transportation problem is not enough to formulate all the

real-life transportation problems. The transportation problem with multiple

objective functions are considered as Multi-Objective Transportation Problem

(MOTP). However, we deal with those kind of objective functions, which are

conflicting and non commensurable to each other involving TP. If there be

more than one objective function in a TP, then it becomes a MOTP, whose

mathematical model is as follows:

minimize/maximize Zt =
m∑
i=1

n∑
j=1

Ct
ijxij (t = 1, 2, . . . , K)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n),

xij ≥ 0 ∀ i and j.

Multi-choice multi-objective transportation problem:

In multi-choice environment, the mathematical model of MOTP, i.e., the math-

ematical model of Multi-choice Multi-Objective Transportation Problem (MC-

MOTP) takes the following form:

minimize/maximize Zt =
m∑
i=1

n∑
j=1

(Ct1
ij or Ct2

ij or . . . or Ctr
ij )xij

subject to
n∑
j=1

xij ≤ (a1
i or a

2
i or . . . or a

p
i ) (i = 1, 2, . . . ,m),

5



Chapter 1: Introduction and Literature Survey

m∑
i=1

xij ≥ (b1
j or b

2
j or . . . or b

q
j) (j = 1, 2, . . . , n),

xij ≥ 0, ∀ i and j.

Interval-valued transportation problem:

Considering the unstable situation of the market or weather condition, the

transportation parameters like cost, supply and demand, may not be taken as

crisp values. Keeping the points of view, if at least one of the transportation

parameters is considered as interval valued then the TP becomes an interval

valued TP.

Multi-choice interval-valued transportation problem:

Involvement of multi-choices in the interval valued TP, the transportation

problem reduces to a multi-choice interval valued transportation problem.

Mathematical model of MCITP is as follows:

minimize Z =
m∑
i=1

n∑
j=1

(C1
ij or C

2
ij or . . . or C

k
ij)xij (k = 1, 2, . . . , K)

subject to
n∑
j=1

xij ≤ (a1
i or a

2
i or . . . or a

p
i ) (i = 1, 2, . . . ,m) (1.6)

m∑
i=1

xij ≥ (b1
j or b

2
j or . . . or b

q
j) (j = 1, 2, . . . , n), (1.7)

xij ≥ 0, ∀ i and j. (1.8)

Here, multi-choice parameters Ck
ij, a

p
i and bqj are interval numbers and these

are defined as Ck
ij = [Ckl

ij , C
ku

ij ], api = [ap
l

i , a
pu

i ], bqj = [bq
l

j , b
qu

j ]. The feasibility

condition in this case is
m∑
i=1

maxpu(a1u

i , a
2u

i , . . . , a
pu

i ) ≥
n∑
j=1

minql(b1l

j , b
2l

j , . . . , b
ql

j ).

Fuzzy transportation problem

Many real-life decision making problems, there may occur some cases where we

need to optimize the objective function (Z) according to the decision maker’s
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preferences. In this case, the decision variables (xij) of transportation problem

are considered as real variables and the crisp solutions are obtained. In our

daily life, many situations occur, where it is not applicable to fit a mathemat-

ical model using real variables and if we consider the decision variable in a

TP as unknown fuzzy number (xij), then transportation problem becomes a

Fuzzy Transportation Problem (FTP). The mathematical model of FTP can

be written as follows:

minimize Z =
m∑
i=1

n∑
j=1

Cijx̃ij

subject to
n∑
j=1

x̃ij ≤ ai (i = 1, 2, . . . ,m),

m∑
i=1

x̃ij ≥ bj (j = 1, 2, . . . , n),

x̃ij ≥ 0 ∀ i and j.

Using the concept of FTP in MOTP with considering the decision variable as

fuzzy variable, it is easy to formulate multi-objective FTP.

Two-stage grey transportation problem

In the classical sense of transportation problem, there are two types of node,

one is source node from which the goods are delivered and other is destination

node in which the transported goods are gathered. According to the real-life

situations, in a TP, sometimes it is also to be considered that before trans-

porting the goods in the destinations from the sources, goods are to be stored

at warehouses from the sources and thereafter they are delivered to the des-

tinations. So, the Decision Maker (DM) utilizes the concept for managing

Two-Stage transportation in his position which maximizes the profit. A TP is

called a Two-Stage transportation problem, if it consists of transporting the

goods by two stages, namely, One Stage transportation problem and Another

7
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Stage transportation problem. The TP which is considered in two stages of

collecting the goods in warehouses is called an One Stage TP; the TP consid-

ered in Another Stage of distributing the goods is referred to as an Another

Stage TP. Here, we introduce a new class of TP in which a single commodity of

goods is transported to the destination using two times of transportation, and

so, it is considered as Two-Stage TP. Considering multiple objective functions

in Two-Stage TP, it reduces multi-objective Two-Stage TP. To accommodate

the reality, the grey goals are considered into objective functions which make

the TP a multi-objective Two-Stage grey transportation problem.

Multi-modal transportation problem

Treating reality in the decision making problem, transportation problem presents

the situation such that, there may have origins/destinations in different levels

to fulfill the requirements in the final destination points of a transportation

network. Due to the factor of multiple routes or multi-modes of transportation

in a TP, the TP becomes a Multi-Modal Transportation Problem (MMTP).

Multi-modal transport which is also known as combined transport allows to

transport the goods under a single contract, but it is performed with at least

two modes of transport; the carrier is liable (in a legal sense) for the entire

carriage, even though it is used by several different modes of transport such as

sea, road, etc. The carrier does not have to possess all the means of transport,

and in practice usually it does not valid. The carrier is often performed by sub-

carrier which is referred to in legal language as “actual carriers”. The carrier

responsible for the entire carriage is addressed to as a Multi-Modal Transport

Operator (MMTO). In a transportation problem, if there be at least one origin

except the ground and final origins which have both receiving and dispatching

capacity of goods, then it is called a MMTP.

8
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Transportation problem under cost reliability

In the TP, the completion time of transportation of amount of goods should be

finished within the specified time, otherwise there may be created a damage of

the items or storing problem and/or the customer may reject the ordered item.

In that situation, the transportation cost or the profit may not be considered

as crisp value. Then the selection of goals for the objective functions or the so-

lution of the MOTP cannot be made in usual way. To overcome this difficulty

for selecting the proper goals to the objective functions, here, we incorporate

the concept of reliability for the cost parameters in the TP. In that situation,

we introduce a new term “cost reliability” for the transportation cost in the

proposed study. Generally, Reliability refers the probability of a machine op-

erating its intended purpose adequately for the period of time desired under

the operating conditions encountered. More precisely, reliability is the proba-

bility with which the devices will not fail to perform a required operation for

a certain period of time. Taking advantage of the reliability function in the

real-life decision making problem, we formulate the MOTP where the objec-

tive functions are connected with some multi-choice goals. The advantage of

MOTP under cost reliability is illustrated broadly in the proposed thesis.

Integrated optimization in inventory transportation

Inventory is the stock of items or resources used in an organization. The study

of inventory refers to know how much amount of goods have to be sold by de-

cision maker and how much amount left after sold and how much amount need

to order from suppliers to keep stock with enough product. In the classical

sense of basic inventory optimization, inventory and transportation are carried

out separately and total logistics cost is calculated by summing the separate

9
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outcome results. On the other hand, an integrated optimization in inventory

transportation is a problem to optimize the combination of transportation cost

and inventory cost under the prerequisite assumptions. So, the main objec-

tive is to reduce the total logistics cost and determine the transportation and

inventory strategies of the system. Considering the uncertain situations in

real-life problems, the supply and demand are considered as stochastic and

multi-choice type respectively in the proposed study of IOIT.

1.1.3 Fuzzy programming

In the real-life uncertain situations, the fuzzy set theory is an important topic

to read. Usually, the fuzzy set theory is used in the field of OP as a tool for

solving MOO problems. Nowadays, it is not only used as its classical sense

but also plays an important role for accommodating real-life uncertain decision

making problems. The fuzzy set theory has been applied in many fields, such

as operations research, management science, artificial intelligence, human be-

havior, etc. The fuzzy mathematical programming has been applied to many

disciplines such as advertising, assignment, budgeting, computer section, diet

section, location media planing, networks, project selection, transportation,

water resource management and many others.

Fuzzy set: A fuzzy set Ã is a pair (A, µÃ) where A is a crisp set belongs

to the universal set X and µÃ : X → [0, 1] is a function, called membership

function.

Optimization under fuzziness: The ordinary optimization process gener-

ally is used to minimize or maximize the objective function subject to a set of

constraints. In the fuzzy optimization, objective function and the constraints

are both considered vague and they are expressed by fuzzy set. The process

is to find the set of parameter values which maximizes the satisfaction of both
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the objective and the constraints at the same time. Thus the objective and

the constraints perform the same purpose of defining the solution set.

The concept of fuzzy optimization is applied to the classical optimization al-

gorithms, such as Fuzzy Linear Programming Problem (FLLP) problem and

fuzzy dynamic programming. In the case of FLLP problem, transportation

cost, supply and demand parameters are known only in fuzzy numbers and it

determines the amount to be shipped between each demand and supply node.

Fuzzy decision variable: In an optimization problem, usually the unknown

variables are considered as real variables. Sometimes there may occur some

situations where the decisions are made by selecting fuzzy numbers among a

set of fuzzy numbers, in that situations the decision variables are not consid-

ered as real and they are taken as fuzzy decision variable. The fuzzy decision

variable in the Transportation problem creates a new field of transportation

namely fuzzy transportation problem under fuzzy decision variable.

1.1.4 Goal programming

In an optimization problem, if the optimal solution is obtained according to

the desired value (namely goal) of an objective function by the decision maker,

then the optimization problem becomes a Goal Programming (GP). Goal pro-

gramming, an analytical approach is devised to address the decision making

problem where targets have been assigned to all objective functions which are

conflicting and non-commensurable to each other and DM interests to maxi-

mize the achievement level of the corresponding goals.

In long back, the main concept of GP was that to minimize the deviation be-

tween the achievement goals and the achievement levels. The mathematical

model of Multi-Objective Decision Making (MODM) can be considered in the

following form:

11
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Model GP

minimize
K∑
i=1

wi|Zi(x)− gi|

subject to x ∈ F,

where F is the feasible set and wi are the weights attached to the deviation

of the achievement function. Zi(x) is the i-th objective function of the i-th

goal and gi is the aspiration level of the i-th goal. |Zi(x) − gi| represents the

deviation of the i-th goal. Later on, a modification on GP is provided and

is denoted as Weighted Goal Programming (WGP) which can be displayed in

the following form:

Model WGP

minimize
K∑
i=1

wi(d
+
i + d−i )

subject to Zi(x)− d+
i + d−i = gi,

d+
i ≥ 0, d−i ≥ 0 (i = 1, 2, . . . , K),

x ∈ F,

where d+
i and d−i are over and under achievements of the i-th goal respectively.

A vast studies has been developed in GP, but Chang (17) introduced the

concept of Revised Multi-choice Goal Programming (RMCGP) for solving

MODM, which is more effective than the GP or the WGP. The mathemat-

ical model of MODM using RMCGP is defined as follows:

Model RMCGP

minimize
K∑
i=1

[
wi(d

+
i + d−i ) + αi(e

+
i + e−i )

]
subject to Zi(X)− d+

i + d−i = yi (i = 1, 2, . . . , K),

yi − e+
i + e−i = gi,max or gi,min (i = 1, 2, . . . , K),

12
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gi,min ≤ yi ≤ gi,max (i = 1, 2, . . . , K),

d+
i , d

−
i , e

+
i , e

−
i ≥ 0 (i = 1, 2, . . . , K),

x ∈ F.

Here, F being the feasible set and yi is the continuous variable associated with

i-th goal which restricted between the upper (gi,max) and lower (gi,min) bounds

and e+
i and e−i are positive and negative deviations attached to the i-th goal

of |yi − gi,max| and αi is the weight attached to the sum of the deviations of

|yi − gi,max|, other variables are defined as in WGP.

1.1.5 Conic scalarization

In most of the cases for determining optimal solution of the MOO [equations

(1.1) to (1.5)], the model is transformed to a scalar-valued optimization prob-

lem and on solving it, we obtain the compromise solution. In many research

works such as Kim and Weck (71), Koski (73), Zaffaroni (167), using the

weight wt (t = 1, 2, . . . , K) for the t-th objective function, the MOO problem

is reduced to the scalar problem as follows:

minimize
K∑
t=1

wtft(x), x ∈ F.

By solving the scalar problem for a variety of parameters, for instance, for dif-

ferent weights, several solutions of the MOO problem are generated. Based on

much better computer performances, it is now possible to represent the whole

efficient set those are not obtained through the old techniques.

Using the classical sense of cone of a set and efficient point, the Conic Scalar-

ization approach is introduced, which is an effective technique to obtain proper

efficient solutions for MOO problem. In one of the chapter of this thesis, we

use the Conic Scalarization approach for solving MCMTP and to establish the

effectiveness of the approach on comparing to the other scalar optimization

techniques, like GP and RMCGP.
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1.2 Literature survey

The TP was formalized in 1781 by the French mathematician Monge (108),

which was considered as the earliest known anticipation of linear programming

type of problems. Major advances were made in the field during World War II

by the Soviet/Russian mathematician and economist Kantorovich (65). Con-

sequently, the problem as it is now stated is sometimes known as the Monge-

Kantorovich transportation problem. Kantorovich (65) published a research

work on continuous version of the problem and later on Kantorovich (66)

developed a study on planning and production in a transportation problem.

Many scientific approaches incorporated toward analyzing real-life problems

associated with the transportation problem, including operations research, en-

gineering, economics, geographic information science and geography, etc. It is

explored especially in the field of mathematical programming and engineering

literatures. Sometimes it is referred to as the facility location and allocation

problem, the transportation optimization problem can be modeled as a large-

scale mixed integer Linear Programming Problem (LPP). The basic model

of transportation problem was originally developed by Hitchcock (47). He

first considered the problem of minimizing the cost of distribution of product

from several factories to a number of customers. Later on, Koopmans (72)

presented an independent study on optimum utilization of the transportation

system. Dantzig (24) proposed the simplex method for solving transportation

problem which is known as the primal simplex transportation method.

The single objective transportation problem is not enough to handle real-

life decision making problem due to our present competitive market scenario.

To cover all the real-life situations on TP, we have to introduce here multi-

objective TP. Charnes and Cooper (21) first discussed various approaches on

the solution of managerial level problems involving multiple conflicting objec-
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tive functions. Garfinkl and Rao (39) worked out the two objective problems

by giving high and low priorities to the objective functions. Verma et al.

(156) used fuzzy min operator approach to develop a compromise solution for

the multi-objective transportation problem. Ringuest and Rinks (125) pro-

posed two interactive algorithms for generating all non-dominated solutions

and identified minimum cost solution as the best compromise solution. Waiel

(157) developed a multi-objective transportation problem under fuzziness to

get compromise solution. Ebrahimnejad (29) developed a new approach for

solving fuzzy transportation problems with generalized trapezoidal fuzzy num-

bers.

Linear programming problem is not sufficient to form all types of decision

making problem in our real-life situations. As a result, non-linear program-

ming problem has been incorporated in the multi-objective TP. In this regard,

we present here three important research works on TP with non-linear cost.

Shetty (143) discussed a method to solve non-linear transportation problem

with non-linear cost. Florian (36) developed a study on non-linear cost network

models in transportation analysis. A study on non-linear integer programming

transportation models introduced by Yang et al. (164). Recently, Maity and

Roy (98) established a study on MOTP introducing a new concept on non-

linear cost.

Multi-modal TP is a important class of TP in transportation planning and

decision making problems. Murphy (111) pointed out the dual of the trans-

portation problem and its implications for land-use and transport planning in

Urban spatial location. James et al. (59) discussed on improving transporta-

tion service quality based on information fusion. A good number of works on

transportation safety planning were developed by Abdel-Aty et al. (1), Zhi-
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Chun et al. (169), Luathep et al. (76), Xu and Cai (163), Sheu and Chen

(142), Tootkaleh et al. (152), Ergun et al. (28).

Many approaches are available in literature to deal with the uni-modal trans-

port problem. Nanry and Wesley (112) presented an overview on uni-modal

TP. In the multi-modal transportation problem, also some works have been

done there, though none of these works solve the complete logistics problem,

being centered in other problems associated with multi-modal transportation

or in subproblems that do not represent all the constraints. Macharis and Bon-

tekoning (92) discussed the opportunities for OR in intermodal freight trans-

port. The research work (92) was reviewed on OR models which is currently

used in this emerging transportation research field and defines the modeling

problems which need to be addressed. Eibl et al. (27) introduced a case study

applying an interactive vehicle routing and scheduling software to a brewing

company in the UK. They explained how a commercial tool was applied to

schedule the day-by-day (operational) vehicle routing and scheduling to dis-

tribute the goods. This tool was specific for the brewing problem, and the

operator that manages the tool needs a previous training process to manage

all variables involved. In this case, the solution is quite domain-independent,

with less user knowledge requirements. Catalani (13) considered a statistical

study to improve the intermodal freight transport in Italy, by using the road-

ship and road-train transports. Qu and Chen (121) posed the multi-modal

transport problem as a Multi-Criteria Decision Making (MCDM) problem.

They proposed a hybrid MCDM by combining a Feed-forward Artificial Neu-

ral Network with the Fuzzy Analytic Hierarchy Process. The case study was

a network in which nodes represent terminals, and edges represent different

transportation modes such as road, ship and train etc. The model can deal

with several cost functions and constraints, but they only defined six nodes,

while in our proposed model there may have thousand of nodes.
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Several research papers [Mahapatra et al. (93), Ropke and Pisinger (129),

Veloso (155)] are available in the literature to analyze the transportation prob-

lem, but to the best of our knowledge, till now no one has used multi-modal

transport systems for solving the transportation problems for decision making

problems.

The concept of Grey Numbers emerged as an effective model for systems with

partial information known. Liu (88) proposed a study on forming a new alge-

braic system of grey numbers. Palanci et al. (117) studied on uncertainty under

grey goals in a cooperative game. A study on interval grey numbers to solve

grey multi-attribute decision making problem was introduced by Honghua and

Yong (49). Liu et al. (90) proposed a study on interval grey number which

suggested some knowledge on the degree of greyness of grey numbers. A study

on general grey number and their operations was given by Liu et al. (91). Xie

and Liu (161) presented novel methods on comparing grey numbers. Mi et

al. (105) introduced a study on Generic Second Order Macroscopic (GSOM)

model based on interval grey number.

Cai and Lei (12), Kutanoglu and Lohiyav (74) studied on integrated optimiza-

tion in inventory transportation model and they expressed in their study that

transportation and storage of the product are the most important aspect in

logistics system. Weijun and Cui (160) showed on their study that strategy

of inventory and transportation are extremely important when they together

come into real inventory problem. When the transportation plan is made up,

the volume discounts brought by large quantities of transportation should not

be pursuit excessively [cf., Cetinkaya and Lee (14), Xiao-Feng et al. (162)].

As this would bound to increase inventory costs throughout the system, also
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when the inventory strategy is determined, transportation cost cannot be dealt

as a fixed charge, but as the variable cost directly impacting on transporta-

tion frequency and inventory distribution [Mason (103)]. Maity and Roy (99)

proposed an integrated study on inventory and transportation problem under

multi-choice and stochastic environment.

Goal Programming (GP), an analytical approach is devised to address the de-

cision making problem where targets have been assigned to all objective func-

tions which are conflicting and non-commensurable to each other and DM in-

terests to maximize the achievement level of the corresponding goals. Charnes

et al. (20) introduced the concept of GP. The interesting philosophy and high

applicability of GP in handling real world decision making problems with multi

objectives structures made it very useful and widespread. This leads to fur-

ther development of GP for different decision making problems. The related

research can be categorized into two broad classes: goal programming tech-

niques which are proposed for crisp decision making problems and fuzzy goal

programming models. Many research papers in the goal programming litera-

ture belong to the first class. The research papers by Lee (78), Ignizio (50),

Romero (126), and Tamiz et al. (150) belong to this class. Tamiz et al. (151)

presented a bibliography of the related researches published during 1990-2000.

The second class includes the developed goal programming models for deci-

sion making in fuzzy environment. The proposed models in this class used

the fuzzy set theory as a modeling tool to deal with the uncertainty of real

world decision making problems. The uncertainty of decision making problem

may exist because of imprecision aspiration levels, using linguistic variables,

vague objective priorities or weights, uncertainty of resources, technological

coefficients, etc. In the 1980s, fuzzy sets have been used in GP models to

deal with the uncertainty of parameter and as well to represent a satisfaction
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degree of the decision maker with respect to his/her preference structure. The

second class contains the research papers by Narasimhan (113), Hannan (46),

Wang et al. (159), and many others. Finally, a comprehensive overview of

the state-of-the-art in goal programming can be found in [cf. Ignizio (51; 52)].

Recently, Maity and Roy (97) presented a study to solve MOTP using utility

function approach under goal environment.

However, in the real world situations, decision making problems may arise

in economics, industry, health care, transportation, agriculture, storing seeds,

military purpose, and technology etc. with different structures which cannot be

handled using standard decision making approaches. For example, in a multi-

choice multi-objective decision making problem, the decision maker presents

multi aspiration levels as goals for each objective, the classical models of deci-

sion making including goal programming cannot be applied directly. To deal

with this type of problems, it is very much essential to develop new decision

making models. To do this, Chang (16) proposed a Multi-Choice Goal Pro-

gramming (MCGP) approach to deal with such problems. Chang (17) revised

his approach to make it easier understanding and implementation of linear

programming packages for solving such problems. Liao (83) also presented the

formulation of multi-segmented goal programming which can be applied to

solve multiple decision making problems which have multi-segmented aspira-

tion levels. Recently, Roy et al. (131) presented the formulation and solution

procedure on multi-choice transportation problem involving exponential distri-

bution. Mahapatra et al. (95) formulated and solved multi-choice stochastic

transportation problem involving extreme value distribution. Of late, Roy

(132) described and solved multi-choice stochastic transportation problem in-

volving Weibull distribution which has added a new dimension on real-life TP.
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Recently, Maity and Roy (96) studied and discussed the solution procedure

on multi-choice multi-objective transportation problem using utility function

approach.

Fuzzy programming technique is a well known tool to solve multi-objective

optimization problems occurred in real-life situations. Cadenas and Verdegay

(11) solved multi-objective linear programming problem by fuzzy ranking func-

tion. Waiel (157) developed the MOTP under fuzziness to obtain the compro-

mise solution. Gupta and Kumar (44), Ebrahimnejad and Tavana (30) worked

on uncertainty under different fuzzy environments. Jiménez and Verdegay (60)

used the fuzzy uncertainty in solving solid transportation problem. Many re-

searchers have shown great interest on uncertain mathematical programming.

A few references are presented with their works. In order to deal with human

uncertainty, Liu (89) presented a study on uncertainty theory and later, it was

modified by Liu et al. (90) based on normality, duality, sub-additivity and

product axioms considering degrees of greyness in grey numbers. Gao (38)

introduced some properties on continuous uncertain measure in his paper. In

practical aspect, Liu et al. (91) proposed an uncertain programming of math-

ematical programming involving grey numbers. In very recent, Maity et al.

(100) presented a study on uncertain TP under the consideration of cost reli-

ability.

A study on Characterization over the Benson proper efficiency and scalar-

ization in a non-convex optimization field proposed by Gasimov (40). Later

on, Gasimov (41) introduced a class of monotonically increasing sub-linear

functions on partially ordered real normed spaces and showed without any

convexity and bounded-ness assumptions that support points of a set obtained

by these functions are properly minimal in the sense of Benson (5). Thereafter,

Gasimov and Ozturk (42) presented a study on separation via polyhedral conic

functions. Of late, Roy et al. (135) established a study on MOTP using Conic
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Scalarization approach.

1.3 Objective and scope of the thesis

The main objective of the thesis has been defined after an extension literature

survey based on transportation problem under multi-choice environment. The

main objectives of the research work are as follows:

1: To incorporate the concept of extra cost in cost parameter of a TP which

produces a non-linear TP and analyze in multi-objective ground of TP under

multi-choice demands.

2: Applying the utility function approach to solve a MOTP under multi-

choice environment, an effective solution is obtained in compare to the existing

studies such as GP and RMCGP.

3: The concept of conic scalarization is implemented to solve MOTP in which

each objective function has some goals and an extended study is given to jus-

tify the efficiency of the study in multi-choice environment.

4: In a transportation problem, transportation time is a key factor, so con-

sidering transportation time and transportation cost in a TP we have studied

an bi-objective transportation problem and most importantly the bi-objective

function is solved through single objective function. The study is developed

by considering the multi-choice interval-valued transportation parameters.

5: Here, we have defined transportation problem under fuzzy decision variable.

Assuming the expected allocations in the cells of a TP as multi-choice fuzzy

numbers, a new technique using multi-choice goal programming is introduced

and solve it to get better results in both single objective and multi-objective

grounds.

6: Introducing the time in a TP, we have discussed the concept of cost reli-

ability in MOTP. Again, according to the vague phenomenon of real market
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situations, the supply and demand constraints are treated as uncertain vari-

ables and transformed them through a uncertain measure concept. Numerical

example is given to justify the proposed study.

7: In a transportation problem there may occur two types of transportation

in warehouses where the goods are stored from markets and then delivered

to other places. So, there are two stages involving in the transportation and

to introduce as Two-Stage TP. Based on real-life situation, the study is for-

mulated under grey environment and multi-objective ground. A new method

using utility function approach is discussed to solve and to select the goal of

the objective functions in the proposed problem.

8: Again, we formulate the mathematical model of a TP considering dif-

ferent modes of transportation which is termed a multi-modal TP. On solving

the MMTP, the optimal solution and corresponding mode of transportation

are presented.

9: Transportation and inventory are two different branches of study, here

we made a connection between them and formulated a technique IOIT which

gives better solution in compare to traditional inventory and transportation

optimization procedure. The study is extended for multi-item of goods in

uncertain environments which make it more realistic.

1.4 Organization of the thesis

The whole thesis contains eleven chapters. A brief introduction related to the

proposed research work is presented to Chapter-1. In Chapter-2, we develop a

multi-objective transportation problem with non-linear cost and multi-choice

demand. The Chapter-3 is devoted to solve multi-objective transportation

problem using utility function approach. In Chapter-4, we extend the concept

of Conic Scalarization approach and is used to solve multi-objective trans-
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portation problem. The Chapter-5, present the study of solving bi-objective

optimization problem under the environment of multi-choice and interval val-

ued transportation parameters. In Chapter-6, we provide the concept of trans-

portation problem under fuzzy decision variable in both single objective and

multi-objective cases. Chapter-7 is introduced the concept of cost reliabil-

ity in multi-objective transportation problem under uncertain environment.

In Chapter-8, we introduce the Two-Stage grey transportation problem using

utility function approach. The Chapter-9 is devoted the study on multi-modal

transportation problem. In Chapter-10, we introduce the study of integrated

optimization in inventory and transportation problem. In the last Chapter,

the conclusions and scope of future works are presented regarding our research

work.

The chapter wise summary of the proposed research works is given below:

Chapter 1 introduces the study of optimization problem, especially in the

field of transportation problem under several environments. A brief survey on

optimization problem, transportation problem, fuzzy programming, goal pro-

gramming, conic scalarization approach is furnished. We discuss in short the

cost reliability, two-stage transportation problem, multi-modal transportation

problem, integrated study on inventory transportation problem. Finally, we

present the objective, scope and organization of the thesis.

In Chapter 2, we develop a mathematical model of multi-objective trans-

portation problem with non-linear cost and multi-choice demand. The objec-

tive functions of the proposed transportation problem are non-commensurable

and conflict with each other. Furthermore, the objective functions are non-

linear type which are occurred due to extra cost for supplying the remaining
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goods from origin to destinations and demand parameters are treated as multi-

choice type. Thus, the mathematical model is formulated by considering the

non-linear cost and multi-choice demand. A general transformation technique

is developed to tractable the multi-choice demand with the help of binary

variables. Therefore, an equivalent multi-objective decision making model is

established in order to find the optimal solution of the problem. The outcome

from numerical example demonstrates the feasibility of the proposed method

[A part of this chapter has been published in International Journal of

Management Science and Engineering Management, Taylor & Fran-

cis, ESCI, 11(1), 62-70, (2016)].

Chapter 3 contains two parts, in first part, we present the study of Trans-

portation Problem (TP) with interval goal under multi-objective environment.

In most of the cases, Multi-Objective Transportation Problems (MOTPs)

are solved by Goal Programming (GP) approach. Using GP, the solution

of MOTP may not be satisfied always by the Decision Maker (DM) when

the proposed problem contains interval-valued aspiration level. To overcome

this difficulty, here we propose the approaches of Revised Multi-Choice Goal

Programming (RMCGP) and utility function into the MOTP, and then com-

pare the solutions. A real-life example is presented to justify and to test

reality of the proposed concept. In second part, the study of first part has

been extended in the multi-choice environment. An example is presented in

multi-choice environment to justify the concept [First part of this chapter has

been published in International Journal of Operational Research , In-

derscience, Scopus, 27(4), 513-529, (2016), and second part of this chapter

has been published in Journal of Uncertainty Analysis and Applica-

tions , Springer Open, 2:11, doi:10.1186/2195-5468-2-11, (2014)].
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Chapter 4 explores the concept of Multi-Choice Multi-Objective Transporta-

tion Problem (MCMTP) under the light of Conic Scalarizing function. The

MCMTP is a multi-objective transportation problem where the parameters

such as cost, demand and supply are treated as multi-choice parameters. Most

of the MOTPs are solved by goal programming approach, but the solution of

MOTP may not be satisfied always by the decision maker when the objective

functions of the proposed problem contains interval-valued aspiration levels.

To remove this difficulty, here we propose the approaches of revised multi-

choice goal programming and conic scalarizing function into the MOTP, and

then we compare among the obtained solutions. Two numerical examples are

presented to show the feasibility and usefulness of the discussion topic in the

chapter [A part of this chapter has been published in Annals of Operations

Research, Springer, SCI, IF: 1.406, DOI 10.1007/s10479-016-2283-4.]

In Chapter 5 we consider the study of Transportation Problem (TP) in the

light of multi-Choice environment with interval analysis. The parameters of

TP follow multi-choice interval valued type so this form of TP is called Multi-

Choice Interval Transportation Problem (MCITP). Introduction of time is an

important notion in TP of this chapter. Transportation time and cost, both

are minimized through single objective function of TP, which is the main aim

of this chapter. A procedure is shown for converting from MCITP to deter-

ministic TP and then solve it. Finally, a case study is presented to illustrate

the usefulness of the proposed study [A part of this chapter has appeared in

Journal of Intelligent & Fuzzy Systems, IOS Press, SCIE, IF: 1.004].
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Chapter 6 develops a study on TP under fuzzy decision variable. This chap-

ter is divided into two parts. In first part, we consider the study of a single

objective TP with fuzzy decision variable. Generally, the decision variable in

a transportation problem is considered as real variable. But, here the deci-

sion variable in each node is chosen from a set of multi-choice fuzzy numbers.

A new formulation of mathematical model of Fuzzy Transportation Problem

(FTP) with fuzzy goal to the objective function is designed. After that, the

solution technique of the proposed model is included through multi-choice goal

programming approach. The proposed approach is not only improved the ap-

plicability of goal programming in real world situations but is also provided

useful insight about the solution of a new class of the TP. Finally, a real-life

example is incorporated to analyze the feasibility and usefulness of the study.

The last part of this chapter considered the study of first part extending the

concept of single objective TP to a MOTP. The usefulness is justified through

the numerical examples [First part of this chapter is communicated in In-

ternational Journal; and second part part of this chapter has accepted for

publish in International Journal of Operations Research and Infor-

mation Systems (IJORIS), IGI Global, Info-SCI, Vol 8, No. 2].

Chapter 7 initiates the study of cost reliability in the multi-objective trans-

portation problem under uncertain environment. Assuming the uncertainty in

real-life decision making problems, the concept of reliability is incorporated in

the transportation cost and the effectiveness is justified through the proposed

MOTP. Again, considering the real phenomenon in the MOTP, we consider

the transportation parameters, like supply and demand as uncertain variables.

Also, we consider the fuzzy multi-choice goals to the objective functions of

the MOTP; and Fuzzy Multi-Choice Goal Programming (FMCGP) is used to
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select the proper goals to the objective functions of the proposed MOTP. A

numerical example is presented to illustrate and to justify the proposed study

[A part of this chapter has been published in International Journal of

Computational Intelligence Systems (IJCIS), Atlantis Press and Taylor

& Francis, SCIE, IF: 0.391, Vol. 9, No. 5, pp. 839-849].

In Chapter 8 we define Multi-Objective Goal Programming (MOGP) is ap-

plied to solve problems in many application areas of real-life decision making

problems. This chapter attempts to formulate the mathematical model of Two-

Stage Multi-Objective Transportation Problem (MOTP) where we design the

feasibility space based on the selection of goal values. Considering the uncer-

tainty in real-life situations, we incorporate the interval grey parameters for

supply and demands in the Two-Stage MOTP, and a procedure is applied to

reduce the interval grey numbers into real numbers. Thereafter, we present a

solution procedure to the proposed problem by introducing an algorithm and

using the approach of Revised Multi-Choice Goal Programming (RMCGP).

In the proposed algorithm, we introduce a utility function for selecting the

goals of the objective functions. Finally, a case study is encountered to jus-

tify the reality and feasibility of the proposed study [A part of this chapter

is submitted after revision in Central European Journal of Operations

Research, Springer, SCI, IF. 0.978].

In Chapter 9, a new method is designed for solving Transportation Problem

(TP) by considering the multi-modal transport systems. This new method is a

combination of TP and multi-modal systems and here it is referred to as Multi-

Modal Transportation Problem (MMTP). To analyze the proposed method a

case study is included and solved which reveals a better impact for analyzing
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the real-life decision making problems [A part of this chapter is Communicated

to International Journal].

In Chapter 10, we investigate the study of multi-item multi-choice trans-

portation problem in the ground of inventory optimization. We study the ba-

sic inventory optimization and then we develop a methodology for Integrated

Optimization in Inventory Transportation (IOIT) to reduce the logistic cost

of a system. To accommodate the present status of real-life TP, the stochastic

supply is taken into consideration in the study. We describe a technique to

reduce stochastic supply constraint to deterministic supply constraint with the

help of stochastic programming. An algorithm is presented to solve the pro-

posed problem using MATLAB. Then the proposed problem is solved by well

known optimization technique and the obtained solution is compared with the

solution of basic inventory optimization method. An example is encountered

to verify the effectiveness of the study in the chapter [A part of this chapter

has been accepted for publication in International Journal of Operational

Research, Inderscience, Scopus].

Finally, the concluding remarks on the work carried out in Chapters 2 to 10

are described in Chapter 11. Future scope of further research works on the

presented topic is also discussed.
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Chapter 2

Solving MOTP with Non-linear
Cost and Multi-choice Demand∗

In this chapter, we develop a mathematical model of multi-objective trans-

portation problem with non-linear cost and multi-choice demand. Here, we

introduce the concept of non-linear cost by developing a sense of extra cost for

supplying the remaining goods from origin to destinations. A general transfor-

mation technique is developed to tractable the multi-choice demand with the

help of binary variables. Thereafter, an algorithm presents the solution pro-

cedure of proposed model using fuzzy programming approach. Usefulness of

the study is justified through a real-life example in comparing with traditional

method.

2.1 Introduction
Transportation problems (TPs) sustain economic and social activity and are

central nerve system to operations research and management science. The TP

can be delineated as a special case of a linear programming problem and its

model formulated to determine an optimal solution of the TP. The TP deter-

mines how many units of a commodity are to be shipped from each point of

origin to various destinations, satisfying source availabilities and destination

demands, while minimizing the total cost of transportation along with cutting
∗A part of this chapter has appeared in International Journal of Management

Science and Engineering Management, Taylor & Francis, ESCI, 11(1), 62-70, (2016).
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down the costs per unit of items for the purchasers.

The single-objective TP is not adequate to handle real-life decision making

problems owing to our present competitive market scenario. To cover all real-

life situation of TPs, here we introduce the multi-objective TP. Again, Linear

programming problems are not enough for formulating all types of decision

making problem in real-life situations. As a result, non-linear programming

problems are incorporated into multi-objective TPs. Here, in our problem, the

non-linear objective function is occurred in the TP due to some goods are left

after distributing the goods from the origin to the destination points.

Due to fluctuations in the competitive market scenario, we consider the de-

mands as multi-choice rather than single-choice type. In this circumstance,

we should require that the total amount of goods at all supply points must be

equal to or greater than the total amount of goods at all demand points.

In recent years, method of multi-choice programming has become increasingly

important in scientifically based decision making involved in practical problem

arising in economics, industry, health care, transportation, agriculture, storing

seeds, military purpose, and technology etc.

The main aim of this chapter is to formulate the multi-objective non-linear

transportation model with multi-choice demand and to solve the proposed

model using fuzzy programming approach which leads compromise solution of

the proposed problem.

2.2 Mathematical model
In a typical transportation problem, a homogenous product is to be trans-

ported from several origins (or sources) to numerous destinations in such way

that the total transportation cost is minimum. Suppose there are m origins

(i = 1, 2, . . . ,m) and n destinations (j = 1, 2, . . . , n). The sources may be

production facilities, warehouses etc. and these are characterized by available

supplies a1, a2, . . . , am. The destinations may be warehouses and sales outlets

etc., and these are noted by demand levels b1, b2, . . . , bn. The transportation

cost Cij is associated with transporting a unit of product from origin i to des-
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tination j. A variable xij is used to represent the unknown quantity to be

transported from origin Oi to destination Dj. The mathematical model of a

classical transportation problem is as follows:

Model 2.1

minimize Z =
m∑
i=1

n∑
j=1

Cijxij

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n),

xij ≥ 0 ∀ i and j.

Due to some unstable situations of market or for the cause of some special

discounts to the customers in business ground, there may exist some cases that

the cost parameter per unit commodity in transportation problem changes in

such a way that it depends on the number of goods are delivered to destination

from the origin along with the source capacity of supply. Assuming that the

amount of goods remains in the origin after transportation which lead an extra

cost according to the following rule:

Extra Cost =
ai − no. of goods supplied to the jth destination from ithorigin

total capacity of supply at ith origin
× Cij

If Cij along with this extra cost represents the cost parameter in the trans-

portation problem then the mathematical model reduces to the following form

(i.e., Model 2.2):

Model 2.2

minimize Z =
m∑
i=1

n∑
j=1

[
Cij +

ai − xij
ai

Cij

]
xij

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n),
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and xij ≥ 0 ∀ i and j.

The objective function in Model 2.2 is of non-linear type and non-linearity

occurs due to the effect of extra cost in the cost parameter in TP. In this

situation, the transportation problem (i.e., Model 2.2) is treated as TP with

non-linear cost.

Single objective transportation problem is not enough to formulate all the

real-life transportation problems. The transportation problem with multiple

objective functions are considered as multi-objective transportation problem

(MOTP). However, we deal with those kind of objective functions, which are

conflicting and non commensurable to each other.

Demands in the destinations may not be fixed always. Due to weather con-

dition, instability in share market, unpredictable expectation in the market

etc., the demands may be treated as multi-choice rather than single choice.

The decision maker always tries to distribute the goods in such a way that the

customers get it easily with profitable in both point of view.

In this respect, the mathematical model of the multi-objective non-linear trans-

portation problem with multi-choice demand is written as follows:

Model 2.3

minimize Zk =
m∑
i=1

n∑
j=1

[
Ck
ij +

ai − xij
ai

Ck
ij

]
xij (k = 1, 2, . . . , K)

Or,minimize Zk =
m∑
i=1

n∑
j=1

[
2Ck

ijxij −
Ck
ij

ai
x2
ij

]
, (2.1)

subject to
n∑
j=1

xij ≤ ai ∀ i, (2.2)

m∑
i=1

xij ≥ (b1
j or b

2
j or . . . or b

sj
j ) ∀ j, (2.3)

and xij ≥ 0 ∀ i and j. (2.4)

In Model 2.3, decision maker would like to minimize the set of K objectives

simultaneously. In addition, the objective functions are also conflicting to each

other. We assume that ai (i = 1, 2, . . . ,m) is the capacity of supply at the ith
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origin and bj = (b1
j or b2

j or . . . , or b
sj
j ) (j = 1, 2, . . . , n) is the multi-choice

demand at the jth destination and Ck
ij = (C1

ij, C
2
ij, . . . , C

K
ij ) cost per unit goods

for each objective function when the total amount is transported from the

ith origin to the jth destination. Here Zk (X) = (Z1(X), Z2(X), . . . , Zk(X))

is a vector of K objective functions and superscript on both Zk(X) and Ck
ij

are used to identify the number of objective functions i.e., k = 1, 2, . . . , K.

Without loss of generality, it is assumed here that ai > 0 and bj > 0 for all

i and j along with feasibility condition
∑m

i=1 ai ≥
∑n

j=1 minsj(b
1
j , b

2
j , . . . , b

sj
j ),

and Ck
ij ≥ 0 ∀ i and j. The feasibility condition may differ according to the

decision maker’s point of view.

However, in the mathematical Model 2.3, we construct a TP with K objectives

each of them are non-linear types, in real-life problems there may present

some non-linear as well as linear objective functions in a TP. As the objective

functions are conflicting to each other, so, non-linearity of an objective function

does not effect on linearity of an another objective function.

2.3 Solution procedure
In Model 2.3, we consider that the constraints (2.3) are multi-choice con-

straints. These constraints cannot be handled directly unless convert those

to deterministic constraints. A transformation technique has been considered

by Mahapatra et al. (95) for converting from multi-choice constraints to de-

terministic constraints in a TP. Here, a general transformation technique is

developed for implementing the same, which is shown in the following sub-

section. Again in Model 2.3, the objective functions are multi-objective type.

To convert in a single objective problem from multi-objective programming

problem, we describe fuzzy programming approach which is shown in later

subsection.
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2.3.1 General transformation technique is used to con-
vert multi-choice demand constraints into deter-
ministic constraints

Here we present the generalized function for selecting a single choice from a

set of multi-choice of parameters using binary variables. If we have to choose

one among t number of possibilities then, we use p number of binary variables

where 2p−1 < t ≤ 2p.

Let t =p C0 +p C1 +p C2 + . . . +p Cd + k, for some d satisfying 1 ≤ d ≤ p, 0 ≤
k <p Cd+1. In the selection procedure pCi refers the number of possibilities

with value zero of i binary variables among p variables to select a single choice

among multi-choice elements.

Let us take p binary variables z1
j , z

2
j , . . . , z

p
j to deduce a formula which will

select one among the t values c1
j , c

2
j , . . . , c

t
j.

Let us further construct a function with p binary variables,

f0(z) = (z1
j z

2
j . . . z

p
j )c

1
j , where z = (z1

j , z
2
j , . . . , z

p
j ), when each zij=1 for i =

1, 2, . . . , p. Thus, f0(z)= c1
j , when z1

j + z2
j + . . .+ zpj = p. Again, let us assume

a function

f1(z) = (1−z1
j )z

2
j . . . z

p
j c

2
j +(1−z2

j )z
1
j z

3
j . . . z

p
j c

3
j + . . .+(1−zpj )z1

j . . . z
p−1
j c1+pC1

j .

If z1
j + z2

j + . . .+ zpj = p− 1, f1(z) gives as its an output any value among the

following ctj’s: c2
j , c

3
j , . . . , c

1+pC1
j . Similarly, we consider

f2(z) = (1− z1
j )(1− z2

j )z
3
j . . . z

p
j c

1+pC1+1
j + (1− z1

j )(1− z3
j )z

2
j z

4
j . . . z

p
j c

1+pC1+2
j

+ . . .+ (1− z1
j )(1− z

p
j )z

2
j . . . z

p−1
j c

1+pC1+(p−2)
j +

(1− z2
j )(1− z3

j )z
1
j z

4
j . . . z

p
j )c

1+pC1+(p−2)+1
j +

...

+(1− zp−1
j )(1− zpj )z1

j . . . z
p−2
j c1+pC1+pC2

j .

If z1
j + z2

j + . . .+ zpj = p− 2, the above function f2(z) gives anyone among the

following ctj’s: c
1+pC1+1
j , c1+pC1+2

j , . . . , c1+pC1+pC2
j .

Proceeding in the same manner, we find,

fd(z) = (1− z1
j )(1− z2

j ) . . . (1− zdj )zd+1
j . . . zpj c

1+pC1+pC2+...+pCd−1+1
j +
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(1− z1
j )(1− z2

j ) . . . (1− zd−1
j )(1− zd+1

j )zdj z
d+2
j . . . zpj c

1+pC1+pC2+...+pCd−1+2
j

...

+ (1− zp−d+1
j )(1− zp−d+2

j )(1− zpj )z1
j . . . z

p−d
j c1+pC1+pC2+...+pCd

j .

If z1
j +z2

j +. . .+zpj = p−d, the above function gives anyone among the following

ctj’s: c
1+pC1+pC2+...pCd−1+1
j , c

1+pC1+pC2+...+pCd−1+2
j , . . . , c

1+pC1+pC2+...+pCd−1+pCd
j .

If k = 0, the function f(z) = f0(z) + f1(z) + . . . + fd(z) gives anyone of the

value ctj for all z satisfying p− d ≤ z1
j + z2

j + . . .+ zpj ≤ p.

If k 6= 0, then k <p Cd+1 and we formulate the function

fd+1(z) = (1− zi1j )(1− zi2j ) . . . (1− zidj )(1− zid+1

j )zd+2
j . . . znj c

t−k+1
j +

(1− zi1j )(1− zi2j ) . . . (1− zidj )(1− zid+2

j )zd+1
j zd+3

j . . . zpj c
t−k+2
j + . . .

+(terms up-to ctj).

Whenever z1
j + z2

j + . . .+ zpj = p− (d+ 1), fd+1(z) can give pCd+1 a number of

outputs in maximally. Here we use pCd+1−k restrictions to diminish its possible

outputs in k numbers. Let k-th term occurred at i1 = i
′
1, i2 = i

′
2, . . . , id+1 =

i
′

d+1, then the restrictions are p− (d+ 1) ≤ zi1j + zi2j + . . .+ z
ip
j ≤ p;

zi1j + zi2j + . . .+ z
id+1

j ≥ 1, for all i1 = i
′
1, i2 = i

′
2, . . . , id = i

′

d, ip ≥ id+1 > i
′

d+1;

zi1j + zi2j + . . .+ z
id+1

j ≥ 1, for all i1 = i
′
1, i2 = i

′
2, . . . , id−1 = i

′

d−1, ip−1 ≥ id > i
′

d;
...

zi1j + zi2j + . . .+ z
id+1

j ≥ 1, for all ip−d−1 ≥ i1 > i
′
1.

Thus, f(z) = f0(z)+f1(z)+ . . .+fd(z)+fd+1(z) gives the generalized selection

function of the multi-choice ctj’s.

Without loss of generality, treating the value of ctj = 1 and using the product

and summation notation, we formulate the following formula to select the crisp

value of multi-choice parameters:
p∏
i=1

zij +

p∑
i1=1

[
(1− zi1j )

p∏
i=1,i 6=i1

zij

]
+

p∑
i2=2
i2>i1

p∑
i1=1

[
(1− zi1j )(1− zi2j )

p∏
i=1, i6=i1,i2

zij

]

+ . . .+

p∑
id=d

id>i(d−1)

p∑
id−1=d−1
id−1>id−2

. . .

p∑
i1=1

[
(1− zi1j )(1− zi2j ) . . . (1− zidj )

p∏
i=1,i 6=i1,..,id

zij

]
,
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where p− d ≤ zi1j + zi2j + . . .+ z
ip
j ≤ p, for all i1 < i2 < . . . < ip.

If k 6= 0, we add first k terms with the above function from the following

formula:

(1− zi1j )(1− zi2j )...(1− zidj )(1− zid+1

j )

p∏
i=1,i 6=i1,..,id,id+1

zij

+(1− zi1j )(1− zi2j ) . . . (1− zidj )(1− zid+2

j )

p∏
i=1,i 6=i1,..,id,id+2

zij

+ . . .+ (1− zi1j )(1− zi2j ) . . . (1− zidj )(1− zipj )

p∏
i=1,i 6=i1,..,id,ip

zij

+(1− zi1j )(1− zi2j ) . . . (1− zid+1

j )(1− zid+2

j )

p∏
i=1,i 6=i1,..,id+1,id+2

zij

+(1− zi1j )(1− zi2j ) . . . (1− zid+1

j )(1− zid+3

j )

p∏
i=1,i 6=i1,..,id+1

zij + . . .

+(1− zip−(d+1)

j )(1− zip−(d−1)

j ) . . . (1− zip−1

j )(1− zipj )

p∏
i=1,

i 6=ip−d−1,ip−d+1,...,ip

zij.

Assuming that i1 < i2 < . . . < ip and let k-th term occur at

i
′
1, i
′
2, . . . , i

′

d+1, then the restrictions are

p− (d+ 1) ≤ zi1j + zi2j + . . .+ z
ip
j ≤ p;

zi1j + zi2j + ...+ z
id+1

j ≥ 1, for all i1 = i
′
1, i2 = i

′
2, . . . , id = i

′

d, ip ≥ id+1 > i
′

d+1;

zi1j + zi2j + . . .+ z
id+1

j ≥ 1, for all i1 = i
′
1, i2 = i

′
2, . . . , id−1 = i

′

d−1, ip−1 ≥ id > i
′

d;
...

zi1j + zi2j + . . .+ z
id+1

j ≥ 1, for all ip−d−1 ≥ i1 > i
′
1.

In the proposed mathematical model, we consider the multi-choice demands

bj = (b1
j , b

2
j , . . . , b

sj
j ). For different values of j, the values of sj are different.

Using the above functions, the constraints (2.3) in Model 2.3 becomes as:

b̃j =
t∑

g=1

(term)gbgj ( j = 1, 2, . . . , n), (2.5)

where (term)g (for g = 1, 2, . . . , t) are the t number of terms in the functions

of the binary variables mentioned in above to reduce the t number of choices

bgj to single choice b̃j.
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2.3.2 Fuzzy programming approach to convert non-linear
MOTP into single objective non-linear TP

To solve the non-linear MOTP in this chapter, first, we use the fuzzy pro-

gramming approach to reduce the multi-objective problem to a single objective

problem then single objective problem is solved to find the compromise solu-

tion of the multi-objective problem. The steps to be followed for transforming

a multi-objective problem to a single objective problem are as follows:

Step 1: First, we convert the constraints (2.3) from Model 2.3 involving multi-

choice demand to deterministic constraints (2.5) using the technique discussed

in the previous subsection.

Step 2: Solve the multi-objective deterministic problem obtained from Step 1,

using only one objective at a time and ignoring the others. Repeat the process

K times for the K different objective functions. Let X∗1 , X∗2 , . . . , X∗K be the

respective ideal solutions of the K objectives.

Step 3: Evaluate all these objective functions of all the ideal solutions obtained

in Step 2 and formulate a pay-off matrix of order K ×K.

Pay-off Matrix
Z1(X∗1 ) Z2(X∗1 ) · · · ZK(X∗1 )
Z1(X∗2 ) Z2(X∗2 ) · · · ZK(X∗2 )
Z1(X∗3 ) Z2(X∗3 ) · · · ZK(X∗3 )

...
...

...
...

Z1(X∗K) Z2(X∗K) · · · ZK(X∗K)


Step 4: Obtain the lower bound Lk and upper bound Uk corresponding

to the kth objective function, ∀ k. Then formulate the membership func-

tion using Zimmermann (171) approach for each objective function Zk(X)

(k = 1, 2, . . . , K) as follows:

µ(Zk(X)) =


0, if Zk(X) ≥ Uk
Uk−Zk(X)
Uk−Lk

, if Lk < Zk(X) < UK
1, if Zk(X) ≤ Lk.

k = 1, 2, . . . , K

Step 5: By introducing an auxiliary variable λ, formulate an equivalent fuzzy
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non-linear programming problem as:

maximize λ

subject to λ ≤ µ(Zk(X)) (k = 1, 2, . . . , K),

and the constraints (2.2), (2.4) & (2.5).

Here, µ(Zk(X)) is the membership function of the kth objective function for

(k = 1, 2, . . . , K) as given in Step 4.

Step 6: Solve the equivalent crisp model obtained in Step 5 and derive the

compromise solution.

2.4 Numerical example
The reputed computer company delivers laptop from four stores Kolkata (O1),

Durgapur (O2), Darjeeling (O3), Bhubaneswar (O4) of India, to the dealers

of four cities namely Burdwan (D1), Kalyani (D2), Agartala (D3), Maldaha

(D4) in India. The transportation cost, production cost and servicing cost per

unit product of laptops are provided in Tables 2.1, 2.2 and 2.3, respectively.

All the supplied costs are minimum in Tables 2.1, 2.2 and 2.3 when the total

number of laptops purchased by the dealers from a source otherwise the extra

cost has to be paid according to the desired rule of the company in each case.

Tables 2.1, 2.2 and 2.3 represent the costs (Rupees 1000/unit item) are given

as follows:

Table 2.1: Transportation cost per unit product of laptop.
D1 D2 D3 D4

O1 2.08 1.9 2.5 3.5
O2 2.2 1.8 3.8 2.0
O3 2.0 2.5 1.7 1.6
O4 2.2 2.9 2.8 2.4

Table 2.2: Production cost for unit product of laptop.
D1 D2 D3 D4

O1 25 23.5 24 25
O2 24 26 25 23
O3 24.5 25 25.5 24.5
O4 25.5 27 26.5 25
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Table 2.3: Servicing cost per laptop.
D1 D2 D3 D4

O1 0.4 0.5 1.3 0.7
O2 0.9 0.8 1.5 0.6
O3 0.8 0.75 0 .5 0.8
O4 1.2 0.9 0.8 2.95

The capacities of store in the origins (Oi) are a1 = 29, a2 = 26, a3 = 32, a4 = 28

maximum in numbers and the multi-choice demands in the destinations (Dj)

are b1 = (22, 24, 25, 27, 26), b2 = (24, 23, 22), b3 = (28, 30, 29), b4 = 34. The

company wishes to find a compromise solution which minimizes the cost of

each objective function at a time according to the supplied cost matrices. To

justify the effectiveness of multi-choices demands, let us introduce an extra

constraint assuming that the demand points D2 and D3 are maintained by one

person and total demands in D2 and D3 is 51 or more than 51. Since, the

proposed problem is a minimization problem, so, the value of the objective

functions are always minimized and the minimum demand value will be taken

for giving the optimal solution. But, when this extra condition imposed in the

problem then the demand value at D2 and D3 cannot be precisely determined.

The solution of formulated problem will suggest the selection of the demand

from the multi-choice options.

The mathematical model is formulated corresponding to available data, as

follows:

minimize

Z1(X) = 2(2.08x11 + 1.9x12 + 2.5x13 + 3.5x14 + 2.2x21 + 1.8x22 + 3.8x23

+ 2x24 + 2x31 + 2.5x32 + 1.7x33 + 1.6x34 + 2.2x41 + 2.9x42 + 2.8x43

+ 2.4x44)− 1

29
(2.08x2

11 + 1.9x2
12 + 2.5x2

13 + 3.5x2
14)− 1

26
(2.2x2

21

+ 1.8x2
22 + 3.8x2

23 + 2x2
24)− 1

32
(2x2

31 + 2.5x2
32 + 1.7x2

33 + 1.6x2
34)

− 1

28
(2.2x2

41 + 2.9x2
42 + 2.8x2

43 + 2.4x2
44) (2.6)

minimize

Z2(X) = 2(25x11 + 23.5x12 + 24x13 + 25x14 + 24x21 + 26x22 + 25x23 + 23x24
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+ 24.5x31 + 25x32 + 25.5x33 + 24.5x34 + 25.5x41 + 27x42 + 26.5x43

+ 25x44)− 1

29
(25x2

11 + 23.5x2
12 + 24x2

13 + 25x2
14)− 1

26
(24x2

21 + 26x2
22

+ 25x2
23 + 23x2

24)− 1

32
(24.5x2

31 + 25x2
32 + 25.5x2

33 + 24.5x2
34)

− 1

28
(25.5x2

41 + 27x2
42 + 26.5x2

43 + 25x2
44) (2.7)

minimize

Z3(X) = 2(.4x11 + 0.5x12 + 1.3x13 + .7x14 + .9x21 + .8x22 + 1.5x23 + .6x24

+ .8x31 + .75x32 + 0.5x33 + .8x34 + 1.2x41 + .9x42 + .8x43 + 2.95x44)

− 1

29
(.4x2

11 + 3.8x2
12 + 1.3x2

13 + .7x2
14)− 1

26
(.9x2

21 + .8x2
22 + 1.5x2

23

+ .6x2
24)− 1

32
(.8x2

31 + .75x2
32 + 14.7x2

33 + .8x2
34)− 1

28
(1.2x2

41

+ .9x2
42 + .8x2

43 + 2.95x2
44) (2.8)

subject to
4∑
j=1

x1j ≤ 29 (2.9)

4∑
j=1

x2j ≤ 26 (2.10)

4∑
j=1

x3j ≤ 32 (2.11)

4∑
j=1

x4j ≤ 28 (2.12)

4∑
i=1

xi1 ≥ (25 or 24 or 22 or 27 or 26) (2.13)

4∑
i=1

xi2 ≥ (24 or 23 or 22) (2.14)

4∑
i=1

xi3 ≥ (28 or 30 or 29) (2.15)

4∑
i=1

xi4 ≥ 34 (2.16)

4∑
i=1

xi2 +
4∑
i=1

xi3 ≥ 51 (2.17)
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and xij ≥ 0 ∀ i and j. (2.18)

Using the procedure described in subsection 2.3.1, the constraints (2.13)- (2.15)

transformed to deterministic constraints as follows:

4∑
i=1

xi1 ≥ 25z1
1z

2
1z

3
1 + 24(1− z1

1)z2
1z

3
1 + 22(1− z2

1)z1
1z

3
1

+27(1− z3
1)z1

1z
2
1 + 26(1− z1

1)(1− z2
1)z3

1 (2.19)
4∑
i=1

xi2 ≥ 24z1
2z

2
2 + 23(1− z2

2)z1
2 + 22(1− z1

2)z2
2 (2.20)

4∑
i=1

xi3 ≥ 28z1
3z

2
3 + 30(1− z2

3)z1
3 + 29(1− z1

3)z2
3 (2.21)

1 ≤ z1
1 + z2

1 + z3
1 ≤ 3 (2.22)

z1
1 + z3

1 ≥ 1 (2.23)

z2
1 + z3

1 ≥ 1 (2.24)

1 ≤ z1
2 + z2

2 ≤ 2 (2.25)

1 ≤ z1
3 + z2

3 ≤ 2 (2.26)

zqp = 0 or 1 for p, q = 1, 2, 3 (2.27)

The Ideal solutions obtained by solving the objective functions (2.6)-(2.8) sepa-

rately subject to the constraints (2.9)-(2.12) and (2.16)-(2.27) are given below:

[X∗1 ] = [22,0,0,0,0,22,0,2,0,0,0,32,0,0,29,0]

[X∗2 ] = [22,0,0,0,0,23,0,2,0,0,0,32,0,0,28,0]

[X∗3 ] = [0,23,0,0,22,0,0,2,0,0,0,32,0,0,28,0]

Using the above solution, we formulate the payoff matrix which is shown in

Table 2.4.

Table 2.4: Payoff Matrix.
Z1 Z2 Z3

X∗1 239.69 2956.00 82.50
X∗2 245.87 2864.00 87.03
X∗3 240.27 2964.00 81.75
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Using above payoff matrix, we formulate the following membership functions

corresponding to each objective function of our proposed problem as:

µ(Z1(X)) =


0, if Z1(X) > U1
245.87−Z1(X)
245.87−239.69

, if L1 ≤ Z1(X) ≤ U1

1, if Z1(X) < L1

µ(Z2(X)) =


0, if Z2(X) > U2
2964−Z2(X)
2964−2864

, if L2 ≤ Z2(X) ≤ U2

1, if Z2(X) < L2

µ(Z3(X)) =


0, if Z3(X) > U3
87.03−Z3(X)
87.03−81.75

, if L3 ≤ Z3(X) ≤ U3

1, if Z3(X) < L3

Using the procedure described in the subsection 2.3.2, finally we formulate the

following model:

Model 2.4

maximize λ

subject to,

6.18λ ≤ 245.87 − (2(2.08x11 + 1.9x12 + 2.5x13 + 3.5x14 + 2.2x21 + 1.8x22 +

3.8x23 +2x24 +2x31 +2.5x32 +1.7x33 +1.6x34 +2.2x41 +2.9x42 +2.8x43 +2.4x44)

− 1
29

(2.08x2
11 + 1.9x2

12 + 2.5x2
13 + 3.5x2

14) − 1
26

(2.2x2
21 + 1.8x2

22 + 3.8x2
23 + 2x2

24)

− 1
32

(2x2
31 + 2.5x2

32 + 1.7x2
33 + 1.6x2

34)− 1
28

(2.2x2
41 + 2.9x2

42 + 2.8x2
43 + 2.4x2

44))

100.00λ ≤ 2964−(2(25x11 + 23.5x12 + 24x13 + 25x14 + 24x21 + 26x22 + 25x23 +

23x24 + 24.5x31 + 25x32 + 25.5x33 + 24.5x34 + 25.5x41 + 27x42 + 26.5x43 + 25x44)

− 1
29

(25x2
11 + 23.5x2

12 + 24x2
13 + 25x2

14) − 1
26

(24x2
21 + 26x2

22 + 25x2
23 + 23x2

24)

− 1
32

(24.5x2
31 +25x2

32 +25.5x2
33 +24.5x2

34)− 1
28

(25.5x2
41 +27x2

42 +26.5x2
43 +25x2

44))

5.28λ ≤ 87.03−(2(0.4x11 + 0.5x12 + 1.3x13 + .7x14 + 0.9x21 + 0.8x22 + 1.5x23 +

0.6x24 + 0.8x31 + 0.75x32 + 0.5x33 + 0.8x34 + 1.2x41 + 0.9x42 + 0.8x43 + 2.95x44)

− 1
29

(0.4x2
11 + 0.5x2

12 + 1.3x2
13 + 0.7x2

14) − 1
26

(0.9x2
21 + 0.8x2

22 + 1.5x2
23 + 0.6x2

24)

− 1
32

(0.8x2
31 +0.75x2

32 +0.5x2
33 +0.8x2

34)− 1
28

(1.2x2
41 +0.9x2

42 +0.8x2
43 +2.95x2

44))
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2(2.08x11 + 1.9x12 + 2.5x13 + 3.5x14 + 2.2x21 + 1.8x22 + 3.8x23 + 2x24 + 2x31 +

2.5x32+1.7x33+1.6x34+2.2x41+2.9x42+2.8x43+2.4x44) − 1
29

(2.08x2
11+1.9x2

12+

2.5x2
13 +3.5x2

14)− 1
26

(2.2x2
21 +1.8x2

22 +3.8x2
23 +2x2

24) − 1
32

(2x2
31 +2.5x2

32 +1.7x2
33 +

1.6x2
34)− 1

28
(2.2x2

41 + 2.9x2
42 + 2.8x2

43 + 2.4x2
44) ≤ 245.87

2(25x11 + 23.5x12 + 24x13 + 25x14 + 24x21 + 26x22 + 25x23 + 23x24 + 24.5x31 +

25x32 + 25.5x33 + 24.5x34 + 25.5x41 + 27x42 + 26.5x43 + 25x44) − 1
29

(25x2
11 +

23.5x2
12 + 24x2

13 + 25x2
14) − 1

26
(24x2

21 + 26x2
22 + 25x2

23 + 23x2
24) − 1

32
(24.5x2

31 +

25x2
32 + 25.5x2

33 + 24.5x2
34)− 1

28
(25.5x2

41 + 27x2
42 + 26.5x2

43 + 25x2
44) ≤ 2964.00

2(0.4x11 + 0.5x12 + 1.3x13 + 0.7x14 + 0.9x21 + 0.8x22 + 1.5x23 + 0.6x24 + 0.8x31 +

0.75x32 + 14.7x33 + 0.8x34 + 1.2x41 + 0.9x42 + 0.8x43 + 2.95x44) − 1
29

(0.4x2
11 +

0.5x2
12 + 1.3x2

13 + 0.7x2
14)− 1

26
(0.9x2

21 + 0.8x2
22 + 1.5x2

23 + 0.6x2
24) − 1

32
(0.8x2

31 +

0.75x2
32 + 0.5x2

33 + 0.8x2
34)− 1

28
(1.2x2

41 + 0.9x2
42 + 0.8x2

43 + 2.95x2
44) ≤ 87.03

and (2.9)- 2.12), (2.16)- (2.27).

Result and discussion:

Model 2.4 is a non-linear programming problem. Using LINGO10 software,

we list the following compromise optimal solution:

[X∗] =[0,22,0,0,22,0,0,2,0,0,0,32,0,0,29,0]. The minimum values of the objec-

tive functions are Z1(X∗)=244.52, Z2(X∗)=2864.00, Z3(X∗)=86.18 and the

demands for each destination are represented as: b1 = 22, b2 = 22, b3 = 29, b4 =

34. The value of aspiration level is λ = 0.28. For minimization problem, the

selection of multi-choice demands tends to the minimum value as much as

possible. One can choose the demands as b1 = 22, b2 = 23, b3 = 28, b4 = 34

to satisfy the constraint (2.17) and then the compromised optimal solution

becomes [X∗] =[0,23,0,0,22,0,0,2,0,0,0,32,0,0,28,0] and in this case the mini-

mum values of the objective functions are Z1(X∗)=245.87, Z2(X∗)=2876.00,

Z3(X∗)=87.03 and value of λ = 0. So as per our satisfactory level is concerned,

selection of multi-choice done in the first solution is more better than the later.
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2.5 Sensitivity analysis and comparison
Main intention of this study is to formulate and solve the multi-objective trans-

portation problem with multi-choice demands and non linear cost. Let us

discuss why we have considered such study and what is the contribution of

this study in compare to other research works have been studied by many

researchers in this direction. Study of non-linearity in TP have been studied

by several researchers, Walther (158), Dahiya and Verma (22), Yang et. al.

(164), Fanrong and Renan (34) and many others. Most of them are treated

as non-linearity on TP by considering the objective function is non-linear or

constraints are non-linear or both. Due to globalization of market or other

real-phenomena, we have assumed the demands are multi-choice type and the

non-linearity occurs in the TP. But here, we have presented the situation for

transporting goods in such a way that if the number of transporting goods be

the total amount of supply at a point then the transportation cost is minimum

and it is equal to a fixed cost Cij for the node (i, j), otherwise an extra cost has

to be paid by the customer. In this regard, we have introduced the concept

of an extra cost which makes the problem as non-linear TP. To understand

the phenomena, let us consider Figure 2.1 which plots the transportation cost

per unit item is varying with the supply amount (ai) either linearly or non-

linearly. Generally, we see that when the transportation cost per unit item is

Cij or 2Cij or any value between Cij and 2Cij i.e., it follows from the graph

that either dealer or customer will suffer for transporting the goods. But in

our proposed model, the transportation cost per unit item follows a nonlinear

graph because it depends on the amount of goods transported and the avail-

able supply of goods. In this situation, our proposed model works well from

both points of view (both the supplier and the dealer).

2.6 Conclusion
In this chapter, a solution procedure for multi-objective transportation prob-

lem with non-linear cost and multi-choice demands are considered. Initially,
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Figure 2.1: Transportation cost per unit item.

the demand constraints involving multi-choice demands have been converted

into an equivalent deterministic demand constraints using binary variables.

Fuzzy programming approach has been applied to solve the proposed problem

and to obtain compromise solution from the multi-objective transportation

problem. The selection of single choice of demand from multi-choices of de-

mand for each destination has been calculated through binary variables.

The transportation problems have wide applications in many real-life problems

of practical importance which reduce the cost specially in business environ-

ment. Multi-objective transportation problem with non-linear cost still exists

in so many cases of managerial decision making problem such as planning of

many complex resource allocation systems in the areas of industrial produc-

tion, storing of foods, in which demands are of multi-choice type in practical

situation. The content of this chapter may be a source of producing better

results in such kind of complex decision making situations.
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Chapter 3

Transportation Problem using
Utility Function∗

Here, we present the utility function approach to solve MOTP on the envi-

ronment of interval goals to the objective functions of MOTP. We justify our

concept of utility function which produces a better result in compare to GP and

RMCGP for solving MOTP and MOTP with multi-choice of transportation

parameters.

3.1 Introduction
MOTP plays an important role for decision making problem to cover the real-

life situations. Goal programming, an analytical approach is devised to solve

MOTP, where targets have been assigned to all objective functions. The ob-

jective functions are conflicting and non-commensurable to each other and the

DM is interested to minimize the non-achievement of the corresponding goals.

In other word, the DM derives an optimal solution with this strategy of GP

which is satisfactory. However, using GP, the solution procedure for MOTP

has some limitations. The main limitation behind GP is that the priority of

goals for the DM is not easily considered. Based on practical situation, a new

∗One part of this chapter has appeared in International Journal of Operational
Research , Inderscience, Scopus, 27(4), 513-529, (2016) and another part of this chapter
has appeared in Journal of Uncertainty Analysis and Applications, Springer Open,
2, 11, doi:10.1186/2195-5468-2-11, (2014).
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approach using utility function to solve MOTP is presented in this chapter. In

the past, the notion of utility function introduced by several researchers cf.,

Al-nowaihi et al. (2), Yu et al. (165), Podinovski (119), Maity and Roy (96),

and many others.

In earlier days, transportation problem was developed with the assumption

that the supply, demand and cost parameters are exactly known. But in

real-life applications, all the parameters of the transportation problem are not

generally defined precisely. Keeping this point of view, we incorporate with

MCMTP considering the parameters of transportation problem as multi-choice

type.

Instead of single choice, if there may be involved several choices associated with

the transportation parameters like cost, supply or demand, then decision maker

confuses to select the proper choice for these parameters. In this circumstance,

the study of transportation problem creates a new direction which is called

multi-choice multi-objective transportation problem.

However, to the best of our knowledge, no work has been done on utility

function to solve MOTP with DM’s preferences. The main motivation of this

study is to investigate a better solution of MOTP and MCMTP by using utility

function approach and, then compared solution to other methods such as GP

and RMCGP.

3.2 Mathematical model
The mathematical model of multi-objective transportation problem (MOTP)

can be considered as follows:

Model 3.1

minimize/maximize Zt =
m∑
i=1

n∑
j=1

Ct
ijxij (t = 1, 2, . . . , K) (3.1)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m), (3.2)

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n), (3.3)
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and xij ≥ 0, ∀ i and j. (3.4)

Here Ct
ij, ai, bj are the cost, supply and demand parameters of t-th objective

function in MOTP respectively and
∑m

i=1 ai ≥
∑n

j=1 bj is the feasibility condi-

tion. According to the nature of the problem, the decision maker has right to

choice the goals of the objective functions. Assuming that these goals are gt
(t = 1, 2, · · · , K) of K objective functions and the goals are defined as interval

valued as gt = [gt,min, gt,max], (t = 1, 2, . . . , K).

In many real-life situation, the multiple choices in the transportation param-

eters like cost, demand and source create complexity to take decision to the

DM. Multi-choice costs may occur due to several routes for transporting the

goods. Due to weather condition or different seasons the demand or the supply

becomes multi-choices in nature. In the atmosphere of multi-choice transporta-

tion parameters, the mathematical model of MCMTP is defined as follows:

Model 3.2

minimize/maximize Zt =
m∑
i=1

n∑
j=1

(Ct1
ij or Ct2

ij or...or Ctr
ij )xij ∀ t (3.5)

subject to
n∑
j=1

xij ≤ (a1
i or a

2
i or . . . or a

p
i ) ∀ i, (3.6)

m∑
i=1

xij ≥ (b1
j or b

2
j or . . . or b

q
j) ∀ j, (3.7)

and xij ≥ 0, ∀ i and j. (3.8)

Here (Ct1
ij or Ct2

ij or . . . or Ctr
ij ), (a1

i or a2
i or . . . or a

p
i ) and (b1

j or b2
j or . . .

or bqj) are the multi-choice cost, supply and demand parameters for the t-th

objective function. In a transportation problem, the total demands should

be less or equal to the total capacity of supply to get a feasible solution. In

present case for multi-choice of supply and demands the information of total

capacity of supply in the origins and demands in the destinations are not pre-

cisely calculated. So, we select the maximum possible supply in the origins and

consequently the minimum demand in the destinations and then formulated

the feasibility condition as:
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∑m
i=1 max(a1

i or a2
i or . . . or api ) ≥

∑n
j=1 min(b̃1

j or b̃2
j or . . . or b̃qj). This fea-

sibility condition is the best possible widely range of feasible region of the

MCMTP. However, the feasibility condition can be remodeled according to

choice of decision maker.

3.2.1 Reduction of MCMTP to MOTP

Due to the presence of multi-choice parameters in the objective functions and

in the constraints, the MCMTP model is not in deterministic form. So, we

reduce the MCMTP to a MOTP by the reduction procedure using binary

variables, as described in subsection 2.3.1 of Chapter 2.

Let C̃t
ij =

T∑
g=1

(term)gCtg

ij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n), (3.9)

where (term)g (for g = 1, 2, . . . , T ) are the T number of terms in the functions

of the binary variables mentioned in above. Similarly,

ãi =
P∑
g=1

(term)gagi (i = 1, 2, . . . ,m), (3.10)

and b̃j =

Q∑
g=1

(term)gbgj (j = 1, 2, . . . , n), (3.11)

where (term)g (for g = 1, 2, . . . , P ) are the P number of terms in the functions

of the binary variables mentioned in above to reduce the P number of choices

agi to single choice a′i and (term)g (for g = 1, 2, . . . , Q) are the Q number of

terms in the functions of the binary variables mentioned in above to reduce

the Q number of choices bgj to single choice b′j.

Thus the equivalent MOTP of Model 3.2 is given in the following model:

Model 3.3

minimize/maximize Zt =
m∑
i=1

n∑
j=1

C ′tijxij (t = 1, 2, . . . , K) (3.12)
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subject to
n∑
j=1

xij ≤ a′i (i = 1, 2, . . . ,m), (3.13)

n∑
i=1

xij ≥ b′j (j = 1, 2, . . . , n), (3.14)

and xij ≥ 0 ∀ i and j. (3.15)

Here C ′tij, a′i, b′j are the reduced cost, supply and demand parameters of t-th

objective function in MOTP respectively. The transportation problem i.e.,

Model 3.3 is same as the problem described in Model 3.1. We can solve Model

3.3 with the procedure described using the different techniques to solve Model

3.1.

3.3 Solution procedure
The approaches such as goal programming and revised multi-choice goal pro-

gramming are used to solve the MOTP, which are defined as follows:

A. Goal programming approach

Let us briefly discuss the goal programming approach for solving MOTP (see

Model 3.4). If d+
t and d−t be positive and negative deviations corresponding

to the t-th goal of the objective function. Then the mathematical model is

defined as follows:

Model 3.4

minimize
K∑
t=1

wt(d
+
t + d−t ) (3.16)

subject to Zt(X)− d+
t + d−t = yt (t = 1, 2, . . . , K), (3.17)

gt,min ≤ yt ≤ gt,max (t = 1, 2, . . . , K), (3.18)

d+
t , d

−
t ≥ 0 (t = 1, 2, . . . , K), (3.19)

and the constraints (3.2)− (3.4).

B. Revised multi-choice goal programming approach

In the similar way, the RMCGP is introduced to solve the MOTP. Let us

assume that the multiple goals be considered to the objective functions and,

then this can be achieved by considering the following model (see Model 3.5)
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as:

Model 3.5

minimize
K∑
t=1

[
wt(d

+
t + d−t ) + αt(e

+
t + e−t )

]
(3.20)

subject to Zt(X)− d+
t + d−t = yt (t = 1, 2, . . . , K), (3.21)

yt − e+
t + e−t = gt,max or gt,min (t = 1, 2, . . . , K), (3.22)

gt,min ≤ yt ≤ gt,max (t = 1, 2, . . . , K), (3.23)

d+
t , d

−
t , e

+
t , e

−
t ≥ 0 (t = 1, 2, . . . , K), (3.24)

and the constraints (3.2)− (3.4),

where t-th aspiration level defined as yt which is the continuous variable lies

between the upper (gt,max) and the lower (gt,min) bounds. Again e+
t and e−t are

positive and negative deviations attached to t-th goal of |yt − gt,max| and αt is
the weight attached to the sum of the deviations of |yt − gt,max|.

3.3.1 Utility function approach to solve MOTP

Here, the concept of utility function has been addressed to solve the MOTP.

A short introduction is presented here and then we discuss methodology for

solving MOTP using utility function.

Utility function

Introduction of utility is taken to be correlative to ‘Desire’ or ‘Want’. It

has been already argued that desire cannot be measured directly, but only

indirectly, by the outward phenomena in which the context is presented.

Definition 3.3.1 The utility function describes a function U : X −→ R which

assigns a real number to every outcome in such a way that it captures the DM’s

preferences over the desired goals of the objectives, where X is the set of feasible

points and R is the set of real numbers.

The purpose of this study is to derive the achievement function of MOTP

under the light of utility function for DM according to the priority of goals. In

our proposed approach, the DM wants to maximize his/her expected utility.
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For the sake of simplicity, two popular utility functions (linear and S-shaped)

are considered as follows.

Linear utility function ui(yi) for decision making (management) problems can

be found in Lai and Hwang (75) and S-shaped utility function (for the same

purpose) has been proposed by Chang (19). The utility function is generally

considered in three cases as follows:

Case 1: Left Linear Utility Function(LLUF)

ui(yi) =


1, if yi ≤ gi,min
gi,max−yi

gi,max−gi,min , if gi,min ≤ yi ≤ gi,max,

0, if if yi ≥ gi,max

i = 1, 2, . . . , K

Case 2: Right Linear Utility Function(RLUF)

ui(yi) =


1, if yi ≥ gi,max
yi−gi,min

gi,max−gi,min , if gi,min ≤ yi ≤ gi,max,

0, if if yi ≤ gi,min

i = 1, 2, . . . , K

Case 3: S-shaped Utility Function

ui(yi) =


0, if yi ≤ gi2
yi−gi2
gi8−gi2 , if gi2 ≤ yi ≤ gi4
yi−gi3
gi6−gi3 , if gi4 ≤ yi ≤ gi5
yi−gi1
gi7−gi1 , if gi5 ≤ yi ≤ gi7

, i = 1, 2, . . . , K

where gi,min and gi,max are lower and upper bounds corresponding to the i-th

Figure 3.1: Graph of LLUF.

53



Chapter 3: Transportation Problem using Utility Function

Figure 3.2: Graph of RLUF.

Figure 3.3: Graph of S-shaped utility function.

goal respectively. The graphs of above utility functions are drawn in Figures

(cf., Figures 3.1, 3.2 and 3.3). Model formulation for Case 1

The DM would like to increase the utility value ut(yt) as much as possible in

case of LLUF (Figure 3.1). In order to achieve this goal, the value of yt should

be as close to the target value gt,min as possible. The MOTP from Model 3.4

can be reformulated using the proposed LLUF as follows:

Model 3.6

minimize
K∑
t=1

[
wt(d

+
t + d−t ) + βtf

−
t

]
(3.25)

subject to Zt(X)− d+
t + d−t = yt (t = 1, 2, . . . , K), (3.26)

gt,min ≤ yt ≤ gt,max (t = 1, 2, . . . , K), (3.27)
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ut ≤
gt,max − yt

gt,max − gt,min
(t = 1, 2, . . . , K), (3.28)

ut + f−t = 1 (t = 1, 2, . . . , K), (3.29)

ut, f
−
t ≥ 0 (t = 1, 2, . . . , K), (3.30)

and the constraints (3.2)− (3.4),

where βt is the weight attached to deviation f−t . The role of weight βt can be

seen as the preferential component for the utility value ut.

Proposition 3.1: Achievement of optimal utility in the LLUF (Figure 3.1) is

equivalent to the optimal solution of Model 3.6.

Proof : When ut approaches to the highest value 1, then the deviation f−t → 0

of the utility function [from Eq. (3.29)], because f−t should be minimized in

the objective function and hence to obtain the optimal solution of Model 3.6.

This represents yt approach to gt,min [from Eq. (3.28)] and Zt(X) is also closer

to gt,min [from Eq. (3.26)] because d+
t and d−t should also be minimized in the

objective function. It is obvious that the behavior of Model 3.6 and the level

of utility achieved. This completes the proof of the proposition.

Model formulation for Case 2

The DM would like to increase the utility value ut(yt) as much as possible in

the case of RLUF (Figure 3.2). In order to achieve this goal, the value of yt
should be as close to the target value gt,max as possible. The MOTP from

Model 3.4 can be reformulated using the proposed RLUF as follows:

Model 3.7

minimize
K∑
t=1

[
wt(d

+
t + d−t ) + βtf

−
t

]
subject to Zt(X)− d+

t + d−t = yt (t = 1, 2, . . . , K)

gt,min ≤ yt ≤ gt,max (t = 1, 2, . . . , K),

ut ≤
yt − gt,min

gt,max − gt,min
ut + f−t = 1

ut, f
−
t ≥ 0

and the constraints (3.2)− (3.4),
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where βt is the weight attached to the deviation f−t . The role of weight βt can

be seen as a preferential component for the utility value ut.

Proposition 3.2: Achievement of optimal utility in the RLUF (Figure 3.2) is

equivalent to the optimal solution of Model 3.7.

Proof : Similar way can be followed as we have done in Proposition 3.1.

The advantages of use the LLUF and RLUF in the decision making problems

are as follows:

(1) DM can easily formulate their MOTP by taking into account their prefer-

ence mappings with utility functions in real situation, and

(2) The two linear utility models represented as linear form which can be easily

solved using software.

Due to variation of deviation variables d+
t , d

−
t and f− in different ranges, bias-

ness may be occurred towards the objective functions with larger magnitude.

Normalization technique may help to remove this bias-ness. Several normal-

ization approaches such as Percentage, Euclidean, Summation and Zero-one

notarizations [Tamiz et al. (151), Kettani et al. (70)] are available to execute

this. According to the normalization technique proposed by Tamiz et al. (151),

Model 3.6 can be redesigned as follows:

minimize
K∑
t=1

[
wt(d

+
t + d−t ) + βtf

−
t

φt

]
subject to the constraints (3.2)− (3.4) & (3.26)− (3.30),

where φt is the normalization constant for t-th goal.

In order to solve this problem, utility normalization concept is introduced as

follows: Let d+
t , d

−
t ∈ [0, ūt] and f−t ∈ [0, 1] where ūt is the upper bound of d+

t

and d−t . The normalized weights wt and βt can be easily obtained as wt = 1
1+ūt

and βt = ūt
1+ūt

. This technique of normalization ensures that deviation variables

d+
t , d

−
t and f−t approximated the same magnitude.

Similarly, the same methodology can be applied to the Model 3.7.

Utility value for S-shaped utility function can be expressed as a sum of linear

utility functions (RLUF or LLUF) by introducing binary variables [Chang

(15)]. But Chang (19) proposed that the utility value for S-shaped utility
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function which can be considered without using the binary variables and this

is shown in the following model (i.e., Model 3.8).

Model 3.8

minimize
K∑
t=1

[
wt (pt1 + pt2 + pt3) + βtf

−
t

]
subject to Zt(X)− d+

t + d−t = yt (t = 1, 2, . . . , K),

gt,min ≤ yt ≤ gt,max (t = 1, 2, . . . , K),

ut = [ut(gt4)− ut(gt2)]
pt1 − pt2
gt4 − gt2

+ [ut(gt5)− ut(gt4)]
pt2 − pt3
gt5 − gt4

+ [ut(gt7)− ut(gt5)]
pt3

gt7 − gt5
(t = 1, 2, . . . , K),

yt − pt1 + nt1 = gt2 (t = 1, 2, . . . , K),

yt − pt2 + nt2 = gt4 (t = 1, 2, . . . , K),

yt − pt3 + nt3 = gt5 (t = 1, 2, . . . , K),

ut + f−t = 1 (t = 1, 2, . . . , K),

ut, ptl, ntl ≥ 0 (t = 1, 2, . . . , K; l = 1, 2, 3),

and the constraints (3.2)− (3.4).

The MCMTP occurred in many real-life situations can be reduced to MOTP

and then the problem can be reduced to the models such as Models 3.6, 3.7 and

3.8, with interval goals under the consideration of utility functions related to

these goals. Solving the formulated problem, the DM obtains the satisfactory

solution.

3.4 Numerical examples
In this section, we present two numerical examples, the first example presents

the applicability of utility function approach to solve MOTP and the second

example establishes the same for the MCMTP.

3.4.1 Example 3.4.1

A reputed network company have three towers T1, T2 and T3 in a particu-

lar city with different types of unit range capacity. The towers can provide
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network to the areas A1, A2 and A3 in the city. Each tower has also some

fixed unit capacity and each unit has some capacity to maintain the telephone

calls at a time. Also, there are generating systems which can force to activate

the units as per utility of the people connected by the network and they are

activated as per desire of the system manager assigned by the company.

The company should keep on mind the following things in their business deal:

high quality of network supply to the customers, a satisfactory profit and min-

imized the service providing cost. According to the capacity of the company,

there are some costs, which needed to run each unit of a tower. In a certain

period, the expectation of public needed the units in the areas are given in

that case. Sometimes, some units may be stopped to make more profit but in

that situation the customers faced some difficulties and the company may fail

to keep the popularity. Here, Tables 3.1, 3.2 and 3.3 represent the amount of

profit per each unit of a tower, the maintenance cost of a unit of a network

tower and the number of phone calls (maximum capacity) per minute provide

by each tower is defined, respectively.

Table 3.1: Profit per unit ($).
A1 A2 A3

T1 70 80 78
T2 80 72 84
T3 90 80 76

Table 3.2: Unit maintaining cost ($).
A1 A2 A3

T1 500 600 620
T2 600 500 550
T3 650 600 580

Table 3.3: Number of calls (maximum) per minute.
A1 A2 A3

T1 100 80 90
T2 80 95 85
T3 90 88 98

The demands at the areas A1, A2 and A3 are 9, 8 and 10 units respectively.

The supply of the towers T1, T2 and T3 are 10, 9 and 11 respectively. The
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goals corresponding to the objectives are

(1) Profit of at least $2300 and expected more, where the upper bound of the

profit goal is $2500.

(2) For maintenance the network service, the required amount of cost belongs

to the interval [17500, 20000], in this case less is better.

(3) Total number of calls by the towers at a time belong to the interval [2400,

2850], more is better but follow the S-shaped utility function.

Assume that each goal is equally importance to the company. Goal of the

third objective function in the given problem keeps the demand high of the

network in the city. Obviously, company tries to earn more money and wants

more customers connecting to his network at a time, so, Goal 3 tends to reach

maximum value. When Goal 3 tended to its maximum value of the specified

problem, sometimes customers face problems connecting peoples through their

network. Then to keep the good reputation in the market, company runs the

towers in such a way that Goal 3 tends to a value surrounding 2700 and the

priority of goal value follows S-shaped utility function (cf., Figure 3.4)

Using the data provided in the Tables 3.1, 3.2 and 3.3, we formulate the fol-

lowing MOTP model:

Model 3.9

Goal 1: Z1 = 70x11+80x12+78x13+80x21+72x22+84x23+90x31+80x32+76x33

with interval goal [2300, 2500], more is better, follows RLUF

Goal 2: Z2 = 500x11 + 600x12 + 620x13 + 600x21 + 500x22 + 550x23 + 650x31 +

600x32 + 580x33

with interval goal [17500, 20000], less is better, follows LLUF

Goal 3: Z3 = 100x11+80x12+90x13+80x21+95x22+85x23+90x31+88x32+98x33

with interval goal [2400, 2850], more is better, follows S-shaped utility function

as given in Figure 3.4.

subject to x11 + x12 + x13 ≤ 10 (3.31)

x21 + x22 + x23 ≤ 9 (3.32)

x31 + x32 + x33 ≤ 11 (3.33)
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x11 + x21 + x31 ≥ 9 (3.34)

x12 + x22 + x32 ≥ 8 (3.35)

x13 + x23 + x33 ≥ 10 (3.36)

xij ≥ 0 ∀ i, j = 1, 2, 3. (3.37)

To achieve the goals in the proposed problem (see Model 3.9), we may formu-

late the following models:

In the proposed problem, the deviations of goals 1, 2, 3 are 200, 2500, 450

respectively. By considering the weights w1 = 1
200
, w2 = 1

2500
, w3 = 1

450
for the

Model 3.4, Model 3.9 reduces to the following model (i.e., Model 3.10) as:

Model 3.10

minimize
1

200
(d+

1 + d−1 ) +
1

2500
(d+

2 + d−2 ) +
1

450
(d+

3 + d−3 )

subject to 70x11 + 80x12 + 78x13 + 80x21 + 72x22 + 84x23

+90x31 + 80x32 + 76x33 − d+
1 + d−1 = y1

2300 ≤ y1 ≤ 2500

500x11 + 600x12 + 620x13 + 600x21 + 500x22 +

550x23 + 650x31 + 600x32 + 580x33 − d+
2 + d−2 = y2

17500 ≤ y2 ≤ 20000

100x11 + 80x12 + 90x13 + 80x21 + 95x22 + 85x23

+90x31 + 88x32 + 98x33 − d+
3 + d−3 = y3

2400 ≤ y3 ≤ 2850

d+
t , d

−
t ≥ 0, t = 1, 2, 3

and the constraints (3.31)− (3.37).

Again, considering the same weights wt as used in Model 3.10 for all t=1, 2,

3 and setting αt=wt for t=1, 2, 3 for deviation of goals and using the Model

3.5, the Model 3.9 reduces to the following model (i.e., Model 3.11) as:
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Model 3.11

minimize
1

200
(d+

1 + d−1 ) +
1

2500
(d+

2 + d−2 ) +
1

450
(d+

3 + d−3 )

+
1

200
(e+

1 + e−1 ) +
1

2500
(e+

2 + e−2 ) +
1

450
(e+

3 + e−3 )

subject to 70x11 + 80x12 + 78x13 + 80x21 + 72x22 + 84x23

+90x31 + 80x32 + 76x33 − d+
1 + d−1 = y1

y1 − e+
1 + e−1 = 2500

2300 ≤ y1 ≤ 2500

500x11 + 600x12 + 620x13 + 600x21 + 500x22 +

550x23 + 650x31 + 600x32 + 580x33 − d+
2 + d−2 = y2

y2 − e+
2 + e−2 = 17500

17500 ≤ y2 ≤ 20000

100x11 + 80x12 + 90x13 + 80x21 + 95x22 + 85x23

+90x31 + 88x32 + 98x33 − d+
3 + d−3 = y3

y3 − e+
3 + e−3 = 2850

2400 ≤ y3 ≤ 2850

d+
t , d

−
t , e

+
t , e

−
t ≥ 0, t = 1, 2, 3

and the constraints (3.31)− (3.37).

Using the concept of utility function described in subsection 3.3.1, Model 3.9

can be reformulated as follows:

The consideration of utility function depends on the DM. Here, we assume

that Goals 1, 2 and 3 follow the utility function LLUF (Figure 3.1), RLUF

(Figure 3.2) and S-shaped utility function as given in Figure 3.4 respectively.

In the given example, the upper bound of variations d+
1 , d

−
1 , d

+
2 , d

−
2 , d

+
3 , d

−
3 are

200, 200, 2500, 2500, 400, 400 respectively and the upper bounds of f−1 , f
−
2 , f

−
3

are 1. We find the weights as described in subsection 3.3 as follows: w1 = 1
200

,

w2 = 1
2500

, w3 = 1
450

,β1 = 200
201

, β2 = 2500
2501

, β3 = 450
451

.

With these supplied data, Model 3.9 can be reformulated as follows:
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Figure 3.4: S-shaped utility function for the goal 3 of proposed example.

Model 3.12

minimize w1(d+
1 + d−1 ) + β1f

−
1 + w2(d+

2 + d−2 ) +

β2f
−
2 + w3(d+

31 + d+
32 + d+

32) + β3f
−
3

subject to 70x11 + 80x12 + 78x13 + 80x21 + 72x22 + 84x23

+90x31 + 80x32 + 76x33 − d+
1 + d−1 = y1,

u1 ≤
2500− y1

200
,

f−1 + u1 = 1,

2300 ≤ y1 ≤ 2500

500x11 + 600x12 + 620x13 + 600x21 + 500x22 +

550x23 + 650x31 + 600x32 + 580x33 − d+
2 + d−2 = y2,

u2 ≤
y2 − 17500

2500
,

f−2 + u2 = 1

17500 ≤ y2 ≤ 20000

100x11 + 80x12 + 90x13 + 80x21 + 95x22 + 85x23

+90x31 + 88x32 + 98x33 − d+
3 + d−3 = y3

u3 = (.2− 0)
d+

31 − d+
32

250
+ (1− .2)

d+
32 − d+

33

50
+ (.85− 1)

d+
33

150
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y3 − d+
31 + dn31 = 2650, y3 − d+

32 + dn32 = 2700,

y3 − d+
33 + dn33 = 2850, d+

31dn31 = 0, d+
32dn32 = 0,

d+
33dn33 = 0, f−3 + u3 = 1

ut ≥ 0, f−t ≥ 0 ∀ t = 1, 2, 3

and the constraints (3.31)− (3.37).

Result and discussion

Using LINGO software, solve Models 3.10, 3.11 and 3.12 and report the solu-

tion as follows:

The optimal solution of Model 3.10 is reported as: x11 = 0, x12 = 10, x13 =

0, x21 = 0, x22 = 0, x23 = 9, x31 = 3, x32 = 0, x33 = 8;

Z1 = 2434, Z2 = 17540, Z3 = 2619.

The optimal solution of Model 3.11 is as follows:

x11 = 4, x12 = 6, x13 = 0, x21 = 0, x22 = 0, x23 = 9, x31 = 8, x32 = 2, x33 = 1;

Z1 = 2472, Z2 = 17530, Z3 = 2639.

The optimal solution of Model 3.12 is also as follows:

x11 = 2, x12 = 0, x13 = 8, x21 = 0, x22 = 7, x23 = 2, x31 = 8, x32 = 1, x33 = 2;

Z1 = 2388, Z2 = 17520, Z3 = 2763.

Table 3.4: Comparison among the achieved goals obtained from different

methods.
Method Achievement of Achievement of Achievement of

Goal 1 in(%) Goal 2 in(%) Goal 3 in(%)
GP 60 93 40
RMCGP 80 95 45
Utility Approach 45 98 95

From Table 3.4, we conclude that the solution obtained from the Model 3.11 is

better than the solution of Model 3.10, but DM is not satisfied, because in the

proposed problem, satisfying the goal is not only the important criteria, there

is a utility factor to DM which is an important concept for the decision making

(management) problem. When the utility value is more important rather than

the benefit, then the solutions obtained from Model 3.10 and from Model 3.11

are not satisfied by DM for taking the appropriate decision. The marketing

63



Chapter 3: Transportation Problem using Utility Function

survey indicates that the higher utility value of Goal 3 will increase the number

of customers to the network service provider company. The solution obtained

from Model 3.12 provided high utility value of Goal 3, whenever the other two

methods GP and RMCGP fail to provide so. In this context, we may suggest

that the utility function approach is provided better result in comparing with

other results obtained from the approaches such as GP and RMCGP.

3.4.2 Example 3.4.2

Let us consider the following MCMTP (i.e., Model 3.9) with two objectives:

Model 3.13

Goal 1: Z1 = (5 or 7)x11 + 8x12 + (7 or 6 or 10)x13 + (6 or 8)x21 + 8x22 + 10x23

with goal as [150,200], more is better, but follows S-shape utility function

(Figure 3.5)

Goal 2: Z2 = 15x11 + (18 or 16)x12 + 17x13 + 16x21 + (18 or 20)x22 + 20x23

with goal as [400,500], less is better, follows LLUF.

subject to x11 + x12 + x13 ≤ (11 or 13 or 12 or 16) (3.38)

x21 + x22 + x23 ≤ (14 or 13) (3.39)

x11 + x21 ≥ (8 or 7) (3.40)

x12 + x22 ≥ (7 or 8 or 6) (3.41)

x13 + x23 ≥ 9 (3.42)

xij ≥ 0 ∀ i = 1, 2 and j = 1, 2, 3. (3.43)

The Model 3.13 is equivalent to the following model (i.e., Model 3.14)

Model 3.14

Goal 1: Z1 = (5z11
11 + 7(1− z11

11))x11 + 8x12 + (7z12
11z

13
11 + 6z12

11(1− z13
11)

+10z13
11(1− z12

11))x13 + (6z21
11 + 8(1− z21

11))x21 + 8x22 + 10x23

with goal as [150,200], more is better, but follows S-shape utility function

(Figure 3.5)

Goal 2: Z2 = 15x11 + (18z11
12 + 16(1− z11

12))x12 + 17x13 + 16x21

+(18z12
12 + 20(1− z12

12))x22 + 20x23
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with goal as [400,500], less is better, follows LLUF.

subject to x11 + x12 + x13 ≤ (11z11
1 z

12
1 + 13z11

1 (1− z12
1 )

+12z12
1 (1− z11

1 ) + 16(1− z11
1 )(1− z12

1 )) (3.44)

x21 + x22 + x23 ≤ (14z11
2 + 16(1− z11

2 )) (3.45)

x11 + x21 ≥ (8z11 + 7(1− z11)) (3.46)

x12 + x22 ≥ (7z21z22 + 8z21(1− z22) + 6z22(1− z21))(3.47)

x13 + x23 ≥ 9 (3.48)

xij ≥ 0 ∀ i = 1, 2 and j = 1, 2, 3. (3.49)

z12
11 + z13

11 ≥ 1 (3.50)

z21 + z22 ≥ 1 (3.51)

z11
11 , z

12
11 , z

13
11 , z

11
12 , z

12
12 = 0 or 1 (3.52)

z11
1 , z

12
1 , z

11
2 = 0 or 1 (3.53)

z11, z21, z22 = 0 or 1 (3.54)

In Model 3.14, the deviations of Goal 1 and Goal 2 are 50 and 100 respectively.

By considering the weights w1 = 1
50
, w2 = 1

100
for Model 3.14, we find the

following model (i.e., Model 3.15):

Model 3.15

minimize
1

50
(d+

1 + d−1 ) +
1

100
(d+

2 + d−2 )

subject to (5z11
11 + 7(1− z11

11))x11 + 8x12 + (7z12
11z

13
11 + 6z12

11(1− z13
11)

+10z13
11(1− z12

11))x13 + (6z21
11 + 8(1− z21

11))x21 + 8x22

+10x23 − d+
1 + d−1 = y1,

150 ≤ y1 ≤ 200,

15x11 + (18z11
12 + 16(1− z11

12))x12 + 17x13 + 16x21

+(18z12
12 + 20(1− z12

12))x22 + 20x23 − d+
2 + d−2 = y2,

400 ≤ y2 ≤ 500,

d+
t , d

−
t ≥ 0, t = 1, 2

and the constraints (3.44)− (3.54).
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Again, considering the same weights wt as used in Model 3.10 for all t = 1, 2

and the weights αt=wt for t = 1, 2 for deviation of goals and using Model 3.5,

Model 3.14, reduce to the model (i.e., Model 3.16) as:

Model 3.16

minimize
1

50
(d+

1 + d−1 ) +
1

100
(d+

2 + d−2 ) +

+
1

50
(e+

1 + e−1 ) +
1

100
(e+

2 + e−2 )

subject to (5z11
11 + 7(1− z11

11))x11 + 8x12 + (7z12
11z

13
11 + 6z12

11(1− z13
11)

+10z13
11(1− z12

11))x13 + (6z21
11 + 8(1− z21

11))x21

+8x22 + 10x23 − d+
1 + d−1 = y1,

y1 − e+
1 + e−1 = 200,

150 ≤ y1 ≤ 200,

15x11 + (18z11
12 + 16(1− z11

12))x12 + 17x13 + 16x21

+(18z12
12 + 20(1− z12

12))x22 + 20x23 − d+
2 + d−2 = y2,

y2 − e+
2 + e−2 = 400,

400 ≤ y2 ≤ 500,

d+
t , d

−
t , e

+
t , e

−
t ≥ 0, t = 1, 2

and the constraints (3.44)− (3.54).

Let us solve the proposed problem (i.e., Model 3.14) using the concept of

utility function. The consideration of utility function depends on the DM. Here

we assume that Goal 1 and Goal 2 follow S-shaped utility function as given

in Figure 3.5 and the utility functions LLUF (i.e., Figure 3.1) respectively.

In given example, the upper bound of variations d+
1 , d

−
1 ; d+

2 , d
−
2 are 50, 100

respectively and the upper bounds of f−1 and f−2 are 1. We find the weights

as per suggested in the subsection 3.3 as follows: w1 = 1
50
, β1 = 50

51
, w2 = 1

100
,

β2 = 100
101

. With these supplied data, Model 3.14 can be formulated as follows:

Model 3.17

minimize w1(d+
11 + d+

12 + d+
13) + β1f

−
1 + w2(d+

2 + d−2 ) + β2f
−
2

subject to (5z11
11 + 7(1− z11

11))x11 + 8x12 + (7z12
11z

13
11 + 6z12

11(1− z13
11) + 10z13

11
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3.4. Numerical examples

Figure 3.5: S-shaped utility function for goal 2 in Case 2.

(1− z12
11))x13 + (6z21

11 + 8(1− z21
11))x21

+8x22 + 10x23 − d+
1 + d−1 = y1,

u1 = (0.2− 0)
d+

11 − d+
12

10
+ (1− 0.2)

d+
12 − d+

13

30
+ (0.85− 1)

d+
13

10
y1 − d+

11 + d−11 = 160, y1 − d+
12 + d−12 = 190, y1 − d+

13 + d−13 = 200,

d+
11d
−
11 = 0, d+

12dn
−
12 = 0, d+

13d
−
13 = 0, f−1 + u1 = 1,

15x11 + (18z11
12 + 16(1− z11

12))x12 + 17x13 + 16x21

+(18z12
12 + 20(1− z12

12))x22 + 20x23 − d+
2 + d−2 = y2,

u2 ≤
200− y2

100
,

f2 + u2 = 1,

400 ≤ y2 ≤ 500,

ut ≥ 0, ft ≥ 0 ∀ t = 1, 2

and the constraints (3.44)− (3.54).

Result and discussion

Solving the model presented in Model 3.15, The optimal solution of Model

3.15 is reported as: x11 = 7, x12 = 5, x13 = 0, x21 = 0, x22 = 1, x23 = 10 and

the values of the objective functions are Z1 = 197, Z2 = 405.

The selection of the choices corresponding to the optimal solution is as follows:
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c1
11 = 7, c1

12 = 8, c1
13 = 10, c1

21 = 8, c1
22 = 8, c1

23 = 10

c2
11 = 15, c2

12 = 16, c2
13 = 17, c2

21 = 16, c2
22 = 18, c2

23 = 20

a1 = 16, a2 = 14, b1 = 7, b2 = 6, b3 = 9.

Solving the model presented in Model 3.16, we list the following solution as:

x11 = 7, x12 = 6, x13 = 0, x21 = 0, x22 = 0, x23 = 10 and the values of the

objective functions are Z1 = 197, Z2 = 401.

The selection of the choices corresponding to the optimal solution is as follows:

c1
11 = 7, c1

12 = 8, c1
13 = 10, c1

21 = 6, c1
22 = 8, c1

23 = 10

c2
11 = 15, c2

12 = 16, c2
13 = 17, c2

21 = 16, c2
22 = 18, c2

23 = 20

a1 = 16, a2 = 14, b1 = 7, b2 = 8, b3 = 9.

Solving the model presented in Model 3.17, we obtain the solution as follows:

x11 = 6, x12 = 3, x13 = 0, x21 = 0, x22 = 3, x23 = 10 and the values of the

objective functions are Z1 = 190, Z2 = 404.

The selection of the choices corresponding the optimal solution is as follows:

c1
11 = 7, c1

12 = 8, c1
13 = 10, c1

21 = 6, c1
22 = 8, c1

23 = 10

c2
11 = 15, c2

12 = 18, c2
13 = 17, c2

21 = 16, c2
22 = 20, c2

23 = 20

a1 = 12, a2 = 14, b1 = 7, b2 = 6, b3 = 9.

Table 3.5: Comparison related to achieved goals obtained by different

methods.
Method Achievement of Achievement of

Goal 1 in(%) Goal 2 in(%)
GP 85 96
RMCGP 85 98
Utility Approach 100 95

Table 3.5 helps us to conclude that, the solution of the MCMTP obtained in

Model 3.16 is better in compare with the solution of Model 3.15, but DM is not

satisfied, because in the proposed problem satisfying the goal is not only the

important notion, there is an utility factor to DM which is an important factor

for the decision making problem. When the utility value is more important

rather than the benefit, then the solutions obtained in Model 3.15 or in Model

3.16 are not satisfied by DM to take appropriate decision. The solution ob-

tained in Model 3.17 demonstrated the high utility value of Goal 2, whenever
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3.5. Conclusion

the other two models are failed to give satisfactory results. In this context,

we may suggest that the utility function approach provided a better result in

compare with other results.

3.5 Conclusion
This chapter explores the study of MOTP with interval goals of each objec-

tive functions. GP and RMCGP are well known methods to formulate the

mathematical model and solve multi-objective decision making problem hav-

ing interval goals to each of the objective functions. According to the models of

GP or RMCGP, it is almost impossible to find a mathematical model in which

the DM preferred a crisp goal value for objective (objectives) lies (lie) in the

interval of proposed goal corresponding the objective function. To tractable

this type of situation, here, we incorporate the concept of utility function. The

notion of utility function approach is used to form a mathematical model of

MOTP with interval goal for each of the objective functions in the light of goal

preferences by the DM.

Again, accommodating the modern daily-life real phenomenons, we consider

the MCMTP where the cost, demand and supply coefficients are multi-choice

type. Concept of utility, in this chapter, propose a new approach for extend-

ing the utilization of real-life MOTP and MCMTP and improves the skill for

representing the DM’s preferences.
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Chapter 4

Conic Scalarization Approach in
MOTP ∗

This chapter explores the study of Multi-Choice Multi-objective Transporta-

tion Problem (MCMTP) under the light of Conic Scalarizing function. Solving

MCMTP by RMCGP or utility function approach includes a large number of

auxiliary variables, whereas the Conic Scalarization approach produces a bet-

ter result with a less number of auxiliary variables in comparing to RMCGP

or utility function approach. In this chapter, the way to solve MCMTP using

Conic Scalarization approach is introduced and the feasibility and usefulness

of the study are drawn through numerical examples.

4.1 Introduction
Goal Programming (GP), an analytical approach, is devised to address the

decision making problem where targets have been assigned to all objective

functions which are conflicting and non-commensurable to each other and the

decision maker interests to maximize the achievement level of the correspond-

ing goals.

The main concept of GP was that to minimize the deviation between the

achievement goals and the achievement levels. Our mathematical model of

∗A part of this chapter has been published in Annals of Operations Research,
Springer, SCI, IF: 1.406, DOI 10.1007/s10479-016-2283-4.
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Chapter 4: Conic Scalarization Approach in MOTP

multi-objective decision making can be considered in the following form:

minimize
K∑
t=1

wt|Zt(x)− gt|

subject to x ∈ F,

where F is the feasible set and wt are the weights attached to the deviation

of the achievement function, Zt(x) is the t-th objective function of the t-th

goal and gt is the aspiration level of the t-th goal, and |Zt(x)− gt| represents
the deviation of the t-th goal. Later on, a modification on GP is provided and

is denoted as Weighted Goal Programming (WGP) which can be displayed in

the following form:

WGP

minimize
K∑
t=1

wt(d
+
t + d−t )

subject to Zt(x)− d+
t + d−t = gt,

d+
t ≥ 0, d−t ≥ 0 (t = 1, 2, . . . , K),

x ∈ F,

where d+
t and d−t are over- and under- achievements of the t-th goal, respec-

tively.

However, the conflicts of resources and the incompleteness of available informa-

tion make it almost impossible for decision makers to set the specific aspiration

levels and choose the better decision. To overcome this situation, multi-choice

goal programming (MCGP) approach has been presented by Chang (16) with

a new direction to solve Multi-Objective Decision Making (MODM) problem.

The mathematical model of MODM employing RMCGP is defined as follows:

RMCGP

minimize
K∑
t=1

[
wt(d

+
t + d−t ) + αt(e

+
t + e−t )

]
subject to Zt(X)− d+

t + d−t = yt (t = 1, 2, . . . , K),

yt − e+
t + e−t = gt,max or gt,min (t = 1, 2, . . . , K),

72



4.2. Mathematical model

gt,min ≤ yt ≤ gt,max (t = 1, 2, . . . , K),

d+
t , d

−
t , e

+
t , e

−
t ≥ 0 (t = 1, 2, . . . , K),

x ∈ F.

Here, yt is the continuous variable associated with t-th goal which restricted

between the upper (gt,max) and lower (gt,min) bounds and e+
t and e−t are pos-

itive and negative deviations attached to the t-th goal of |yt − gt,max| and
αt is the weight attached to the sum of the deviations of |yt − gt,max|; other
variables are defined as in WGP.

In general, scalarization means the replacement of a multi-objective optimiza-

tion problem by a suitable scalar optimization problem which is also an op-

timization problem with a real-valued objective function. Since the scalar

optimization problem is widely developed, the scalarization turns out to be of

great importance for multi-objective optimization.

In this study, we consider the multi-choice reference points (aspiration lev-

els) corresponding to objective functions and introduce the approach of conic

scalarizing function to obtain a more satisfactory solution of an MCMTP and,

then, we compare among the solutions obtained from three methods such as

GP, RMCGP and Conic Scalarization approach. Again, the study is developed

in the environment of multi-choice parameters, and we present their selection

procedure for the achievement of a better aspiration level.

4.2 Mathematical model
In this section, we propose two mathematical models (Model 4.1 and Model

4.2), between them the first one is for MOTP and the second one is for

MCMTP. The Model 4.1 is defined as follows:

Model 4.1

minimize Zt =
m∑
i=1

n∑
j=1

Ct
ijxij (t = 1, 2, . . . , K) (4.1)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m), (4.2)
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Chapter 4: Conic Scalarization Approach in MOTP

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n), (4.3)

and xij ≥ 0, ∀ i and j. (4.4)

Here, Ct
ij, ai and bj are the transportation parameters (cost, supply and de-

mand) of t-th objective function in multi-objective transportation problem

respectively and
∑m

i=1 ai ≥
∑n

j=1 bj is the feasibility condition. According to

the nature of the problem, the decision maker has the right to choice the goals

of the objective functions. We assume that these goals are gt (t = 1, 2, . . . , K),

namely, K objective functions, and these goals are defined as interval-valued

gt = [gt,min, gt,max] (t = 1, 2, . . . , K).

In many real-life situations, the multiple choices in transportation parameters

create complexities in order to take right decision by decision maker. Multi-

choice costs may occur due to several routes for transporting the goods. Due to

weather condition or different seasonal, demands or supply parameters become

multi choices in nature. In the atmosphere of multi-choice transportation

parameters, the Model 4.2 is defined as follows:

Model 4.2

minimize Zt =
m∑
i=1

n∑
j=1

(Ct1
ij or Ct2

ij or . . . or Ctr
ij )xij (t = 1, 2, . . . , K)(4.5)

subject to
n∑
j=1

xij ≤ (a1
i or a

2
i or . . . or a

p
i ) (i = 1, 2, . . . ,m), (4.6)

m∑
i=1

xij ≥ (b1
j or b

2
j or . . . or b

q
j) (j = 1, 2, . . . , n), (4.7)

and xij ≥ 0, ∀ i and j. (4.8)

Here, (Ct1
ij or Ct2

ij or . . . or Ctr
ij ), (a1

i or a2
i or . . . or a

p
i ) and (b1

j or b2
j or . . .

or bqj) are the multi-choices cost, supply and demand parameters for the t-th

objective function. In a TP, the total demand should be less or equal to the

total capacity of supply to get a feasible solution. In case for multi-choice

supply and demand, the information of total capacity of supply in origins and
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demands in the destinations are not precisely calculated. So, we select here

the maximum possible supply in the origins and consequently the minimum

demand in the destinations, and then we rewrite the feasibility condition as:

∑m
i=1max(a1

i , a
2
i , . . . , a

p
i ) ≥

∑n
j=1min(b1

j , b
2
j , . . . , b

q
j). (4.A)

This feasibility condition means the best possible wide range of feasible region

regarding the MCMTP. However, the feasibility condition can be remodeled

as per as the choice of decision maker.

Transformation technique for multi-choice parameters like cost, sup-

ply and demand to an equivalent form

When there are multiple choice of parameters such as cost, supply and demand,

we should select a single choice satisfying supply and demand restrictions. The

selection of choices should be done in such a way that the whole problem will

be optimized. Introduction of binary variables is an important concept to se-

lect choice within the problem. Using the general transformation technique

stated in subsection 2.3.1 of Chapter 2, we reduce the multi-choice constraints

to single valued deterministic constraints in the following way:

Let C̃t
ij =

T∑
g=1

(term)gCtg

ij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n), (4.9)

where (term)g (for g = 1, 2, . . . , T ) stands for T many terms in the functions

of the binary variables mentioned above. Similarly,

ãi =
P∑
g=1

(term)gagi (i = 1, 2, . . . ,m), (4.10)

and b̃j =

Q∑
g=1

(term)gbgj (j = 1, 2, . . . , n). (4.11)

Here, (term)g (g = 1, 2, . . . , P ) stands for P many terms in the functions of

the binary variables mentioned above to reduce the P number of choices agi to

single choice a′i, and (term)g (g = 1, 2, . . . , Q) stands for Q many terms in the

functions of the binary variables mentioned above to reduce the Q number of

choices bgj to single choice b′j.
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4.2.1 Reduction of MCMTP to MOTP

The Model 4.2 of MCMTP is converted to a MOTP by transforming the

multi-choice parameters to real numbers which involved in the objective func-

tion (4.5) and the supply and demand constraints (4.6) and (4.7) through the

equations (4.9)-(4.11). Thereafter, the reduced MOTP model is encountered

in Model 4.3.

Model 4.3

minimize Zt =
m∑
i=1

n∑
j=1

C ′tijxij (t = 1, 2, . . . , K) (4.12)

subject to
n∑
j=1

xij ≤ a′i (i = 1, 2, . . . ,m), (4.13)

m∑
i=1

xij ≥ b′j (j = 1, 2, . . . , n), (4.14)

and xij ≥ 0 ∀ i and j. (4.15)

Here, C ′tij, a′i, b′j are reduced cost, supply and demand parameters of the t-th

objective function in MOTP, respectively, and the same feasibility condition

is provided in condition (4.A). The transportation problem i.e., Model 4.3 is

the same as the problem described in Model 4.1.

4.2.2 Solution procedure

The approaches such as goal programming and revised multi-choice goal pro-

gramming are used to solve MOTP, and they are defined as stated subse-

quently.

Goal programming approach:

Let us briefly discuss the goal programming approach for solving MOTP (Model

4.4). Furthermore, let d+
t and d−t be positive and negative deviations corre-

sponding to the t-th goal of the objective function, respectively. Then the

mathematical model is defined as follows:
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Model 4.4

minimize
K∑
t=1

wt(d
+
t + d−t ) (4.16)

subject to Zt(X)− d+
t + d−t = yt (t = 1, 2, . . . , K), (4.17)

gt,min ≤ yt ≤ gt,max (t = 1, 2, . . . , K), (4.18)

d+
t , d

−
t ≥ 0 (t = 1, 2, . . . , K), (4.19)

and the constraints (4.13)− (4.15).

Revised multi-choice goal programming approach:

Similarly, the RMCGP is introduced to solve the MOTP. Let us assume that

the multiple goals are considered by the objective functions. This can be

achieved by referring to the following model (Model 4.5) as:

Model 4.5

minimize
K∑
t=1

[
wt(d

+
t + d−t ) + αt(e

+
t + e−t )

]
(4.20)

subject to Zt(X)− d+
t + d−t = yt (t = 1, 2, . . . , K), (4.21)

yt − e+
t + e−t = gt,max or gt,min (t = 1, 2, . . . , K), (4.22)

gt,min ≤ yt ≤ gt,max (t = 1, 2, . . . , K), (4.23)

d+
t , d

−
t , e

+
t , e

−
t ≥ 0 (t = 1, 2, . . . , K), (4.24)

and the constraints (4.13)− (4.15),

where the t-th aspiration level is defined as yt which is the continuous variable

lying between upper (gt,max) and lower (gt,min) bounds. Again, e+
t and e−t

are positive and negative deviations attached to the t-th goal of |yt − gt,max|,
and αt is the weight attached to the sum of the deviations of |yt − gt,max|.

Conic Scalarization approach to solve MOTP

Here, the concept of Conic Scalarization is addressed to solve the MOTP. A

short introduction and the related definitions of Conic Scalarization approach

are presented here, and then we discuss the methodology for solving MOTP

using it.
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Reference point methodology provides the foundation for many methods in

multiple objective programming (MOP) (Ustun (153)). The Conic Scalarizing

function is also treated as “Conic Scalarization” that a general characterization

for Benson proper efficient point set, which was firstly proposed by Gasimov

(40). An MOP can be written as follows:

Model 4.6

minimize Zt =
m∑
i=1

n∑
j=1

Ct
ijxij (t = 1, 2, . . . , K)

subject to x ∈ X,

where X ⊂ Rmn is the feasible region corresponding to the problem, and

Z : Rmn −→ RK is a vector valued objective function mapping a feasible

solution x to the point Z = (Z1(x), Z2(x), . . . , ZK(x)) in the objective space

RK .

Here, we present some useful relations to define the definitions followed by

them.

Let RK
≥={y ∈ RK : yj ≥ 0, j = 1, 2, . . . , K} and RK

>={y ∈ RK : yj > 0, j =

1, 2, . . . K}. For all y1, y2 ∈ RK ,

y1 5 y2 if y2 − y1 ∈ RK
= ,

y1 ≤ y2 if y1 5 y2 and y1 6= y2,

y1 < y2 if y2 − y1 ∈ int (RK
= )=RK

> .

Definition 4.2.1 (Pareto minimal element): Considering a nonempty

subset S of RK , an element s ∈ S is said to be a Pareto minimal element

of the set S, written as s ∈ min(S), if {s− RK
≥}
⋂
S = {s}, where s− RK

≥ =

{s− t : t ∈ RK
≥}.

Definition 4.2.2 (Efficient point): Let Y be a non empty subset of RK . An

element y ∈ Y is called an efficient point if {y−RK
≥}
⋂
Y = {y}, i.e., there is

no y∗ ∈ RK such that y∗ ≤ y.

Definition 4.2.3 (Cone of a set): The cone of a set Y is denoted by

cone(Y) and is defined as cone(Y )={αy : α ≥ 0, y ∈ Y }.
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Figure 4.1: Efficient point.

Figure 4.2: Cone of a set.

Definition 4.2.4 (Properly efficient point): An element y ∈ Y is said to

be a properly efficient point (in the sense of Benson) if y is an efficient point

of Y and the zero element of RK is an efficient point of cl(cone (Y +RK
= −y)),

where cl(Y ) denotes the closure of a set Y .

Figures 4.1, 4.2 and 4.3 show the graphs of Efficient point, Cone of a set and

Properly efficient point respectively. The set of all efficient points of Y is

denoted by YN , and the set of all properly efficient points is denoted by YpN .

A feasible solution x ∈ X is called (properly) efficient solution if y = y(x) is

a (properly) efficient point of Y . The set of (properly) efficient solutions of
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Figure 4.3: Properly efficient point.

MOP is denoted by XpE (XE), respectively. Conic Scalarization Gasimov (40)

can be represented in the following manner:

Let W = {(β, w) ∈ R× RK
≥ : 0 < β < min{w1, w2, . . . , wK}, where wi ≥ 0 for

all i}.
Proposition 4.1 [Ustun (153)]

Suppose that for some (β, w) ∈ W , a feasible solution x̂ ∈ X is an optimal

solution of minimization problem as stated in Model 4.7.

Model 4.7

minimize

[
β

K∑
t=1

|Zt(x)|+
K∑
t=1

wt Z
t(x)

]
subject to x ∈ X,

where X is the feasible set, then x̂ is a Benson proper efficient solution to

Model 4.6.

Proposition 4.2 [Ustun (153)]

Let x̂ ∈ X is a Benson proper efficient solution to Model 4.6. Then there exists

a vector (β, w) ∈ W such that x̂ is an optimal solution to the minimization

problem described in Model 4.8.

Model 4.8

minimize

[
β

K∑
t=1

|Zt(x)− Zt(x̂)|+
K∑
t=1

wt (Zt(x)− Zt(x̂))

]
subject to x ∈ X.
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In non-convex MOP, the difference between supported and unsupported effi-

cient solutions is important. An efficient solution x̂ ∈ XE is called supported,

if there is an w ∈ RK
> such that x̂ is an optimal solution to following Model

4.9.

Model 4.9

minimize
K∑
t=1

wtZ
t(x)

subject to x ∈ X.

Now, it is evident that if x̂ ∈ X is an efficient solution to Model 4.6, then it is

also an efficient solution to the related MOP:

Model 4.10

minimize
[
Z1(x)− g1, Z

2(x)− g2, . . . , Z
K(x)− gK

]
subject to x ∈ X,

where g = (g1, g2, . . . , gK) ∈ RK is an arbitrary vector. Such a shifting can be

occured in situations when objective functions do not change sign on whole effi-

cient solution set XE in order to make the absolute value used in the scalarized

problem in Model 4.7. In this case, we can formulate the following scalarized

problem, which is similar to that in Model 4.8 and can be used even if we do

not know any efficient solution. Furthermore, we introduce Model 4.11.

Model 4.11

minimize

[
β

K∑
t=1

|Zt(x)− gi)|+
K∑
t=1

wt (Zt(x)− gt)

]
subject to x ∈ X.

We can therefore completely characterize Benson proper efficient solutions

through scalarization of Gasimov (40).

Proposition 4.3

A feasible solution x̂ ∈ X is a Benson proper efficient if and only if there are

g ∈ RK and (β, w) ∈ W such that it is an optimal solution to the scalar mini-

mization problem of Model 4.11.
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Again, Model 4.11 is equivalent to following Model 4.12:

Model 4.12

minimize

[
K∑
t=1

(
(β + wt)d

+
t + (β − wt)d−t

)]
subject to Zt(x)− d+

t + d−t = gt (t = 1, 2, . . . , K),

d+
t , d

−
t ≥ 0 (t = 1, 2, . . . , K),

x ∈ X.

Here, d+
t = max(0, Zt − gt) and d−t = max(0, gt − Zt) are, over- and under-

achievements of the t-th goal, respectively, and gt is the aspiration or target

level for the t-th goal.

If the MOTP has a feasible region, then minimization problem is connected

to convex conditional and the solution will be obtained according to a Benson

efficient point. Finally, to solve MOTP using Conic Scalarization Function

(CSF), we formulate the following Model 4.13, defined as:

Model 4.13

minimize

[
K∑
t=1

(
(β + wt)d

+
t + (β − wt)d−t

)]
subject to Z ′t(x)− d+

t + d−t = gt, (4.25)

gt,min ≤ gt ≤ gt,max, (4.26)

d+
t , d

−
t ≥ 0 (t = 1, 2, . . . , K),

n∑
j=1

xij ≤ a′i (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ b′j (j = 1, 2, . . . , n),

and xij ≥ 0 ∀ i and j.

If for the value of objective function, more is better, we consider the constraints

(4.25) and (4.26) in the following form without changing other equations in
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Model 4.13:

−Z ′t(x)− d+
t + d−t = gt,

−gt,min ≥ gt ≥ −gt,max.

4.3 Numerical examples
To test the feasibility of the proposed method such as MOTP and MCMTP,

we consider two numerical examples. The first example is on MOTP and the

second one is on MCMTP. We solve both the problems to justify a better

solution of our proposed model using Conic Scalarization approach, and then

we compare the solution with the solutions of the existing methods like GP

and RMCGP.

4.3.1 Example 4.1

A coal company transports three types of coals namely Anthracite (AN), Bi-

tuminus (BI), Pit (PI) to a Thermal Power (THP) and to the Open Market

(OM). The different types of coals create pollution after used and the amounts

of gas outputted after used in different objectives are given in Table 4.1. The

costs of different types of supplied coals to the destinations THP and OM are

given in Table 4.2. Also, the transportation costs for supplying to THP and

OM are placed at Table 4.3. The company wishes to maximize the coal cost,

to minimize the air pollution, i.e., to minimize the outputted gas after used

of coal along with the aim to minimize the transportation cost. The company

again wishes that the goals corresponding to cost of coal will not be less than

$3000 and in maximum it may take $3300. The outputted poisonous gas (in

litre) will take a value within the interval [800, 850] in which less is better.

The total transportation cost will not exceed $450 and it is greater than $430,

so that minimum transportation cost is preferable. The company also decides

to find a compromise solution with priority to the goals as 50% for coal cost,

20% for pollution control, 30% for transportation cost, satisfying all the re-

spective goals depicted in the problem. Here, the priorities are considered as
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weights and they are w1 = 0.5, w2 = 0.2 and w3 = 0.3 for goals 1, 2 and 3,

respectively.

Table 4.1: Coal cost for supplying THP and OM.
THP OM

AN 7.5 8.0
BI 6.5 6.7
PI 4.75 4.5

Table 4.2: Outputted poisonous gas in litre/ton.
THP OM

AN 1.0 0.5
BI 1.2 1.1
PI 3.2 2.4

Table 4.3: Transportation cost in $.
THP OM

AN 0.6 0.8
BI 0.5 1.5
PI 0.9 1.5

Let us formulate MOTP model utilizing the following data. In this problem,

the goals of objective functions are interval-valued and they are

g1 = [3000, 3300] (more is better), g2 = [800, 850] (less is better), and g3 =

[430, 450] (less is better).

The demands in the destinations are 200 ton and 250 ton, respectively and

supplies at the origins are 200 ton, 125 ton and 175 ton, respectively. Using

GP, we formulate the problem as follows:

Model 4.P1

minimize
0.5

300
(d+

1 + d−1 ) +
0.2

50
(d+

2 + d−2 ) +
0.3

20
(d+

3 + d−3 )

subject to Z1 = 7.5x11 + 8x12 + 6.5x21 + 6.7x22 + 4.75x31 + 4.5x32,

Z2 = 1.0x11 + 0.5x12 + 1.2x21 + 1.1x22 + 3.2x31 + 2.4x32,

Z3 = 0.6x11 + 0.8x12 + 0.5x21 + 1.5x22 + 0.9x31 + 1.5x32,

Z1 − d+
1 + d−1 = g1,

3000 ≤ g1 ≤ 3300,
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Z2 − d+
2 + d−2 = g2,

800 ≤ g2 ≤ 850,

Z3 − d+
3 + d−3 = g3,

430 ≤ g3 ≤ 450,

x11 + x12 ≤ 200, (4.27)

x21 + x22 ≤ 125, (4.28)

x31 + x32 ≤ 175, (4.29)

x11 + x21 + x31 ≥ 220, (4.30)

x12 + x22 + x32 ≥ 250, (4.31)

d+
i ≥ 0, d−i ≥ 0, for i = 1, 2, 3.

Using RMCGP, we formulate the same problem as follows:

Model 4.P2

minimize
0.5

300
(d+

1 + d−1 ) +
0.2

50
(d+

2 + d−2 ) +
0.3

20
(d+

3 + d−3 )

+
0.5

300
(e+

1 + e−1 ) +
0.2

50
(e+

2 + e−2 ) +
0.3

20
(e+

3 + e−3 )

subject to Z1 = 7.5x11 + 8x12 + 6.5x21 + 6.7x22 + 4.75x31 + 4.5x32,

Z2 = 1.0x11 + 0.5x12 + 1.2x21 + 1.1x22 + 3.2x31 + 2.4x32,

Z3 = 0.6x11 + 0.8x12 + 0.5x21 + 1.5x22 + 0.9x31 + 1.5x32,

Z1 − d+
1 + d−1 = g1,

g1 − e+
1 + e−1 = 3300,

3000 ≤ g1 ≤ 3300,

Z2 − d+
2 + d−2 = g2,

g2 − e+
2 + e−2 = 800,

800 ≤ g2 ≤ 850,

Z3 − d+
3 + d−3 = g3,

g3 − e+
3 + e−3 = 430,

430 ≤ g3 ≤ 450,
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d+
i ≥ 0, d−i ≥ 0, e+

i ≥ 0, e−i ≥ 0, for i = 1, 2, 3,

and the constraints (4.27)− (4.31).

Using Conic Sclarization approach, we formulate the following mathematical

model:

Model 4.P3

minimize
1

300
(0.5 + 0.15)d+

1 +
1

300
(0.15− 0.5)d−1 +

1

50
(0.2 + 0.15)d+

2

+
1

50
(0.15− 0.2)d−2 +

1

20
(0.3 + 0.15)d+

3 +
1

20
(0.15− 0.3)d−3

subject to −7.5x11 − 8x12 − 6.5x21 − 6.7x22 − 4.75x31 − 4.5x32 − d+
1 + d−1

= g1, − 3300 ≤ g1 ≤ −3000,

1.0x11 + 0.5x12 + 1.2x21 + 1.1x22 + 3.2x31 + 2.4x32 − d+
2 + d−2

= g2, 800 ≤ g2 ≤ 850,

0.6x11 + 0.8x12 + 0.5x21 + 1.5x22 + 0.9x31 + 1.5x32 − d+
3 + d−3

= g3, 430 ≤ g3 ≤ 450,

d+
i ≥ 0, d−i ≥ 0; for i = 1, 2, 3,

and the constraints (4.27)− (4.31).

Solving the models, i.e., Models 4.P1, 4.P2 and 4.P3, by LINGO software, we

list the solutions in Table 4.4.

Table 4.4: Solutions for Example 4.1 by different methods.
Method Optimal Optimal Optimal Optimal Solution
(Model) Value of Z1 Value of Z2 Value of Z3

GP 3140.65 800.0 450.0 x11 = 34.87, x12 = 165.14, x21 = 24.34,
(P1) x22 = 84.87, x31 = 175.0, x32 = 0.0
RMCGP 3251.25 800.0 430.0 x11 = 0, x12 = 200, x21 = 79.05,
(P2) x22 = 45.95, x31 = 168.25, x32 = 6.75
CSF 3251.25 800.0 430.0 x11 = 0, x12 = 200, x21 = 79.05,
(P3) x22 = 45.95, x31 = 168.25, x32 = 6.75

According to the obtained solutions of Models 4.P1, 4.P2 and 4.P3, it is clear

that RMCGP and Conic Scalarization approach produce better solutions than

GP method. Although optimal solutions and optimal values are same from

RMCGP and Conic Scalarization approach, we see that the number of auxiliary

variables in Conic Scalarization approach is half the number of variable in
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RMCGP. In this regard, we may say that the Conic Scalarization approach

is used with less effort for solving MCMTP and any number of goals may be

accommodated in MCMTP.

4.3.2 Example 4.2

Example 4.2 is designed with the following assumptions in addition to the

Example 4.1. Due to uncertain demands in the market, sometime the demand

or the supply may not be fixed and they may be multi-choices. Also, cost

penalties could be multi-choices due to road conditions or weather conditions,

etc. Under these circumstances, decision makers usually wish to consider the

best fit of parameters by guessing which may not give a better solution for the

problem always. Here, we construct the mathematical model which considers

all choices and to find a better choice of parameters and a better solution of the

objective function. Instead of single choice, multi-choice options are considered

for cost, demand and supply parameters; then we design the MCMTP as

follows:

Z1 = (7.5 or 8)x11 + 8x12 + (6.5 or 7.5 or 8.4 or 8.6)x21 + 6.7x22

+4.75x31 + 4.5x32, [3000, 3300]: more is better,

Z2 = 1.0x11 + 0.5x12 + (1.2 or 2.7)x21 + 1.1x22 + 3.2x31

+(2.4 or 5)x32, [800, 850]: less is better,

Z3 = (0.6 or 0.7)x11 + 0.8x12 + 0.5x21 + 1.5x22 + 0.9x31

+(2.5 or 1.5)x32, [430, 450]: less is better,

subject to x11 + x12 ≤ (200 or 150 or 175),

x21 + x22 ≤ (125 or 140 or 130),

x31 + x32 ≤ 175,

x11 + x21 + x31 ≥ (220 or 150),

x12 + x22 + x32 ≥ (250 or 200 or 230),

xij ≥ 0, i = 1, 2, j = 1, 2, 3.
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To justify the effictiveness of multi-choice parameters, let us introduce the extra

constraint that the total demands in two locations is not less 450. The MCMTP

can be reduced to the following MOTP problem using binary variables, which

can be highlighted as follows:

Model 4.P4

Z1 = (7.5z1
111 + 8(1− z1

111))x11 + 8x12 +

(6.5z1
121z

2
121 + 7.5(1− z1

121)z2
121 + 8.4(1− z2

121)z1
121

+8.6(1− z1
121)(1− z2

121))x21 + 6.7x22 + 4.75x31 + 4.5x32,

[3000, 3300]: more is better,

Z2 = 1.0x11 + 0.5x12 + (1.2z1
221 + 2.7(1− z1

221))x21

+1.1x22 + 3.2x31 + (2.4z1
232 + 5(1− z1

232))x32,

[800, 850]: less is better,

Z3 = (0.6z1
311 + 0.7(1− z1

311))x11 + 0.8x12

+0.5x21 + 1.5x22 + 0.9x31 + (2.5z1
332 + 1.5(1− z1

332))x32,

[430, 450]: less is better,

subject to x11 + x12 ≤ 200z1
1z

2
1 + 150(1− z1

1)z2
1 + 175(1− z2

1)z1
1 , (4.32)

x21 + x22 ≤ 125z1
2z

2
2 + 140(1− z1

2)z2
2 + 130(1− z2

2)z1
2 , (4.33)

x31 + x32 ≤ 175, (4.34)

x11 + x21 + x31 ≥ 220z1 + 150(1− z1), (4.35)

x12 + x22 + x32 ≥ 250z2z3 + 200(1− z2)z3 + 230(1− z3)z2, (4.36)

x11 + x12 + x21 + x22 + x31 + x32 ≥ 450, (4.37)

1 ≤ z1
1 + z2

1 ≤ 2, (4.38)

1 ≤ z1
2 + z2

2 ≤ 2, (4.39)

1 ≤ z2 + z3 ≤ 2, (4.40)

z1
111, z

1
121, z

2
121, z

1
221, z

1
232, z

1
311, z

1
332 = 0/1, (4.41)

z1
1 , z

2
1 , z

1
2 , z

2
2 = 0/1, (4.42)

z1, z2, z3 = 0/1, (4.43)
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xij ≥ 0 (i = 1, 2, j = 1, 2, 3). (4.44)

Using GP, Model 4.P4 reduces to Model 4.P5 as follows:

Model 4.P5

minimize
0.5

300
(d+

1 + d−1 ) +
0.2

50
(d+

2 + d−2 ) +
0.3

20
(d+

3 + d−3 )

subject to Z1 = (7.5z1
111 + 8(1− z1

111))x11 + 8x12 +

(6.5z1
121z

2
121 + 7.5(1− z1

121)z2
121 + 8.4(1− z2

121)z1
121

+8.6(1− z1
121)(1− z2

121))x21 + 6.7x22 + 4.75x31 + 4.5x32,

Z2 = 1.0x11 + 0.5x12 + (1.2z1
221 + 2.7(1− z1

221))x21 + 1.1x22

+3.2x31 + (2.4z1
232 + 5(1− z1

232))x32,

Z3 = (0.6z1
311 + 0.7(1− z1

311))x11 + 0.8x12 +

0.5x21 + 1.5x22 + 0.9x31 + (2.5z1
332 + 1.5(1− z1

332))x32,

Z1 − d+
1 + d−1 = g1,

3000 ≤ g1 ≤ 3300,

Z2 − d+
2 + d−2 = g2,

800 ≤ g2 ≤ 850,

Z3 − d+
3 + d−3 = g3,

430 ≤ g3 ≤ 450,

d+
i ≥ 0, d−i ≥ 0 for i = 1, 2, 3,

and the constraints (4.32)− (4.44).

Using RMCGP, Model 4.P4 reduces to Model 4.P6 as follows:

Model 4.P6

minimize
0.5

300
(d+

1 + d−1 ) +
0.2

50
(d+

2 + d−2 ) +
0.3

20
(d+

3 + d−3 )

+
0.5

300
(e+

1 + e−1 ) +
0.2

50
(e+

2 + e−2 ) +
0.3

20
(e+

3 + e−3 )
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subject to Z1 = (7.5z1
111 + 8(1− z1

111))x11 + 8x12 +

(6.5z1
121z

2
121 + 7.5(1− z1

121)z2
121 + 8.4(1− z2

121)z1
121

+8.6(1− z1
121)(1− z2

121))x21 + 6.7x22 + 4.75x31 + 4.5x32,

Z2 = 1.0x11 + 0.5x12 + (1.2z1
221 + 2.7(1− z1

221))x21

+1.1x22 + 3.2x31 + (2.4z1
232 + 5(1− z1

232))x32,

Z3 = (0.6z1
311 + 0.7(1− z1

311))x11 + 0.8x12 +

0.5x21 + 1.5x22 + 0.9x31 + (2.5z1
332 + 1.5(1− z1

332))x32,

Z1 − d+
1 + d−1 = g1, g1 − e+

1 + e−1 = 3300, 3000 ≤ g1 ≤ 3300,

Z2 − d+
2 + d−2 = g2, g2 − e+

2 + e−2 = 800, 800 ≤ g2 ≤ 850,

Z3 − d+
3 + d−3 = g3, g3 − e+

3 + e−3 = 430, 430 ≤ g3 ≤ 450,

e+
i ≥ 0, e−i ≥ 0, d+

i ≥ 0, d−i ≥ 0, for i = 1, 2, 3,

and the constraints (4.32)− (4.44).

Using Conic Sclarization approach, we formulate the following model:

Model 4.P7

minimize
1

300
(0.5 + 0.15)d+

1 +
1

300
(0.15− 0.5)d−1 +

1

50
(0.2 + 0.15)d+

2

+
1

50
(0.15− 0.2)d−2 +

1

20
(0.3 + 0.15)d+

3 +
1

20
(0.15− 0.3)d−3

subject to −((7.5z1
111 + 8(1− z1

111))x11 + 8x12 +

(6.5z1
121z

2
121 + 7.5(1− z1

121)z2
121 + 8.4(1− z2

121)z1
121

+8.6(1− z1
121)(1− z2

121))x21 + 6.7x22 + 4.75x31 + 4.5x32)

−d+
1 + d−1 = g1, − 3300 ≤ g1 ≤ −3000,

1.0x11 + 0.5x12 + (1.2z1
221 + 2.7(1− z1

221))x21 + 1.1x22 +

3.2x31 + (2.4z1
232 + 5(1− z1

232))x32 − d+
2 + d−2 = g2,

800 ≤ g2 ≤ 850,

(0.6z1
311 + 0.7(1− z1

311))x11 + 0.8x12 + 0.5x21 + 1.5x22
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+0.9x31 + (2.5z1
332 + 1.5(1− z1

332))x32 − d+
3 + d−3 = g3,

430 ≤ g3 ≤ 450,

and the constraints (4.32)− (4.44).

Solving the models (Models 4.P5, 4.P6 and 4.P7) by LINGO software, we

derive the solutions given in Tables 4.5 and 4.6.

Table 4.5: Solutions for Example 4.2 by different methods.
Method Optimal Optimal Optimal Optimal Solution Choice Choice
(Model) Value Value Value of Demand of Supply

of Z1 of Z2 of Z3

GP 3000.0 800.0 450.0 x11 = 3.0, x12 = 168.4, 150 for THP, 175 for A,
(P5) x21 = 16.5, x22 = 98.5, 250 for OM 125 for B,

x31 = 174.5, x32 = 0 175 for C
RMCGP 3300.0 800.0 430.0 x11 = 32.45, x12 = 167.55, 220 for THP, 200 for A,
(P6) x21 = 53.33, x22 = 63.43, 250 for OM 125 for B,

x31 = 171.88, x32 = 0 175 for C
CSF 3300.0 800.0 425.0 x11 = 25.19, x12 = 174.81, 220 for THP, 200 for A,
(P7) x21 = 57.73, x22 = 56.45, 250 for OM 125 for B,

x31 = 173.76, x32 = 0.0 175 for C

Table 4.6: Choice of cost penalties in solutions for Example 4.2 by different

methods.
Method Choice of Cost penalties
GP C1

11 = 8, C1
12 = 8, C1

21 = 8.6, C1
22 = 6.7, C1

31 = 4.75, C1
32 = 4.5,

C2
11 = 1.0, C2

12 = 0.5, C2
21 = 2.7, C2

22 = 1.1, C2
31 = 3.2, C2

32 = 5,
C3

11 = 0.7, C3
12 = 0.8, C3

21 = 0.5, C3
22 = 1.5, C3

31 = 0.9, C3
32 = 2.5

RMCGP C1
11 = 8, C1

12 = 8, C1
21 = 8.6, C1

22 = 6.7, C1
31 = 4.75, C1

32 = 4.5,
C2

11 = 1.0, C2
12 = 0.5, C2

21 = 1.2, C2
22 = 1.1, C2

31 = 3.2, C2
32 = 5,

C3
11 = 0.6, C3

12 = 0.8, C3
21 = 0.5, C3

22 = 1.5, C3
31 = 0.9, C3

32 = 1.5
CSF C1

11 = 8, C1
12 = 8, C1

21 = 8.6, C1
22 = 6.7, C1

31 = 4.75, C1
32 = 4.5,

C2
11 = 1.0, C2

12 = 0.5, C2
21 = 1.2, C2

22 = 1.1, C2
31 = 3.2, C2

32 = 5,
C3

11 = 0.6, C3
12 = 0.8, C3

21 = 0.5, C3
22 = 1.5, C3

31 = 0.9, C3
32 = 1.5

According to the obtained solutions of Models 4.P5, 4.P6 and 4.P7, it is clear

that Conic Scalarization approach produces a better result than GP and RM-

CGP method. Also, we see that the number of auxiliary variables in Conic

Scalarization approach is half the number of variables in RMCGP method.

In this regard, we can say that Conic Scalarization approach is used to less

effort for solving MCMTP and any number of goals may be accommodated in

MCMTP.

Again, from last two columns of Table 4.5, it is seen that the selection of de-

mands and supply is different in GP and RMCGP or CSF technique which

creates a good effect in the solution for three objective functions satisfying
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the goals. Selection of multi-choice transportation parameters for optimal

solution is presented in Table 4.6. Under the consideration of multi-choice

transportation parameters in MOTP, it is seen that the profit of coal cost is

highly achieved in Example 4.2 whenever the other goals are also satisfactory

to the decision maker. Based on the solutions of our numerical examples, we

justify that Conic Scalarization function is a better approach to solve a real-

life MOTP involving multi-choice transportation parameters in comparison to

others.

4.4 Sensitivity analysis
The mathematical model of GP is a special structure of RMCGP model since

the value of αi = 0 in RMCGP model generates a GP model. GP tries to

optimize the goal values but it does not consider the goals properly for max-

imization or minimization problems, whereas RMCGP treats these goals as

the decision maker’s choices. Generally, RMCGP tries to improve the values

of objective functions from lower bounds to upper bounds in connection with

the interval goals, but CSF approach tries to improve the values of objective

functions from lower bounds to the efficient frontiers. So, RMCGP does not

guarantee an efficient solution, whereas CSF provides a more satisfactory so-

lution in “more is better” or “less is better” for an optimization problem. In

addition to this, an important aspect about the usage of RMCGP or CSF

in practice is that how can the values of the parameters αi in RMCGP for

i = 1, 2, . . . , n or β in CSF be determined practically. The values of the weights

wi for i = 1, 2, . . . , n, are assigned by the decision maker and these weights

are obtained by a Analytic Hierarchy Process, a Analytic Network Process,

a simple additive weighting method, etc. In our discussion, we take αi = wi

and wi=1/(total variation of the i-th goal), for i = 1, 2, . . . , n. After that, the

value of the parameter β will be interactively determined by considering the

decision maker’s preferences. Considering different values of β in CSF, the de-

cision maker can get an efficient solution according to the desired utility value

of the objective functions. The decision maker may want to change the initial
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range of interval goals and the initial values of parameters due to a certain

effect of learning after an efficient solution is obtained.

4.5 Conclusion
In this chapter, we have considered a multi-choice multi-objective transporta-

tion problem, where the cost, demand and supply parameters are of multi-

choice types. Another important notion of this study is to incorporate the

goal preferences of the decision maker. We have proposed this concept for

the first time to solve multi-choice multi-objective transportation problem by

employing the Conic Scalarization approach with less number of variables and

with minimum computational burden. The MCMTP is given a new direction

to handle the real-life multi-objective transportation problem when the trans-

portation parameters are multi-choices in nature. Two numerical examples are

presented in this chapter to explore the applicability and suitability of our ap-

proach for solving MOTP and MCMTP with consideration of decision maker

preferences. In addition, the proposed method can be used as a decision mak-

ing aid for multi-choice multi-objective decision making problems from real-life

situations like economical, agricultural, industrial management, etc.

The notion of multi-choice parameters can also be used in real-world supply

chain management problems. In that context, the number of variables in-

creases in GP or RMCGP but in Conic Scalarization approach, the proposed

method allows for a better solution satisfying all the goals; consequently, the

decision maker can take a proper decision under a multi-choice environment

of multi-objective transportation problem.
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Chapter 5

Cost and Time Minimizing
Transportation Problem∗

Time is an important factor in real-life MOTPs. Considering this fact, in this

chapter, we introduce the study of minimizing cost and time through single ob-

jective function in the light of multi-choice environment with interval analysis.

The parameters of transportation problem follow multi-choice interval valued

type so this form of TP is called Multi-Choice Interval Transportation Problem

(MCITP). A procedure is shown for converting from MCITP to deterministic

TP and then we solve it. Finally, a case study is presented to illustrate the

usefulness of the discussion.

5.1 Introduction
Transportation problem was mainly developed to reduce the transportation

cost in earlier days. Nowadays decision making problems like fixing of cost of

goods, profit for sellers, taking decisions for real-life multiple objectives etc.

are guided by TP and the classical TP has been taken into account in different

mathematical models. In this study, the classical TP has been designed under

the environment of multi-choice and interval programming. Minimizing the

transportation cost is not only the main issue in this chapter but also time

minimizing during transportation (for delivering the goods) is another impor-
∗A part of this chapter has published in Journal of Intelligent & Fuzzy Systems,

IOS press, SCIE, IF. 1.004.
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tant issue. At present, in the competitive market scenario, transportation cost

and time both need to minimize in business economy, mostly it is needed in

case of transporting perishable goods. The basic difference between the cost

and the time minimizing transportation problem is that the transportation

cost is highly related with how much amount of goods delivered whereas in the

transportation time, this is not so.

The classical transportation problem can be described to a special case of lin-

ear programming problem and its model is applied to determine how many

units of commodity of goods to be shipped from each origin to various desti-

nations, satisfying supply and demand constraints, while it optimizes total cost

of transportation. The transportation cost, amount of goods available at the

supply points and the amounts required at the demand points are the param-

eters in the transportation problem. In earlier days, transportation problem

was developed with the assumption that the supply, demand and cost param-

eters are exactly known. But in real-life applications, all the parameters of the

transportation problem are not generally defined precisely. There may have

some situations where several routes are available for transporting the goods of

TP. In several routes, different costs may exist for transporting the goods. In

this consideration, the transportation cost becomes multi-choice type. Again,

when the transportation cost are tagged with the cost of perishable goods then

it may not be said precisely as a fixed value to treat in simply TP. It may have

a value lies in an interval [a,b]. Similar consideration may be taken for supply

and demand parameters in TP of this chapter. Keeping this point of view,

this chapter is designed with these parameters of transportation problem as

multi-choice interval valued type.

In presence of multi-choice interval valued cost, demand and supply; trans-

portation problem becomes a Multi-Choice Interval Transportation Problem

(MCITP). An MCITP cannot be solved directly unless it converts into deter-

ministic form. To reduce MCITP into a Multi-Choice Transportation Problem

(MCTP), at first, the parameters are introduced in a multi-choice interval TP

such that, these multi-choice intervals reduce to simply multi-choice trans-
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portation problem. Again, to convert this multi-choice numbers, we use a

general transformation technique with the help of binary variables in such a

way that it changes into a deterministic TP.

A special emphasis of this chapter is that, the reduction of interval cost to

a real number is made by a parameter which is a function of transportation

time. We consider the parameter λ which depends on time as follows:

λ =

{
0, if t < t0
t−t0
t
, if t ≥ t0

where t0 is the range period of transportation time as per decision maker,s

choice and t is the actual time of transportation. Clearly, λ is an increasing

function of time. If the delivery of goods made within the range period then

the minimum transportation cost is a which belongs to an interval cost [a, b]

otherwise the transportation cost (Cij) becomes Cij = a(1− λ) + λb.

It is cleared from the relation i.e., Cij = a(1− λ) + λb that Cij takes the min-

imum value when λ tends to zero. As λ is an increasing function in time, so

it tends to the minimum value when time of transportation goes to minimum

time. Thus, if we wish to minimize the value of Cij then value of λ will also

minimize and vice-versa.

Different techniques have been proposed to solve TP with single or multi-

objective environment by several researchers. But, up-to-date, no specific

method is available to determine optimal time and cost for transportation

problem through single objective function. So, the main aim of this chapter is

as follows:

• We propose a new way in which time and cost both are minimized

through single objective transportation problem.

• The study of proposed TP which involves the multi-choice interval valued

cost, supply and demand parameters.
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5.2 Mathematical model
A general transportation problem is a typical problem where the main objective

is to minimize the transportation cost and is defined as follows:

Model 5.1

minimize Z =
m∑
i=1

n∑
j=1

Cijxij (5.1)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m), (5.2)

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n), (5.3)

xij ≥ 0, ∀ i and j (5.4)

where Cij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) is the transportation cost per unit

commodity from the ith origin to the jth destination. Here ai (i = 1, 2, . . . ,m)

and bj (j = 1, 2, . . . , n) are availability and demand in the ith origin and the

jth destination respectively and
∑m

i=1 ai ≥
∑n

j=1 bj is the feasibility condition.

Due to some unstable situations of market or for the cause of special discount

to the customers in business ground, there may exist some cases where the

cost parameter per unit commodity in transportation problem is not a crisp

value but it may lie in an interval. When the discount is offered to the cus-

tomers, then it may not be guessed the actual price for the goods to be sold

in the market and in that case, if we wish to fix the cost of goods then, it may

again lie in an interval. Again, due to multiple routes of the transportation,

the cost parameters consider multi-choice types. Also, the supply in the origin

and demand in the destination may not be fixed always. Due to weather con-

dition, variation in share market or unpredictable expectation in the market

etc., both the purchaser and the supplier predict the amount of buying and

selling goods, so it becomes interval-valued type.

So, on the basis of these phenomenons, we consider the parameters of TP as

multi-choice interval valued type and then the corresponding mathematical
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model is defined as follows:

Model 5.2

minimize Z =
m∑
i=1

n∑
j=1

(C̃1
ij or C̃

2
ij or . . . or C̃

k
ij)xij (k = 1, 2, . . . , K)

subject to
n∑
j=1

xij ≤ (ã1
i or ã

2
i or . . . or ã

p
i ) (i = 1, 2, . . . ,m), (5.5)

m∑
i=1

xij ≥ (b̃1
jor b̃

2
j or . . . or b̃

q
j) (j = 1, 2, . . . , n), (5.6)

xij ≥ 0, ∀ i and j. (5.7)

Here the multi-choice parameters C̃k
ij, ã

p
i , b̃

q
j are interval numbers and these are

defined as C̃k
ij = [Ckl

ij , C
ku

ij ], ãpi = [ap
l

i , a
pu

i ], b̃qj = [bq
l

j , b
qu

j ] and then the feasibility

condition is changed into∑m
i=1 maxpu(a1u

i , a
2u

i , · · · , a
pu

i ) ≥
∑n

j=1 minql(b1l

j , b
2l

j , · · · , b
ql

j ).

The feasibility condition may be defined in different ways according to decision

maker’s choice. Here, we provide the largest possible feasible region in our

proposed model.

In TP, time of transportation, especially for transporting the perishable goods,

it is an important factor. Again, due to multiple routes of transportation, the

transportation time is also multi-choice which is available to the DM. Keeping

this point of view, we construct an another objective function to minimize the

transportation time as follows:

minimize T =
m∑
i=1

n∑
j=1

(T 1
ij or T

2
ij or . . . or T

k
ij)χij,

where χij =

{
0, if xij = 0
1, if xij 6= 0

subject to the constraints (5.5)− (5.7).

Here, T kij is the time of transporting the goods from i-th node to j-th destina-

tion corresponding to k-th route of transportation problem described in Model

5.2.

Hence, in our proposed model, we introduce bi-objective function and both
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are to be minimized and is defined as follows (see Model 5.2A):

Model 5.2A

minimize Z =
m∑
i=1

n∑
j=1

(C̃1
ij or C̃

2
ij or . . . or C̃

k
ij)xij (5.8)

minimize T =
m∑
i=1

n∑
j=1

(T 1
ij or T

2
ij or . . . or T

k
ij)χij (5.9)

subject to the constraints (5.5)− (5.7).

Most of the researchers solved the bi-objective problem and they obtained

the compromise solutions by solving both the objective functions or applying

methodologies on both objective functions. Here, we propose a function to re-

duce the interval in such a way that the solution of the first objective function

Z provides the solution of itself and also the solution of the second objective

function T . The procedure to find compromise solution for the objective func-

tions Z and T by solving the objective function Z has been discussed in details

in the next section.

5.3 Solution procedure
The mathematical model of transportation problem has been described in this

chapter (see Model 5.2) cannot be solved directly due to present of multi-

choice interval valued parameters. So, at first we reduce the problem into a

deterministic TP. We develop a function which depends on time and it values

lie in the interval [0, 1] and this has been used to reduce the interval valued cost

parameter to real valued parameter. The interval valued supply and demand

parameters are also converted to real numbers by using parameters which is

not necessarily depend on time. This procedure is depicted in subsection 5.3.1

in this chapter. After that multi-choice cost, demand and supply parameters

without interval valued are handled to select a particular choice with the help

of a suitable transformation which is discussed in the second subsection. In

the last subsection, an algorithm is presented to solve the proposed TP.
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5.3.1 Reduction of interval into real number using pa-
rameter

In our proposed Model 5.2, the transportation costs are multi-choice types

and again each choice is of interval type i.e., C̃k
ij = [Ckl

ij , C
ku

ij ], it means that

there are some reasons for which the cost may take any value in the prescribed

interval. Let us consider a parameter which depends on time. Let t0 be the

time assigned by the decision maker as minimum range period. If the delivery

occurred within the minimum range period then the minimum transporting

cost Ckl

ij have to be paid. Due to delay of delivery the product, the cost

becomes C̃k
ij = Ckl

ij (1 − λCkij) + Cku

ij λ
Ckij . Here λC

k
ij is a parameter for each k

such that

λC
k
ij =

{
0, if T kij < t0
Tkij−t0
Tkij

, if T kij ≥ t0
(5.10)

where T kij is delivery time, then λC
k
ij is an increasing function of time.

Proposition 5.1:

The cost component C̃k
ij attains minimum value when transportation time in

k-th route for i-th origin to j-th destination tends to the minimum value and

conversely.

Proof : The interval valued cost [Ckl

ij , C
ku

ij ] in k-th route for i-th origin to j-th

destination has been made to a real valued cost C̃k
ij by the following way:

C̃k
ij = Ckl

ij (1−λCkij)+Cku

ij λ
Ckij . The value of C̃k

ij tends to minimum value as λC
k
ij

tends to zero. Here λC
k
ij is a function of time T kij as stated in equation (5.10).

From equation (5.10) it is clear that λC
k
ij tends to the minimum value as the

transportation time T kij tends to the fixed time t0 which is assigned by DM.

Therefore, C̃k
ij tends to its minimum value as the transportation time T kij tends

to t0; i.e., the cost component C̃k
ij attains minimum value when transportation

time in k-th route for i-th origin to j-th destination tends to the minimum

value.

Conversely, when the transportation time in k-th route for i-th origin to j-

th destination tends to the minimum value then the equation (5.10) suggests

that λC
k
ij tends to zero and then C̃k

ij tends to the minimum value Ckl

ij . This
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completes the proof of the proposition.

Decision maker can also choose the function according to his choice, but it

should be time dependent as per our consideration in this chapter.

Again, the supply ãpi (= [ap
l

i , a
pu

i ]) and demand b̃qj(= [bq
l

j , b
qu

j ]) parameters are

also multi-choice types and the choices are considered as interval numbers. To

reduce the interval numbers into real numbers, we have introduced the param-

eters within these and as a result, these reduce to ãpi = ap
l

i (1−λa
p
i )+ap

u

i λ
api and

b̃qj = bq
l

j (1− λb
q
j ) + bq

u

j λ
bqj . Here λa

p
i and λb

q
j are the parameters not necessarily

related to time, may be linear or stochastic or fuzzy depends upon the choice

of decision maker.

Transformation of multi-choice parameters like cost, supply and de-

mand to the equivalent form

When there are multiple choice of parameters such as cost, supply and demand,

we should select a single choice satisfying supply and demand restrictions. The

selection of choices should be done in such a way that the whole problem to

be optimized. Introduction of binary variables is an important concept to se-

lect the choice from the problem. Using the general transformation technique

described in subsection 2.3.1 of Chapter 2, we get the following results:

Let,C̃
′

ij =
t∑

g=1

(term)g
[
Cgl

ij (1− λC
g
ij) + Cgu

ij λ
Cgijαc

]
∀ i, j, (5.11)

where (term)g (for g = 1, 2, . . . , t) are the t number of terms in the functions

of the binary variables mentioned in above. Similarly,

ã
′

i =

p∑
g=1

(term)g
[
ag

l

i (1− λa
g
i ) + ag

u

i λ
agi

]
(i = 1, 2, . . . ,m),(5.12)

and b̃
′

j =

q∑
g=1

(term)g
[
bg
l

j (1− λb
g
j ) + bg

u

j λ
bgj

]
(j = 1, 2, . . . , n). (5.13)

5.3.2 Algorithm for solving TP with minimizing time and
cost

Model 5.2A consists of two objective functions, namely transportation cost

(Z) and transportation time (T ) and both of them are to be minimized by
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optimizing the objective function Z only. To find the solution of bi-objective

optimization problem (see Model 5.2A), we consider an algorithm whose steps

are as follows:

Algorithm

Step 1: At first, we include the time of transportation into the interval-valued

transportation cost parameter of the objective function Z in such a way that

when objective function Z is minimized then both the objective functions Z

and T are optimized. To do this, we change the interval-valued multi-choice

cost parameters of the objective function Z of TP from Model 5.2A to simply

multi-choice cost parameters of TP using the procedure described in subsection

5.3.1.

Step 2: Thereafter, we select the particular choice of cost parameters from

the multi-choice costs using the procedure described in subsection 5.3.1 and

the same procedure can also be applied for multi-choice supply and demand

constraints of the proposed problem. Finally, we design the mathematical

model without considering the objective function T (see Model 5.3) as follows:

Model 5.3

minimize Z =
m∑
i=1

n∑
j=1

C̃
′

ijxij

subject to
n∑
j=1

xij ≤ ã
′

i (i = 1, 2, . . . ,m),

m∑
i=1

xij ≥ b̃
′

j (j = 1, 2, . . . , n),

xij ≥ 0, ∀ i and j.

Here C̃ ′ij, ã
′
i and b̃

′
j are obtained as given in equations (5.11)-(5.13).

Step 3: Solve Model 5.3 (which is a non-linear TP) and report the optimum

solution which is denoted asX∗, and the optimal value of the proposed problem

with the selection of single choice of cost parameter from multi-choice cost

parameters.

Step 4: The optimal solution X∗ is obtained through the choice of C̃k
ij, so the
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minimum transportation time T is calculated by

minimize T =
m∑
i=1

n∑
j=1

T kijχij, where χij =

{
0, if xij = 0 in X∗

1, if xij 6= 0 in X∗

Here, T kij is the time of transportation from i-th node to j-th destination cor-

responding to k-th path.

• Remark 5.1: Model 5.3 is designed based on our proposed study, whose

optimal solution produces the optimum cost and time of the bi-objective

transportation problem. The proposed Model contains withm·n decision

variables (xij) along with the reduction parameters and binary variables.

In our proposed bi-objective optimization problem, the time of trans-

portation for each of the routes are considered as crisp valued, so the

multi-choice interval-valued cost parameters reduces simply real-valued

multi-choice parameters without any additional variables. Therefore, the

objective function Z of Model 5.3 involves decision variables xij and bi-

nary variables zkij (it is required to reduce multi-choice cost parameters

to real-valued parameters) only. The number of binary variables for each

cell of allocation depends on number of multi-choice parameters which

are available in the respective cell (it is described in the first paragraph of

subsection 5.3.2). The constraints of Model 5.3 are presented in reduced

form involving reduction variables (λ∗, ∗ = Cg
ij, a

g
i , b

g
j ) and binary vari-

ables. As a whole, Model 5.3 is a non-linear constrained optimization

problem which can be solved by any non-linear optimization technique.

But, in a real-life TP, the number of variables increases significantly

in our proposed ground. So, one can consider softwares like LINGO,

MATLAB, MAPLE, etc. to solve the proposed Model 5.3. However, we

consider LINGO to solve it.

• Remark 5.2: Sometimes, it is required to reduce the number of variables

in a problem to make a small equivalent problem which is very easy to

solve it. But, in this study, if we wish to reduce the number of variables,
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then we might loose some data from the set of interval-valued multi-

choice cost, supply and demand parameters. As a result, we deviate the

main motivation of our formulated model in connection with the real-

life TP. Again, if it is done arbitrarily, then DM may not obtain a better

optimal solution all time, that we describe in detail to the section “Result

and discussion”, according to our case study.

Proposition 5.2:

The optimal solution of mathematical model (see Model 5.3) proposes a com-

promise solution of the objective functions Z and T of Model 5.2A.

Proof: Introduction of time in TP proposes that, the time taken for the trans-

portation creates a situation of less profit and this is happen for the case of

transportation of perishable goods. Here, in the proposed model, we state that,

if the transportation involves in time then the cost C̃ ′ij takes the minimum cost

Ckl

ij corresponding the k-th route for i-th origin to j-th destination. The delay

time generates a damage of perishable goods which produces less profit. And

in the mean time, the function λC
k
ij which reduced the interval cost to real val-

ued cost for increasing the transportation cost to a cost C̃ ′ij (see Proposition

5.1). Also, both the objective functions Z and T have the same feasible region.

Clearly, the objective function Z gets the minimum value by Model 5.3 when

C̃
′
ij = mink C

kl

ij and it is happen when λC
k
ij = 0 ∀ i, j and denoting this

solution be X1. Again, the objective function T can be solved separately form

Z and produces the optimal solution and denoting this solution be X2. Most

of the cases, it happens that neither at X1 nor at X2, the optimum value of the

objective functions Z and T exist. So, DM needs to find compromise solution

and the solution depends on the weight preferences for the objective functions.

In this situation, we propose to increase the transportation cost (as it is given

by an interval valued) according to the increase of time (see Proposition 5.1).

For minimum value of Z, the reduced cost C̃ ′ij is to be minimized for all nodes

(i, j). By Proposition 5.1, it is clear that the objective function T (see Step

4 of Algorithm in subsection 5.3.2) produces a minimum value. Hence, the
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optimal solution of Model 5.3 proposes a compromise solution of the objective

functions Z and T . This shows the proof of the proposition.

• Remark 5.3: Using the reduction procedure and utilizing the Proposi-

tions 5.1 and 5.2, we incorporate time in the objective function of Model

5.3. So, we conclude that the transportation time is minimized in Step 4

of Algorithm in subsection 5.3.2, through the optimum solution of Model

5.3.

5.4 Case study
The transportation of perishable goods like vegetables, fruits, fishes, etc. is

very related with time. When we transport these perishable goods, it is not

so easy to fix the cost as well as the way of transportation when there exist

several routes. In order to show the applicability of this chapter, let us include

the following case study.

A store keeper has three stores in different places namely S1, S2 and S3 of

vegetables items. He supplies the vegetables from four popular markets in

different places namelyM1,M2,M3 andM4. There are several routes to deliver

the goods to the markets and the transportation costs (in $) in each route are

interval valued multi-choice types (these are considered due to increasing the

fuel price, road tax etc.) which are presented in Table 5.1. To transport the

goods, times (in minutes) are also prescribed for each route which is provided

in Table 5.1 adjacent to the right of interval valued multi-choice cost.

Table 5.1: Transportation cost (in $) and time (in minute) for transporting

the goods.
M1 M2 M3 M4

S1 [10,20] 230, [12,18] 180 [20,25] 240, [18,22] 200, [12,20] 280 [23,28] 220, [20,24] 220,
[22,24] 220 [22,26] 240

S2 [12,20] 220, [11,17] 230, [22,25] 220, [14,23] 210, [14,20] 300, [20,28] 220, [22,24] 210,
[20,24] 200 [20,24] 230 [15,20] 200 [21,26] 230,[14,20] 480,

[16,20] 210
S3 [15,20] 210, [16,18] 180 [20,25] 240, [22,24] 170, [18,20] 210, [22,28] 230,[24,26] 250

[20,24] 250 [12,20] 280

Again, the store keeper may have more options for collecting vegetables from

the dealers of different locations and each of the dealers has some capacity
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of supplying vegetables. In that case, he has the several options for stor-

ing the goods in the origins and the supply becomes interval valued. Also,

due to weather conditions, fluctuation in the market, the demands are also

taken as multi-choice interval valued. The interval valued multi-choice capac-

ities in the stores Si (i = 1, 2, 3) are a1 = [50, 70], a2 = ([45, 70] or [50, 60]),

a3 = ([40, 50] or [50, 60] or [45, 65] or [55, 60]) and same for the demand pa-

rameters to the markets Mj (j = 1, 2, 3, 4) are b1 = ([60, 65] or [50, 60]),

b2 = ([40, 45] or [50, 55] or [48, 60]), b3 = [60, 80], b4 = ([55, 75] or [60, 70]).

He expects that the goods will not be deteriorated within 200 minutes. He

wishes to minimize the transportation cost with less deterioration with the

consideration of total transportation time. The mathematical model is formu-

lated corresponding to available data as follows:

minimize z = ([10, 20] or [12, 18])x11 + ([20, 25] or [22, 24])x12 + ([18, 22]

or [12, 20])x13 + ([23, 28] or [20, 24] or [22, 26])x14 + ([12, 20]

or [11, 17] or [20, 24])x21 + ([22, 25]or[20, 24])x22 + ([14, 23]

or [14, 20] or [15, 20])x23 + ([20, 28] or [22, 24] or [21, 26] or [14, 20]

or [16, 20])x24 + ([15, 20] or [16, 18])x31 + ([20, 25] or [20, 24])x32

+([22, 24] or [18, 20] or [12, 20])x33 + ([22, 28] or [24, 26])x34(5.14)

subject to
4∑
j=1

x1j ≤ [50, 70], (5.15)

4∑
j=1

x2j ≤ ([45, 70] or [50, 60]), (5.16)

4∑
j=1

x3j ≤ ([40, 50] or [50, 60] or [45, 65] or [55, 60]), (5.17)

3∑
i=1

xi1 ≥ ([60, 65] or [50, 60]), (5.18)

3∑
i=1

xi2 ≥ ([40, 45] or [50, 55] or [48, 60]), (5.19)
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3∑
i=1

xi3 ≥ [60, 80], (5.20)

3∑
i=1

xi4 ≥ ([55, 75] or [60, 70]), (5.21)

xij ≥ 0, i = 1, 2, 3 and j = 1, 2, 3, 4.

Using the procedure described in subsection 5.3.3, the objective function (5.14)

is reduced as follows:

Model 5.4

minimize

z = C11x11 + C12x12 + C13x13 + C14x14 + C21x21 + C22x22

+ C23x23 + C24x24 + C31x31 + C32x32 + C33x33 + C34x34,

where

C11 = [10(1− λ1
11) + 20λ1

11]z1
11 + [12(1− λ2

11) + 18λ2
11](1− z1

11),

C12 = [20(1− λ1
12) + 25λ1

12]z1
12 + [22(1− λ2

12) + 24λ2
12](1− z1

12),

C13 = [18(1− λ1
13) + 22λ1

13]z1
13 + [12(1− λ2

13) + 20λ2
13](1− z1

13),

C14 = [23(1− λ1
14) + 28λ1

14]z1
14z

2
14 + [20(1− λ2

14) + 24λ2
14]

(1− z1
14)z2

14 + [22(1− λ3
14) + 26λ3

14](1− z2
14)z1

14,

C21 = [12(1− λ1
21) + 20λ1

21]z1
21z

2
21 + [11(1− λ2

21) + 17λ2
21]

(1− z1
21)z2

21 + [20(1− λ3
21) + 24λ3

21](1− z2
21)z1

21,

C22 = [22(1− λ1
22) + 25λ1

22]z1
22 + [20(1− λ2

22) + 24λ2
22](1− z1

22),

C23 = [14(1− λ1
23) + 23λ1

23]z1
23z

2
23 + [14(1− λ2

23) + 20λ2
23]

(1− z1
23)z2

23 + [15(1− λ3
23) + 20λ3

23](1− z2
23)z1

23,

C24 = [20(1− λ1
24) + 28λ1

24]z1
24z

2
24z

3
24 + [22(1− λ2

24) + 24λ2
24](1− z1

24)

z2
24z

3
24 + [21(1− λ3

24) + 26λ3
24](1− z2

24)z1
24z

3
24 + [14(1− λ4

24) + 20λ4
24]

(1− z3
24)z1

24z
2
24 + [16(1− λ5

24) + 20λ5
24](1− z1

24)(1− z2
24)z3

24,

C31 = [15(1− λ1
31) + 20λ1

31]z1
31 + [16(1− λ2

31) + 18λ2
31](1− z1

31),

C32 = [20(1− λ1
32) + 25λ1

32]z1
32 + [20(1− λ2

32) + 24λ2
32](1− z1

32),
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C33 = [22(1− λ1
33) + 24λ1

33]z1
33z

2
33 + [18(1− λ2

33) + 20λ2
33]

(1− z1
33)z2

33 + [12(1− λ3
33) + 20λ3

33](1− z2
33)z1

33,

C34 = [22(1− λ1
34) + 28λ1

34]z1
34 + [24(1− λ2

34) + 26λ2
34](1− z1

34),

1 ≤ z1
14 + z2

14 ≤ 2, 1 ≤ z1
21 + z2

21 ≤ 2,

1 ≤ z1
23 + z2

23 ≤ 2, 1 ≤ z1
24 + z2

24 + z3
24 ≤ 3,

1 ≤ z1
24 + z3

21, 1 ≤ z2
24 + z3

24,

1 ≤ z1
33 + z2

33 ≤ 2,

zkij = 0 or 1, i = 1, 2, 3; j = 1, 2, 3, 4; k = 1, 2, 3.

λ1
11 =

3

23
, λ2

11 = 0, λ1
12 =

4

24
, λ2

12 =
2

22
,

λ1
13 = 0, λ2

13 =
8

28
, λ1

14 =
2

22
, λ2

14 =
2

22
,

λ3
14 =

4

24
, λ1

21 =
2

22
, λ2

21 =
3

23
, λ3

21 = 0,

λ1
22 =

2

22
, λ2

22 =
3

23
, λ1

23 =
1

21
,

λ2
23 =

10

30
, λ3

23 = 0, λ1
24 =

2

22
, λ2

24 =
1

21
,

λ3
24 =

3

23
, λ4

24 =
28

48
, λ5

24 =
5

25
, λ1

31 =
1

21
,

λ2
31 = 0, λ1

32 =
4

24
, λ2

32 =
5

25
, λ1

33 = 0,

λ2
33 =

1

21
, λ3

33 =
8

28
, λ1

34 =
3

23
, λ2

34 =
5

25


The equations (5.15)-(5.21) are also reduced to deterministic form in the same

way as before and are listed as follows:

4∑
j=1

x1j ≤ [50(1− λ1
1) + 70λ1

1],

4∑
j=1

x2j ≤ [45(1− λ1
2) + 70λ1

2]z1
2 + [50(1− λ2

2) + 60λ2
2],

4∑
j=1

x3j ≤ [40(1− λ1
3) + 50λ1

3]z1
3z

2
3 + [50(1− λ2

3) + 60λ2
3](1− z1

3)z2
3 + [45

(1− λ3
3) + 65λ3

3](1− z2
3)z1

3 + [55(1− λ4
3) + 60λ4

3](1− z2
3)(1− z1

3),
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3∑
i=1

xi1 ≥ [60(1− λ1) + 65λ1]z1 + [50(1− λ2) + 60λ2](1− z1),

3∑
i=1

xi2 ≥ [40(1− λ3) + 45λ3]z2z3 + [50(1− λ4) + 55λ4](1− z2)z3

+[48(1− λ5) + 60λ5](1− z3)z2,
3∑
i=1

xi3 ≥ [60(1− λ6) + 80λ6],

3∑
i=1

xi4 ≥ [55(1− λ7) + 75λ7]z4 + [60(1− λ8) + 70λ8](1− z4),

0 ≤ z1
3 + z2

3 ≤ 2, 1 ≤ z2 + z3 ≤ 2,

ztj = 0 or 1, j = 1, 2, 3; t = 1, 2, 3,

zs = 0 or 1, s = 1, 2, 3, 4,

0 ≤ λtj ≤ 1, j = 1, 2, 3; t = 1, 2, 3,

0 ≤ λs ≤ 1, s = 1, 2, . . . , 8,

xij ≥ 0, i = 1, 2, 3; j = 1, 2, 3, 4.

Here, we solve the problem by LINGO software to compute the compromise

solution which is presented in the next section including a discussion.

5.5 Result and discussion
Solving Model 5.4 using LINGO software, we have described the optimal so-

lution in Table 5.2. The minimum cost Z is $3077.223.

Table 5.2: Optimum value of decision variables.
Variables x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34
Values 50 0 20 0 0 15 0 55 0 25 40 0
of Ckij

For the minimum value of the transportation cost, the selected cost coefficients

among the multi-choice cost coefficients corresponding to the decision variables

are obtained and is shown in Table 5.3.
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Table 5.3: Selected cost for transporting the goods.
x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34

Values 11.3 20.83 14.29 20.36 11.78 20.52 14.43 16.19 15.23 20.79 14.28 22.78
of Ckij

The allocations are made corresponding to the following routes for x11 along

[10,20] 230, x13 along [12,20] 280, x22 along [20,24] 230, x24 along [16,20] 210,

x32 along [20,24] 250, x33 along [12,20] 280, where the numbers followed by the

intervals denote the transportation time. The time of transportation for the

required items is T = (230 + 280 + 230 + 210 + 250 + 280) minutes=1480 min-

utes. The best choices from interval valued supply and demands for the origins

and destinations respectively are as follows: a1 = [50, 70], a2 = [45, 70], a3 =

[45, 60], b1 = [50, 60], b2 = [40, 45], b3 = [60, 80], b4 = [55, 75].

The obtained solution shows that allocation is made in the cell (2, 4) and the

path selected for the allocation is [16, 20]210 and the corresponding cost is

$16.19. There is an another route in which the assigned cost is [14, 20]480.

If the time of transportation is not considered in the problem then the DM

would select this route ([14, 20]480) for transporting the goods as the minimum

transportation cost in this route is $14. Because of transportation time, the

transportation cost is increased to $17.5 and this would have increased the

total transportation cost. So, a confusing case occurs to take the decision by

the DM for selecting routes of transportation. In this chapter, the proposed

model removes the complexities for selecting the routes with the minimum

transportation cost and time.

Our proposed methodology is not comparable directly with any other exist-

ing techniques for solving MOTP like fuzzy programming, weighting method,

goal programming, etc. One can wish to compare our technique with existing

methodology for solving MOTP like fuzzy programming, weighting method,

goal programming, etc. He/She should have to consider some assumptions to

formulate the mathematical model for given bi-objective TP. To justify the ef-

fectiveness of our proposed methodology, assuming that minimum transporta-

tion cost is to be paid if the selected multi-choice route takes the maximum time

among the routes corresponding the node. If the route is chosen which takes
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minimum time of transportation among the routes then it produces maximum

transportation cost regarding that route which indicates the upper bound of

interval cost. Under this assumption, we have solved the bi-objective problem

then we have obtained the following results:

The minimum transportation cost is $2790.00 and time of transportation for

this is 1710 minutes. Again considering the time minimization for the objective

function then minimum time of transportation is 1250 minutes, corresponding

cost of transportation is $4265.00.

Now to justify that obtained solution of our proposed methodology is a better

solution, let us introduce a utility function in the form

f(g) = w1
Z̄−Z
Z̄−Z + w2

T̄−T
T̄−T , where Z̄ =Value of Z when transportation time is

minimum, T̄ =Value of T when transportation cost is minimum, Z= Minimum

transportation cost, T= Minimum transportation time, Z and T are the values

of the cost and time to the objective functions by our proposed methodology,

w1 and w2 are weights for the objective functions. The value of function f lies

between 0 and 1. The bigger value of f proposes a better compromise solu-

tion of the bi-objective TP. Considering the equal weights 0.5 for the objective

functions, we get f(g) = 0.66. This value suggests that the obtained solution

is provided a better compromise solution.

5.6 Conclusion
The main aim of this chapter is to minimize the transportation cost as well

as minimize the transportation time for transporting the perishable goods

through single objective TP under the environment of multi-choice interval

valued programming. Until now, researchers have used the methodology of

multi-objective transportation problem to optimize the transportation cost

and time but in this chapter, we have optimized the transportation cost and

time without using multi-objective TP. Here we have considered the single

objective transportation problem in which the parameters are interval valued

multi-choice types. To solve this type of transportation problem, our method-

ology is provided a correct direction for getting the fruitful optimal solution.
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5.6. Conclusion

Again, when there are several routes with varying costs, the decision maker

can use the proposed methodology to solve this type of transportation prob-

lem which is presented in this chapter. To show the reality and feasibility of

the proposed study, a case study is considered to analyze the situation. The

proposed methodology may be used to solve time-cost trade off transportation

problem in multi-objective environment when the parameters incorporate the

uncertain type of data.
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Chapter 6

Transportation Problem Under
Fuzzy Decision Variable∗

In usual way, fuzzy programming in OP is used to solve multi-objective opti-

mization problems. In this chapter, we introduce the concept of fuzzy decision

variable into the fuzzy transportation problem to solve some complicated real-

life decision making problems. This chapter consists of two parts. In the

first part, the study on transportation problem under fuzzy decision variable

is presented and in the last, the study of TP under fuzzy decision variable is

extended into multi-objective environment.

6.1 TP under fuzzy decision variable
In this part, a new formulation of mathematical model of Fuzzy Transporta-

tion Problem (FTP) with fuzzy goal to the objective function is designed.

After that, the solution technique of the proposed model is included through

multi-choice goal programming approach. The proposed approach is not only

improved the applicability of goal programming in real world situations but is

also provided useful insight about the solution of a new class of the TP. Finally,

a real-life example is incorporated to analyze the feasibility and usefulness of

this study.

∗One part of this chapter has accepted for publish in International Journal of Op-
erations Research and Information Systems (IJORIS), IGI Global, Info-SCI, Vol 8,
No. 2; Another part of this chapter is submitted in International Journal.
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6.1.1 Introduction

At the beginning, fuzzy set theory is considered as a tool to solve optimization

problems [Zadeh (166)]. Basically, the concept of fuzzy numbers is introduced

in the transportation parameters (cost, supply and demand) to make it a fuzzy

TP. To the best of our knowledge, the notion of decision variable in TP as a

fuzzy variable has not available in the literature. We consider that the expec-

tations in the destinations of TP are fuzzy numbers and they are taken as fuzzy

goals. In the destinations, there are multi-choice fuzzy expectations. In this

situation, decision maker would have to take a decision for supplying goods in

such a way that the profit would maximize, with the best possible fulfillment

of requirement at the destinations. Again, it is not true that in a TP at each

node there is an allocation, it depends on the best fit of the problem. In this

case, when there is no need of allocation in a cell, then we assign a crisp goal ‘0’

with high priority value. In our proposed TP, the requirement in the allocated

cells are one among a multi-choice fuzzy numbers along with ‘0’. With this

assumption, we design a TP whose decision variables are fuzzy. This situation

of decision making problem is solved using the multi-choice goal programming

approach.

But many situations occur where goal is taken in favor of DM for the outcome

of objective function to find the best fitted goal in decision making problem.

Here, we describe a situation where the decision maker prefers the goals for

allocation as well as the best outcome according to his/her choice.

The main aim of the first part of this chapter is to formulate the Fuzzy Trans-

portation Problem (FTP) where the decision variables are multi-choice fuzzy

goals and the objective function has also a fuzzy goal. The methodology for

solving the formulated model and the way of selection of optimum goal corre-

sponding to the objective function are introduced with the help of multi-choice

goal programming approach.
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6.1.2 Problem environment

In real-world situations, uncertainty is a common phenomena especially in the

ground of optimization. TP is a class of optimization problem which consid-

ers in the field of uncertain optimization problems. A number of studies [cf.,

Ebrahimnejad (31), Kaur and Kumar (68), Kaur and Kumar (69) and many

others] has been developed to accommodate several ambiguous situations in

real-life transportation problem. Many cases, the studies are incorporated by

considering transportation parameters like cost, supply, and demand as uncer-

tain parameters such as stochastic, fuzzy, interval-valued etc. Nevertheless, in

most of the cases [cf., Waiel (157), Ebrahimnejad (31), Kaur and Kumar (68),

Kaur and Kumar (69)], the concept of uncertainty is incorporated in proposed

models by theoretical point of view which is not generally considered as practi-

cally in connection with TP. In this proposed study, we present a new class of

TP under fuzziness and it is denoted as Fuzzy Transportation Problem (FTP).

In traditional way of FTP, the transportation parameters fully or partially con-

sidered as fuzzy numbers. Whereas, in our newly designed FTP, we consider

the situation where the parameters are not treated as fuzzy numbers but we

choose the decision variable as fuzzy. Mainly, in classical sense of FTP, the op-

timal solution is obtained by transporting the crisp amount of goods through

the fuzzy transportation penalty along with supply and demand restrictions.

Here, DM only optimizes the value of the objective function through the op-

timal value of decision variables using different approaches. In many existing

studies, the optimum solution is followed by minimum cost for delivering the

amount of goods to the purchaser, i.e., cost is the only factor which belongs

to the specified fuzzy data. But, we consider here the FTP, not only optimiz-

ing the cost, also optimizing the expected quantity required by the customer.

Because of that we choose fuzzy decision variable in the proposed FTP. We

consider the amount of goods required by the purchaser with specific priority

level, which refers to fuzzy expectations in the allocation cells. So, we consider

multi-choice fuzzy expected amount of goods with respective priority level in

the allocation cells. A graphical network is provided in Figure 6.1 where TP
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contains the allocation cells. In a classical TP network, there is no idea of

Figure 6.1: Graphical network of TP with allocation cells.

allocation cells under the management of the demand nodes (D1, D2 and D3).

In our proposed study, we optimize the priority level of expected amount of

goods in allocation cells satisfying the restricted demands in the corresponding

demand nodes. Many cases where the demands are assumed as multi-choice

numbers in the destinations, but our study includes a new direction which

allows the selection of fuzzy allocations among the multi-choice fuzzy numbers

to the allocation cells and seeks the optimal solution of the objective function.

Due to this fact, here decision variable is taken as fuzzy decision variable in

our proposed TP in the chapter.

6.1.3 Mathematical model

The first subsection considers a brief introduction of multi-choice goal pro-

gramming and the mathematical model of TP with goal under fuzzy decision

variable is formulated in later subsection.
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Multi-choice goal programming

In the literature of goal programming, Chang (17) described MCGP approach

which allows the DM to set multi-choice aspiration levels (MCALs) for each

goal (i.e., one goal is mapping with multiple aspiration levels). The mathe-

matical model of goal programming is considered as follows:

GP

minimize
K∑
i=1

wi|Zi(X)− gi|

subject to x ∈ F (F is the feasible set).

where wi (i = 1, 2, . . . , K) are the weights attached to the deviation of the

achievement function Zi(x) and gi is the goal corresponding to the i-th objec-

tive function. |Zi(x)− gi| represents the deviation of the i-th goal. Later on,

a modification of GP is provided which noted as Weighted Goal Programming

(WGP).

Sometimes, it may not be possible to assign crisp goals corresponding to each

of the objective functions and then we consider fuzzy goals. Again, the fuzzy

goals may be multiple-choice corresponding to some objective functions. Un-

der the environment of Fuzzy Multi-Choice Goal Programming (FMGP), the

formulation of GP reduces to the following form:

FMGP

minimize
K∑
i=1

wi|Zi(X)− g̃1
i or g̃

2
i or . . . or g̃ti |

subject to x ∈ F,

where wi (i = 1, 2, . . . , K) are the weights relative to the importance of the

objective functions and the aspiration levels g̃ti ∀ i, t are assumed to be trian-

gular fuzzy numbers with membership functions µ̃ti ∀ i, t.
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TP under multi-choice goal programming

The mathematical model of the transportation problem is defined as follows:

Model 6.1

minimize Z =
m∑
i=1

n∑
j=1

Cijxij (6.1)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m), (6.2)

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n), (6.3)

xij ≥ 0 ∀ i and j, (6.4)

where xij is the decision variable and Cij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n)

is the transportation cost per unit commodity from the ith origin to the jth

destination. Here ai (i = 1, 2, . . . ,m) and bj (j = 1, 2, . . . , n) are availability

and demand in the ith origin and the jth destination respectively and
∑m

i=1 ai ≥∑n
j=1 bj is the feasibility condition.

In real-life practical problems, some situations may occur where we need to

optimize the objective function according to the decision maker’s preferences.

In this case, the decision variables (xij) of TP are taken as real variables and

the crisp solutions are obtained. In our daily life, there may occur some cases

where the expectations in the allocation cells of TP are described as the fuzzy

goals, again these are multi-choices. Here, we consider that if the allocation

made at any cell then it is one of the goal value among the set of values

assigned by the DM. According to the concept of the TP, it is not necessary

that at each of cells, there will be some allocations. So, in each cell, we assign

a goal value ‘0’ with a small deviation in such a way that if allocation is not

made in the cell then aspiration level produces a high value. So, in the TP,

the decision variables are not behaved as in classical TP and they are taken

as fuzzy variable (x̃ij). To the best of our knowledge, until now no work has

been done for solving this typical TP whose decision variables are fuzzy multi-

choices. The mathematical model of this fuzzy transportation problem can be
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written as follows:

Model 6.2

minimize Z =
m∑
i=1

n∑
j=1

Cijx̃ij (6.5)

subject to
n∑
j=1

x̃ij ≤ ai (i = 1, 2, . . . ,m), (6.6)

m∑
i=1

x̃ij ≥ bj (j = 1, 2, . . . , n), (6.7)

x̃ij ≥ 0 ∀ i and j. (6.8)

The mathematical formulation of Model 6.2 is supposed to be very simple but

it is not so. The solution procedure of FTP is described in next subsection.

6.1.4 Solution procedure

This subsection contains two folded in which the first fold describes an al-

gorithm for solving the FTP and later one provides a reduction procedure to

convert the FTP to a deterministic model. Model 6.2 consists of fuzzy decision

variables which is not easy to solve by existing approaches for solving the TP.

So, we design an algorithm to solve the FTP.

Algorithm:

• Step 1: First, we fix the multi-choice fuzzy goals corresponding to the

objective function and allocation cells.

• Step 2: We formulate fuzzy membership functions corresponding to the

objective function and allocation cells using the multi-choice fuzzy goals.

Again, we use binary variables to select a value among the multi-choice

membership values of the objective function and each of the allocation

cells. The procedure is shown in detail in the subsection 6.1.5.

• Step 3: Thereafter, the objective function is formulated by adding the

variables of membership functions multiplied by the proper weights, cor-

responding to the objective function and expected allocation goals to the

cells. This procedure is also shown in subsection 6.1.5.
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• Step 4: The objective function of Step 3 is formulated as maximization

type, the optimum solution of this objective function is required to sat-

isfy the multi-choice goals of the allocation cells, for which we need to

introduce two auxiliary constraints corresponding to each of the cells.

• Step 5: Furthermore, solving the objective function of Step 3 satisfying

the constraints proposed in Step 4, we obtain optimum goal of objec-

tive function along with the optimum expected amount of goods in the

allocation cells.

• Step 6: Stop.

6.1.5 Reduction procedure of the FTP to deterministic
model

In our proposed mathematical Model 6.2, we consider the FTP under fuzzy

multi-choice goal environment. The objective function of the FTP has a spe-

cific fuzzy goal g̃. Assume that {g̃tij : t = 1, 2, . . . , p}
⋃
{0} be the set of all

possible allocation at the node (i, j) in the FTP. Here, p is the number of

multi-choice fuzzy goals at the (i, j)-th node and it may change for different

node (i, j). Without loss of generality, we consider the allocation goals g̃tij
as triangular fuzzy number. Again, we assume that the allocation should be

through the selection of fuzzy goals from the set {g̃tij : t = 1, 2, . . . , p}
⋃
{0} at

each of the node (i, j) in the FTP.

To solve Model 6.2, our aim goes to make the allocation in such a way that

the aspiration value for each node and objective functions become high. Due

to this situation, assigning the weights corresponding to each node and the ob-

jective function is very much important to improve a better solution of Model

6.2. To do this, we construct a crisp model of TP which is a maximizing type

problem whatever the nature of the objective function of the TP.

Again for maximizing the value of an objective function, the number of fuzzy

allocation goals g̃tij may not be equal for all nodes. If there be only one fuzzy

allocation goal g̃1
ij (and for no allocation goal value is ‘0’) for each node, then
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corresponding mathematical model i.e., Model 6.3 is derived from Model 6.2

as follows:

Model 6.3

maximize Z =
m∑
i=1

n∑
j=1

wijµij + wµ (6.9)

subject to µij ≤ 1− [
yij − g̃1

ij

d1−
ij

z1
ij +

yij − 0

ε
(1− z1

ij)], (6.10)

µij ≤ 1− [
g̃1
ij − yij
d1+
ij

z1
ij +

0− yij
ε

(1− z1
ij)], (6.11)

z =
m∑
i=1

n∑
j=1

Cijyij, (6.12)

µ ≤ 1− z − g̃
d−

, (6.13)

µ ≤ 1− g̃ − z
d+

, (6.14)

µij ≥ 0, (6.15)

µ ≥ 0, (6.16)
n∑
j=1

yij ≤ ai (i = 1, 2, . . . ,m), (6.17)

m∑
i=1

yij ≥ bj (j = 1, 2, . . . , n), (6.18)

yij ≥ 0, z1
ij = 0 or 1 ∀ i, j. (6.19)

Here, d1−
ij and d1+

ij are the maximum allowable negative and positive devia-

tions for g̃1
ij. d+ and d− are the positive and negative deviations respectively

corresponding to the objective function Z. A very small positive number ε is

used to assign a high aspiration value ‘1’ if the allocation be not made in a

cell. This situation is created because it is not necessary that in each cell the

allocation has to be made.

Now, assume that if each node has two fuzzy aspiration levels for corresponding

goal, then fuzzy goal programming is selected any one of these goals in such a

way that it provides the optimal solution. Based on the model of Chang (17),
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the equations [(6.10) and (6.11)] reduce as follows:

µij ≤ 1− [
yij − g̃1

ij

d1−
ij

z1
ijz

2
ij +

yij − g̃2
ij

d2−
ij

z1
ij(1− z2

ij) +
yij − 0

ε
(1− z1

ij)z
2
ij],

µij ≤ 1− [
g̃1
ij − yij
d1+
ij

z1
ijz

2
ij +

g̃2
ij − yij
d2+
ij

z1
ij(1− z2

ij) +
0− yij
ε

(1− z1
ij)z

2
ij],

z1
ij + z2

ij ≥ 1,

z1
ij, z

2
ij = 0 or 1 (i = 1, 2, . . . ,m; j = 1, 2, . . . , n).

Here, dt−ij and dt+ij are the maximum allowable negative and positive deviations

from g̃tij for t = 1, 2.

Again, if each node has three fuzzy aspiration levels for corresponding goal,

then fuzzy goal programming is selected any one of these goals in such a way

that it provides the optimal solution. Based on the model of Chang (17), the

equations [(6.10) and (6.11)] reduce in the following form as:

µij ≤ 1− [
yij − g̃1

ij

d1−
ij

z1
ijz

2
ij +

yij − g̃2
ij

d2−
ij

z1
ij(1− z2

ij) +
yij − g̃3

ij

d3−
ij

(1− z1
ij)z

2
ij

+
yij − 0

ε
(1− z1

ij)(1− z2
ij)],

µij ≤ 1− [
g̃1
ij − yij
d1+
ij

z1
ijz

2
ij +

g̃2
ij − yij
d2+
ij

z1
ij(1− z2

ij) +
g̃3
ij − yij
d3+
ij

(1− z1
ij)z

2
ij

+
0− yij
ε

(1− z1
ij)(1− z2

ij)],

z1
ij, z

2
ij = 0 or 1 (i = 1, 2, . . . ,m; j = 1, 2, . . . , n).

Here, dt−ij and dt+ij are considered as the maximum allowable negative and

positive deviations respectively for g̃tij for t = 1, 2, 3. If we consider s number of

multi-choice goals corresponding to the cell (i, j), then the linear membership

function µij for the fuzzy goals of (i, j)-th node can be defined as follows:

µij =


0, if yij ≥ g̃tij + dt+ij ,

1−
∑s

t=1

yij−g̃tij
dt+ij

Fij(B), if g̃tij ≤ yij ≤ g̃tij + dt+ij ,

1, if yij = g̃tij,

1−
∑s

t=1

g̃tij−yij
dt−ij

Fij(B), if g̃tij − dt−ij ≤ yij ≤ g̃tij
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6.1. TP under fuzzy decision variable

for all i = 1, 2, . . . ,m; j = 1, 2, . . . , n. Here, Fij(B) represents a function of

binary serial numbers that ensure only one fuzzy goal among the set of multi-

choice fuzzy goals at each node (i, j) satisfying the optimality of the objective

function (For detailed discussion, someone can follow Roy et al. (135)) dt+ij and

dt−ij are the maximum allowable positive and negative deviations correspond-

ing to the tth goal among the multi-choice fuzzy goals in the (i, j)-th node,

respectively.

It may be noted that, it is not necessary that the allocation cells have the

same number of multi-choice goals. Model 6.3 is developed according to the

number of fuzzy goals in each of the allowable cells and then solve it to find

the optimal solution of the FTP.

Remark:

In construction of objection function of Model 6.2, we use the normalized

weights wij corresponding the (i, j)-th cell and the weight w for the objective

function which produces a better optimal solution of the FTP.

6.1.6 Numerical experiment

Three investors namely F1, F2 and F3 made a plan to invest their money in

business in such a way that they will earn the maximum profits. At the begin-

ning of the business, they decided to keep the amounts $1000, $1200, $1100 in

hand. Then, they want to invest their amounts in two locations A and B. For

the business purpose, the mentioned locations are required to minimum invest-

ment $1600 and $1650 at A and B respectively. Table 6.1 presents the required

amounts [in dollar ($)] at the destinations which are fuzzy multi-choice num-

bers. The deviations are presented within brackets adjacent to the required

amounts (these amounts are fuzzy numbers) which shown in Table 6.1.
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Table 6.1: Required amount in $ and deviations in locations.
A B

F1 7̃00(25), 8̃50(50), 9̃80(40)

1̃050(70), 6̃00(25)

F2 8̃00(50), 6̃50(40) 5̃00(25), 4̃00(30), 6̃00(30)

F3 8̃50(60), 7̃00(50) 5̃50(25), 4̃50(30), 1̃050(100)

Without loss of generality, we consider the positive and negative deviations

are same in our proposed problem. It is also to be noted that if the allocations

are not made at any node, then there may be a crisp allocation ‘0’. So, in each

node, there is a crisp choice which is not shown in Table 6.1. The expected

profit from their investment policy per $100 from the destinations are depicted

in Table 6.2

Table 6.2: Profit earned from investment (per $100).
A B

F1 4.5 4.0
F2 5.0 6.0
F3 5.5 5.0

The investors are connected to each other and they make investment in such

a way that they made a total profit maximum $170 with not less by $150.

According to the business policy presented here, we can say that the allocations

in the locations are fuzzy multi-choice numbers. So, to solve this type of

problem, the presented procedure is useful to produce a better optimal solution.

We consider equal weight ‘0.1’ for each cells and the weight ‘0.4’ to the objective

function, then the mathematical model for the proposed problem becomes as

follows:

Model 6.4

maximize Z = 0.1(µ11 + µ12 + µ21 + µ22 + µ31 + µ32) + 0.4µ

subject to µ11 ≤ 1− [
y11 − 700

25
z1

11z
2
11z

3
11 +

y11 − 850

50
(1− z1

11)z2
11z

3
11

+
y11 − 600

25
(1− z2

11)z1
11z

3
11 +

y11 − 1050

70
(1− z3

11)z1
11z

2
11],
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µ11 ≤ 1− [
700− y11

25
z1

11z
2
11 +

850− y11

50
z1

11(1− z2
11)

+
600− y11

25
(1− z2

11)z1
11z

3
11 +

1050− y11

70
(1− z3

11)z1
11z

2
11],

µ12 ≤ 1− y12 − 980

40
z1

12,

µ12 ≤ 1− 980− y12

40
z1

12,

µ21 ≤ 1− [
y21 − 800

50
z1

21z
2
21 +

y21 − 650

40
z1

21(1− z2
21)],

µ21 ≤ 1− [
800− y21

50
z1

21z
2
21 +

650− y21

40
z1

21(1− z2
21)],

µ22 ≤ 1− [
y22 − 500

25
z1

22z
2
22 +

y22 − 400

30
z1

22(1− z2
22)

+
y22 − 600

30
z2

22(1− z1
22)],

µ22 ≤ 1− [
500− y22

25
z1

22z
2
22 +

400− y22

30
z1

22(1− z2
22)

+
600− y22

30
z2

22(1− z1
22)],

µ31 ≤ 1− [
y31 − 850

60
z1

31z
2
31 +

y31 − 700

50
z1

31(1− z2
31)],

µ31 ≤ 1− [
850− y31

60
z1

31z
2
31 +

700− y31

50
z1

31(1− z2
31)],

µ32 ≤ 1− [
y32 − 550

25
z1

32z
2
32 +

y32 − 450

30
z1

32(1− z2
32),

+
y32 − 1050

100
z2

32(1− z1
32)],

µ32 ≤ 1− [
550− y32

25
z1

32z
2
32 +

450− y32

30
z1

32(1− z2
32)

+
1050− y32

100
z2

32(1− z1
32)],

t = [4.5y11 + 4.0y12 + 5.0y21 + 6.0y22 + 5.5y31 + 5.0y32]
1

100
,

µ ≤ 1− 170− t
20

,

y11 + y12 ≤ 1000,

y21 + y22 ≤ 1200,

y31 + y32 ≤ 1100,

y11 + y21 + y31 ≥ 1600,
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y12 + y22 + y32 ≥ 1650,

0 ≤ µij ≤ 1; 0 ≤ µ ≤ 1; zkij = 0 or 1 ∀i, j, k.

Model 6.3 is solved by Lingo software and the solution is listed as follows:

Optimum value of Z = 0.6633. The optimal solution (i.e., t=maximum benefit

from the business) of the problem is $165.90. The finance allocations are shown

in Table 6.3.

Table 6.3: Finance allocation of invest amount (in $) in crisp form.

Decision y11 y12 y21 y22 y31 y32

Variable
1000 0 610 590 0 1100

The selection of fuzzy numbers x̃ij from the fuzzy multi-choice numbers to get

the optimum solution is given in Table 6.4.

Table 6.4: Allocation of invest amount in the form of fuzzy number.

Decision x̃11 x̃12 x̃21 x̃22 x̃31 x̃32

Variable
1̃050 0 6̃50 6̃00 0 1̃050

6.1.7 Result and discussion

The first part of this chapter, a study on the TP with fuzzy decision vari-

ables i.e., FTP is presented. The numerical example presents the applicability

of proposed methodology for solving FTP with fuzzy decision variables. The

concept of this chapter is provided a technique whose decision variables are

fuzzy numbers, so it cannot be compared to any other model provided in the

literature. If someone wishes to solve the problem by considering a general

TP with goal corresponding the objective function, then he/she may use GP

technique. To give a comparison of our study, we formulate a mathematical

model according to the procedure of GP and solving it we derive the following

solution:

Optimal value of objective function is $175.25 and
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6.1. TP under fuzzy decision variable

x11 = 550; x12 = 450; x21 = 0; x22 = 1200; x31 = 1100; x32 = 0; In this case,

the value of the objective function is more than the obtained optimal solution

from Model 6.3, but the allocation made in cells do not fulfil the requirements

as expected in the allocations cells. In this context, one may propose that TP

which can optimize the objective function but cannot optimize the goals of the

requirements in the cells of allocation. In this regard, our proposed methodol-

ogy is better than the technique like GP to solve TP. Also, to the best of our

knowledge, there is no specific methodology available in the literature to for-

mulate and solve FTP with respect to the restrictions that we have presented

in our proposed model.

Comparision with the existing studies

To justify the effectiveness of our proposed FTP in compare to existing studies,

here we consider three important research works on FTP (cf., Ebrahimnejad

(31), Kaur and Kumar (68), Kaur and Kumar (69)).

Ebrahimnejad (31) established a study on FTP by employing the uncertain

situation in real-life TP. In this proposed research work, transportation cost,

supply and demand parameters are considered as triangular fuzzy numbers.

Thereafter, a two-step method is proposed for solving the FTP. In the first

step, fuzzy arithmetic is introduced to convert FTP into a linear programming

problem with fuzzy costs and crisp constraints. The second step is presented

a new decomposition procedure to convert the resulting problem into crisp

valued bounded transportation problems and solving these, they obtained the

optimum solution. Again the study of Ebrahimnejad (31) is a way for solving

TP with fuzzy parameters. In usual TP, it is always seen that the amount

of goods transported to the destinations (i.e., value of xij) is also tended to

a minimum value which produces the minimum transportation cost. In this

study, this technique is also considered, but in our proposed TP, we do not

follow this rule and consider the way to find the value of xij which is more sat-

isfactory at the allocation cell (i.e., the most likely amount of goods expected

by the purchaser) preserving the optimality criteria of the objective function.

Furthermore, we search the optimum value of xij from the set of multi-choice
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fuzzy expected values at the cells along with the choice of fuzzy allocation at

the cells through our proposed optimization technique. As a whole, we have

treated the decision variables as fuzzy numbers in our proposed FTP, which is

totally different from the study of FTP by Ebrahimnejad (31).

Again, Kaur and Kumar (68) entitled a study incorporating generalized trape-

zoidal fuzzy numbers in a FTP. In Kaur and Kumar (68), a new method is

presented for solving FTPs by assuming that a decision maker is uncertain

about the precise values of the transportation cost, availability and demand

of the product. The solution of the proposed problem Kaur and Kumar (68)

is a fuzzy optimum solution. We observe that, the fuzzy optimum solution in

the problem (68) can be obtained by considering the three simple TPs with

transportation cost a, b and c of the triangular fuzzy number (a, b, c) sepa-

rately. So, this is not provided enough information about on fuzzy decision

variable, whereas our study introduces the fuzziness in the decision variable

not considering the fuzziness in transportation parameters. As a whole, our

study is significantly different form the study of (68) though both the studies

build on the ground of FTP.

The TP proposed by Kaur and Kumar (69), is considered using generalized

fuzzy numbers for the transportation cost, supply and demand parameters.

In this study, there is an algorithm to solve TP under fuzziness which is also

called as FTP. According to our best knowledge, the proposed algorithm of

(69) entitled a solution for the best possible values of real-decision variable xij
satisfying the supply and demand restrictions. Again the values of xij will tend

to minimum value as the optimization problem is so turned. So, the study does

not take care about the restrictions of requirements at the allocation cells. In

this chapter, we have improved the concept of fuzzy decision variables and fol-

lowed the restrictions of routes which are known as the allocation cells through

the optimization of the objective function.

Also, there are several research works in the literature in which real-life FTPs

involving different types of fuzziness are solved via algorithms, but to the best

of our knowledge, until now no one has used fuzzy decision variable in FTP
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under multi-choice fuzzy goals to the allocation cells and the objective func-

tion. In this chapter, a new algorithm is proposed for solving the type of FTP

by assuming fuzzy decision variable, which is totally different from the existing

algorithms for solving FTP.

6.2 MOTP under fuzzy decision variable
The study under fuzzy decision variable in a TP is extended in multi-objective

environment, which has been presented in this part of the chapter. The utility

of the study is illustrated by a numerical example.

6.2.1 Mathematical model

TP with single objective function is not enough to formulate all real-life deci-

sion making problems. To overcome this difficulty, we have incorporated the

multiple objective function with TP. The mathematical model of MOTP can

be written as follows:

Model 6.5

minimize Zt =
m∑
i=1

n∑
j=1

Ct
ijxij (t = 1, 2, . . . , K)

subject to the constraints (6.2)− (6.4).

If in a real-life MOTP the allocation cells have multi-choice options for allo-

cating then the mathematical model of MOFTP can be written as follows:

Model 6.6

minimize Zt =
m∑
i=1

n∑
j=1

Ct
ijx̃ij

subject to the constraints (6.6)− (6.8).

The multi-objective mathematical formulation of Model 6.6 is seemed to be

very simple but it is not so. There are several methods like GP, RMCGP,

Fuzzy programming approach are used to solve the MOTP.

Assuming that {g̃tij : t = 1, 2, . . . , p}
⋃
{0} be the set of all possible allocation

at the node (i, j). To make a clear understanding of MOTP with fuzzy decision
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variable, here we have considered the supply (ai) and demand (bj) as constant

values. If someone considers these parameters as fuzzy then also it can be

taken into consideration in further improvement of the mathematical models.

Without loss of generality, we consider the allocation goals g̃tij as triangular

fuzzy number.

Again for maximizing the value of an objective function, the number of fuzzy

allocation goals g̃tij may not be equal for all nodes. If there be only one fuzzy

allocation goal g̃1
ij (and for no allocation goal value is 0) for each node, then

the corresponding mathematical model (see Model 6.7) is to derive from Model

6.6 as follows:

Model 6.7

maximize Z =
m∑
i=1

n∑
j=1

wijµij +
K∑
k=1

wkµk (6.20)

subject to µij ≤ 1− [
yij − g̃1

ij

d1−
ij

z1
ij +

yij − 0

ε
(1− z1

ij)], (6.21)

µij ≤ 1− [
g̃1
ij − yij
d1+
ij

z1
ij +

0− yij
ε

(1− z1
ij)] (6.22)

(i = 1, 2, . . . ,m; j = 1, 2, . . . , n),

Zk =
m∑
i=1

n∑
j=1

Ck
ijyij ∀ k, (6.23)

µk ≤ 1− Zk − g̃k
d−k

∀ k, (6.24)

µk ≤ 1− g̃k − Zk

d+
k

∀ k, (6.25)

µij ≥ 0 (i = 1, 2, . . . ,m; j = 1, 2, . . . , n), (6.26)

µk ≥ 0 (k = 1, 2, . . . , p), (6.27)
n∑
j=1

yij ≤ ai (i = 1, 2, . . . ,m), (6.28)

m∑
i=1

yij ≥ bj (j = 1, 2, . . . , n), (6.29)

yij ≥ 0, z1
ij = 0 or 1 ∀ i and j. (6.30)
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Here, d1−
ij and d1+

ij are the maximum allowable negative and positive devia-

tions respectively for g̃1
ij. d

+
k and d−k are the positive and negative deviations

respectively corresponding to objective functions Zk.

A very small positive number ε is used to assign a high aspiration value ‘1’ if

the allocation be not made in a cell. This situation has been created because

it is not necessary that in each cell the allocation has to be made.

If the number of allocation be more than one, then we apply the procedure

introduced in subsection 6.1.5. The Model 6.7 can be developed according to

the number of fuzzy goals in each of the allowable cells and then solve it to

find the compromise solution of the MOFTP.

6.2.2 Numerical example

A store keeper collects vegetables from three markets S1, S2 and S3. The

maximum capacity of supply vegetables in three sources S1, S2 and S3 are 150

Kg, 220 Kg and 200 Kg respectively. The store keeper supplies the vegetables

into another two markets A and B. The minimum capacity of vegetables in

destinations are 200 Kg and 250 Kg respectively. The collection of vegetables

from a market may not be always a crisp value. Table 6.5 presents the pos-

sibilities of collecting vegetables, which are multi-choices and fuzzy numbers

also. Hence, we may consider the positive and negative deviations as same and

they are presented here by brackets adjacent to the required amounts (these

amounts are fuzzy numbers) in the Table 6.5.

Table 6.5: Required vegetables in kg and deviations in locations.
A B

F1 5̃0(10), 9̃5(10), 9̃0(30)

1̃20(10), 7̃0(5)

F2 1̃20(20), 6̃0(10) 5̃0(5), 8̃0(10), 6̃0(5)

F3 8̃0(5), 6̃0(10) 6̃5(5), 4̃5(5), 1̃50(10)

It is also to be noted that if the allocations are not made at any node, then

there may be a crisp allocation ‘0’. So, in each node there is a crisp choice

which is not shown in Table 6.5. The expected profits of per Kg of vegetables

are shown in Table 6.6:
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Table 6.6: Profit in ($) per Kg.
A B

F1 8.5 7.0
F2 7.0 6.5
F3 5.5 6.0

The transportation cost per Kg of vegetables from supplying sources to desti-

nations are shown in Table 6.7:

Table 6.7: Transportation cost per Kg in $.
A B

F1 14.5 24.0
F2 10.0 18.0
F3 15.5 12.0

In the proposed problem, obviously the store keeper would like to maximize

his profit by maximizing profit goal and minimizing the cost of transportation.

He expects maximum profit of $3200 and not less by $3000. Also he wishes to

minimize the transportation cost with a value minimum $6500 and not more

than $6700. According to the possibilities of collecting vegetables presented

here, we can say that the allocations in the locations are multi-fuzzy numbers.

So, to solve this type of problem, the presented methodology must be helpful

to produce the best solution.

Here, we have considered equal weights ‘0.05’ for each cells and weights ‘0.4’

and ‘0.3’ for the objective functions of profit and transportation cost respec-

tively, then the mathematical model for the proposed problem becomes as

follows:

Model 6.8

maximize Z = 0.05(µ11 + µ12 + µ21 + µ22 + µ31 + µ32) + 0.4µ1 + 0.3µ2

subject to µ11 ≤ 1− [
y11 − 50

10
z1

11z
2
11z

3
11 +

y11 − 95

10
(1− z1

11)z2
11z

3
11

+
y11 − 120

10
(1− z2

11)z1
11z

3
11 +

y11 − 70

5
(1− z3

11)z1
11z

2
11],
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µ11 ≤ 1− [
50− y11

10
z1

11z
2
11 +

95− y11

10
z1

11(1− z2
11)

+
120− y11

10
(1− z2

11)z1
11z

3
11 +

70− y11

5
(1− z3

11)z1
11z

2
11],

µ12 ≤ 1− y12 − 90

30
z1

12,

µ12 ≤ 1− 90− y12

30
z1

12,

µ21 ≤ 1− [
y21 − 120

20
z1

21z
2
21 +

y21 − 60

10
z1

21(1− z2
21)],

µ21 ≤ 1− [
120− y21

20
z1

21z
2
21 +

60− y21

10
z1

21(1− z2
21)],

µ22 ≤ 1− [
y22 − 50

5
z1

22z
2
22 +

y22 − 80

10
z1

22(1− z2
22)

+
y22 − 60

5
z2

22(1− z1
22)],

µ22 ≤ 1− [
50− y22

5
z1

22z
2
22 +

80− y22

10
z1

22(1− z2
22)

+
60− y22

5
z2

22(1− z1
22)],

µ31 ≤ 1− [
y31 − 80

5
z1

31z
2
31 +

y31 − 60

10
z1

31(1− z2
31)],

µ31 ≤ 1− [
80− y31

5
z1

31z
2
31 +

60− y31

10
z1

31(1− z2
31)],

µ32 ≤ 1− [
y32 − 65

5
z1

32z
2
32 +

y32 − 45

5
z1

32(1− z2
32)

+
y32 − 150

10
z2

32(1− z1
32)],

µ32 ≤ 1− [
65− y32

5
z1

32z
2
32 +

45− y32

5
z1

32(1− z2
32)

+
150− y32

10
z2

32(1− z1
32)],

Z1 = 8.5y11 + 7.0y12 + 7.0y21 + 6.5y22 + 5.5y31 + 6.0y32,

Z2 = 14.5y11 + 24y12 + 10y21 + 18y22 + 15.5y31 + 12y32,

µ1 ≤ 1− 3200− Z1

200
,

µ2 ≤ 1− Z2 − 6500

200
,

y11 + y12 ≤ 150,

y21 + y22 ≤ 220,
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y31 + y32 ≤ 200,

y11 + y21 + y31 ≥ 200,

y12 + y22 + y32 ≥ 250,

z1
11 + z2

11 ≥ 1,

z1
11 + z3

11 ≥ 1,

z1
31 + z2

31 ≥ 1,

z1
21 + z2

21 ≥ 1,

0 ≤ µij ≤ 1; 0 ≤ µp ≤ 1; zkij = 0 or 1 ∀ i, j, k, p.

Model 6.8 is solved by Lingo software and the solutions are obtained as follows:

Optimum value of Z = 0.88; The optimal solution of the problem is Z1 =

$3181.50, Z2 = $6500.00, i.e., the maximum profit is $3181.5 and the minimum

transportation cost is $6500.0. The allocations are as follows:

y11 = 70.0; y12 = 60.0; y21 = 134.5; y22 = 50.0; y31 = 0.0; y32 = 150.0; The

selection of fuzzy decision variables (i.e., the solution of MOFTP in terms of

fuzzy variables) for getting the optimum solution of yij is made in the following

way: x11 = 7̃0;x12 = 9̃0;x21 = 1̃20;x22 = 6̃0;x31 = 0̃;x32 = 1̃50;

6.2.3 Result and discussion

In this chapter, we present a MOTP with fuzzy decision variables. The nu-

merical example presents the applicability of proposed methodology for solving

MOTP with fuzzy decision variables. The concept of this chapter is provided

a MOTP whose decision variables are fuzzy numbers so it cannot compare

to any other model provided in the literature. If someone wishes to solve the

problem by considering a general MOTP, then he/she may use GP or RMCGP

technique. To give a comparison of our study, we formulate a mathematical

model acording to the procedure of RMCGP and solving it we have declared

the following solution:

Optimal value of objective functions are Z1 = $3200, Z2 = $6500 and x11 =

0.0;x12 = 98.0;x21 = 220.0;x22 = 0;x31 = 0;x32 = 162.33; The optimal value

of the objective function by RMCGP of the MOTP is more than the obtained
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optimal solution in Model 6.8 but, the allocation made in cell does not fulfill

the requirements as expected in the allocation cells. In this context, we may

propose that MOTP can optimize the objective functions and find a compro-

mise solution but cannot optimize the goals of the requirements in the cells

of allocation. In this regard, our proposed methodology is better than the

RMCGP technique to solve MOTP. Also, to the best of our knowledge, there

is no specific methodology to formulate and solve MOTP with respect to the

restrictions that we have presented in our proposed model.

6.3 Conclusion
In this chapter, we have considered a FTP in which the expected allocations

in the destinations are multi-choice fuzzy numbers. There may occur some

problems of FTP whose mathematical model and solution procedure are not

described in the literature but in our chapter, we have formulated a mathe-

matical model and on solving, we have obtained better solution of it. Again,

realizing the facts of real-world decision making problems, we have extended

our study of FTP into multi-objective ground and considered it as MOFTP.

Finally, numerical examples are presented to justify the feasibility of our pro-

posed models.
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Chapter 7

MOTP under Cost Reliability∗

Realizing the fact that transportation time is an important factor in TP, in

this chapter we introduce the concept of cost reliability into the multi-objective

transportation problem with multi-choice fuzzy goals to the objective functions

under uncertain environment. The mathematical model of MOTP using cost

reliability is presented and the solution procedure through fuzzy multi-choice

goal programming is enlisted in the core part of this chapter. The numerical

example is presented to justify the significance of the proposed study in the

chapter.

7.1 Introduction
The parameters of the TP such as the supply, the demand and the cost param-

eters are not precise due to the complex real world problems. To analyze the

TP in the complex ground, here we treat the supply and the demand param-

eters as uncertain variables, and the transportation cost is analyzed through

reliability. Due to damage of transporting goods for delay of transportation

within the schedule time or loss of wealth due to transportation before schedule

time, as a result customers are affected. To remove this factor, we introduce

the reliability in the cost parameters of the TP. Again, the study of MOTP

∗A part of this chapter is accepted to publish in International Journal of Compu-
tational Intelligence Systems (IJCIS), Atlantis Press and Taylor & Francis, SCIE, IF:
0.391, Vol. 9, No. 5, pp. 839-849
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in which the objective functions are conflicting type, the reliability in cost

penalty may cause to increase the cost of transportation or increase the values

of objective functions which are minimization type and to decrease the profit of

DM or decrease the value of objective functions which are maximization type.

When the cost reliability factor is introduced as the rate of damage property

which creates a diverse relation for both type of objective functions, but how

much amount of loss caused by the factor is totally independent to the objec-

tive functions. So, it is clear that the reliability in cost parameter preserves

the conflicting nature to the objective functions of the MOTP. Major studies

in the ground of the MOTP, where the uncertainties are taken into consider-

ation through fuzzy, stochastic, interval etc. for the transportation cost, the

demand, and the supply parameters in the TP but here for the first time in the

MOTP, we analyze the uncertainty into the cost parameter of MOTP using

reliability.

Considering the situations of real-life decision making problems, we design this

chapter on the TP in multi-objective ground where the objective functions are

conflicting. Many situations occurred where the solution of a MOTP is found

as compromise solution, but the solution often depends on the weights of ob-

jective functions proposed by the DM. Then in the MOTP the compromise

solution satisfying the goals of the objective functions which plays an effective

role for solving it. In this case, we propose goals to each objective functions

of the MOTP. It is not always true that the solution of the MOTP will be

specified as single choice of goals of the DM, because in case, it works in favor

of DM but it is not so favored for customers. So, the DM needs to consider a

multiple choice of goals corresponding to the objective functions and to select

the best goals through the solution. Again, we consider the goals to the ob-

jective functions as multi-choice fuzzy numbers to accommodate the real life

decision making situations.

The main aim of this chapter is to study the MOTP in which the objective

functions are conflicting and non-commensurable to each other and each objec-

tive function has multi-choice fuzzy goals. Also, considering the present market
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scenario, we incorporate the concept of cost reliability into the transportation

cost; and the demand and the supply parameters are treated as the uncertain

variables. The methodologies are presented to tackle the situations and to pre-

dict the optimal goals of the objective functions as well as the optimal solution

of the MOTP.

7.2 Problem background
In the TP, the completion time of transportation of amount of goods should

be finished within the specified time, otherwise there may be created a damage

of the items or storing problem and/or the customer may reject the ordered

item. In that situation, the transportation cost or the profit may not be con-

sidered as crisp value. Then the selection of goals for the objective functions

or the solution of the MOTP cannot be made in a usual way. To overcome

this difficulty, by selecting the proper goals to the objective functions, here,

we incorporate the concept of reliability for the cost parameters in the TP. In

that situation, we introduce a new term “cost reliability” for the transportation

cost in the proposed study.

Generally, Reliability refers the probability of a machine operating its intended

purpose adequately for the period of time desired under the operating condi-

tions encountered. More precisely, reliability is the probability with which the

devices will not fail to perform a required operation for a certain period of

time.

Definition 7.2.1 (Cost Reliability): Cost reliability is the probability that the

transportation of goods will not fail to complete the transporting of goods in

the schedule time, which creates a probabilistic cost in the transportation prob-

lem. The probabilistic cost in the transportation problem increases the original

value of transportation of goods and simultaneously makes a difference in profit

margin

We assume that failure rate λ, by the ratio of due time or over time, δτ to

complete the transportation of goods; and the total estimated time T of trans-
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portation i.e., λ = δτ
T
, where τ represents the amount of late or early trans-

portation time corresponding to the schedule time of transportation. Here, we

define the cost reliability R(τ), which is a function of time τ as follows:

R(τ) = Amount of goods remains in good condition due to loss of time
Total amount of goods

The probability of failure, Q(τ) can be expressed as follows:

Q(τ) = Amount of goods damaged due or over time
Total amount of goods

Clearly, R(τ) +Q(τ) = 1 so, Q(τ) = 1−R(τ).

Therefore, R(τ) = e−
∫ τ
0 λdτ . Assuming that the failure rate λ, is a constant in

respect to time τ , then we have R(τ) = e−λτ . And finally, Q(τ) can be found

as Q(τ) = 1−R(τ) = 1− e−λτ .
To analyze the proposed study with a better impact in reality, we consider the

parameter λ, is the ratio of a function of decision variable xij, and ai is the

constant supply of the ith source, i.e., λ =
xij
ai
. When the value of λ increases

the value of reliability R(τ) decreases which means that if the amount of trans-

ported goods becomes larger, then the amount of items may be defective in

bigger rate. Again the value of R(τ) = e−λτ depends on the time τ , then we

would like to consider the time τ as the expected loss of time to complete the

work. If the transportation made in time, then τ = 0, so reliability value is

maximized, i.e., R(τ) = 1. Again it is true that in the TP, some variables

may take value zero. It means no item is transported in that route. So the

reliability is again equal to 1 for this path in the proposed model which does

not create any complexity to take the decision for the DM.

Taking advantage of the reliability function in the real-life decision making

problem, we formulate the MOTP where the objective functions are conflict-

ing and connected with some multi-choice goals. The way of formulating the

mathematical model of MOTP using cost reliability is included in detail in the

next section.

7.3 Mathematical model
According to the challenging competitive market scenario, there are several

objective functions related to a transportation problem like minimizing the
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transportation cost, maximizing the transportation profit, minimizing the toll

tax etc. Again, there is no connection between the cost parameters in the

different objective functions of the TP, so, they are considered as conflicting

and non-commensurable to each other. In multi-objective environment of the

TP, i.e., the MOTP can be defined as follows:

Model 7.1

minimize/maximize Zt =
m∑
i=1

n∑
j=1

Ct
ijxij (t = 1, 2, . . . , K) (7.1)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m), (7.2)

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n), (7.3)

xij ≥ 0 ∀ i, j. (7.4)

Here, Ct
ij, ai and bj are the transportation cost, the supply and the demand

parameters respectively for the t-th objective function in the MOTP.

In Model 7.1, the quantities Ct
ij, ai and bj are all assumed to be crisp num-

bers. However, if sometime, the transportation plan is made in advance, so

the quantities are not generally fixed but approximate amounts of these are

obtained from practical experience or expert knowledge. In this case, we may

assume the quantities are uncertain variables. Then the transportation Model

7.1 is only a conceptual model rather than a mathematical model because there

does not exist a natural order-ship in the complex world. A large number of

decision making problems has been solved by several researchers in which un-

certain situation is directly introduced in the parameters of the MOTP, but

here, we introduce the uncertainty through reliability by considering due or

early transportation time of delivering the goods. Due to the late or early reach

of the transporting goods, the customer or the store keeper fails to manage it.

So, the DM should consider in his mind the matter and as a whole the opti-

mum value of the objective functions are affected. Considering this situation,

we introduce time in the cost parameter which reduces the cost parameter of

the MOTP with reliability. When the cost reliability is considered for all the
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objective functions then time is taken as independent to each other and the

conflicting nature of the objective functions preserved in the MOTP. Again,

the supply and demand quantities are not crisp due to weather condition, sea-

sonal effect, market situation etc. So, the uncertain measure (here denoted

as M) from an uncertainty distribution for supply and demand constraints

are considered. Then Model 7.1 reduces to the following mathematical model

(Model 7.2) as follows:

Model 7.2

minimize/maximize Zt =
m∑
i=1

n∑
j=1

Re(Ct
ij)xij (t = 1, 2, . . . , K) (7.5)

subject to M(
n∑
j=1

xij ≤ ai) ≥ γi (i = 1, 2, . . . ,m), (7.6)

M(
m∑
i=1

xij ≥ bj) ≥ δj (j = 1, 2, . . . , n), (7.7)

xij ≥ 0 ∀ i, j. (7.8)

It is assumed that ai > 0, bj > 0 and the specified stochastic levels or prede-

termined confidence levels are defined as 0 ≤ γi ≤ 1 ∀ i and 0 ≤ δj ≤ 1 ∀ j.
In Model 7.2, R(Ct

ij) is considered as cost parameter under reliability. The

delay of supply of items causes to damage the items, in this case the value of

profit function (maximization type) decreases. Again, the penalty cost due to

loss of time is considered when the objective function is of minimization type

(like transportation cost) which increases the value of the respective objective

function. Then R(Ct
ij) takes the following form of cost parameter as:

R(Ct
ij) = Ct

ij +Ct
ij(1−Rt

ij), for the objective function is of minimization type

and

R(Ct
ij) = Ct

ij−Ct
ij(1−Rt

ij), for the objective function is of maximization type.

Here Rt
ij is the reliability of the tth objective function for the (i, j)-th node.

which depends on fixed time (τ), decision variable (xij) and demand (ai). For

consistency of reliability in each node, the DM measures the time (τ) in a

unit scale, otherwise there may occur large deviations in the cost values and

produces an optimal solution, which is not significantly a good result.
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Many real-life MOTPs, the DM wishes to solve the objective functions by con-

sidering certain goals to the objective functions, but how the goals to be chosen

which is a complex task to the DM. To remove this difficulty, we consider the

fuzzy multi-choice goals with the respective deviations corresponding to each

objective function. In that situation, the DM wishes to fix the goals in such

a way that the compromise solution becomes a better solution corresponding

to the chosen goals. Let us consider the fuzzy multi-choice goals g̃1
t , g̃

2
t , . . . , g̃

p
t

(t = 1, 2, . . . , K) for the tth objective function. Then each of the objective

functions in the mathematical Model 7.2, there are multi-choice fuzzy goals,

so, we present the procedure to select the optimum goals and get the optimal

solution in the next section as a solution procedure.

7.4 Solution procedure
In this section, we present the solution procedure using FMCGP.

According to the real-life decision making problem, the goals of the objective

functions cannot be predicted as crisp values always, they may be considered

as fuzzy goals. So the goals are fuzzy multi-choice goals corresponding to the

objective functions. Under the environment of FMCGP, the formulation of

GP reduces to the following form:

FMGP

minimize
K∑
t=1

wt|Zt(X)− ĝ1
t or ĝ2

t or . . . or ĝpt |

subject to X ∈ F.

Here, the aspiration levels ĝpt , ∀ i and t are assumed to be triangular fuzzy

numbers with membership functions µpt ∀ p, t.

7.4.1 Reduction of uncertainty in the MOTP

Here, we introduce the concept of uncertainty distribution in order to describe

the uncertain variable. Due to insufficient information of demand and supply

in the MOTP, we incorporate the uncertainty in the constraints. However,

in our proposed study, we consider the demands and the supply parameters
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as Normal distribution. There are several ways to tackle the uncertain con-

straints, here we use the uncertain measure proposed by Liu (86). Let us

introduce some useful definitions; and theorem about on the uncertain vari-

able.

According to our assumption that the supply and demand parameters in Model

7.2 are taken as uncertain measure (here denoted as M) from an uncertainty

distribution for supply and demand, so we define uncertain distribution func-

tion as follows:

Definition 7.4.1 (Liu (86)) Let ξ be an uncertain variable. Then the uncer-

tainty distribution denoted as Φ of ξ is defined by Φ(x) = M{ξ ≤ x} for any

real number x.

Without loss of generality, we may consider the Normal distribution for the

supply and demand parameters in Model 7.2. A Normal uncertain distribution

function and its inverse function are considered as follows:

Definition 7.4.2 An uncertain variable ξ is called Normal if it has a Normal

uncertain distribution Φ(x) = [1 + exp(π(e−x)√
3σ

)]−1 for any real number x, which

is denoted by N(e, σ) where e and σ are real numbers with σ > 0.

Definition 7.4.3 (Liu (86)) Let ξ be an uncertain variable with regular un-

certainty distribution Φ(x). Then the inverse function Φ−1(α) is called the

inverse uncertainty distribution of ξ, for any real number α.

As the supply and demand parameters are uncertain variable, so, uncertain

measure is introduced in the supply and demand constraints of Model 7.2.

These constraints are reduced into the equivalent crisp forms by using the fol-

lowing measure inversion theorem.

Theorem 7.1: (Measure Inversion Theorem Liu (86) Let ξ be an uncertain

variable corresponding to uncertain distribution Φ(x). Then for any real num-

ber x, we have, Φ(x) = M{ξ ≤ x} then M{ξ ≥ x} = 1− Φ(x).
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The inverse uncertainty distribution of Normal uncertain variable N(e, σ) is

defined as follows:

Φ−1(x) = e+
√

3σ
π
ln α

1−α , where ln denotes natural logarithm.

Model 7.2 is not a deterministic form due to presence of uncertain variable in

the constraints. Assuming that ai (i = 1, 2, . . . ,m) and bj (j = 1, 2, . . . , n)

are independent uncertain variables with uncertainty distributions θi (i =

1, 2, . . . ,m) and ψj (j = 1, 2, . . . , n) respectively. Then the measure inver-

sion theorem is provided the following results:

M(
∑n

j=1 xij ≤ ai) ≥ γi is equivalent to
∑n

j=1 xij ≤ θ−1
i (1− γi),

and M(
∑n

j=1 xij ≥ bj) ≥ δj is reduced to∑n
j=1 xij ≥ ψ−1

j δj, for i = 1, 2,≤,m; j = 1, 2,≤, n.
Using above results, Model 7.2 is equivalent to the following model:

Model 7.3

minimize/maximize Zt =
m∑
i=1

n∑
j=1

[Ct
ij ± Ct

ij(1−Rt
ij)]xij (7.9)

subject to
n∑
j=1

xij ≤ θ−1
i (1− γi) (i = 1, 2, . . . ,m), (7.10)

m∑
i=1

xij ≥ ψ−1
j δj (j = 1, 2, . . . , n), (7.11)

xij ≥ 0 ∀ i, j. (7.12)

Here, we consider the uncertain MOTP under fuzzy multi-choice goal environ-

ment i.e., each objective function of the MOTP has some specific fuzzy goals,

ĝkt for (t = 1, 2, . . . , K) for k = 1, 2, . . . , p. According to the problem, the DM

can assign the weights to each objective function in such way that it produces

a better compromise solution. To do this, we construct a crisp model of the

MOTP which is of maximizing type problem whatever the nature of the ob-

jective functions of the MOTP.

Again for optimizing the values of the objective functions, the number of fuzzy

allocation goals ĝkt may not be equal for all the objective functions. If there

be only one fuzzy goal ĝ1
t for each objective function, then the corresponding

mathematical model (i.e., Model 7.4) is derived from Model 7.3 as follows:
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Model 7.4

maximize z =
K∑
t=1

wtµt (7.13)

subject to Zt =
m∑
i=1

n∑
j=1

Ct
ij ± [Ct

ij(1−Rt
ij)]xij, (7.14)

µt ≤ 1− Zt − ĝ1
t

d1−
t

∀t, (7.15)

µt ≤ 1− ĝ1
t − Zt

d1+
t

∀t, (7.16)

µt ≥ 0 ∀t, (7.17)
n∑
j=1

xij ≤ θ−1
i (1− γi) (i = 1, 2, . . . ,m), (7.18)

m∑
i=1

xij ≥ ψ−1
j δj (j = 1, 2, . . . , n), (7.19)

xij ≥ 0 ∀ i, j. (7.20)

where d1−
t and d1+

t are the negative and positive deviations corresponding to

the goals ĝ1
t of the objective function Zt respectively. Now, assuming that if

each objective function has two fuzzy aspiration levels, then FMCGP selects

any one of these goals in such a way that it provides a better optimal solution.

Based on the model of Chang (17), the equations; i.e., (7.15) and (7.16) reduce

to the following form as:

µt ≤ 1−
[
Zt − ĝ1

t

d1−
t

z1
t +

Zt − ĝ2
t

d2−
t

(1− z1
t )

]
∀t,

µt ≤ 1−
[
ĝ1
t − Zt

d1+
t

z1
t +

ĝ2
t − Zt

d2+
t

(1− z1
t )

]
∀t,

z1
t = 0 or 1 ∀ t.

Here, dk−t and dk+
t are the maximum allowable negative and positive deviations

respectively for ĝkt for k = 1, 2.

According to the real-life phenomenon, the objective function may have more

than two fuzzy aspiration levels, then we design the corresponding mathemat-

ical model in the following way.
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So, when each objective function has three fuzzy aspiration levels, FMCGP

takes any one of these goals in such a way that it produces to a better optimal

solution. Therefore, based on the model of Chang (17), the equations (7.15)

and (7.16) reduce as follows:

µt ≤ 1− [
Zt − ĝ1

t

d1−
t

z1
t z

2
t +

Zt − ĝ2
t

d2−
t

(1− z1
t )z

2
t +

Zt − ĝ3
t

d3−
t

z1
t (1− z2

t )] ∀t,

µt ≤ 1− [
ĝ1
t − Zt

d1+
t

z1
t z

2
t +

ĝ2
t − Zt

d2+
t

(1− z1
t )z

2
t +

ĝ3
t − Zt

d3+
t

z1
t (1− z2

t )] ∀t,

z1
t + z2

t ≥ 1 ∀ t,

zkt = 0 or 1 ∀ t, k.

Similarly, dk−t and dk+
t are the maximum allowable negative and positive devi-

ations respectively for ĝkt for k = 1, 2, 3.

If ĝkt for (t = 1, 2, . . . , K) denotes the fuzzy multi-choice goals for the objective

functions Zt (t = 1, 2, . . . , r), then the linear membership function µt for t-th

objective function can be defined as follows:

µt =


0, if Zt ≥ g̃kt + dk+

t ,

1−
∑p

k=1
Zt−g̃kt
dk+t

Fk(B), if g̃kt ≤ Zt ≤ g̃kt + dk+
t ,

1, if Zt = g̃kt ,

1−
∑p

k=1
g̃tt−Zt

dk−t
Fk(B), if g̃kt − dk−t ≤ Zt ≤ g̃kt

Here, Fk(B) indicates a function of binary serial numbers that ensures only

one aspiration level must be chosen from each goal (cf., Roy et al. (135)). In

general, dk+
t and dk−t are the maximum allowable positive and negative devia-

tions respectively from the k-th aspiration level of the t-th objective function

respectively.

It may be noted that, it is not necessary that each objective function has the

same number of multi-choice goals. Then Model 7.4 is developed according

to the number of fuzzy goals for the objective functions and then solving, we

obtain the aspiration level of each objective function as well as the optimal

solution of the MOTP.
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7.5 Numerical example
To test the efficiency of our proposed study, we consider a coal transportation

problem, which mainly refers to the MOTP with fuzzy multi-choice goals to

the objective functions. The MOTP is designed based on uncertain supply

and demand along with the concept of reliability to the cost parameter of the

TP.

The DM plans to distribute the coals from three mines M1, M2 and M3 to four

Thermal Plants which are situated in the cities, C1, C2, C3 and C4. During

the planning, he wishes to optimize the following objective functions as:

• minimize the transportation cost (Z1),

• minimize the toll tax (Z2),

• maximize the profit (Z3).

According to the market scenario, the DM cannot predict the optimal goals

for the objective functions Z1, Z2 and Z3 in a crisp way. According to the

experience of the DM in the work field, the DM has the ideas about the nature

of the objective functions and using this he considers a number of fuzzy goals

corresponding to the objective functions. Again, from his experience he guesses

the following events.

• The cost C1
ij for transporting one unit of goods from the resource i to

the destination j and the approximate loss of time of delivery from the

sources to the destinations are also known to the DM, for i = 1, 2, 3 and

j = 1, 2, 3, 4 respectively.

• The toll tax cost C2
ij for transporting one unit of goods from the resource

i to the destination j and it is fixed value for i = 1, 2, 3 and j = 1, 2, 3, 4

respectively.

• The profit C3
ij for transporting one unit of goods from the resource i to

the destination j and the DM made a prediction of approximate loss of
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time of delivery from the sources to the destination, for i = 1, 2, 3 and

j = 1, 2, 3, 4 respectively.

The data for the costs Ct
ij for t = 1, 2, 3 are represented in Tables 7.1, 7.2 and

7.3.

Table 7.1: Transportation cost C1
ij (in $) and loss of time (in week).

C1 C2 C3 C4
M1 (20, 0.1) (18, 0.1) (22, 0.1) (24, 0.1)
M2 (10, 0) (12, 0.2) (15, 0) (13, 0)
M3 (22, 0) (20, 0.1) (24, 1) (23, 0.15)

Table 7.2: Toll tax cost C2
ij (in $) for transportation.

C1 C2 C3 C4
M1 5 6 4 3
M2 6 5 5 4
M3 9 8 8 10

Table 7.3: Profit C3
ij (in $) and loss of time (in week).

C1 C2 C3 C4
M1 (3, 0.1) (3.5, 0.1) (2.5, 0.1) (5, 0.1)
M2 (3, 0) (6, 0.2) (4, 0) (4, 0)
M3 (4, 0) (3, 0.1) (4, 1) (5, 0.15)

The supply parameters a1, a2 and a3 of mines M1, M2 and M3 and the de-

mand parameters b1, b2, b3 and b4 of cities C1, C2, C3 and C4 follow Normal

distribution N(e1
i , σ

1
i ), for i = 1, 2, 3; and N(e2

j , σ
2
j ), for j = 1, 2, 3, 4 respec-

tively. The data for supply ai and demand bj ∀ i, j are presented in Tables 7.4

and 7.5.

Table 7.4: Supply parameter ai follows Normal distribution N(e1
i , σ

1
i ).

M1 M2 M3
(55, 4) (60, 5) (70, 4)

Table 7.5: Demand parameter bj follows Normal distribution N(e2
i , σ

2
i ).

C1 C2 C3 C4
(40, 3) (36, 4) (35, 5) (40, 3)
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Again, in the proposed problem, obviously the DM would like to minimize the

transportation cost and toll tax cost and maximize the profit. In this situation,

the DM expects that the possible expenditure for transportation cost may be

any one of fuzzy interval values 2900(100), 4000(100) and 3400(100), here

the number within first bracket denotes the deviations (positive and negative

deviations are same here).

Thereafter, DM expects the expenditure due to toll tax cost either 950(50)

or 1250(40). He also predicts the profit goal may be chosen among the fuzzy

values 480(30), 1050(20), 650(50) and 900(50). He wishes to consider the

equal weights ‘0.3’ to the objective functions Z1 and Z2 and an weight ‘0.4’ for

the last objective function Z3 respectively. Then the proposed problem takes

the mathematical form as follows:

Model 7.5

Z1 =
3∑
i=1

4∑
j=1

R[C1
ij]xij,

Z1 has the goals [2900(100), 4000(100), 3400(100)],

Z2 =
3∑
i=1

4∑
j=1

C2
ijxij,

Z2 has the goals [950(50), 1250(40)],

Z3 =
3∑
i=1

4∑
j=1

R[C3
ij]xij,

Z3 has the goals [480(30), 1050(20), 650(50), 900(50)],

subject to M(
4∑
j=1

xij ≤ ai) ≥ γi (i = 1, 2, 3),

M(
3∑
i=1

xij ≥ bj) ≥ δj (j = 1, 2, 3, 4),

xij ≥ 0 ∀ i, j.

The uncertain parameters are taken as Normal variable N(e, σ) where e is the

expectation and σ is the standard deviation. The inverse uncertain distribution

is defined as φ−1(x) = e+
√

3σ
π
ln1−x

x
.

Then Model 7.5 reduces to the following form as:
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Model 7.6

Z1 =
3∑
i=1

4∑
j=1

[C1
ij + C1

ij(1−R1
ij)]xij,

Z1 has the goals [2900(100), 4000(100), 3400(100)],

Z2 =
3∑
i=1

4∑
j=1

C2
ijxij,

Z2 has the goals [950(50), 1250(40)],

Z3 =
3∑
i=1

4∑
j=1

[C3
ij − C3

ij(1−R3
ij)]xij,

Z3 has the goals [480(30), 1050(20), 650(50), 900(50)],

subject to
4∑
j=1

xij ≤ e1
i +

√
3σ1

i

π
ln

1− γi
γi

(i = 1, 2, 3),

3∑
i=1

xij ≥ e2
j +

√
3σ2

j

π
ln

1− δj
δj

(j = 1, 2, 3, 4),

xij ≥ 0 ∀ i, j.

Here, R1
ij and R3

ij are the reliability of completing the job of transportation in

time, They are taken as function of the decision variables and the expected loss

time for completion the work. The source capacity (ai) is uncertain in nature,

but we use this value for maximum priority in R1
ij and R3

ij. Let us assume

the confidence levels be γi = 0.85 and δj = 0.9, ∀ i = 1, 2, 3 and j = 1, 2, 3, 4.

Finally, the proposed MOTP is converted to a single objective problem using

the goals as prescribed by the DM and we obtain the following model as:

Model 7.7

minimize z = 0.3µ1 + 0.3µ2 + 0.4µ3

subject to Z1 = (40− 20e
−0.1
55

x11)x11 + (36− 18e
−0.1
55

x12)x12

+(44− 22e
−0.1
55

x13)x13 + (26− 13e
−0.1
55

x14)x14

+(20− 10e
−0
60
x21)x21 + (24− 12e

−0.2
60

x22)x22

+(30− 15e
−0
60
x23)x23 + (26− 13e

−0
60
x24)x24

+(44− 22e
−0
70
x31)x31 + (40− 20e

−0.1
70

x32)x32
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+(48− 24e
−1
70
x33)x33 + (46− 23e

−0.15
70

x34)x34,

Z2 = 5x11 + 6x12 + 4x13 + 3x14 + 6x21 + 5x22

+5x23 + 4x24 + 9x31 + 8x32 + 8x33 + 10x34,

Z3 = 3e−
0.1
55
x11x11 + 3.5e−

0.1
55
x12x12 + 2.5e−

0.1
55
x13x13 +

5e−
0.1
55
x14x14 + 3e−

0
60
x21x21 + 6e−

0.2
60
x22x22 +

4e−
0
60
x23x23 + 4e−

0
60
x24x24 + 4e−

0
70
x31x31 +

3e−
0.1
70
x32x32 + 4e−

1
70
x33x33 + 5e−

0.15
70

x34x34,

µ1 ≤ 1− [
Z1 − 2900

100
z1

1z
2
1 +

Z1 − 4000

100
(1− z1

1)z2
1 +

Z1 − 3400

100
z1

1(1− z2
1)],

µ1 ≤ 1− [
2900− Z1

100
z1

1z
2
1 +

4000− Z1

100
(1− z1

1)z2
1 +

3400− Z1

100
z1

1(1− z2
1)],

µ2 ≤ 1− [
Z2 − 950

50
z1

2 +
Z2 − 1250

40
(1− z1

2)],

µ2 ≤ 1− [
950− Z2

50
z1

2 +
1250− Z2

40
(1− z1

2)],

µ3 ≤ 1− [
Z3 − 480

30
z1

3z
2
3 +

Z3 − 1050

20
(1− z1

3)z2
3 +

Z3 − 650

50
z1

3(1− z2
3)

+
Z3 − 900

50
(1− z1

3)(1− z2
3)],

µ3 ≤ 1− [
480− Z3

30
z1

3z
2
3 +

1050− Z3

20
(1− z1

3)z2
3 +

650− Z3

50
z1

3(1− z2
3)

+
900− Z3

50
(1− z1

3)(1− z2
3)],

z1
1 + z2

1 ≥ 1,

ztk = 0 or 1 ∀ k, t,

0 ≤ µk ≤ 1 (k = 1, 2, 3),

x11 + x12 + x13 + x14 ≤ 51.175,

x21 + x22 + x23 + x24 ≤ 55.218,

x31 + x32 + x33 + x34 ≤ 66.175,

x11 + x21 + x31 ≥ 43.634,

x12 + x22 + x32 ≥ 40.486,

x13 + x23 + x33 ≥ 41.057,
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x14 + x24 + x34 ≥ 43.634,

xij ≥ 0 ∀ i, j.

7.6 Result and discussion
Solving Model 7.7 using LINGO software, we derive the following solution:

Optimum value of z = 0.82. Hence, the optimal values of the objective func-

tions are: Z1 = 3400.00, Z2 = 980.13 and Z3 = 650. The allocations are made

as follows:

x11 = 3.12; x12 = 0.0; x13 = 18.95; x14 = 29.10; x21 = 11.26; x22 = 25.07;

x23 = 4.36; x24 = 14.54; x31 = 29.26; x32 = 15.42; x33 = 17.74; x34 = 0.0;

Selected goal for the objective functions are as follows:

3400(100) for Z1, 950(50) for Z2 and 650(50) for Z3.

Here, we present a study on the MOTP with fuzzy multi-choice goals for each

objective functions under uncertain environment. Especially, here, we incor-

porate the situation of cost reliability with the cost parameters due to delay

in delivery of goods before/after schedule time. The numerical example is

presented the applicability of proposed methodology for solving the MOTP

with fuzzy multi-choice goals and uncertain supply and demand parameters.

Usually, the MOTP having the objective functions are of either maximization

type or minimization type, but here, the aim of the DM is not likely to the

solution of traditional MOTP. This work presents the uncertainty under the

expectation of an upcoming event and also proposes to fix-up the goals for each

of the objective functions for the DM corresponding to the possible optimal

values. On the other hand, time is very much important for transporting the

goods to real-life transportation problems, so the decision making under time

consideration and cost reliability provide a proper way of selecting the goals

for the objective functions.

In the proposed problem, if the DM wishes to find the optimal solution of

the objective function under traditional way like goal programming approach,

then certainly he may consider minimum goals for first two objective functions

Z1 and Z2 i.e., 2900 and 950 respectively and for the profit objective function
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Z3, the maximum goal is 1050. Considering these goals corresponding to the

objective functions, we attempt to solve the proposed problem using goal pro-

gramming, but we cannot obtain any feasible solution through GP. Again we

have tested that, if the DM considers the goal values 4000 for the objective

function Z1 and 1250 for the objective function Z2 then the DM calculated the

maximum profit goal 1050 for the objective function Z3 through goal program-

ming approach. Basically, in most cases, the customers pay the transportation

cost and toll tax cost, if the costs increase then the DM may loose the cus-

tomer in near future which happens due to maximum profit goal of the DM.

As a result the optimal solution through GP has not produced a better result

in both cases. To test the utility of our proposed method, we consider multi-

choice goals (2900, 4000, 3400) for Z1; (950, 1250) for Z2; (480, 1050, 650,

900) for Z3 and solving the problem by revised multi-choice goal programming

(RMCGP) approach, we see that the selected optimal goal values are 2900

for Z1; 950 for Z2; 480 for Z3. In this case the DM achieves the solution in

which selected profit goal is minimum value and it is not satisfactory to the

DM. So, the proposed approach is better than GP or RMCGP technique for

selecting optimal goals. Hence, in that situation, the DM cannot fix the goals

of the objective functions using the existing techniques, whereas our present

methodology can give a better solution as well as a better selection of goals

for the MOTP through uncertain environment.

7.7 Conclusion and limitations of the study
In this chapter, we have analyzed the real-life MOTP through the concept

of reliability and uncertain environments. We have proposed a new kind of

uncertainty on cost parameter based on the concept reliability. Beside this,

we have established the MOTP under the consideration of fuzzy multi-choice

goals to the objective functions and supply and demand are taken as uncertain

in nature. A solution procedure for solving the MOTP; and the selection of

goals for the objective functions has been discussed by taking a real-life ex-

ample. The obtained results have indicated that the proposed approach has a
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better impact to solve the MOTP under uncertain environment; and it has the

advantages of selection of goals for real-life decision making problems under

uncertain environment. This method is not only proposed the subjective pref-

erence into real-life decision-making problems, but also can realize the better

selection of goals to the objective functions.

The proposed method has the following limitations for formulating the math-

ematical model. Firstly, the value of delay time or over time of transportation

in the reliability function should have to be taken in a unit scale and in this

case the time τ ≤ 1, otherwise, the value of reliability function may not pro-

vide for selecting the goals and optimal solution. Another important factor is

that at least one multi-choice fuzzy goals for each of the objective functions

(Zi) must intersect the interval range [min Zi, max Zi] for all i for getting the

optimal solution of the MOTP, otherwise it produces infeasible solution. Thus

for a better result of the MOTP, the above two restrictions must be taken into

care by the DM.
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Chapter 8

Two-Stage Grey Transportation
Problem ∗

In this chapter, we propose how to select optimum goals corresponding to

the objective functions in a Two-Stage TP under grey environment. Here, we

present the Two-Stage TP considering multiple objective functions under grey

environment and establish the approach for selection of optimum goals along

with the optimum solution of the proposed model. A numerical example is

incorporated to justify the efficiency of the proposed study.

8.1 Introduction
The traditional way of a Transportation Problem (TP) is a type of decision

making problem which minimizes the transportation cost for transporting the

goods from origin to destinations satisfying some restrictions according to the

feasibility of the problem. But, it is not exactly true that the TP only mini-

mizes the transportation cost. In addition to this, it can have applications in a

decision making problem like minimizing the purchasing cost and maximizing

the profit, etc. In a TP, sometimes it is also to be considered that before trans-

porting the goods in the destinations from the sources, goods are to be stored

at warehouses from sources. So, the Decision Maker (DM) utilizes the con-

cept for managing Two-Stage transportation in his position which maximizes
∗A part of this chapter is submitted after revision in Central European Journal of

Operations Research, Springer, SCI, IF. 0.978
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the profit. A TP is called a Two-Stage transportation problem, if it consists of

transporting the goods by two Stages, namely, One-Stage transportation prob-

lem and in Another-Stage transportation problem. The TP which is consid-

ered in two stages of collecting the goods in warehouses is called an One-Stage

transportation problem; the TP considered in Another Stage of distributing

the goods is referred to as an Another Stage transportation problem.

In Figure 8.1, a network is considered to illustrate a Two-Stage transporta-

tion problem. Here, the DM has three warehouses such as S1, S2 and S3

Figure 8.1: Graphical Network represents a Two-Stage transportation
problem.

which collect the goods from two cities: D1 and D2 (One-Stage transporta-

tion problem). Again the goods are supplied to four cities: C1, C2, C3 and

C4 (Another-Stage transportation problem) by the help of the DM. So, the

goods are in and out at the warehouses S1, S2 and S3 by two-times trans-

portation, and so it is a Two-Stage transportation problem. Again, there may

be more than one objective function in a Two-Stage transportation problem

which makes it a multi-objective Two-Stage transportation problem. In this

situation, taking decision is not an easy task for the DM unless he or she se-
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lects the proper goals for the objective functions. So, we make a connection

between the goals and the objective functions of a multi-objective Two-Stage

transportation problem.

Goal Programming (GP) is a decision making tool for the MOTP. In most of

the cases, a GP is used to produce a better solution of the MOTP under the

assumption of certain goals. Later on, RMCGP is also introduced to improve

the solution of the MOTP by a GP. In both methods, certain goals are to be

chosen by the DM and the solution is obtained satisfying the optimal values

of the goals. But, it is difficult for the DM to guess the possible goals of the

objective functions in connection with the methodologies of GP or RMCGP.

Because of the globalization of the market, the supply and demand in a TP

are not always fixed, so these are considered to be an uncertain number or,

more specifically, grey numbers. A grey number means a number which is not

known exactly. The interval grey number can be treated as continuous and

discrete. It may be a discrete number within certain range or any number

within a range of lower and upper limits. Again, if the number is not known

precisely, but is taken from a set of numbers, then it becomes a multi-choice

grey number. In a real-life TP, the capacity of supply (a) may not be a fixed

number always, but there exists an upper limit (ā) of supply that can be uti-

lized. Again, it is also noticed that the supply cannot be less than an amount

which is the lower limit (a) of supply. Then the upper and lower limits of

supply describe the situation of interval grey supply (a, ā) in a TP. Again, if

the supply is not a fixed number and it is considered from a set of multi-choice

numbers (a1, a2, . . . , ap), then the supply becomes multi-choice grey supply.

The demands (b) at the destinations may not be fixed in advance; it also has

an upper limit (b̄) according to the market situation is concerned, Therefore,

it has a lower limit (b) also. In that situation, we may assign an interval grey

demand (b, b̄) in our proposed study. Furthermore, if the possible demands

are multi-choice real numbers which belong to the set of multi-choice values

(b1, b2, . . . , bq), then it also becomes a grey demand. Here we use two types

of greyness in our model, namely, interval grey number and multi-choice grey
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number.

Based on the above discussions, realizing the real-life situations, we allow the

supply and demand constraints of a TP as grey supply and demand constraints.

Again, a real-life TP has many dimensions; so to accommodate these phenom-

ena, here we employ the multi-objective TP. Thereafter, we define the goal

space for the objective functions. Then we solve a Two-Stage MOTP for opti-

mal selection of goals from the goal space to the objective functions through a

utility function for proper choice of goals and optimal solution of the MOTP.

Many researchers adopted various methodologies for analyzing multi-criteria

decision making problems and MOTPs. Nevertheless, to the best of our knowl-

edge, the existing approaches are not sufficient to tackle the MOTP when the

supply and demand are interval grey numbers, and to answer the question of

how to select goal values corresponding to the objective functions. To tackle

such a type of MOTP, we propose a new approach for solving a Two-Stage

MOTP problem which will be of a great impact for the scientific community,

especially, in Operational Research.

8.1.1 Problem environment

A large number of studies have been accommodated by different researchers

for solving MOTP with goals through the objective functions. But, in many

cases, we observe that the objective function is considered associated with

the goals, and then solution procedures are developed to find solutions to

the best according to decision maker’s choice. In our research, we formulate

a mathematical model on the MOTP which is a Two-Stage transportation

problem. Here, a Two-Stage transportation problem refers to a TP in which

goods are collected at some warehouses and then the goods are delivered to

several destinations. So, the warehouses are the demand points for sources

and supply points for destinations. Goods are transported at two Stages, i.e.,

for gathering and distributing, and the whole system is managed by only one

decision maker. The DM wishes to maximize his benefit and to minimize

the transportation costs. The data regarding the demand and the supply
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are not necessarily exact in TP due to the globalization of markets or other

conditions like weather conditions, seasonal effects, etc. So, without loss of

generality, these are taken as grey numbers in the MOTP. The grey numbers

may be interval-valued numbers, multi-choice numbers, stochastic numbers,

fuzzy numbers, etc. Here, we consider two types of grey numbers, namely,

interval grey numbers and multi-choice grey numbers in our proposed MOTP.

Another important notion for this MOTP is that if the DM wishes to maximize

his profit without considering the transportation cost, then customers will be

affected. In this situation, the optimal goals for the objective functions and

the corresponding solutions are not specified in the literature until now. Based

on all these ideas, we propose a new way to select the optimal goals for the

objective functions of a regarded MOTP.

8.1.2 Theoretical background

Goal programming is a branch of Multi-Objective Optimization (MOO). It is

also considered as a branch of optimization problem in multi-criteria decision

analysis. It can be thought of as an extension or generalization of linear pro-

gramming to handle multiple, normally conflicting objective measures. Each

of these measures is given a goal or target value to be achieved. Unwanted

deviations from this set of target values are then minimized through an achieve-

ment function. This can be a vector or a weighted sum, depending on the goal

programming used. The mathematical model for solving a Multi-Objective

Decision Making (MODM) problem using a GP can be considered in the fol-

lowing form:

minimize
K∑
i=1

wi|Zi(x)− gi|

subject to x ∈ F,

where F is the feasible set and wi are the weights attached to the deviation of

the achievement function. Here, Zi(x) is the i-th objective function of the i-th

goal and gi is the aspiration level of the i-th goal. Here, |Zi(x)− gi| represents
the deviation of the i-th goal.
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Weighted goal programming allows for direct trade-offs among all unwanted

deviational variables by placing them in a weighted, normalized single achieve-

ment function. In fact, weighted goal programming is also termed as non-

preemptive goal programming in the literature. Mathematically, Weighted

Goal Programming (WGP) can be displayed in the following form:

minimize
K∑
i=1

wi(d
+
i + d−i )

subject to Zi(x)− d+
i + d−i = gi (i = 1, 2, . . . , K),

d+
i ≥ 0, d−i ≥ 0 (i = 1, 2, . . . , K),

x ∈ F,

where d+
i and d−i signify over and under achievements of the i-th goal, respec-

tively.

However, the conflicts of resources and the lack of available information make

it almost impossible for the DM to set the specific aspiration levels and to

choose a better decision when there is a multi-choice of goals connecting with

the objective functions. To tackle this situation, Chang (17) proposed the

mathematical model on RMCGP to solve a MODM problem. The mathemat-

ical model of a MODM using RMCGP is prescribed as follows:

RMCGP

minimize
K∑
i=1

[
wi(d

+
i + d−i ) + αi(e

+
i + e−i )

]
subject to Zi(x)− d+

i + d−i = yi (i = 1, 2, . . . , K),

yi − e+
i + e−i = gi,max or gi,min (i = 1, 2, . . . , K),

gi,min ≤ yi ≤ gi,max (i = 1, 2, . . . , K),

d+
i , d

−
i , e

+
i , e

−
i ≥ 0 (i = 1, 2, . . . , K),

x ∈ F,

where yi is the continuous variable associated with i-th goal which restricted

between the upper (gi,max) and lower (gi,min) bounds, and e+
i and e−i are pos-

itive and negative deviations attached to the i-th goal of |yi − gi,max| and αi
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is the weight attached to the deviation of |yi − gi,max|; the other variables

are defined as in a WGP. To show the efficiency of the variables d+
i ; d−i and

e+
i ; e−i , here we use d+

i and d−i to minimize the deviation in the objective

function of RMCGP; and e+
i and e−i are introduced in the model to optimize

the goals according to the type of the objective functions, namely, either being

of maximization or of minimization type. Again, we formulate the model for

both maximization and minimization type functions, so we consider e+
i and e−i .

However, if the type of some objective function is known in advance, then one

of the variables e+
i and e−i may be omitted according to the type of objective

function, of maximization or minimization, respectively.

Theorem 8.1: WGP is a modification of GP for solving a MODM problem

and RMCGP produces better results than GP and WGP.

Proof : The mathematical model of the GP for solving a MODM problem is

considered as follows:

GP

minimize
K∑
i=1

wi|Zi(x)− gi| (8.1)

subject to x ∈ F. (8.2)

Let us take d+
i = Zi(x) − gi if Zi(x) ≥ gi, and d+

i = 0 otherwise (i =

1, 2, . . . , K). Also, we put d−i = gi − Zi(x) if Zi(x) ≤ gi, and d−i = 0 oth-

erwise. Then, Zi(x)− gi = d+
i − d−i , which implies that Zi(x)− d+

i + d−i = gi.

Furthermore, |Zi(x)− gi| = d+
i + d−i .

Thus, the GP model reduces to the model WGP as follows:

WGP

minimize
K∑
i=1

wi(d
+
i + d−i )

subject to Zi(x)− d+
i + d−i = gi (i = 1, 2, . . . , K),

d+
i ≥ 0, d−i ≥ 0 (i = 1, 2, . . . , K),

x ∈ F.
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According to the above discussion, we see that the mathematical model GP

is a function of decision variables along with the weights and goals, whereas

the objective function in the mathematical model of WGP consists of the vari-

ables goal deviations (d+
i and d−i ). Both the models GP and WGP produce the

same result, but the WGP model is easier to handle than GP as its objective

function contains a minimum number of variables when compared to the GP

model.

If the goal (gi) for i-th objective function is not prescribed by a fixed value

but it is considered as a range [gi,min, gi,max], then for a better solution of a

maximization type objective function gi should attain the maximum value of

the range, and for a minimization type objective function it should take its

minimum value of the specified range.

In that case, we introduce a new variable yi in model WGP as Zi(x)−d+
i +d−i =

yi, and two deviation variables such as e+
i and e−i are similar to d+

i and d−i ,

respectively, along with the constraint yi − e+
i + e−i = gi,max or gi,min. Then,

the objective function is changed into the following form as:

minimize [
∑K

i=1wi(d
+
i + d−i ) +

∑K
i=1 αi(e

+
i + e−i )],

where αi are weights corresponding to the goal deviations. Using this objec-

tive function we formulate the model RMCGP. The model RMCGP minimizes

both the deviations (d+
i + d−i ) and (e+

i + e−i ), whereas the problem GP only

minimizes the deviation of the objective function value, i.e., (d+
i + d−i ). Thus,

in the course of time of minimizing the objective function in RMCGP model,

the second part of the objective function
∑K

i=1 αi(e
+
i + e−i ) is also minimized.

This implies that the value of yi tends to gi,max for a maximizing type objective

function, and yi tends to gi,min for a minimizing type objective function. In

WGP or GP, the goal deviations are only minimized which does not consider

the type of objective function. Here, the additional variables e+
i and e−i tackle

the situation which minimizes the deviations according to the nature of the

objective function. Hence, we conclude that RMCGP produces a better result

than WGP or GP models.

Again, in the RMCGP model, if we treat the goal deviations e+
i and e−i as 0,
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then, it takes the form of a WGP which is a modification of the model GP.

So, it is clear that the solution of RMCGP is better than the solution of WGP

and GP. Hence, the arguments evince the proof of the theorem. 2

Considering real-world practical problems, we present the situation where sup-

ply and demand are taken as grey numbers. Basically, grey numbers are used

to represent the situation where the supply and demand are not known exactly.

Sometimes supply or demand may be a number among a set of values which

indicates that supply or demand follow multi-choice values. Again, supply or

demand may be considered as interval valued. So, different types of uncertain

supply and demand situations may occur in a MOTP, which are considered as

grey supply and grey demand in our proposed model.

Utility function

The term “utility” is measured (Berger (4), Blanchard and Fischer (9)) to be

correlative as “Desire" or “Want”. It has been argued already that desire can-

not be measured directly, but only indirectly, by the outward phenomena in

which the context is presented.

Definition 8.1.1 A utility function describes a function U : X −→ R which

assigns a real number in such a way that it captures the DM’s preference over

the desired goals of the objectives, where X is the set of feasible points.

Satisfaction of goals does not always mean a better selection of goals for the ob-

jective function as well as the solution for the objective functions with respect

to the goals. There may occur situations to compare the solutions correspond-

ing to the goals. Here, to introduce a better goal, we include a utility function,

whose value indicates to optimize the proposed problem through optimal se-

lection goals.

8.2 Mathematical model
Generally, transportation problem is a type of decision making problem in

which the main objective is to minimize the transportation cost and is defined
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subsequently:

Model 8.1

minimize Z =
m∑
i=1

n∑
j=1

Cijxij (8.3)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m), (8.4)

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n), (8.5)

xij ≥ 0 ∀ i and j, (8.6)

where xij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) is the decision variable and Cij

(i = 1, 2, . . . ,m; j = 1, 2, . . . , n) is the transportation cost per unit commodity

from the i-th origin to the j-th destination. Here, ai (i = 1, 2, . . . ,m) and bj
(j = 1, 2, . . . , n) are availability and demand at the i-th origin and the j-th

destination, respectively, and the feasibility condition is
∑m

i=1 ai ≥
∑n

j=1 bj.

The mathematical model of the MOTP can be taken as follows:

Model 8.2

minimize/maximize Zs =
m∑
i=1

n∑
j=1

Cs
ijxij (s = 1, 2, . . . , K) (8.7)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m), (8.8)

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n), (8.9)

xij ≥ 0 ∀ i and j. (8.10)

The objective functions in MOTP are conflicting to each other, so even if

sometimes they are of the same type, i.e., two objective functions are of min-

imization type or maximization type, they cannot be summed up to a single

objective function. For example, if the transportation cost and production cost

are considered as two objective functions in MOTP, then both are minimiza-

tion type but they cannot be combined to make a single objective function

as the costs are dealt by two decision makers, namely, by the customer and
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by the seller, respectively. Again, it is true that a maximization problem can

be reduced easily to a minimization problem. But this is not what we are

considering, because the reduction of maximization to minimization problem

which causes the goals from positive to negative numbers. In real-life situa-

tions, the negative goals are not considered as they are meaningless. Based

on these phenomena, we do not convert the maximization problem into the

minimization in our proposed model.

According to real-world situations, considering the ambiguity that exists in the

supply and demand parameters, we incorporate grey supply and grey demand

in our study and we depict the MOTP in Model 8.3.

Model 8.3

minimize/maximize Zs =
m∑
i=1

n∑
j=1

Cs
ijxij (s = 1, 2, . . . , K) (8.11)

subject to
n∑
j=1

xij ≤ âi (i = 1, 2, . . . ,m), (8.12)

m∑
i=1

xij ≥ b̂j (j = 1, 2, . . . , n), (8.13)

xij ≥ 0 ∀ i and j, (8.14)

where âi and b̂j are the grey supply and demand, respectively. In our proposed

study we consider the grey supply âi as anyone of interval grey numbers âi =

[ai, āi] or multi-choice grey numbers âi = (a1
i , a

2
i , . . . , a

p
i ); here, p is the number

of possible multi-choice supply at i-th origin. Again, demand is also considered

by interval grey numbers b̂j = [bj, b̄j] (j = 1, 2, . . . , n) or multi-choice grey

numbers b̂j = (b1
j , b

2
j , . . . , b

q
j); here, q is the number of possible multi-choice

demand at j-th destination. In fact, ai and ai are lower and upper bounds of

grey supply at the i-th origin; bj, bj are the bounds of grey demand at the j-th

destination and
∑m

i=1 āi ≥
∑n

j=1 bj is the feasibility condition.

We consider the following assumptions to formulate mathematical model (for

Model 8.4) of a Two-Stage multi-objective TP as:

• Consider m sources Di (i = 1, 2, . . . ,m) with interval grey supply [ai, āi]

(i = 1, 2, . . . ,m) and p destinations Cj′ (j′ = 1, 2, . . . , p) with interval
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grey demand [bj′ , b̄j′ ] (j′ = 1, 2, . . . , p) and there are no direct link be-

tween sources and destinations.

• Assume n nodes Sj (j = 1, 2, . . . , n) with equal interval grey supply

and demand [dj, d̄j] (j = 1, 2, . . . , n) to interact between sources Di and

destinations Cj′ ; this has the capacity of taking goods from sources Di

and delivering goods to the destinations Cj′ .

• In our proposed model, we consider that there are no goods left after the

completion of a particular time of transportation in the nodes Sj.

• We treat T objective functions for One-Stage transportation, i.e., trans-

portation from sources Di to destination Sj; yij is taken as decision

variable and P t
ij is the cost parameter for the t-th objective function.

• We describeK objective functions for Another-Stage transportation, i.e.,

transportation from sources Sj to destination Cj′ ; here, xi′j′ is taken as a

decision variable and Ck
i′j′ is the penalty parameter for the k-th objective

function. In fact, the penalty parameter may be the transportation cost

per unit item, producing cost per unit item of goods, selling cost per unit

item of goods, etc.

Then, our mathematical model can be designed in the following form:

Model 8.4

minimize/maximize W t =
m∑
i=1

n∑
j=1

P t
ijyij (t = 1, 2, . . . , T ) (8.15)

minimize/maximize Zk =
n∑

i′=1

p∑
j′=1

Ck
i′j′xi′j′ (k = 1, 2, . . . , K) (8.16)
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subject to
n∑
j=1

yij ≤ âi (i = 1, 2, . . . ,m), (8.17)

m∑
i=1

yij ≥ d̂j (j = 1, 2, . . . , n), (8.18)

p∑
j′=1

xi′j′ ≤ d̂i′ (i′ = 1, 2, . . . , n), (8.19)

n∑
i′=1

xi′j′ ≥ b̂j′ (j′ = 1, 2, . . . , p), (8.20)

m∑
i=1

yil =

p∑
j′=1

xlj′ (l = 1, 2, . . . , n), (8.21)

yij ≥ 0 ∀ i, j; xi′j′ ≥ 0 ∀ i′, j′. (8.22)

Here, âi, d̂j, d̂i′ and b̂j′ are the grey supply and demand parameters as defined

in Model 8.3. Also,
∑m

i=1 āi ≥
∑p

j′=1 bj′ is the feasibility condition. Although

this condition can be made according to the choice of DM, we consider the

possibly large feasible region for the multi-objective Two-Stage TP.

In Model 8.4, constraints (8.17) and (8.18) represent availability and demand at

the origins and destinations of One-Stage transportation, respectively. Again,

constraints (8.19) and (8.20) represent availability and demand at the origin

and destinations of Another-Stage transportation, respectively. Finally, con-

straints (8.21) represent that the amount of goods stored at the destination of

One-Stage transportation will all be distributed to the designations of Another-

Stage of transportation.

The objective functions W t (t = 1, 2, . . . , T ) are of conflicting nature which is

considered at the first stage of Model 8.4; so these functions are not summed

up, even if they are of same type. A similar concept is adopted for the objec-

tive functions at the subsequent stage of Model 8.4. Also, there are different

agents to pay the cost at different stages of transportation. Due to this fact,

we consider the objective functions separately in Model 8.4.

Usually, the DM determines the goals into the objective functions and, there-

after, the solution is obtained according to the best fit of goal. Here, our main

interest is to constitute the way of assignment of goals to the objective func-
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tions. When there are more than one objective function, conflicting in nature,

in many cases optimal solutions of the objective functions occur at different

points. So, consideration of specific goals and the corresponding solution are

a complex task for the DM.

Now, some useful definitions regarding our proposed study in the goal space

are presented. The following definitions are given with respect to s number of

objective functions.

Definition 8.2.1 (Feasible goal): Let Zt be the t-th objective function of

the MOTP. Then the feasible goal for the objective function Zt refers to all

the possible values of the objective function Zt which is an interval I t =

[min Zt,max Zt]. Here, min Zt and max Zt are obtained under supply and

demand constraints of the MOTP along with the nonnegativity conditions.

Definition 8.2.2 (Feasible goal region): Let I t be the feasibility of goal for

t-th objective function of the MOTP. Then the subset I1×I2× . . .×Is of Rs is

the feasibility goal region for the MOTP with respect to s objective functions.

Definition 8.2.3 (Optimum goal region): In the usual way of the MOTP,

each objective function is either of maximization type or of minimization type.

Each can be solved with respect to the constraints separately to get its individ-

ual optimal solution. Let X∗1 , X∗2 , . . . , X∗s be the respective ideal solutions of s

number of objective functions. Evaluating all these objective functions at all

the ideal solutions, we construct a pay-off matrix of format s × s as stated in

Table 8.1.

Table 8.1: Pay-off Matrix for ideal solutions of the objective functions.
Z1(X∗1 ) Z1(X∗2 ) · · · Z1(X∗s )
Z2(X∗1 ) Z2(X∗2 ) · · · Z2(X∗s )
Z3(X∗1 ) Z3(X∗2 ) · · · Z3(X∗s )

...
...

...
...

Zs(X∗1 ) Zs(X∗2 ) · · · Zs(X∗s )

 .
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Then, we find I io = [minj Z
i(X∗j ),maxj Z

i(X∗j )] i, j = 1, 2, . . . , s. The subset

I1
o × I2

o × . . . × Ino of Rs is the optimum feasibility goal region for the MOTP

with respect to the given objective functions.

Again, presence of grey numbers in the constraints of Model 8.4 makes the

model non-deterministic, and we use a reduction procedure to make the MOTP

becomes deterministic one by the following rule.

8.2.1 Reduction of grey supply and demand parameters
to real parameters

In most of the real-life cases, it is seen that, if the number of units of goods

transported to some destination is of a rather small amount already, then the

transportation cost may even be around a minimal value. So, the demand in

the classical TP could be considered with the minimum value among all the

uncertain possibilities through grey numbers for an optimum solution. How-

ever, in the situation of minimizing transportation cost and maximizing profit

through transporting the goods, it is not predictable how much amount of

goods is need to be transported for an optimum solution, it may be any one

among the possible values of the grey demands. Again, if the supply amount

of goods is of a high value, then total transportation cost reduces as the cus-

tomers purchase goods from those origins in which the transportation cost per

unit item is about its minimum. But, it is not often useful to provide the sat-

isfactory level of supply at all the origins; so we make a reduction procedure

in which the optimum solution is obtained through the optimum selection of

grey supply, according to the goals of the objective functions.

If the interval grey supply is taken as [ai, āi], then it reduces to a real number

by considering the following reduction technique:

a
′
i = ai(1− λ) + λāi, where 0 ≤ λ ≤ 1. (8.A)

Similarly, the interval grey demand [bj, b̄j] can also be reduced to a real number

indicated in below:

b
′
j = bj(1− λ) + λb̄j, where 0 ≤ λ ≤ 1. (8.B)

Again, λ is considered as a real free parameter, whose value determines the
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possible supply and demand to the DM. The value of λ is obtained from the

solution according to the best goals assigned about the optimal demand and

supply to the DM. Again, if the supply or demand quantity is a multi-choice

grey number, then we use a reduction procedure by employing binary variables

in the following way.

If there are two possible values of ai, namely, a1
i and a2

i , then using one binary

variable we reduce the multi-choice grey number to a crisp number in the sub-

sequent manner:

a
′
i = a1

i z1 + a2
i (1− z1), where z1 = 0 or 1.

If there are three possible values of ai, namely, a1
i , a

2
i and a3

i then we use two

binary variables to reduce the greyness in the following manner:

a
′
i = a1

i z1z2 + a2
i (1− z1)z2 + a3

i (1− z2)z1, where z1, z2 = 0 or 1 and z1 + z2 ≥ 1.

Furthermore, for four possible values a1
i , a

2
i , a

3
i and a4

i , of ai, we use the fol-

lowing reduction formulae:

a
′
i = a1

i z1z2 + a2
i (1− z1)z2 + a3

i (1− z2)z1 + a4
i (1− z1)(1− z2), where z1, z2 = 0

or 1.

One issue to be noted is that, the number of binary variables is r, when

2r−1 < p ≤ 2r, where p is the number of multi-choice numbers in grey supply

(a1
i , a

2
i , . . . , a

p
i ). For more details about a general transformation technique, we

refer to Roy et al. (135). In a similar way, the multi-choice grey uncertainty

can be reduced for demand parameters, too.

8.2.2 Algorithm for selection of goals to the objective
functions in Two-Stage transportation problem

The following steps are proposed for selection of goals to the objective func-

tions in our Two-Stage MOTP with interval grey demand and supply:

Step 1: First, we reduce the constraints with grey numbers to deterministic

constraints with real numbers by the help of procedure described in Subsection

8.2.1.
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Step 2: We solve each of the objective functions corresponding to an One-

Stage TP under the restriction of proposed problem. As a result, we obtain

the solutions, Y ∗1 , Y ∗2 , . . . , Y ∗T . Again, we solve each of the objective functions

corresponding to an Another-Stage TP under the restriction of our proposed

problem and we calculate the solutions, X∗1 , X∗2 , . . . , X∗K . These solutions are

called as ideal solutions; often, these are known as Pareto optimal solutions.

Step 3: Using the ideal solutions obtained in Step 2, we formulate pay-off

matrices, one is of format T × T , and the other one is of format K × K,

according to Definition 5.3.

Step 4: Obtaining I io = [minj W i(Y ∗j ),maxj W i(Y ∗j )] (i = 1, 2, . . . , T ), we

then find the optimum feasibility goal region I1
o×I2

o×. . .×ITo of RT for the One-

Stage MOTP. In a similar way, we define Gi
o = [minj Zi(X∗j ),maxj Zi(X∗j )]

(i = 1, 2, . . . , K), and derive the optimum feasibility goal region G1
o × G2

o ×
. . .×GK

o in RK for the Another-Stage MOTP.

Step 5: We consider pt as the goal value to each of the objective functions W t

and gk as the goal value to each of the objective functions Zk. Based on the goal

values, we construct a utility function E = E(p1, p2, . . . , pT ; g1, g2, . . . , gK) and,

then, we optimize the value of E within the feasible goal regions I1
o×I2

o×. . .×ITo
in RT and G1

o × G2
o × . . . × GK

o in RK . If p∗1, p∗2, . . . , p∗T ; g∗1, g
∗
2, . . . , g

∗
K are

the optimal solutions of E, then these are the optimal goals to the objective

function of the MOTP.

Step 6: We formulate a single objective function whose solution provides the

optimal goals and which is also yields the solution of the MOTP.

Step 7: Based on the results of optimal goals and possible optimized values

of objective functions, we design an RMCGP model to obtain the optimal

solution.

Step 8: Stop. Construction of utility function

The utility function regarding all of the goals can be formed according to the

choice of the DM. Here, we propose the function E of the goals in such a way

that the value of E approaches to zero when the function of the MOTP is

minimized or maximized according to the choice of the DM. Let us define
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E =
∑T

t=1 αtut(pt) +
∑K

i=1wiui(gi). (8.C)

Here, αt (t = 1, 2, . . . , T ) and wi (i = 1, 2, . . . , K) are the weights. Weights

are mainly used for the preference of the respective objective functions in

the MOTP. Basically, in MOTP the weights are chosen by the DM, which

reflects the priority level of respective objective functions. In most of the cases,

weights are taken in normal form, i.e., the sum of all weights is considered

as 1. Here, we also present the weights in normal form by considering the

percentage of preferences corresponding to the objective functions in a unit

scale. Furthermore, ut (t = 1, 2, . . . , T ) is the utility function for the t-th

objective function with respect to the goal pt (t = 1, 2, . . . , T ), and ui (i =

1, 2, . . . , K) is the utility function for the i-th objective function with respect

to goal gi.

The objective function is considered by two types, namely, maximization type

and minimization type. The utility function is regarded in such a way that

the goal of a maximization type objective function is increased and goal value

corresponding to a minimization type objective function is minimized. So the

utility function ui (i = 1, 2, . . . , K) is defined as follows:

ui(gi) =


gi−gli
gui −gli

, if objective function is of minimization-type,
gui −gi
gui −gli

, if objective function is of maximization-type.
(8.D)

Again, the utility function ut(pt) (t = 1, 2, . . . , T ) is defined in a very similar

way as the function ui(gi) has been introduced.

8.3 Numerical example
Now, we present a real-life Two-Stage TP to show the effectiveness of our

proposed study. A reputed company wishes to select proper goals for objec-

tive functions and the corresponding solution. The company has three stores:

S1, S2 and S3, and it purchases goods from two market cities: D1 and D2.

Thereafter, the company supplies the goods to four cities: C1, C2, C3 and

C4. During the purchasing of items from the marketed cities D1 and D2, the

company mainly considers two criteria: one is transportation cost, and other
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is purchasing cost of goods. Here, the transportation of goods from D1 and D2

to the warehouses S1, S2 and S3 is a One-Stage TP. In this situation, the com-

pany would like to minimize both the value of the objective functions. Again,

during the selling time, the company tackles the transportation of goods with

the motivation that it wishes to minimize the transportation cost and to max-

imize the profit. Here, the transportation of goods from S1, S2 and S3 to C1,

C2, C3 and C4 is considered as an Another-Stage TP. Indeed, the company is

interested to proceed in such a way that the stored amount will all be deliv-

ered. Then, the capacities of supply at D1 and D2 and the intake capacity at

S1, S2 and S3 are chosen according to the requirement of the cities C1, C2,

C3 and C4, which are considered as interval grey numbers. The supplied data

of the problems are shown in Tables 8.2 and 8.3.

Tables 8.2: Transportation cost (in $) for transporting the amount of goods

per item.
S1 S2 S3

D1 12 10 8
D2 11 9 9

Tables 8.3: Purchasing cost (in $) for amounting of goods per item.
S1 S2 S3

D1 25 20 20
D2 30 25 22

Here, we assume that the One-Stage transportation system is maintained by

the supplier and, therefore, the transportation cost is treated by the supplier,

and the purchasing cost is considered by the buyer. So, we cannot add them

to a single objective function, because the objective functions are of conflicting

nature. Due to the globalization of the market, the intake amount of goods to

the center D1 is followed by an interval grey number which is the [1500, 1600]

unit, and the capacity of supply items of D2 is also assessed as an interval

grey number, the [1550, 1750] unit. In the TP, there are certain demands at

the destinations S1, S2 and S3. Demand is always varying through the market

scenario, so it is unpredictable. We consider that the intake amount of goods
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will be delivered completely for the destinations S1, S2 and S3. Let the capac-

ity of supply at S1, S2 and S3 be [900, 1000], [1100, 1150] and [1000, 1100],

respectively. Due to fluctuation in the market, the demands at the cities C1,

C2, C3 and C4 are considered by interval grey numbers. The transportation

has been made in Two-Stage form, namely, D1 and D2 to S1, S2 and S3 and,

then, S1, S2 and S3 to C1, C2, C3 and C4. Here, the decision maker tries to

minimize the Two-Stage transportation cost and would like to maximize the

profit for distributing goods from S1, S2 and S3 to C1, C2, C3 and C4. For

this case, the DM assigns the profit for transferring goods which are given in

Table 8.4, and the transportation costs from S1, S2 and S3 to C1, C2, C3 and

C4 are presented in Table 8.5.

Table 8.4: Profit (in $) of selling goods per amount.
C1 C2 C3 C4

S1 4.5 5.0 6.0 6.5
S2 4.0 5.5 5.5 4.5
S3 5.0 4.5 5.0 5.5

Table 8.5: Transportation cost (in $) per amount of goods for selling time.
C1 C2 C3 C4

S1 8.0 9.0 6.5 7.5
S2 10.0 8.0 5.0 6.5
S3 6.0 9.5 6.0 7.0

Without loss of generality, we assume that the demands at the destinations

C1, C2, C3 and C4 are grey numbers and they are taken as [750, 800], [850,

900], (600, 650, 700) and (690, 700, 750, 850). Here, we mainly concentrate on

the following approach:

• We fix the optimum goals for minimizing transportation cost and maxi-

mizing the profit.

• The optimum amount of goods will run over the stores S1, S2 and S3.

• We find optimum solution for the proposed goals for the MOTP.
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We formulate the mathematical model in which W 1 and W 2 are the objective

functions of minimization type for One-Stage transportation (i.e., for keeping

the goods at the stores S1, S2 and S3), and Z1 and Z2 are objective func-

tions of maximization and minimization type, respectively, for Another-Stage

transportation (i.e., for supplying the goods to the destination C1, C2, C3

and C4). Obviously, this problem is a multi-objective Two-Stage grey trans-

portation problem. So, based on the supplied data, we formulate the following

mathematical model as:

Model 8.5

minimize W 1 = 12y11 + 11y12 + 10y13 + 9y21 + 8y22 + 9y23 (8.23)

minimize W 2 = 25y11 + 30y12 + 20y13 + 25y21 + 20y22 + 22y23 (8.24)

maximize Z1 = 4.5x11 + 5.0x12 + 6.0x13 + 6.5x14 + 4.0x21 + 5.5x22

+5.5x23 + 4.5x24 + 5.0x31 + 4.5x32 + 5.0x33 + 5.5x34 (8.25)

minimize Z2 = 8x11 + 9x12 + 6.5x13 + 7.5x14 + 10x21 + 8.0x22

+5.0x23 + 6.5x24 + 6x31 + 9.5x32 + 6.0x33 + 7.0x34 (8.26)

subject to y11 + y12 + y13 ≤ [1500, 1600], (8.27)

y21 + y22 + y23 ≤ [1550, 1750], (8.28)

y11 + y21 ≥ [900, 1000], (8.29)

y12 + y22 ≥ [1100, 1150], (8.30)

y13 + y23 ≥ [1000, 1100], (8.31)

x11 + x12 + x13 + x14 ≤ [900, 1000], (8.32)

x21 + x22 + x23 + x24 ≤ [1100, 1150], (8.33)

x31 + x32 + x33 + x34 ≤ [1000, 1100], (8.34)

x11 + x21 + x31 ≥ [750, 800], (8.35)

x12 + x22 + x32 ≥ [850, 900], (8.36)

x13 + x23 + x33 ≥ (600 or 650 or 700), (8.37)

x14 + x24 + x34 ≥ (690 or 700 or 750 or 850), (8.38)
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y11 + y21 = x11 + x12 + x13 + x14, (8.39)

y12 + y22 = x21 + x22 + x23 + x24, (8.40)

y13 + y23 = x31 + x32 + x33 + x34, (8.41)

xi′j′ ≥ 0, yij ≥ 0 ∀ (i′, j = 1, 2, 3; i = 1, 2; j′ = 1, 2, 3, 4). (8.42)

To solve Model 8.5, using the reduction procedure of grey numbers to real

numbers presented in Subsection 8.2.1, we reduce the constraints (8.27)-(8.38),

which contain grey numbers, to deterministic constraints as follows:

y11 + y12 + y13 ≤ (1− a1)1500 + a11600, (8.43)

y21 + y22 + y23 ≤ (1− a2)1550 + a21750, (8.44)

y11 + y21 ≥ (1− a3)900 + a31000, (8.45)

y12 + y22 ≥ (1− a4)1100 + a41150, (8.46)

y13 + y23 ≥ (1− a5)1000 + a51100, (8.47)

x11 + x12 + x13 + x14 ≤ (1− b1)900 + b11000, (8.48)

x21 + x22 + x23 + x24 ≤ (1− b2)1100 + b21150, (8.49)

x31 + x32 + x33 + x34 ≤ (1− b3)1000 + b31100, (8.50)

x11 + x21 + x31 ≥ (1− b4)750 + b4800, (8.51)

x12 + x22 + x32 ≥ (1− b5)850 + b5900, (8.52)

x13 + x23 + x33 ≥ 600z1z2 + 650(1− z1)z2 + 700(1− z2)z1, (8.53)

x14 + x24 + x34 ≥ 690z3z4 + 700(1− z3)z4 + 750z3(1− z4)

+ 850(1− z3)(1− z4), (8.54)

z1 + z2 ≥ 1 (z1, z2, z3, z4 = 0 or 1), (8.55)

0 ≤ ar ≤ 1, 0 ≤ bs ≤ 1 (r = 1, 2 . . . , 5; s = 1, 2, . . . , 5). (8.56)

Now, we minimize the objective functions W 1 and W 2 independently with

respect to the constraints (8.39)-(8.56), and we construct the pay-off matrix

(using Definition 8.2.3) which is shown in Table 8.6.
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Table 8.6: Pay-off Matrix for W 1 and W 2.
W 1 W 2

Y ∗1 28050 30700
Y ∗2 73250 68500

Table 8.7 represents the pay-off matrix (using Definition 8.2.3) which is de-

signed by solving each objective functions Z1 and Z2 with respect to the same

constraints (8.39)-(8.56).

Table 8.7: Pay-off Matrix for Z1 and Z2.
Z1 Z2

X∗1 18400 14400
X∗2 22550 19075

Using the pay-off matrices from Tables 8.6 and 8.7 and also using equations

(8.C) and (8.D), we formulate Model 8.6 with a utility function as follows:

Model 8.6

minimize 0.25u1 + 0.25u2 + 0.25u3 + 0.25u4

subject to u1 =
W 1 − 28050

30700− 28050
;u2 =

W 2 − 68500

73250− 68500
;

u3 =
18400− Z1

18400− 14400
;u4 =

Z2 − 22500

22500− 19075
;

0 ≤ ui ≤ 1 (i = 1, 2, 3, 4);

and the constraints (8.39)− (8.56).

Solving Model 8.6, we derive the optimal value of each objective function as

follows:

W 1 = 30700, W 2 = 72583.3; Z1 = 16800; Z2 = 20600. These solutions

provide the following optimal goal regions: [28050, 30700] for W 1, [68500,

72583.3] for W 2, [16800, 18400] for Z1, and [19075, 20600] for Z2. Referring to

the optimal goal regions in RMCGP model, we construct the following model

as:
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Model 8.7

minimize 0.25(d+
1 + d−1 ) + 0.25(d+

2 + d−2 ) + 0.25(d+
3 + d−3 ) + 0.25(d+

4 + d−4 )

+0.25(e+
1 + e−1 ) + 0.25(e+

2 + e−2 ) + 0.25(e+
3 + e−3 ) + 0.25(e+

4 + e−4 )

subject to W 1 − d+
1 + d−1 = y1; y1 − e+

1 + e−1 = 28050;

W 2 − d+
2 + d−2 = y2; y2 − e+

2 + e−2 = 68500;

Z1 − d+
3 + d−3 = y3; y3 − e+

3 + e−3 = 18400;

Z2 − d+
4 + d−4 = y4; y4 − e+

4 + e−4 = 19075;

28050 ≤ y1 ≤ 30700; 68500 ≤ y2 ≤ 72583.3;

16800 ≤ y3 ≤ 18400; 19075 ≤ y4 ≤ 20600;

d+
i ≥ 0, d−i ≥ 0, e+

i ≥ 0, e−i ≥ 0 (i = 1, 2, 3, 4);

and the constraints (8.39)− (8.56).

Finally, we obtain the optimal solution by solving Model 8.7 as follows:

W 1 = 30700; W 2 = 68500; Z1 = 16800; Z2 = 20600.

The values of the decision variables are

y11 = 500; y12 = 1100; y13 = 0; y21 = 400; y22 = 0; y23 = 1000; and

x11 = 0;x12 = 0;x13 = 450;x14 = 450;x21 = 0;x22 = 850;

x23 = 250;x24 = 0;x31 = 750;x32 = 0;x33 = 0;x34 = 250.

Again, the amount of goods are stocked or delivered in or from the warehouses

S1, S2 and S3 are 900, 1100 and 1000 units, respectively. The amount of goods

which are purchased from sources D1 and D2 are 1600 units and 1400 units,

respectively. The amount of goods that are sold to the destinations C1, C2,

C3 and C4 are 750 units, 850 units, 700 units and 700 units, respectively.

8.4 Sensitivity analysis
RMCGP is a technique to solve the MOTP having the goals related to each of

the objective functions. Meanwhile the main drawback of a RMCGP model is

about how the DM would select the possible goals of the objective functions.

In real-life problems, if the goal values of the objective functions are not de-

fined properly, then the RMCGP method will have failed to produce the best
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result. In this study, we describe the scenarios of a Two-Stage TP and select

the goals to each of the objective functions. In the meantime, we accommodate

our situation by removing the drawback of RMCGP for selecting the goals by

proposing a new algorithm. With the proposed algorithm, we first determine

the optimal goal values for the objective functions; then we use RMCGP to find

a better compromise solution. Following the proposed example, we select the

goal arbitrarily and if the selected goal does not lie in the optimal goal region,

then we cannot get any feasible solution. As an example, if the DM needs a so-

lution with the following interval goals: [22000, 24000] for W 1, [60450, 62700]

for W 2, [18700, 20000] for Z1, and [13710, 16050] for Z2; then the RMCGP

fails to produce a feasible solution. So, RMCGP does not provide any definite

conclusion for selecting the interval goals of the choices of the DM. Under this

circumstance, our proposed methodology helps to seek out the optimal goal

region as well as the optimal solution of the MOTP. Again, one issue should

be noticed, namely, that the solutions and optimal goal regions depend on the

choice of weights (wi) also. These weights are the preferences of the objective

functions by the DM. If the weights are changed according to the choice of the

DM, then the optimal goal region will also be changed.

In our consideration, the supply and demands are taken as interval grey num-

bers. From the obtained solution, we see that the amount of goods purchased

from the sources D1 and D2 are 1600 units and 1400 units, respectively. In

that case, the DM considers the upper bound of grey supply at D1 and an

amount less than the minimum supply capacity at D2. If the DM wishes to

prepare a model by considering the minimum capacity of supply rather than

grey supply, then the purchasing cost would be increased which may cause

a smaller profit. So, the choice about the amount of goods to be purchased

from the sources are cleared by our proposed technique through grey supply,

whereas the existing methods fail to select a better choice when greyness is

involved in the supply. Here, the amount of goods transported to the desti-

nations C1, C2, C3 and C4 are 750 units (lower limit of demand), 850 units

(lower limit of demand), 700 units (maximum among multi-choice of demand)
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and 700 (one value among the multi-choice of demand), respectively, for opti-

mal solution. Hence, for a better solution of our proposed MOTP, the selling

amount of goods regarding an optimal solution is produced by our technique

when demands are grey numbers.

In most of the real-life MOTPs, we just directly address origins and destina-

tions, but here we add a new concept by proposing a Two-Stage TP. In the

modern-days business economy, the DM wishes to find the optimal solution by

keeping the minimum transportation cost. But, here the DM gets a platform

to fix the goals in some situations of gathering the goods in the warehouses

and, in time, of distributing the goods from the warehouses. It suggests that

the specific value of some storing items in the warehouses is produced with the

optimal profit by the DM.

8.5 Conclusion
In this chapter, we have proposed a Two-Stage MOTP with two interesting

characteristics, that one being about the goal preferences of the DM and an-

other one consists in the selection of particular values of supply and demand

from grey supply and grey demand. Solution of the MOTP under these goals

through RMCGP has provided a technique for multi-objective decision making.

But, the main drawback of RMCGP consists in how the DM would select the

goals for the objective functions. The core contents of our proposed study has

removed this difficulty by selecting the goals of the objective functions through

an algorithm. We have constructed a utility function (choice by the DM) for

selecting the optimal goal region. After this selection, we have solved the

proposed problem by our RMCGP approach. Our suggested multi-objective

Two-Stage TP has provided a new direction to select proper goals for real-life

multi-objective transportation problems under the environment of grey supply

and grey demand. A numerical example has been given to show the applica-

bility and suitability of our way of solving MOTP and fixing the proper goals

for the objective functions.
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Chapter 9

Multi-Modal Transportation
Problem∗

Realizing the fact of real-life situations, we consider multiple modes of trans-

portation for distributing the goods to respective destinations using supple-

mentary origins in different stages and incorporate a new approach of multi-

modal transportation problem in this chapter. The formulated MMTP is noth-

ing but a linear programming problem and so, it is easy to solve by any simplex

algorithm. To analyze the proposed method a numerical example is included

and solved which reveals a better impact for analyzing the real-life decision

making problems.

9.1 Introduction
In a classical TP, there are two types of node points, namely, origins and des-

tinations. Sometimes, it is also need to take in consideration that the origins

and the destinations may be multiple in nature. It means that, there may have

origins/destinatiuons in different levels. Due to the factor of multiple routes or

multi-mode of transportation in a TP, the TP becomes a Multi-Modal Trans-

portation Problem (MMTP). Multi-modal transport which is also known as

combined transport allows to transport the goods under a single contract, but

it is performed with at least two modes of transport; the carrier is liable (in a

∗A part of this chapter has communicated in an International Journal
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legal sense) for the entire carriage, even though it is used by several different

modes of transport such as sea, road, etc. The carrier does not have to pos-

sess all the means of transport, and in practice usually it does not valid. The

carrier is often performed by sub-carriers which is referred to in legal language

as “actual carriers”. The carrier responsible for the entire carriage is addressed

to as a Multi-Modal Transport Operator (MTO).

In this chapter, a new mathematical model is proposed for solving TP by in-

corporating the multi-modal transport systems. The proposed model is com-

pletely a Linear Programming Problem (LPP), so it is easy to understand and

solve; and to apply on real-life transportation problems for DMs.

9.2 Problem environment
The term multi-modal is defined for several modes of transport in a trans-

portation problem, and as a whole it is referred to here as multi-modal trans-

portation problem. Generally, MMTP can be categorized as either passenger

or freight-oriented. Goods can be transported via several modes and people

also use different modes of transportation for their journey. Therefore several

modes of transportation are considered as follows:

• Roadway/highway automobiles (including taxi), truck, motorcycle, etc.,

• Passenger rail and traditional freight train, etc.,

• Transit-light rail vehicles, commuter rail, buses, etc.,

• Air-passenger service and air-freight,

• Water-ferries, barges, transatlantic vessels, cruise ships, etc., and

• Non-motorized-walking, bicycling, etc.

Obviously, some other modes (e.g., bicycle, motorcar, etc.) are available to

provide largely recreational transportation in the countries of different parts

of the World. Other modes such as passenger air service and rail-road freight

186



9.2. Problem environment

service are essential components of the transportation system, the economy

and our daily life. All modes of transportation must be planned and systemat-

ically provided, like any other form of modern infrastructure (e.g., buildings,

sanitation). Not only exist the several modes, but also the transportation

professionals must also plan and provide for the safety and efficient transfer

of goods and people among different modes. This transfer is generally re-

ferred to as an intermodal transfer. Recently James et al. (59) in University

Transportation Center (UTC) defined intermodal transportation based on in-

formation fusion.

There are some important perspectives in the MMTP like as:

• Decreasing overall transportation costs by allowing each mode to be used

for the portion of the trip in which it is best suited,

• Increasing economic efficiency and productivity, thereby enhancing the

Nation’s global competitiveness,

• Reducing congestion and the burden on over stressed infrastructure com-

ponents,

• Generating higher returns from public and private infrastructure invest-

ments,

• Improving mobility for the elderly, disabled, isolated, and economically

disadvantages, and

• Reducing energy consumption and contributing to improve air quality

and environmental conditions (Fox et al. (37), Veloso (155)).

Now we present three useful definitions related to the new method of the

MMTP.

Definition 9.2.1 (Ground Origins): In a transportation problem, the sources

have the capacity of supply the goods only but there are no such capacity to

gather the goods. Then the sources are treated as Ground Origins.
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Definition 9.2.2 (Final Destinations): In a transportation problem, the

destinations have the capacity of gathering the goods only but there are no

such capacity to supply the goods, considered as Final Destinations.

There is not possible to supply the goods according to the expectation of the

final destinations from the ground origins because of that to vehicle capac-

ity/multiple routes of transport. In that case, there are required some destina-

tion points which have the capacity of supplying the goods and receiving the

goods simultaneously. These nodes are known as supplementary origins.

Definition 9.2.3 (Supplementary Origins): In a transportation problem,

the destinations which have the capacity of gathering the goods as well as the

capacity of delivering the goods which is noted as Supplementary Origins.

In Figure 9.1, A1 and A2 are the ground origins ; B1, B2 and C1 are the sup-

plementary origins ; D1 and D2 are referred as the final destinations. The TP

Figure 9.1: Graphical representation of the MMTP.

under the consideration of at least one supplementary origin is described as the

MMTP. We propose to formulate the mathematical model of the MMTP and
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solve it for producing a better result. To accommodate the real-life transporta-

tion problem, it is not always possible to fulfill the demand of the customers

at the destinations through single transportation. Sometimes there are some

restrictions for transporting the goods and so it is required to consider the

multi-modes of transportation from different nodes. Then the transportation

is not a simple TP, it becomes a MMTP.

The mathematical model of the proposed MMTP is shown in details in the

next Section.

9.3 Mathematical model
A general transportation problem is a typical problem in which the main ob-

jective is to minimize the transportation cost which is defined as follows:

Model 9.1

minimize Z =
m∑
i=1

n∑
j=1

Cijxij (9.1)

subject to
n∑
j=1

xij ≤ ai (i = 1, 2, . . . ,m), (9.2)

m∑
i=1

xij ≥ bj (j = 1, 2, . . . , n), (9.3)

xij ≥ 0 ∀ i and j, (9.4)

where Cij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) is the transportation cost per unit

commodity from the ith origin to the jth destination. Here ai (i = 1, 2, . . . ,m)

and bj (j = 1, 2, . . . , n) are availability and demand in the ith origin and the

jth destination respectively and
∑m

i=1 ai ≥
∑n

j=1 bj is the feasibility condition.

To formulate a mathematical model of the MMTP, we consider the following

assumptions with the preferences which are decided by the Decision Maker

(DM):

• Let m1 be the number of ground origins and n1 be the number of final

destinations. The decision variables of transportation problem from the

nodes are denoted as x1
ij1; and C1

ij1 is the unit transportation cost. Also
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assume that vehicle has the capacities; and due to the capacities, we

consider that the transported amounts of goods are multiple of α1
1, i.e.,

x1
ij1 is taken as multiple of α1

1.

• Suppose there be m2 number of supplementary origins in 1st level with

the capacity of storing amount is a1
i , which can deliver to the final desti-

nations and receive the items from the ground origins. In this case, the

decision variables from supplementary origin in 1st level to final destina-

tions are x2
ij1; and C2

ij1 is the unit transportation cost. Due to vehicle

restriction, we consider that the transported amounts of goods are mul-

tiple of α2
1, i.e., x2

ij1 is chosen as multiple of α2
1.

• Assuming that there are mr number of supplementary origins at (r−1)th

level with the capacity of storing amount is ar−1
i , which can deliver to

the final destinations and collect the items from the ground origins. The

decision variables in this case for transporting the goods from supple-

mentary origin in (r − 1)th level to final destinations are xrij1; and Cr
ij1

are the unit transportation cost. Also considering that xrij1 is taken as

multiple of αr1. Thus we consider the decision variables, xpij1 and cost

variables, Cp
ij1 (p = 1, 2, . . . , r) for transportation of items which are

transported to the final destinations along with the vehicle capacity αp1.

Let the objective function be defined as z1 for this transportation (from

ground origins and all supplementary origins to final destinations).

• Considering the supplementary origin at (r−1)th level as the final desti-

nation point; and the decision variables, xpij2 and the cost variables, Cp
ij2

(p = 1, 2, . . . , r− 1) for transportation of items which are transported to

the supplementary origin at (r−1)th level along with the vehicle capacity

α2
p. Let z2 be the objective function for this case (from ground origins

and supplementary origins up-to (r− 2)th level to supplementary origins

at (r − 1)th level).

• Proceeding in this way, we choose the supplementary origin at 1st level as
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the final destination point then the decision variables are denoted as xpijr
(p = 1) and cost variables Cp

ijr (p = 1) for transporting the items which

are transported to the supplementary origin in 1st level along with the

vehicle capacity α1
r . Let zr be objective function for that transportation.

• If there is no other path of transportation according to our proposed

multi-modal pth stage (p = 1, 2, . . . , (r − 1)) transportation model, then

we simply set ‘0’ as the value of the transportation variable.

• In the supplementary origin at pth stage (p = 1, 2, . . . , (r − 1), we as-

sign a capacity of storing by maximum amount api , we are not proposed

any supplementary demand capacity at the points. We introduce an in-

equality restriction to each of the supplementary origins for amounting

of goods which will be delivered from these nodes which will not exceed

the amount of goods gathered there.

Based on the above discussion, we design the mathematical model of the

MMTP as follows:

Model 9.2

minimize Z = z1 + z2 + . . .+ zr (9.5)

where z1 =

m1∑
i=1

n1∑
j=1

α1
1C

1
ij1x

1
ij1 +

m2∑
i=1

n1∑
j=1

α2
1C

2
ij1x

2
ij1

+ . . .+
mr∑
i=1

n1∑
j=1

αr1C
r
ij1x

r
ij1

z2 =

m1∑
i=1

mr∑
j=1

α1
2C

1
ij2x

1
ij2 +

m2∑
i=1

mr−1∑
j=1

α2
2C

2
ij2x

2
ij2

+ . . .+
mr∑
i=1

mr∑
j=1

αr−1
2 Cr−1

ij2 x
r−1
ij2

...

zr =

m1∑
i=1

m2∑
j=1

α1
rC

1
ijrx

1
ijr
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subject to
n1∑
j=1

α1
1x

1
ij1 +

mr∑
j=1

α1
2x

1
ij2 + . . .+

m2∑
j=1

α1
rx

1
ijr ≤ ai (i = 1, 2, . . . ,m1), (9.6)

m1∑
i=1

α1
1x

1
ij1 +

m2∑
i=1

α2
1x

2
ij1 + . . .+

mr−1∑
i=1

αr1x
r
ij1 ≥ bj (j = 1, 2, . . . , n1),(9.7)

n1∑
j=1

α2
1x

2
ij1 +

mr∑
j=1

α2
2x

2
ij2 + . . .+

m2∑
j=1

α2
r−1x

2
ij(r−1)

≤ a1
i (i = 1, 2, . . . ,m2), (9.8)

n1∑
j=1

α3
1x

3
ij1 +

mr∑
j=1

α3
2x

3
ij2 + . . .+

m2∑
j=1

α3
r−2x

3
ij(r−2)

≤ a2
i (i = 1, 2, . . . ,m3), (9.9)

...
n1∑
j=1

αr1x
r
ij1 ≤ ari (i = 1, 2, . . . ,mr), (9.10)

n1∑
j=1

α2
1x

2
tj1 +

mr∑
j=1

α2
2x

2
tj2 + . . .+

m2∑
j=1

α2
r−1x

2
tj(r−1)

≤
m1∑
i=1

α1
rx

1
itr (t = 1, 2, . . . ,m2), (9.11)

n1∑
j=1

α3
1x

3
tj1 +

mr∑
j=1

α3
2x

3
tj2 + . . .+

m2∑
j=1

α3
r−2x

3
tj(r−2)

≤
m1∑
i=1

α1
r−1x

1
it(r−1) +

m2∑
i=1

α2
r−1x

2
it(r−1) (t = 1, 2, . . . ,m3), (9.12)

...
n1∑
j=1

αr1x
r
tj1 ≤

m1∑
i=1

α1
2x

1
it2 +

m2∑
i=1

α2
2x

2
it2

+ . . .+

mr−1∑
i=1

αr−1
2 xr−1

it2 (t = 1, 2, . . . ,mr), (9.13)

x
(t)
ijp ≥ 0 ∀ i, j, t and p, (9.14)

Here, the feasibility condition of the mathematical model is
∑m1

i=1 ai ≥
∑n1

j=1 bj.
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In Model 9.2, the maximum number of decision variables are (m1×m2×· · ·×
mr × n1). If there is no other path between the nodes in the proposed TP,

then we consider the value of decision variable is 0 and remove the variable

form the proposed model which reduces the number of variables.

The feasible region of the proposed model is constructed by considering the

following assumptions:

• There are m1 number of availability constraints (9.6) for the ground

origins.

• There are n1 number of demand constraints (9.7) for the final destina-

tions.

• There are the restrictions of storing items in the supplementary origins

so we introduce (m2 +m3 + . . .+mr) number of inequations form (9.8)

to (9.10).

• Again the delivered amount of goods from the supplementary origins

do not exceed supplied amount of goods to the respective supplemen-

tary origins. To do this, we introduce (m2 + m3 + . . . + mr) number of

inequations from (9.11) to (9.13).

Thus, the formulated mathematical model consists of (m1×m2×· · ·×mr×n1)

number of variables and [2(m2+m3+. . .+mr)+m1+n1] constraints along with

the non-negativity conditions. Here, Model 9.2 is a completely LPP model and

can be solved by any simplex algorithm like Big-M method, revised simplex

method. If the number of variables are increased then one can use the software

such as LINGO, MatLab, etc. for solving the Model 9.2.

9.4 Numerical example
The numerical example is presented here to justify the utility of the MMTP.

Assume that the two supply centers of goods are namely, A1 and A2; and D1

and D2 are two destinations in which a homogeneous commodity of a product
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is to be transported. The capacity of vehicle to deliver goods is 1000 items.

So it is necessarily a problem to deliver the goods when the demands at the

destinations are not multiple of 1000. Again, the destinations B1 and B2 which

can receive the goods from A1 and A2 and have the capacity of transport the

goods to the final destinations D1 and D2. The vehicles are carrying the goods

from B1 and B2 to D1 and D2 with the capacity of 100 items. So, again there

is a problem to deliver goods when the amount of goods are not in multiple

of 100. Also consider that there is a destination C1 which can take the goods

form A1, A2, B1 and B2 and supply them to the destinations D1 and D2.

The transportation from the center C1 to the destinations D1 and D2 have no

such vehicle capacity i.e., any amount of goods can be transported between

the nodes. The traditional approach of transportation problem cannot provide

any such mathematical model to solve the proposed problem. Here to solve

the problem, we formulate the mathematical model which is known as MMTP.

The following notations and assumptions are considered to formulate the math-

ematical model of the MMTP.

• The decision variables for transporting the items are considered as fol-

lows:

From A1 and A2 to D1 and D2 are considered as x1
ij1 using ship-way

with vehicle capacity α1
1 = 1000;

From B1 and B2 to D1 and D2 are taken as x1
ij2 using rail-way with

vehicle capacity α2
1 = 100;

From C1 to D1 and D2 are considered as x1
ij3 using road-way without

any vehicle capacity restriction, i.e., α3
1 = 1.

From A1 and A2 to C1 are considered as x2
ij1 with vehicle restriction

α1
2 = 500;

From B1 and B2 to C1 are considered as x2
ij2 without any vehicle restric-

tion.

From A1 and A2 to B1 and B2 are considered as x3
ij1 and there is no

such any vehicle restriction.
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• The feasibility of the numerical example consists of following number of

constraints:

The supply capacity at the ground origins A1 and A2 are introduced by

two constraints. The demand at the final destinations D1 and D2 are

considered by two constraints. Storing capacity at the supplementary

origins B1, B2 and C1 provide three constraints. Amount of goods dis-

tributed from the supplementary origins B1, B2 and C1 do not exceed

the amount of storing items which produces three constraints. Hence,

the number of constraints in the MMTP of the numerical example is 10.

The transportation costs in different routes are represented in Tables 9.1 to

9.6.

Table 9.1: Transportation cost from
A1 and A2 to D1 and D2 (in $).

D1 D2
A1 15 13
A2 15 18

Table 9.2: Transportation cost from
B1 and B2 to D1 and D2 (in $).

D1 D2
B1 8 10
B2 9 7

Table 9.3: Transportation cost from
C1 to D1 and D2 (in $).

D1 D2
C1 6 5

Table 9.4: Transportation cost from
A1 and A2 to C1 (in $).

C1
A1 11
A2 12

Table 9.5: Transportation cost from
B1 and B2 to C1(in $).

C1
A1 8
A2 9

Table 9.6: Transportation cost from
A1 and A2 to B1 and B2(in $).

B1 B2
A1 5 4
A2 6 5

Again the availability of goods at each Ground Origin A1 and A2 are 1600

units. The maximum capacity of storing at the Supplementary Origins B1, B2

and C1 are 1200 units, 1300 units and 1000 units respectively. The mathemat-

ical model is designed corresponding to the available data described in Tables

9.1 to 9.6 as follows:
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Model 9.3

minimize Z = z1 + z2 + z3,

z1 = 1000(15x1
111 + 13x1

121 + 15x1
211 + 18x1

221) + 100(8x2
111 + 10x2

121

+9x2
211 + 7x2

221) + 6x3
111 + 5x3

121,

z2 = 500(11x1
112 + 12x1

212) + 8x2
112 + 9x2

212,

z3 = 5x1
113 + 4x1

123 + 6x1
213 + 5x1

223,

1000(x1
111 + x1

121) + 100x1
112 + 500(x1

113 + x1
123) ≤ 1600,

1000(x1
211 + x1

221) + 100x1
212 + 500(x1

213 + x1
223) ≤ 1600,

1000(x1
111 + x1

211) + 100(x2
111 + x2

211) + x3
111 ≥ 1555,

1000(x1
121 + x1

221) + 100(x2
121 + x2

221) + x3
121 ≥ 1575,

x1
113 + x1

213 ≤ 1200,

x1
123 + x1

223 ≤ 1300,

500(x1
112 + x1

212) + x2
112 + x2

212 ≤ 1000,

x1
113 + x1

213 ≤ 100(x2
111 + x2

211) + x2
112 + x2

212,

x1
123 + x1

223 ≤ 100(x2
121 + x2

221) + x2
122 + x2

222,

500(x1
112 + x1

212) + x2
112 + x2

212 ≤ x3
111 + x3

121,

xpijk ≥ 0 (all are taken integers); ∀ i, j, k, p.

Model 9.3 is simply a LPP which can be solved through any simplex algorithm.

As Model 9.3 contains the large number of variables, so we use LINGO software

to obtain the solution of Model 9.3.

9.5 Result and discussion
The value of the objective function is 41700($) which is minimized. The opti-

mal solution of Model 9.3 is presented in Tables 9.7, 9.8 and 9.10.

Table 9.7: The amounts of transported goods to final destinations D1 and D2.
Variable x1

111 x1
121 x1

211 x1
221 x2

111 x2
121 x2

211 x2
221 x3

111 x3
121

Value 0 1000 0 0 1200 0 300 600 55 0
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Table 9.8: The amounts of transported goods to supplementary origin C1.
Variable x1

112 x1
212 x2

112 x2
212

Value 0 0 0 55

Table 9.9: The amounts of transported goods to supplementary origins B1

and B2.
Variable x1

113 x1
123 x1

213 x1
223

Value 0 600 1200 355

Table 9.10: The amounts of transported goods stored at all supplementary

origins.
Node B1 B2 C1 D1 D2
Value 1200 955 55 1555 1600

In classical TP, there are only two types of nodes namely, supply node and

demand node. In addition to that, there is at least one supplementary origin

node which is present in the MMTP. Sometimes there are restrictions for trans-

porting the goods between the nodes due to vehicle capacity. So, to minimize

the transportation cost for delivering the goods in proper node, different types

of vehicles are required.

To justify the efficiency of the proposed mathematical model of the MMTP,

we describe the various possibilities in the numerical example as follows:

• Consider that the routes between the supply points, A1 and A2 to desti-

nation points D1 and D2 are sea way. So delivering the goods are made

through ship. Obviously, a large amount of goods are delivered through

the ship and the amount is 1000 units. In that situation, if there are

no other nodes available like B1, B2 and C1, then the formulated TP

is a classical TP. In this case we see that there exists a feasible solution

of the proposed problem, but the transportation cost is not minimized.

Because in each of the destination the minimum requirements are 1555

units and 1575 units of goods which mean at least two ships are required

for delivering the goods in each node D1 and D2. So, traditional TP is

not enough to give definite conclusion without considering the supple-

mentary origins as we considered in our proposed study.
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• Again, we assume that there is a connection through rail-way between

B1 and B2 to D1 and D2. Then, the capacity transports in each time

by the rail-way is high and we consider that at a single transport it is

needed 100 amount of goods. In that situation, we solve the problem

without considering the supplementary origin C1 (i.e., using the value of

the variables as ‘0’ those are taken for C1), add the total transportation

cost is 42000($). The amount of transported goods to the node D1 and

D2 respectively are 1600 units and 1600 units respectively. The amount

of goods supplied at the supplementary origins B1 and B2 are 900 units

and 1300 units respectively.

• In the similar way, if we formulate mathematical model without con-

sidering the supplementary origins B1 and C1; or B2 and C1, then the

transportation cost will be increased.

According to our discussions, we analyze that introduction of multi-modal

system in TP is very much essential to reduce the transportation cost for

delivering the goods. But, in the classical TP, it is not so.

9.6 Conclusion
The study has been introduced the multi-modal system in the TP which has

significantly analyzed through real-life decision making problems. There may

occur the situations in a transportation system, due to the presence of multiple-

mode of transportation in which the traditional TP fails to formulate a math-

ematical model and find the least-cost route of transportation. Our math-

ematical model, the MMTP may be applied to formulate the mathematical

model under multiple-mode of transportation and its solution suggests about

the selection of mode of transportation as well as optimal solution of the prob-

lem. The results of the numerical example presented in the Chapter justify

the efficiency of the proposed mathematical model.
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Chapter 10

Integrated Study of
Transportation and Inventory ∗

All the previous chapters of the thesis have been described TP in several di-

rections, especially in multi-choice environment. The concept of multi-choice

study, not only improved in the area of TP, the idea of multi-choice optimiza-

tion can also be extended in combined ground of inventory and transportation

and build up the study of Integrated Optimization in Inventory Transportation

(IOIT) problem. Formulation of IOIT model under multi-choice environment,

and solution of the model are justifying the efficiency of the IOIT model in

this chapter.

10.1 Introduction
Inventory is the stock of items or resources used in an organization. The study

of inventory refers to know how much amount of goods have to be sold by deci-

sion maker (DM) and how much amount left after sold and how much amount

need to order from suppliers to keep stock with enough product. After all,

through out the system, the DM would like to optimize the profit, noting the

demands of the retailers and their requirements.

Transportation problem (TP) is a well known decision making problem, mainly

coming into picture by minimizing the transportation cost for transporting the
∗A part of this chapter has accepted for publication in International Journal of Opera-

tional Research, Inderscience, Scopus.
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goods from origin to destination. An IOIT problem is a problem to optimize

the combination of transportation cost and inventory cost under the prerequi-

site assumptions.

In this chapter, main aim is to make a bridge between TP and inventory in

multi-item integrated transportation problem under the multi-choice trans-

portation cost and random supply. Then the combined form is to solve by well

known optimization technique and compare the solution with the solution of

basic inventory optimization. Finally, we show that the proposed methodol-

ogy of our chapter has an advantage in practical importance related to cost

reduction in logistic system.

10.2 Mathematical model
In the subsection, first we present the mathematical model of multi-item trans-

portation problem. Thereafter, the mathematical model of multi-item multi-

choice TP with stochastic supply is presented. We introduce the basic inven-

tory optimization problem, and furthermore, the mathematical structure of

IOIT is incorporated here.

10.2.1 Multi-item transportation problem

There may occur some situations of real-life decision making problems where

the DM transports more than one item of goods which are not correlated

to each other. To accommodate the situation, the TP becomes multi-item

transportation problem. The mathematical model of multi-item transportation

model can be expressed as follows (Model 10.1):

Model 10.1

minimize Z =
m∑
i=1

n∑
j=1

s∑
t=1

Cijtxijt

subject to
n∑
j=1

xijt ≤ ait (i = 1, 2, . . . ,m; t = 1, 2, . . . , s),

n∑
i=1

xijt ≥ bjt, (j = 1, 2, . . . , n; t = 1, 2, . . . , s),
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xijt ≥ 0 ∀ i, j and t,

where, Cijt, ait and bjt are the cost, supply and demand parameters in multi-

item transportation problem for t-th item. The feasibility condition is
∑m

i=1 ait ≥∑n
j=1 bjt, ∀ t.

Transportation problem can be reduced to a multi-choice TP when at least

one of the transportation parameters (parameters may be cost, demand, sup-

ply in TP) become multi-choice type. Again considering the stochastic supply

instead of fixed supply in a multi-choice TP, then the multi-choice TP con-

verts to multi-choice stochastic TP. Again, the study of multi-choice TP with

stochastic supply under multi-item environment reduces to multi-item multi-

choice TP with stochastic supply. The mathematical model of multi-item

multi-choice TP with stochastic supply can be defined as follows:

Model 10.2

minimize Z =
m∑
i=1

n∑
j=1

s∑
t=1

(
C1
ijt or C

2
ijt or . . . or C

k
ijt

)
xijt (10.1)

subject to Pr

(
n∑
j=1

xijt ≤ ait

)
≥ 1− γit ∀ i, t, (10.2)

n∑
i=1

xijt ≥ bjt ∀ j, t, (10.3)

xijt ≥ 0 ∀ i, j and t, (10.4)

where γit (0 < γit < 1) ∀ i and t, is a pre-specified level of probability fixed

by DM.

Without loss of generality, assuming that ait (i = 1, 2, . . . ,m; t = 1, 2, . . . , s)

be specified with exponential stochastic variable and
(
C1
ijt, C

2
ijt, . . . , C

k
ijt

)
are

known as multi-choice cost parameters for i = 1, 2, . . . ,m; j = 1, 2, . . . , n;

and t = 1, 2, . . . s.

Many real-life problems on logistic system are designed with the combination

of the inventory system and the TP. Based on the above discussion, we make a

connection between the inventory system and the TP under multi-choice pro-

gramming and stochastic programming. Here, we present two types of math-
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ematical models namely, Inventory Optimization (IO) Model and Inventory

Optimization in Integrated Transportation (IOIT) Model.

10.2.2 Basic Inventory Optimization (IO) model

In this chapter, we assume that there is no shortage allowed and the demand

D, is continuous. The inventory is replenished every τ time, the demand

quantity must meet the requirement Dτ during the cycle. If Q denotes the

order volume, then Q = Dτ . C1 and C2 are the unit inventory sustaining

cost and the fixed order cost respectively. K is the price of goods, then the

order cost is C2 + KDτ , the average order cost in τ time is C2

τ
+ KD, and

the average volume of inventory is 1
2
Dτ with the average inventory sustaining

cost is 1
2
C1Dτ . Then we define the average total inventory cost in the cycle is

expressed by the following mathematical model as:

C(τ) =
C2

τ
+KD +

1

2
C1Dτ. (10.5)

Differentiating equation (10.5) with respect to τ and then equate to zero, we

have

τ =

√
2C2

C1D
.

Assuming that τ0 be the optimum time period of the inventory, then,

τ0 =
√

2C2

C1D
. Therefore, the order volume with respect to optimum time period

τ0 is Q0 = Dτ0.

In basic inventory model, the transportation cost is added with the inventory

cost. In this case, the transportation cost is obtained by solving the simple

transportation problem separately. Finally, the total logistic cost is: inventory

cost+ transportation cost.

For multi-item goods, the logistic cost can be calculated by considering the

inventory cost separately and then it adds with the transportation cost for

multi-item goods.
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10.2.3 Inventory Optimization in Integrated Transporta-
tion (IOIT) model

Under the following assumptions that all demand points are managed by DM,

it does not allow any shortage and demand points are independent to each

other. The supply of all the origin points is uncertain. Let us use the following

notations:

m=number of the supplier,

n=number of the demander,

rijk=cost that demander j purchased goods k from supplier i,

xijk= volume of goods k transported from supplier i to demander j,

djk=requirement of goods k from demander j,

ujk=unit storage cost of demander j for goods k,

sjk= safe stock of demander j for goods k,

Rk= total requirement of goods k,

Cijk= unit transportation cost of goods k from supplier i to demander j,

αjk=initial inventory volume of demander j for goods k.

Then the mathematical model of IOIT is as follows:

minimize Z =
m∑
i=1

n∑
j=1

s∑
k=1

rijkxijk +
n∑
j=1

s∑
k=1

1

2
(djk + αjk)ujk

+
m∑
i=1

n∑
j=1

s∑
k=1

Cijkxijk

subject to djk + αjk ≥ sjk ∀ j, k,
n∑
j=1

djk = Rk ∀ k,

m∑
i=1

xijk = djk ∀ j, k,

n∑
j=1

xijk ≤ aik ∀ i, k,

xijk ≥ 0 ∀ j, k.

Here, djk and xijk are the strategy variables. The objective function of above

model is the combination of ordering cost, inventory cost and transportation
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cost. The first constraint implies that the storage of any demand point for

any goods is more than its safe stock, the second constraint describes the sum

of requirement of all demand points for goods k and is equal to total demand

volume, the third constraint shows that the total transportation volume of

demander j for goods k and is equal to storage requirement and the last con-

straint implies that the transportation volume of supplier i for goods k is less

than its supply capacity.

Assume that there are several routes available for transporting the goods. Due

to globalization of market, the cost of carrying per unit goods for several routes

are changed. That is why we consider that the cost parameters of TP are multi-

choice. Again, the supply parameter of TP follows stochastic nature due to

the same reason. So, the mathematical model of IOIT with multi-choice cost

and stochastic supply is defined as follows:

Model 10.3

minimize z =
m∑
i=1

n∑
j=1

s∑
k=1

rijkxijk +
n∑
j=1

s∑
k=1

1

2
(djk + αjk)ujk

+
m∑
i=1

n∑
j=1

s∑
k=1

(
C1
ijk or C2

ijk or . . . or Ct
ijk

)
xijk

subject to djk + αjk ≥ sjk ∀ j, k,
n∑
j=1

djk = Rk ∀ k,

m∑
i=1

xijk = djk ∀ j, k,

Pr

(
n∑
j=1

xijk ≤ ait

)
≥ 1− γit ∀ i, k,

xijk ≥ 0 ∀ j, k.
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10.3 Solution technique
To solve the models i.e., Model 10.2 and Model 10.3, at first, we transform the

stochastic constraints to deterministic constraints which is shown in subsection

10.3.1. Then an algorithm and its flowchart are presented to solve Model 10.3

and Model 10.2.

10.3.1 Reduction of stochastic constraints to determinis-
tic constraints

The constraints (10.2) can be represented as below when ait (i = 1, 2, . . . ,m)

follows an exponential stochastic variable.

Pr

(
n∑
j=1

xijt ≤ ait

)
≥ 1− γit ∀ i, t.

The above inequality can be further expressed as:

Pr

(
n∑
j=1

xijt ≥ ait

)
≤ γit ∀ i, t. (10.6)

It is assumed that ait (i = 1, 2, . . . ,m) are independent exponential stochastic

variables with parameter θi which is treated as positive integers. Now the mean

of ait, E(ait) is θit and variance of ait, V ar(ait) is σ2
ait

=θ2
it, which are known

to us. We know that the probability density function of ait (i = 1, 2, . . . ,m) is

given by

f(ai) =
1

θit
e
−ait
θit , where ait > 0, θit > 0. (10.7)

Now, inequality (10.6) can be expressed as the cumulative density function of

exponential distribution:∫ ∑n
j=1 xijt

0

f(ait)d(ait) ≤ γit. (10.8)

Using (10.7), the above integral can be expressed as:∫ ∑n
j=1 xijt

0

1

θit
e
−ait
θit d(ait) ≤ γit. (10.9)
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Let, − ait
γit

= z.

The above integral can be expressed as:∫ −∑n
j=1 xijt

θit

0

−ezd(z) ≤ γit. (10.10)

which can be integrated as:

[−ez]
−

∑n
j=1 xijt

θit
0 ≤ γit. (10.11)

Taking logarithm on both sides, we have

−
∑n

j=1 xijt

θit
≥ ln(1− γit) (i = 1, 2, . . . ,m). (10.12)

Finally, the stochastic constraint (10.2) can be transformed into equivalent

deterministic constraints as follows:
n∑
j=1

xijt ≤ −θitln(1− γit) (i = 1, 2, . . . ,m; t = 1, 2, . . . , s). (10.13)

Now, using the above reduction procedure of stochastic constraints to crisp

constraints in Model 10.2, we obtain the multi-item multi-choice deterministic

transportation problem as follows:

Model 10.4

minimize Z =
m∑
i=1

n∑
j=1

s∑
t=1

(
C1
ijt or C

2
ijt or . . . or C

k
ijt

)
xijt

subject to
n∑
j=1

xijt ≤ −θitln(1− γit) ∀ i, t,

m∑
i=1

xijt ≥ bjt (j = 1, 2, . . . , n; t = 1, 2, . . . , s),

xijt ≥ 0 ∀ i, j and t,

where
m∑
i=1

[−θitln(1− γit)] ≥
n∑
j=1

ait ∀ t, (feasibility condition).



(10.A)

Again, applying the proposed reduction procedure in Model 10.3, we obtain

the following mathematical model as:
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Model 10.5

minimize Z =
m∑
i=1

n∑
j=1

s∑
k=1

rijkxijk +
n∑
j=1

s∑
k=1

1

2
(djk + αjk)ujk

+
m∑
i=1

n∑
j=1

s∑
k=1

(
C1
ijk or C2

ijk or . . . or Ct
ijk

)
xijk

subject to
n∑
j=1

xijk ≤ −θikln(1− γik) ∀ i, k,

djk + αjk ≥ sjk ∀ j, k,
n∑
j=1

djk = Rk ∀ k,

m∑
i=1

xijk = djk ∀ j, k,

xijk ≥ 0 ∀ j, k,

where
m∑
i=1

[−θitln(1− γit)] ≥
n∑
j=1

ait ∀ i, t.

10.3.2 MATLAB approach to find optimal solution

Here, we propose the following algorithm to find the optimal solution of Model

10.5:

Algorithm 10.1

• Step 1: First, assigning the variable in multi-choice form as the inputs

in following array system c[i][j][k], where i and j stand for penalties of

decision variables xij; and k stands for the multi-choices of respective

penalties. Also calculating the total number of possibilities.

• Step 2: Formulating the objective function f(c[i][j]) for each of the

choices k.

• Step 3: Incorporating the coefficient matrix A corresponding to the

constraints.

• Step 4: Introducing the decision vector b.

207



Chapter 10: Integrated Study of Transportation and Inventory

• Step 5: Use MATLAB command “[x, fval, exitflag, output, lambda] =

linprog(f, A, b,[ ],[ ], lb)” to find optimal solution for each k.

• Step 6: Storing the solutions f(k) for each of the choices k.

• Step 7: Finally, calculating min{f(k): for each choice k} and noticed

that the choice k produces to the minimum value of objective function.

• Step 8: Stop.

The flowchart of the above algorithm is shown in Figure 10.1. Using Algo-

Figure 10.1: Flowchart of the algorithm for optimal solution

rithm 10.1, reader can find the solution of multi-item multi-choice IOIT with

stochastic supply.
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10.4 Numerical example
Here, we show that the model of multi-choice IOIT produces a better result in

compare to the solution obtained from basic IO and TP.

A reputed gas agency has two distribution centers G1 and G2 and the centers

deliver two type of gasses to four dealers at the different places B1, B2, B3

and B4.

The following data are given for distributing the Type 1 gas:

The demand rate D1 of B1 is 15 ton/year, the unit inventory sustaining cost

C1 is $ 16 per ton/year, the fixed order cost C2 is $ 24 per time, the price of

gas per unit ton is $ 100/ton, the safe stock S1 is 1.4 ton; for gas station B2,

the demand rate D2 is 25 ton/year, the safe stock S2 is 2.8 ton, the others are

same as gas station B1; for gas station B3, the demand rate D3 is 20 ton/year,

the safe stock S3 is 2.2 ton, the others are same as gas station B1; for gas

station B4, the demand rate D4 is 16 ton/year, the safe stock S4 is 1.8 ton,

the others are same as gas station B1. The transportation cost (in Dollar($))

is given in Table 10.1.

Table 10.1: Transportation cost for Type 1 gas/ton.
B1 B2 B3 B4

G1 135,132,130 128,130 105 157,150,155
G2 116,120 144 131,135,129,140 125,120,130

Assuming that the mean and variance of exponential stochastic variable with

Specified Probability Level (SPL) of supplies i.e., ai for i = 1, 2 are represented

in Table 10.2.

Table 10.2: Table represents the data for Type 1 gas.
Mean Variance SPL
E(a1)=θ1= 21.5 V (a1) = (21.5)2 α1=0.61
E(a2)=θ2= 16 V (a2) = (16)2 α2=0.62

For the distribution of Type 2 gas, the following data are given:

The demand rate D1 of B1 is 10 ton/year, the unit inventory sustaining cost

C1 is $6 per ton/year, the fixed order cost C2 is $10 per time, the price/unit

ton gas is $50, the safe stock S1 is 1.0 ton; for gas station B2, the demand
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rate D2 is 15 ton/year, the safe stock S2 is 1.5 ton, the others are same as gas

station B1; for gas station B3, the demand rate D3 is 12 ton/year, the safe

stock S3 is 1.2 ton, the others are same as gas station B1; for gas station B4,

the demand rate D4 is 14 ton/year, the safe stock S4 is 2.0 ton, the others are

same as gas station B1. The transportation cost/ton (in Dollar($)) is given in

Table 10.3.

Table 10.3: Transportation cost for Type 2 gas/ ton.
B1 B2 B3 B4

G1 10 15 12 18
G2 15 12 11 15

Considering that the mean and variance of exponential random variable with

specified probability level of supplies i.e., ai for i = 1, 2, 3 are represented in

Table 10.4.

Table 10.4: Table represents the data for Type 2 gas.
Mean Variance SPL
E(a1)=θ1= 18 V (a1) = (18)2 α1=0.60
E(a2)=θ2= 17 V (a2) = (17)2 α2=0.55

10.4.1 Solution by basic IO model

To find the inventory cost for the destinations B1, B2, B3 and B4, we have

For Type 1 gas:

For dealer at B1: t01 =
√

2C2

C1D
=
√

2×24
16×15

= 0.45

R01 =
√

2C2D
C1

=
√

2×24×15
16

= 6.71

At B2: t02 =
√

2C2

C1D
=
√

2×24
16×25

= 0.35

R02 =
√

2C2D
C1

=
√

2×24×25
16

= 8.67

Again at B3: t03 =
√

2C2

C1D
=
√

2×24
16×20

= 0.39

R03 =
√

2C2D
C1

=
√

2×24×20
16

= 7.75

Also at B4: t04 =
√

2C2

C1D
=
√

2×24
16×16

= 0.43

R04 =
√

2C2D
C1

=
√

2×24×16
16

= 6.93

Since the delivery cycles of four gas stations are different, So, in order to
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minimize the transportation costs, we need to unit their cycle, regarding 0.45 as

the standard cycle, the order volume of B2 after adjustment is 8.67+ 0.45
15
×25 =

9.42, the order volume of B3 after adjustment is 7.75+ 0.45
15
×20 = 8.35, the order

volume of B4 after adjustment is 6.93+ 0.45
15
×16 = 7.41 Then the total inventory

cost for B1 is 24/.45 + 100× 15 + 1
2
× 160× 15× .45 = 2093.33($). The total

inventory cost for B2 is 24/0.35+100×25+ 1
2
×160×25×0.35 = 3268.57($). The

total inventory cost for B3 is 24/.39+100×20+ 1
2
×160×20×0.39 = 2685.54($).

The total inventory cost for B4 is 24/.43 + 100 × 16 + 1
2
× 160 × 16 × .43 =

2206.21($).

So, the total inventory cost for Type 1 gas is (2093.33 + 3268.57 + 2685.54 +

2206.21)($) = 10253.65($). For Type 2 gas:

For dealer at B1: t01 =
√

2C2

C1D
=
√

2×10
6×10

= 0.58,

R01 =
√

2C2D
C1

=
√

2×10×10
6

= 5.77,

At B2: t02 =
√

2C2

C1D
=
√

2×10
6×15

= 0.47,

R02 =
√

2C2D
C1

=
√

2×10×15
6

= 7.07,

Again at B3: t03 =
√

2C2

C1D
=
√

2×10
6×12

= 0.53,

R03 =
√

2C2D
C1

=
√

2×10×12
6

= 6.32,

At B4: t04 =
√

2C2

C1D
=
√

2×10
6×14

= 0.49,

R04 =
√

2C2D
C1

=
√

2×10×14
6

= 6.83.

Since the delivery cycles of four gas stations are different, So, in order to

minimize the transportation costs, we need to unit their cycle, regarding 0.58 as

the standard cycle. The order volume of B2 after adjustment is 7.07+0.58
10
×15 =

7.94. the order volume of B3 after adjustment is 6.32 + 0.58
10
× 12 = 7.02. The

order volume of B4 after adjustment is 6.83 + 0.58
10
× 14 = 7.64. Then the total

inventory cost for B1 is 10/0.58 + 50× 10 + 1
2
× 6× 10× 0.58 = 534.64($). The

total inventory cost for B2 is 10/0.47 + 50×15 + 1
2
×6×15×0.47 = 792.43($).

The total inventory cost for B3 is 10/0.53+50×12+ 1
2
×6×12×0.53 = 637.95($).

The total inventory cost for B4 is 10/0.49+50×14+ 1
2
×6×14×0.49 = 740.99($).

So, the total inventory cost for Type 2 gas is 534.64 + 792.43 + 637.95 +

740.99 = 2706.01($) and hence the total inventory cost for two types of gas is
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(10253.65 + 2706.01)($) = 12959.66.($)

Now, for the multi-choice multi-item transportation model according to the

supplied data is described in Model 10.6 as follows:

Model 10.6

minimize Z = (135, 132, 130)x111 + (128, 130)x121 + 105x13

+ (157, 150, 155)x141 + (116, 120)x211 + 144x22 +

(131, 135, 129, 140)x231 + (125, 120, 130)x241 + 10x112 + 15x122

+12x132 + 18x142 + 15x212 + 12x222 + 11x232 + 15x242 (10.14)

subject to Pr (x111 + x121 + x131 + x141 ≤ 21.50) ≥ 1− 0.61, (10.15)

Pr (x211 + x221 + x231 + x241 ≤ 16.00) ≥ 1− 0.62, (10.16)

Pr (x112 + x122 + x132 + x142 ≤ 18) ≥ 1− 0.60, (10.17)

Pr (x212 + x222 + x232 + x242 ≤ 17) ≥ 1− 0.55, (10.18)

x111 + x211 ≥ 6.71, (10.19)

x121 + x221 ≥ 9.42, (10.20)

x131 + x231 ≥ 8.35, (10.21)

x141 + x241 ≥ 7.41, (10.22)

x112 + x212 ≥ 5.77, (10.23)

x122 + x222 ≥ 7.94, (10.24)

x132 + x232 ≥ 7.02, (10.25)

x142 + x242 ≥ 7.64, (10.26)

xijt ≥ 0 (i = 1, 2; j = 1, 2, 3, 4; t = 1, 2). (10.27)

Using the technique described in subsection 10.3.1, the stochastic constraints

(10.15) to (10.18) reduce to the following form:

x111 + x121 + x131 + x141 ≤ 20.25, (10.28)

x211 + x221 + x231 + x241 ≤ 15.50, (10.29)

x112 + x122 + x132 + x142 ≤ 16.49, (10.30)

x212 + x222 + x232 + x242 ≤ 13.57. (10.31)
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We find the values of f(= Z), A, b, lb from (10.14) and (10.19)-(10.31) and

then we solve it by MATLAB programming.

Solving the equation (10.14) under the constraints (10.19)-(10.31) using MAT-

LAB programming, we obtain the optimal solution as follows:

x111 = 0.0, x121 = 9.42, x131 = 6.41, x141 = 0.0, x211 = 8.35, x221 = 0.0, x231 =

0.0, x241 = 7.41, x112 = 5.77, x122 = 7.94, x132 = 0.0, x142 = 0.0, x212 =

0.0, x222 = 6.55, x232 = 7.02, x242 = 0; and the value of the total transportation

cost for transpoting two types of gas is 4107.92($). The total logistic cost is

the sum of inventory cost for Type 1 gas, inventory cost for Type 2 gas and

the transportation cost. So, the total logistic cost is (4107.92+12959.66)($) =

17067.58($).

10.4.2 Solution by IOIT model

Let us construct the mathematical model under IOIT technique to the follow-

ing problem as:

Model 10.7

minimize Z = 100
m∑
i=1

n∑
j=1

xij1 +
1

2
(W11 +W21 +W31 +W41)16 +

+50
m∑
i=1

n∑
j=1

xij2 +
1

2
(W12 +W22 +W32 +W42)6 +

(135, 132, 130)x111 + (128, 130)x121 + 105x131 +

(157, 150, 155)x141 + (116, 120)x211 + 144x221 +

(131, 135, 129, 140)x231 + (125, 120, 130)x241 +

10x112 + 15x122 + 12x132 + 18x142 +

15x212 + 12x222 + 11x232 + 15x242 (10.32)

subject to Pr (x111 + x121 + x131 + x141 ≤ 21.50) ≥ 1− 0.61, (10.33)

Pr (x211 + x221 + x231 + x241 ≤ 16.00) ≥ 1− 0.62, (10.34)

Pr (x112 + x122 + x132 + x142 ≤ 18) ≥ 1− 0.60, (10.35)

Pr (x212 + x222 + x232 + x242 ≤ 17) ≥ 1− 0.55, (10.36)

W11 ≥ 1.4, W21 ≥ 2.8, (10.37)
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W31 ≥ 2.4, W41 ≥ 1.8, (10.38)

W12 ≥ 1.0, W22 ≥ 1.5, (10.39)

W32 ≥ 1.2, W42 ≥ 2.0, (10.40)

W11 +W21 +W31 +W41 = 31.89, (10.41)

W12 +W22 +W32 +W42 = 28.37, (10.42)

x111 + x211 = W11, (10.43)

x121 + x221 = W21, (10.44)

x131 + x231 = W31, (10.45)

x141 + x241 = W41, (10.46)

x112 + x212 = W12, (10.47)

x122 + x222 = W22, (10.48)

x132 + x232 = W32, (10.49)

x142 + x242 = W42, (10.50)

xijt ≥ 0 (i = 1, 2; j = 1, 2, 3, 4; t = 1, 2). (10.51)

We find the values of f(= Z), A, b, lb from (10.32), (10.28)-(10.31) & (10.37)-

(10.51) and then we solve it by MATLAB programming. Solving the equation

(10.32) under the constraints (10.28)-(10.31) & (10.37)-(10.51) by using MAT-

LAB programming, we obtain the optimal solution as follows:

x111 = 0, x121 = 2.80, x131 = 17.45, x141 = 0.0, x211 = 9.84, x221 = 0, x231 =

0, x241 = 1.80, x112 = 14.99, x122 = 0.0, x132 = 1.5, x142 = 0.0, x212 = 0.0, x222 =

2.0, x232 = 9.88, x242 = 2.0. The supplied quantities of demand nodes for Type

1 gas are W11 = 9.84,W21 = 2.80,W31 = 17.45,W41 = 1.80 and the sup-

plied quantities of demand nodes for Type 2 gas are W12 = 14.49,W22 =

3.50,W32 = 9.88,W42 = 1.80. The selection of cost parameters for Type 1

gas are C111 = 130, C121 = 128, C131 = 105, C141 = 150, C211 = 116, C221 =

144, C231 = 129, C241 = 120. Also, from the solution, we obtain the total logis-

tic cost: 8800.90($). In this logistic cost, i.e., the sum of the inventory cost

and the transportation cost which is minimized together through the proposed

model.
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10.5 Sensitivity analysis
We solve the proposed problem using two techniques, namely IO and IOIT.

In IO technique, the total logistic cost is calculated by adding the invenory

cost and transportation cost separately. The solution through IOIT tech-

nique produced the logistics cost through the algorithm directly, and we see

that the IOIT technique for calculating total logistics cost is significantly less

than the total logistic cost through IO technique. From the obtained solution,

it is observed that in IOIT model with multi-choice concept saves the cost

[17067.58−8800.90
17067.58

] × 100% =48% in compare with the cost of basic IO model.

The costs corresponding to IO and IOIT techniques in different aspects along

with the total cost are shown in Figures 10.2 and 10.3 respectively.

According to the proposed mathematical model, the reduction of total logis-

Figure 10.2: Cost in IO technique per unit item.

tic cost is made due to the fact that in IOIT, if the order quantity of goods

are increased then the inventory cost becomes smaller, consequently the total

logistics cost per unit item becomes smaller than the traditional IO technique.

In Figures 10.2 and 10.3, it is clearly presented that the total logistic cost

($) per unit item with respect to order volume (ton) is less in IOIT than IO

technique. So, the obtained solution of proposed problem by IOIT is better

than the solution by traditional IO technique.

Here, we consider the multi-choice of transportation cost in the proposed prob-
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Figure 10.3: Cost in IOIT technique per unit item.

lem, and so in the algorithm, we present the situation that each combination

of multi-choice costs presents an optimal solution for total transportation cost

in IO technique and total logistic cost in IOIT technique.

Figure 10.4: Cost of transportation for different choices in IO.

Utilizing the obtained solutions, we draw the Figures 10.4 and 10.5, which show

the total transportation cost in IO technique and total logistic cost in IOIT

technique respectively, for different combinations of multi-choice of parameters.

The proposed problem is solved by an algorithm, and from the solution, we

conclude that how much amount has to be paid for the destinations B1, B2,

B3 and B4; when the demand points are managed by only one person.
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Figure 10.5: Logistic cost for different choices in IOIT.

In this regard, we present the Figures 10.6 and 10.7, which represent the

amount of transportation cost, inventory cost and total logistic cost to be

paid for the destination points B1, B2, B3 and B4.

Figure 10.6: Cost at demand points for Type 1 gas.

Here, the scale of cost ($) for the Figures 10.4, 10.5, 10.6 and 10.7 are con-

sidered according to the best view of the figures to the readers, they are not

correlated to each other in same scale difference, but in all Figures cost axes

are in same unit $.
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Figure 10.7: Cost at demand points for Type 2 gas.

10.6 Conclusion
In this chapter, we have focused on the study of integrated optimization in

inventory transportation along with the transportation problem and combin-

ing these produce a problem named as IOIT. Here, we have considered the

transportation cost in multi-choice type and the supply as random due to un-

stable situation of market. Again by considering the globalization situation,

the decision maker is to be transported the multi-item goods instead of single

item. Because of that, we have formulated the mathematical model of multi-

item multi-choice IOIT with random supply. To transform the multi-choice

IOIT model with random supply, we have used the stochastic programming.

From the solutions of our presented numerical example, we have concluded

that IOIT produces better result in compare with the solution of traditional

inventory model with TP.
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Conclusions and Scope of Future
Works

11.1 Conclusions
Transportation problem is a widely used in decision making problems under

different grounds of Operations Research. In the decision making problems,

the utmost important factor is decision parameters. The thesis is designed

based on the study of multi-choice programming in the transportation prob-

lem. Multiple choice of parameters is a form of assessment in which DM

requires to select the best possible choice out of the choices from a list which

produces optimal solution. Due to presence of multiple routes of transporta-

tion, multiple type vehicles, weather condition, unpredictable market scenario,

etc. the transportation parameters become multi-choice type. Keeping these

points of view, we have incorporated the study of TP under multi-choice en-

vironment and established the efficiency of multi-choice study throughout the

thesis.

The classical model of TP is not always produced the optimal solution accord-

ing to purchasers perspectives. Introducing the concept of non-linear cost in

MOTP, we have developed a non-linear MOTP under multi-choice demands.

A generalized reduction procedure to convert the constraints involving multi-

choice demand parameters into deterministic form is presented using binary

variables. Thereafter, an algorithm is included to solve the proposed model
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and the proposed study in Chapter-1 and compared with related study by

a numerical example and to establish the remarkable effects of the study in

Chapter 2 in the proposed thesis.

The solution of the MOTP presents a set of Pareto optimal points, but a so-

lution through the existing weighting methods is not so effective in real-life

situations. In that situation, the objective functions of MOTP considers the

goals, which play an important role to find a better optimal solution through

goal programming. To make the solution more effective, we have introduced

the utility function approach in the study of MOTP in Chapter 3. Concept

of utility, in this chapter, propose a new way for extending the utilization of

real-life MOTP and MCMTP and improves the skill for representing the DM’s

preferences in solving decision making problems.

Again, we have solved the multi-choice multi-objective transportation problem

by employing the Conic Scalarization approach with less number of variables

and with minimum computational burden in Chapter 4. The MCMTP is given

a new direction to handle the real-life multi-objective transportation problem

when the transportation parameters are multi-choices in nature. Two numer-

ical examples are presented in this chapter to explore the applicability and

suitability of our approach for solving MOTP and MCMTP with considera-

tion of decision maker preferences.

Time is an important factor for transporting the goods in a TP. So, the cost

and the time minimizing TP with multi-choice interval valued transportation

parameter are considered in Chapter 5 of the proposed thesis. The main aim

of this chapter is to minimize the transportation cost as well as minimize

the transportation time for transporting the perishable goods through single

objective TP under the environment of multi-choice interval valued program-

ming. Till now, researchers have used the methodology of multi-objective

transportation problem to optimize the transportation cost and time but in

this chapter, we have optimized the transportation cost and time without us-

ing multi-objective TP. To show the reality and feasibility of the situation, a

case study is considered in the chapter.
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Considering the real-world situations, we have introduced the concept of fuzzy

decision variable in the transportation problem in Chapter 6. A technique to

solve a TP under fuzzy decision variable is furnished in this chapter in both

single objective and multi-objective ground of TP. Again, in this study, the

goal of purchaser as well as seller are given equally importance, whereas, most

of the FTP, considered the goal of DM i.e., seller only. The concept has been

extended in multi-objective ground to obtain a better result in compare to the

existing method like GP.

Thereafter, we have analyzed the real-life MOTP through the concept of re-

liability and uncertain environments. We have proposed a new kind of un-

certainty on cost parameter based on the concept of reliability in Chapter

7. Besides, we have established the MOTP under the consideration of fuzzy

multi-choice goals to the objective functions and the supply and demand are

taken as uncertain in nature. A solution procedure for solving the MOTP; and

the selection of goals for the objective functions has been discussed by taking

a real-life example. This procedure is not only proposed the subjective pref-

erence into real-life decision-making problems, but also can realize the better

selection of goals to the objective functions.

Furthermore, in the proposed thesis, we have proposed a Two-Stage MOTP

with the interesting characteristics that one is for the goal preferences of the

DM and another one is the selection of particular values of supply and demand

from the interval grey supply and demand. Solution of the MOTP under these

goals through RMCGP has provided a technique for multi-objective decision

making. But, the main drawback of RMCGP consists of how the DM would

select the goals for the objective functions. So, we have constructed a utility

function (choice by the DM) for selecting the optimal goal region. After this

selection, we have solved the proposed problem by our RMCGP approach.

The proposed multi-objective Two-Stage TP has provided a new direction to

select proper goals for real-life multi-objective transportation problems under

the environment of interval grey supply and demand.

There may have some situations in a transportation system, due to the pres-

221



Chapter 11: Conclusions and Scope of Future Works

ence of multiple-mode of transportation in which the traditional TP fails to

formulate a mathematical model and find the least-cost route of transportation.

We have implemented a mathematical model MMTP, which may be applied

to formulate the mathematical model under multiple-mode of transportation

and its solution suggests about the selection of mode of transportation as well

as optimal solution of the problem.

Also, we have presented the connection between transportation and inventory

optimization problem under multi-choice environment. Though, TP and inven-

tory are two different branches of study, but here we have made a link between

them under the environment of multi-choice transportation routes, and then

the solution procedure is presented. Again, by considering the globalization

situation, the decision maker needs to be transported the multi-item goods

instead of single item. Because of that, we have formulated the mathemati-

cal model of multi-item multi-choice IOIT with random supply. To transform

the multi-choice IOIT model with random supply, we have used the stochastic

programming. The IOIT study reduces logistics cost significantly, which is

presented in Chapter 10 of our proposed thesis.

11.2 Future works
Studying more concepts of the presented models may be a paradigm for future

research. Moreover, applying this new concept is a challenging task to deal

with real world decision making problems for further research.

There are many avenues of future work arising from this thesis, A few of them

are appended below:

(i) The transportation problems have wide applications in many real-life

problems of practical importance which reduce the cost specially in busi-

ness environment. Multi-objective transportation problem with non-

linear cost still exists in so many cases of managerial decision making

problem such as planning of many complex resource allocation systems
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in the areas of industrial production, storing of foods, in which demands

are of multi-choice type in practical situation. The contents of this chap-

ter may be a source of producing better results in such kind of complex

decision making situations.

(ii) The application of the utility function approach is an important area in

a new research field of MOTP problems under uncertain environments.

(iii) The study of Conic Scalarization approach may be applied for a better

result on the fuzzy transportation problem. Furthermore, the notion of

multi-choice parameters can also be used in real-world supply chain man-

agement problems. In that context, the number of variables increases in

GP or RMCGP but in Conic Scalarization approach with less number

of variables, the proposed method allows for a better solution satisfying

all the goals; consequently, the decision maker can take a proper deci-

sion under a multi-choice environment of multi-objective transportation

problem.

(iv) The study of non-linearity in a TP through cost parameter can be ex-

tended to supply and demand parameters of the transportation problem.

(v) The time-cost minimizing concept of proposed thesis may be used to

solve time-cost trade off transportation problem in multi-objective envi-

ronment when the parameters incorporate the uncertain type of data.

(vi) The approach of Two-stage TP can be addressed with different types of

data, such as fuzzy, stochastic, etc., and tested several examples such

as route selection problem with consideration of real-life Two-Stage TP,

technology selection problem, plant location selection problem, etc., us-

ing our proposed methodology. In addition to the aforementioned, one

can employ our study for selecting the optimal goals in inventory opti-

mization, supply chain management, and others.

(vii) The study of MMTP can be broadly analyzed in different real-life uncer-

tain environments.
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(viii) The concept of IOIT can be extended in different ground of inventory

and transportation problem.
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