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Abstract

Many situations occur where exact solution cannot be found for real world
problems and hence we solved these approximately. Probability theory, fuzzy
set theory (FST), rough set theory (RST), soft set theory (SST) are novel
mathematical tools to solve real world problems including uncertainty. All
these theories more or less can help to understand and make dealt to imper-
fect knowledge. The basic philosophy of rough set is based on the assumption
that human knowledge about a universe depends upon their capability to clas-
sify its objects. Every object of the universe there is associated a certain
amount of information (data). Classifications of a universe and equivalence
relations defined on the universe are known to be interchangeable notions. So,
for mathematical point of view, equivalence relations are considered to define
rough set. For every rough set, we associate two crisp sets, called lower and
upper approximations and viewed as the sets of elements which certainly and
possibly belong to the set. The advantage of rough set method is that it does
not need any additional information about data, like probability in statistics,
or membership in fuzzy set theory.
Lattice is a simple algebraic structure since the basic concepts of the theory
which include only orders, least upper bound and greatest lower bound. It is
widely discussed and studied in classical algebraic theory. Lattice theory is
used to formulate some types of generalised rough sets. Lattice theory exten-
sively used in computer science and engineering. Based on the existing works
about the algebraic structure of rough sets and soft sets we say that lattice
structures of rough set and soft set have wide field of applications. Despite its
novelty, the theory and its extensions have been widely applied to many prob-
lems, including decision analysis, data-mining, intelligent control and pattern
recognition.
In this thesis, we incorporate a detailed study on rough set in lattice. That is,
we are trying to make an algebraic connection between the rough set and the
lattice. We introduce rough modular lattice and rough distributive lattice in
rough set environment by considering Pawlak’s approximation space. Beside
this, concept of rough ideal and rough homomorphism are established in rough
set environment.
The equivalence classes are the basic building blocks for the construction of



the lower and upper approximations. In real-life situation, it is difficult to
find an equivalence relation. To over come this difficulty, many researchers
approached to use tolerance relation, similarity relations, dominance relation
to partition a universe and introduced generalized rough set. Soft set theory
(SST) is introduced by Molodtsov (67), is a novel concept to deal with un-
certainty. One main advantage of SST is that it has enough parameterization
tools. It is well known that each equivalence relation on a set partitions the
set into disjoint classes and each partition of the set provide us an equivalence
relation on the set. In this thesis, we use a soft set instead of an equivalence
relation to partition a set and then introduce the notion of soft approximation
space. We attempt to study on lattice theory in the soft approximation space.
In this thesis, we present the concepts of soft rough lattice and soft rough ideal
in the soft rough approximation space.
Soft rough set is presented by Feng et al. (32) which is a hybridization of soft
set and rough set. Modified soft rough (MSR) set is an another approach to
hybridization of soft set and rough set. Considering modified soft rough ap-
proximation space, we approximate a soft set and hereby introduce the notion
of rough soft set. We discuss lattice theory in the frame-work of rough soft
theory.
In this research content, we introduce soft set relation in a new way. We in-
corporate lattice theory in soft set using this soft set relation. We consider the
study of congruence relation on soft set. Considering lattice as universal set,
we introduce soft congruence relation in soft set. The concepts of upper and
lower approximations of a subset in a lattice are depicted based on this soft
congruence relation.
At last, we try to make a fusion between fuzzy set and rough soft set. Here we
measure roughness of rough soft set and introduce the concept of fuzzy rough
soft set in MSR-approximation space. Some properties of fuzzy rough soft set
are derived. Moreover, lattice theory is studied on the fuzzy rough soft set. In
the whole thesis, we are trying to incorporate lattice theory in uncertain envi-
ronments. Lattice theory in different approximation spaces is studied. Finally,
conclusion and direction of future works of the study are presented.

Keywords: Rough set, Soft set, Fuzzy set, Approximation space, Rough lat-
tice, Rough modular lattice, Rough distributive lattice, Rough ideal, Rough ho-
momorphism, Soft approximation space, Soft rough set, MSR-approximation
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Chapter 1

Introduction and Literature
Survey

The chapter describes the introduction of Rough Set Theory, Soft Set Theory,

Fuzzy Set Theory, some preliminary definitions on Rough Set, Soft Set, Lattice,

and Literature Survey of the proposed work, objective, scope and organization

of the thesis.

1.1 Introduction

Rough Set Theory (RST), proposed by Pawlak (81) is a mathematical tool

for dealing with uncertainty i.e., to vagueness (or imprecision). It provides a

simple approach for the study of indiscernibility of objects. Basically, in rough

set theory, it is assumed that our knowledge is restricted by an indiscernibil-

ity relation. When objects of a universe are described by a set of attributes,

one may define the indiscernibility of objects based on their attribute values.

When two objects have the same value over a certain group of attributes, we

say they are indiscernible with respect to this group of attributes, or have the

same description with respect to the indiscernibility relation. Indiscernibil-

ity relation is an equivalence relation. By this equivalence relation, we form

equivalence class and all the equivalence classes form a partition of the uni-
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Chapter 1: Introduction and Literature Survey

verse, which are the basic building block of universal set called granules. Any

subset of objects of the universe is approximated by two sets, called the lower

and upper approximations and can be viewed as the sets of elements which

certainly and possibly belong to the set. Pair of these two approximations is

called Rough Set. Pawlak’s rough set is mainly based on equivalence relation.

But, in practical, it is very difficult to find an equivalence relation among the

elements of a set. So, some other general relations such as tolerance ones and

dominance ones are considered to define rough set models [(132), (135)].

In the original rough set approach it has considered that all objects in an in-

formation system have precise attribute values. Problem arises when some of

the values are unknown, which sometimes happen in the real world. Therefore

it is necessary to develop theory which enables classifications of objects even if

there is only partial information available. The rough set model proposed by

Kryszkiewicz [(51), (52)] introduced indiscernibility based on tolerance relation

to deal with missing values in the information system. In these approaches,

a missing value was considered as a special value that may take any possible

value. However, tolerance relation sometimes lead to a poor result with re-

spect to approximation. Stefanowski and Tsoukiàs [(111), (112)] discussed the

limitation and introduced similarity relation to refine the results obtained by

using tolerance relation approach. Wang (118) gave some examples to prove

that similarity relation may results in lost information and proposed limited

tolerance relation. Yang and Hu (126) also generalized a reasonable and flexi-

ble classification in incomplete information system by “new binary relation".

Rough set theory, has been hybridized with other soft computing methods such

as fuzzy sets by Zadeh (133), soft set by Molodtsov (67), genetic algorithms

(GAs), neural networks, and statistical methods such as principal component

analysis (PCA) by Devijver and Kittler (28), etc. Such hybridization has

2



1.1. Introduction

highlighted the value of employing rough set theory. Fuzzy-Rough attempts

to take advantage of the complementary nature of fuzzy sets and rough sets.

The significance of this work is reflected in the level of research carried out in

this area and also to the number of applications of fuzzy-rough set theory.

The rough set theory is of fundamental importance in artificial intelligence (AI)

and cognitive science especially in the area of machine learning, knowledge ac-

quisition and decision analysis, knowledge discovery, inductive reasoning and

pattern recognition in databases, expert systems, decision support systems. It

has been applied to the analysis of many issues, including medical diagnosis, en-

gineering reliability, empirical study of material data, machine diagnosis, travel

demand analysis, data mining. In the areas of machine learning, data mining,

pattern recognition, and intelligent control, the ability to handle imperfect

knowledge is of primary importance both in terms of theoretical advancement

and practical applications. The work in the area of rough set theory (RST)

by Pawlak (84) offered one of the most distinct and recent approaches in this

respect. Such is the worldwide nature of the attention that RST has attracted

since its inception by Pawlak (81) that much research and development have

been carried out not only in applying the theory to many and various problem

domains, but also to extend it theoretically. This has resulted in a significant

breadth and depth of work in the area.

Both fuzzy set theory and rough set theory deal with the indescribable and

perception knowledge. The most difference between them is that rough set

theory is not required to be considered membership function so that it can

avoid pre-assumption and subjective information in analysis. Rough set the-

ory provides a new different mathematical approach to analyze the uncertainty,

and with rough sets we can classify imperfect data or information easily. We

can discover the results in terms of decision rules. Formally, a rough set is the

3



Chapter 1: Introduction and Literature Survey

approximation of a vague concept (set) by a pair of precise concepts, called

lower and upper approximations, which are a classification of the domain of

interest into disjoint categories. The lower approximation is a description of

the domain objects which are known with certainty to belong to the concept

of interest, whereas the upper approximation is a description of the objects

which possibly belong to the concept. The approximations are constructed

with regard to a particular subset of attributes or features. One of the pri-

mary drawbacks of RST lies in its inability to deal with real world data. Owing

mainly to the granular approach that RST uses to handle data, and the strict

structure of equivalence imposed, it does not allow any flexibility when deal-

ing with measurement noise or imperfection that is prevalent in real world

data. However, most data sets contain real-valued features and so it becomes

necessary to perform a discretization step before employing RST for knowl-

edge discovery. Take for instance a weather forecasting system which records

a number of meteorological attributes, with one in particular that might be

average rainfall. In reality, this is a continuous and real-valued measurement.

However, in order to apply RST to such a problem, this attribute must be

discretized with a set of labels such as light, medium, and heavy. This imposes

subjective human judgement on what is otherwise an objective measurement.

In particular, the more recent extensions of RST and its hybridization with

soft set theory are examined in lattice theoretical approach. To solve com-

plicated problems in economics, engineering, environmental science, medical

science, and social science, methods in classical mathematics are not always

successfully used because various uncertainties are typical for these problems.

Therefore, there has been a great deal of alternative research and applications

in the literature concerning some special tools such as probability theory, fuzzy

set theory [(133), (134)] , rough set theory [(81), (84)], vague set theory (40).

However, all of these theories have their own difficulties which are pointed out

4



1.1. Introduction

in [(67), (68)]. In 1999, Molodtsov (67) introduced the concept of soft sets,

which can be seen as a new mathematical tool for dealing with uncertainties.

Molodtsov (68) further pointed out that the reason for these limitations is,

possibly, the inadequacy of the parameterization tool of the theory. The soft

set theory (SST) introduced by Molodstov (67) is quite different from these

theories in this context. The absence of any restriction on the approximate

description in Soft Set Theory makes this theory very convenient and easily

applicable. Fuzzy set theory was proposed by Zadeh (133) in 1965 is considered

as a special case of the soft sets. Fuzzy set theory, being generalization of crisp

sets, should satisfy the axioms of exclusion and contradiction. The definition

of complement has defined by Zadeh which does not meet these requirements.

But it has been proved recently by Baruah [(7), (8)] that the set theoretic

axioms of exclusion and contradiction in the fuzzy sets satisfied.

In order to solidify the theory of soft set, Maji et al. (60) defined some basic

terms of the theory such as equality of two soft sets, subset and super set of

a soft set, complement of a soft set, null soft set, and absolute soft set with

examples. Binary operations like AND, OR, union and intersection were also

defined. De Morgan’s laws and a number of results are verified in soft set the-

ory context. Sezgin and Atagun (106) proved that certain De Morgan’s laws

holds in soft set theory with respect to different operations on soft sets. Ali

et al. (2) introduced some new notions such as the restricted intersection, the

restricted union, the restricted difference and the extended intersection of two

soft sets. They improved the notion of complement in soft set and also proved

that certain De Morgan’s law hold in soft set theory. Soft set is a parameter-

ized general mathematical tool which deals with a collection of approximate

descriptions of objects. Each approximate description has two parts, a predi-

cate and an approximate value set. In classical mathematics, a mathematical
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model of an object is constructed and is defined the notion of exact solution

of this model. Usually the mathematical model is too complicated and the

exact solution is not easily obtained. So, the notion of approximate solution

is introduced and the solution is calculated. In the soft set theory, we have

the opposite approach to this problem. The initial description of the object

has an approximate nature, and we do not need to introduce the notion of

exact solution. The absence of any restrictions on the approximate descrip-

tion in soft set theory makes this theory very convenient and easily applicable

in practice. Any parameterizations can be used with the help of words and

sentences, real numbers, functions, mappings and so on. Maji et al. (59)

applied Soft set theory to solve a decision making problem using rough set

theory; and an algorithm to select the optimal choice of an object was pro-

vided. This algorithm uses fewer parameters to select the optimal object for

a decision problem. However, in decision making problem in (59), there is

a straightforward relationship between the decision values of objects and the

conditional parameters. That is, the decision values is computed with respect

to the conditional parameters. This is quite different in the case of rough

sets. In rough set theory, the decision attributes are not computed according

to the conditional attributes. Soft set theory, fuzzy set theory and rough set

theory are all mathematical tools to handle with uncertainty. But soft set,

fuzzy set and rough set are closely related concepts (2). Feng et al. (31) pro-

vided a framework to combine fuzzy sets, rough sets and soft sets all together,

which provides the several interesting new concepts such as rough soft sets,

soft rough sets and soft rough fuzzy sets. The study of the algebraic structure

of the mathematical theory proves itself effective in making the applications

more efficient. Studying on rough set, soft set and rough soft set combined

with lattice is an interesting topic to the researchers.

6



1.2. Preliminaries

1.2 Preliminaries

Here we give some preliminaries on rough set, soft set, and lattice which are

very much essential in the sequel. Also we discuss in short about information

system and indiscernibility relation which are two key elements related to

uncertainty.

1.2.1 Information Systems

The basic tool for data representation in the rough set framework is an infor-

mation system. An information system (or a knowledge representation system)

is a pair, I = (U,A) of non-empty finite sets U and A where U is the set of

objects that are named as universal set and A is a set of attributes. Every

attribute a ∈ A is a function a : U → Va, where Va is called set of values of

attribute a.

An information system is represented by a table where each row represents

a condition, an event, or simply, an object. Each column represents a mea-

surability characteristic of each object. Another type of information systems

is called the Decision Systems. A decision systems is a specific type of pair,

I = (U,A ∪ {d}) of any other information system where d ∈ A is decision

attribute. Other attributes are called as a ∈ A − {d} conditional attributes.

Decision attributes can receive many values, but in general, they will earn

values as true or false. It may happen that some of attribute values for an

object are missing. To indicate such a situation when some of attribute values

for an object are missing a distinguished value, so-called null value, is usually

assigned to those attributes. If Va contains null value for at least one attribute

a ∈ A, then the information system is called an incomplete information system,

otherwise it is complete.

7



Chapter 1: Introduction and Literature Survey

1.2.2 Indiscernibility Relation

Two objects are considered to be indiscernible or equivalent if and only if they

have the same value for all attributes in the set. As a dual relation to indis-

cernibility, two objects are considered to be discernible if and only if they have

different values for at least one attribute. Since the pair of indiscernibility and

discernibility relations are defined with respect to the set of all attributes and

at least one attribute, respectively, they may be viewed as strong indiscernibil-

ity and weak discernibility. The strong indiscernibility is indeed the strongest

type of similarity between objects and is characterized by an equivalent. The

rough set theory was introduced by Pawlak (81) dealt with situations in which

the objects of a certain universe of discourse U can be identified only within

the limits determined by the knowledge represented by a given indiscernibil-

ity relation. Based on such indiscernibility relation, the lower and the upper

approximations of subsets of U may be defined. The lower and the upper ap-

proximations of a subset X of U can be viewed as the sets of elements which

certainly and possibly belong to X, respectively. Usually it is pre- assumed

that indiscernibility relations are equivalence.

1.2.3 Rough set

Definition 1.2.1 Let U be a non-empty set of universe and ρ be an equiva-

lence relation on U . The pair (U, ρ) is called Pawlak’s approximation space.

The equivalence relation R is often called indiscernibility relation and related

to an information system.

Definition 1.2.2 An equivalence class of x(∈ U) is denoted by [x]ρ and de-

fined as follows: [x]ρ = {y ∈ U : xρy}, where xρy imply (x, y) ∈ ρ.

Each equivalence class is partitioned the universe which are called granules. A

partition of the universe is used to approximate a subset of the universal set

8



1.2. Preliminaries

in rough set theory. Using only the indiscernibility relation, in general, we are

not able to observe individual objects from U but only the accessible granules

of knowledge described by this relation.

Definition 1.2.3 Lower and upper approximations of X ⊆ U in an approxi-

mation space (U, ρ) are denoted by A?(X) and A?(X) respectively and defined

as follows:

A?(X) = {x ∈ U : [x]ρ ⊆ X} and A?(X) = {x ∈ U : [x]ρ ∩X 6= φ}.

If A?(X) 6= A?(X), then X is called rough, otherwise X is crisp.

The difference A?(X) − A?(X) is called boundary region. A rough set of X

is presented by the pair (A?(X), A?(X)). The pair (U, ρ) is called Pawlak’s

approximation space.

Therefore lower approximation, upper approximation and boundary region can

be explained as follows:

• Lower approximation of a set X is the set of all objects which can be with

certainty classified as members of X.

• Upper approximation of a set X is the set of all objects which can be only

classified as possibly members of X.

• Boundary region of a set X is the set of all objects which can be decisively

classified neither as members of X nor as members of Xc (Xc is the comple-

ment of X).

The definitions of set approximations presented above can be expressed in

terms of granules of knowledge in the following way:

• The lower approximation of a set is union of all granules which are entirely

included in the set.

• The upper approximation of a set is union of all granules which have non-

empty intersection with the set.

9
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• The boundary region of a set is the difference between the upper and the

lower approximation of the set.

Graphical illustration of the set approximations is given in Figure 1.2.1

Figure 1.2.1: Upper and Lower Approximations of a Rough Set.

There are four types of rough set in U :

[1] If A?(X) 6= φ and A?(X) 6= U, X is called roughly definable in U ;

[2] If A?(X) = φ and A?(X) 6= U, X is called internally undefinable in

U ;

[3] If A?(X) 6= φ and A?(X) = U, X is called externally undefinable in

U ;

10
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[4] If A?(X) = φ, and A?(X) = U, X is called totally undefinable in U ,

where φ denotes an empty set.

Proposition 1.2.1 Let X, Y ∈ U, then in an approximation space (U, ρ), One

can easily show the following properties of approximations:

(1) A?(X) ⊆ X ⊆ A?(X)

(2) A?(φ) = A?(φ) = φ, A?(U) = A?(U) = U

(3) A?(X ∪ Y ) = A?(X) ∪ A?(Y )

(4) A?(X ∩ Y ) = A?(X) ∩ A?(Y )

(5) X ⊆ Y ⇒ A?(X) ⊆ A?(Y ) and A?(X) ⊆ A?(Y )

(6) A?(X ∪ Y ) ⊇ A?(X) ∪ A?(Y )

(7) A?(X ∩ Y ) ⊆ A?(X) ∩ A?(Y )

(8) A?(X
c) = (A?(X))c

(9) A?(Xc) = (A?(X))c

(10) A?(A?(X)) = A?(A?(X)) = A?(X)

(11) A?(A?(X)) = A?(A
?(X)) = A?(X).

1.2.4 Soft set

Rough set and fuzzy set are two novel concept to dealing with uncertainty.

But there exists an inherent difficulty in case of fuzzy set: how to set the

membership function in each particular case. We should not impose only one

way to set the membership function. The nature of the membership function

is extremely individual. So, fuzzy set operations based on the arithmetic op-

erations with membership functions do not look natural. It may occur that

11
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these operations are similar to the addition of weights and lengths. The reason

for these difficulties is, possibly, the inadequacy of the parametrization tool of

the theory. Molodtsov (67) introduced a mathematical tool namely soft set for

dealing with uncertainties which is free from the difficulties mentioned above.

Here we present some basic notions about soft set.

Definition 1.2.4 Let U be an universal set and E be a set of parameters. Let

P (U) denote the power set of U and A ⊆ E. A pair (F,A) is called a soft set

over U , where F is a set valued function given by F : A→ P (U).

In other words, the soft set is a parameterized family of subsets of the set U .

Every set F (e), e ∈ A, from this family may be considered as the set of e

approximate elements of the soft set (F,E).

Example 1.2.1 Let (F,A) describe the group of students interested in differ-

ent subjects. Suppose there are four students in the universe U which is given

by U = {u1, u2, u3, u4} and the attribute set A = {e1, e2, e3} where e1 stands

for Mathematics, e2 stands for Physics, e3 stands for English. Suppose

F (e1) = {u1, u2, u3}, F (e2) = {u1, u2}, F (e3) = {u2, u3, u4}.

Thus the soft set over U is given by

(F,A) = {(e1, {u1, u2, u3}), (e2, {u1, u2}), (e3, {u2, u3, u4})}.

Definition 1.2.5 A soft set over U is said to be null soft set denoted by Fφ if

∀ e ∈ E, F (e) = φ.

Definition 1.2.6 A soft set over U is said to be absolute soft set denoted by

FU if ∀ e ∈ E, F (e) = U.

Definition 1.2.7 A soft set (F,A) is said to be soft subset of a soft set (G,B),

if

12
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(i) A ⊆ B,

(ii) ∀ a ∈ A, F (a) = G(a).

Definition 1.2.8 (60) The union of two soft sets (F,A) and (G,B) over a

common universe U is a soft set (H,C) where C = A ∪ B and ∀ e ∈ C, H is

defined as follows:

H(e) =


F (e), if e ∈ A−B,
G(e), if e ∈ B − A,
F (e) ∪G(e), if e ∈ A ∩B.

We write (H,C) = (F,A) t (G,B) where the symbol ‘t’ stands for union of

two soft sets.

Ali et al. (2) denoted this union as extended union between two soft sets and

they used the symbol ∪ε.

Definition 1.2.9 (2) The intersection of two soft sets (γ,A) and (δ, B) over

a common universe U is a soft set (Y,D) where D = A∪B, and ∀ g ∈ D, and

Y is described as follows:

Y (g) =


γ(e), if g ∈ A−B,
δ(g), if g ∈ B − A,
γ(g) ∩ δ(g), if g ∈ A ∩B.

We write (Y,D) = (γ,A) uε (δ, B) where the notation ‘uε’ defines for inter-

section of two soft sets. Ali et al. (2) denoted this intersection as extended

intersection between two soft sets.

Definition 1.2.10 (60) The intersection of two soft sets (F,A) and (G,B)

over a common universe U , denoted by (F,A) ∩ (G,B) is the soft set (H,C)

where C = A ∩B and for all e ∈ C, H(e) = F (e) ∩G(e).

This intersection is also called restricted intersection by Ali et al. (2) and they

used the symbol ∩<.

13
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Definition 1.2.11 (2) The restricted union of two soft sets (F,A) and (G,B)

over a common universe U , denoted by (F,A) ∪< (G,B) is the soft set (H,C)

where C = A ∩B and for all e ∈ C, H(e) = F (e) ∪G(e).

Definition 1.2.12 (60) Let E = {e1, e2, e3, ..., en} be a set of parameters.

The NOT set of E denoted by ¬E is defined by, ¬E = {¬e1,¬e2,¬e3, ...,¬en},

where ¬ei = not ei; ∀i.

Definition 1.2.13 (60) The complement of a soft set (F,A) is denoted by

(F,A)c and is defined by (F,A)c = (F c,¬A), where F c : ¬A → P (U) is a

mapping given by F c(¬α) = U − F (α), ∀ ¬α ∈ ¬A.

Definition 1.2.14 (2) The relative complement of a soft set (F,A) is denoted

by (F,A)r and is defined by (F,A)r = (F r, A), where F r : A → P (U) is a

mapping given by F r(e) = U − F (e) for all e ∈ A.

Ali et al., (2) gave the following De Morgan’s laws with respect to the relative

complement of a soft set in soft set theory.

Proposition 1.2.2 Let (F,A) and (G,B) be two soft sets over a common

universe U such that A ∩B 6= φ, then

(1) ((F,A) ∩< (G,B))r = (F,A)r ∪< (G,B)r and

(2) ((F,A) ∪< (G,B))r = (F,A)r ∩< (G,B)r hold true.

The following De Morgan’s laws hold in soft set theory for the extended inter-

section, the extended union and the complement.

Proposition 1.2.3 Let (F,A) and (G,B) be two soft sets over a common

universe U such that A ∩B 6= φ, then

(1) ((F,A) ∩ε (G,B))r = (F,A)r ∪ε (G,B)r and

(2) ((F,A) ∪ε (G,B))r = (F,A)r ∩ε (G,B)r hold.
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Definition 1.2.15 (5) Let (F,A) and (G,B) be two soft sets over U , then

the Cartesian product of (F,A) and (G,B) is defined as, (F,A) × (G,B) =

(H,A×B), where H : A×B → P (U × U) and H(a, b) = F (a)×G(b), where

(a, b) ∈ A×B. i.e., H(a, b) = {(hi, hj) : hi ∈ F (a), hj ∈ G(b)}.

The Cartesian product of three or more non-empty soft sets can be defined

by generalizing the definition of the Cartesian product of two soft sets. The

Cartesian product (F1, A)× (F2, A)× (F3, A)× ...× (Fn, A) of the non-empty

soft sets (F1, A), (F2, A), (F3, A), ..., (Fn, A) is the soft set of all ordered n-tuple

(h1, h2, h3, ..., hn) where hi ∈ Fi(a).

Definition 1.2.16 (60) Let (F,A) and (G,B) be two soft sets over the com-

mon universe U. Then (F,A) AND (G,B) denoted by (F,A)
∧

(G,B) and is

defined by (F,A)
∧

(G,B) = (H,A × B) where H(a, b) = F (a) ∩ G(b), for all

(a, b) ∈ A×B.

Definition 1.2.17 (16) Let (F,A) and (G,B) be two soft sets over the com-

mon universe U. Then (F,A) OR (G,B) denoted by (F,A)
∨

(G,B) and is

defined by (F,A)
∨

(G,B) = (H,A×B) where H((a, b)) = F (a)∪G(b), for all

(a, b) ∈ A×B.

Proposition 1.2.4 If (F,A), (G,B) and (H,C) are three soft sets over U ,

then

(i) (F,A)
∨

((G,B)
∨

(H,C)) = ((F,A)
∨

(G,B))
∨

(H,C),

(ii) (F,A)
∧

((G,B)
∧

(H,C)) = ((F,A)
∧

(G,B))
∧

(H,C),

(iii) (F,A)
∨

((G,B)
∧

(H,C)) = ((F,A)
∨

(G,B))
∧

((F,A)
∨

(H,C)),

(iv) (F,A)
∧

((G,B)
∨

(H,C)) = ((F,A)
∧

(G,B))
∨

((F,A)
∧

(H,C)).
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1.2.5 Posets and Lattices

Lattice is a simple algebraic structure whose basic philosophy includes only

orders, least upper bound and greatest lower bound. It is widely discussed

and studied in classical algebraic theory. Lattice is very much useful in deal-

ing with different structures in theoretical computer science. Partial order

relation and lattice theory now play an important role in many disciplines

of computer science and engineering. For example, they have various appli-

cations in distributed computing (vector clocks, global predicate detection),

concurrency theory, programming language semantics (fixed-point semantics),

and data mining (concept analysis). They are also useful in other disciplines

of mathematics such as combinatorics, number theory and group theory. A

partially ordered set (or a poset for short), is a non-empty set B equipped with

a transitive, reflexive and antisymmetric relation ≤ . B is totally ordered, or

a chain, if all elements of B are comparable under ≤ (that is, x ≤ y or y ≤ x

for all x, y ∈ B). The lattice is one of the most widely discussed and stud-

ied structure in the classical algebraic theory, both as a specific algebra with

a carrier and two binary operations, and as a relational structure a specific

ordered set (37). In mathematics, a lattice is a partially ordered set in which

any two elements have a unique supremum and an infimum. Lattices can also

be characterized as algebraic structures satisfying certain axiomatic identities.

Since the two definitions are equivalent, lattice theory draws on both order

theory and universal algebra. Here we present some definitions and properties

related to lattice which are taken from [(21), (37)].

Definition 1.2.18 Let P be a non-empty set. An order (or a partial order)

on P is a binary relation ≤ such that for all a, b, c ∈ P,

(i) a ≤ a (reflexive)

(ii) a ≤ b and b ≤ a ⇒ a = b (anti-symmetric) and
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(iii) a ≤ b and b ≤ c⇒ a ≤ c, (transitive).

Definition 1.2.19 A set P together with an order relation ≤ is said to be an

ordered set (or a partially ordered set or poset).

If a ≤ b in a poset, we say a and b are comparable. Two elements of a poset

may or may not be comparable.

Definition 1.2.20 If P is a poset in which every two elements are comparable

it is called a totally order set or a toset or a chain.

Thus if P is a chain and x, y ∈ P then either x ≤ y or y ≤ x.

Definition 1.2.21 Let (P,≤) be an ordered set. If there exists an element

a ∈ P such that, x ≤ a for all x ∈ P, then a is called greatest element of P.

The least element of P is defined dually.

Definition 1.2.22 An element x ∈ P is said to be a maximal element of P if

x < a for no a ∈ P.

Thus the greatest element is comparable with all elements of the poset, a

maximal element need not be so.

Definition 1.2.23 An element y ∈ P is said to be a minimal element of P if

b < y for no b ∈ P.

Definition 1.2.24 Let S be a non-empty subset of a poset P. An element

a ∈ P is called an upper bound of S, if x ≤ a, for all x ∈ S.

Furthermore if a is an upper bound of S such that, a ≤ b for all upper bounds

b of S then a is called least upper bound or Supremum of S.

17
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It is clear that there can be more than one upper bound of a set. But supremum

if it exists, will be unique. Again comparing with the definition of greatest

element, we notice whereas the greatest element belongs to the set itself, an

upper bound or the supremum can lie outside the set. In fact if the supremum

lies in the set, it will be nothing but the greatest element.

Definition 1.2.25 Let S be a non-empty subset of a poset P. An element

a ∈ P is called an lower bound of S, if a ≤ x, for all x ∈ S and a be called the

greatest lower bound or Infimum of S, if b ≤ a for all lower bounds b of S.

Let S be a non-empty subset of a poset P. If S has a least upper bound, this is

called the supremum of S and is denoted by supS. Similarly, if S has a greatest

lower bound, this is called the infimum of S and is written as infS. We write

a∨ b (read as “a join b”) in place of sup{a, b} and a∧ b (read as “a meet b”) in

place of inf{a, b}.

The lattice as a poset will be denoted by (L, ≤), and the lattice as an algebra

by (L,∧,∨). We write simply L to denote the lattice in both senses.

Definition 1.2.26 A poset (L, ≤) is a lattice if sup{a, b} and inf{a, b} exist

for all a, b ∈ L.

Lattice as an algebra is defined as follows:

Definition 1.2.27 A non-empty set L together with a binary relation ‘≤’ is

said to be a lattice if it satisfy the following conditions:

(i) a ≤ a for all a ∈ L (reflexivity)

(ii) If a ≤ b and b ≤ a then a = b, a, b ∈ L (anti-symmetricity)

(iii) If a ≤ b and b ≤ c then a ≤ c, a, b, c ∈ L (transitivity).
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Definition 1.2.28 Let (L,∨,∧) be a lattice and A ⊆ L. Then A is a sublattice

if a ∈ A, b ∈ A imply a ∨ b ∈ A and a ∧ b ∈ A, where the symbols ∨ and ∧

stand for supremum and infimum respectively.

Definition 1.2.29 Let (P, ≤) be a non-empty ordered set. Then (P, ≤)

is called join-semilattice, if for all a, b ∈ P , the join a ∨ b exists. Similarly

(P, ≤) is called meet-semilattice, if for all a, b ∈ P , the meet a ∧ b exists.

Furthermore, (P, ≤) is a lattice if it is both a join and a meet-semilattice.

Definition 1.2.30 A semi-lattice is a poset (S, ≤) in which every non-

empty finite subset has an infimum (inf). A sub-semi lattice is an ordered set

S in which every non-empty finite subset has a supremum (sup). An ordered

set which is both a semi-lattice and a sub-semi lattice is called a Lattice. The

empty inf if it exists, is the same as supS, is called top element of S and is

written as 1S. The empty sup, if it exists, is the same as infS, is called bottom

element of S and is written as 0S.

Definition 1.2.31 A lattice (L, ≤) is bounded if it has top and bottom ele-

ments.

Definition 1.2.32 A lattice L is said to be complete lattice if for every non-

empty subset X of L has a least upper bound and a greatest lower bound in

X.

Definition 1.2.33 Let (P, ≤) and (Q, ≤) be posets. A maping f : P → Q

is

(a) a join-morphism if whenever a, b ∈ P and a∨b exists in P , then f(a)∨f(b)

exists in Q and f(a ∨ b) = f(a) ∨ f(b).

(b) a complete join-morphism if whenever S ⊆ P and ∨S exists in P , then

∨f(S) = ∨f(x) : x ∈ S exists in Q and f(∨S) = ∨f(S).
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The notions of a meet-morphism and a complete meet-morphism are defined

dually. Further, a maping is called a morphism if it is a join-morphism and a

meet-morphism. Complete morphisms are defined analogously.

Definition 1.2.34 If P and Q are bounded, then f : P → Q is bottom-

preserving if f(1P ) = 1Q , and it is top-preserving if f(0P ) = 0Q.

Definition 1.2.35 Let (B, ≤) be a poset and let (L, ≤) be a complete

lattice. If there exists an order-embedding ϕ : B → L, we say that (L, ≤) is

a completion of (B, ≤).

Definition 1.2.36 A lattice (L, ≤) is distributive if ∀ a, b, c ∈ L, it satisfies

the conditions x∧ (y∨ z) = (x∧ y)∨ (x∧ z) and x∨ (y∧ z) = (x∨ y)∧ (x∨ z).

Definition 1.2.37 A lattice (L, ≤) is said to be modular lattice if ∀ x, y, z ∈

L with x ≥ y such that x ∧ (y ∨ z) = y ∨ (x ∧ z).

Lemma 1.2.1 A sublattice of a modular lattice is modular.

Proof: Let K be a sublattice of a modular lattice L. Then K ⊆ L, therefore

x, y, z ∈ K with x ≥ y which imply, x, y, z ∈ L with x ≥ y. Since L is modular,

therefore, x ∧ (y ∨ z) = y ∨ (x ∧ z). This completes the proof of the lemma.

Lemma 1.2.2 A sublattice of a distributive lattice is distributive.

Lemma 1.2.3 A distributive lattice is always modular.

A Stone algebra is a stone lattice together with the unary operation of pseudo

implementation.

Definition 1.2.38 Let (L,∨,∧) be a lattice and A ⊆ L. Then, A is called an

ideal if
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(i) a ∈ A and b ∈ A imply a ∨ b ∈ A,

(ii) b ∈ L, a ∈ A imply a ∧ b ∈ A.

Clearly, every ideal of a lattice L is a sublattice and the collection of all ideals

of L is denoted by I(L). It is obvious that I(L) is a lattice.

Definition 1.2.39 Let (L,∨,∧) and (K,∨,∧) be two lattices. A mapping

f : L→ K is called a homomorphism if for all x, y ∈ L,

(i) f(x ∨ y) = f(x) ∨ f(y),

(ii) f(x ∧ y) = f(x) ∧ f(y).

1.3 Literature Survey

Rough set theory has been attracted attention of many researchers and practi-

tioners all over the world, who have contributed essentially to its development

and applications. Pawlak (81) introduced the theory of rough set as an ex-

tension of set theory for the study of incomplete information. A key concept

in Pawlak’s rough set is an equivalence relation. Similar studies have been

made by different researchers. As for example, Skowron and Stepaniuk (109)

discussed the tolerance approximation spaces in their paper. Slowiniski and

Vanderpooten (110) presented a generalized definition of rough approximations

based on similarity. Greco et al. (38) proposed the rough approximation by

dominance relations. Xiao et al. (122) presented a relationship between rough

sets and lattice theory. Pomykala and Pomykala (87) showed that the set of

rough sets forms a stone algebra. Gehrke and Walker (35) introduced a precise

structure theorem for the stone algebra of rough sets and a characterization

of them in the category of all stone algebras. Yao [(129),(130)] described the

notion of the formal concept analysis to rough set theory. Iwinski (43) defined

rough lattice and rough order and he noticed that rough set can be viewed as

a pair of approximations. In this definition, Iwinski defined rough lattice with-
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out using any indiscernibility concept of rough set. Liao et al. (54) introduced

lattice theory in rough set and defined rough lattice.

The generalized rough sets over fuzzy lattices have been explored by Liu (55).

Rana and Roy (96) established set valued homomorphism in rough lattice.

Rana and Roy (92) presented a unique approach to form lattice by choice

function in rough set. Järvinen (46) proposed the lattice structure on rough

sets which played an important role in rough set and Pawlak’s information

system. Biswas and Nanda (15) discussed the notion of rough substructure

in groups. Davvaz (24) studied roughness based on fuzzy ideals. Rough set

theory overlaps with many other theories. Rasouli and Davvaz (99) considered

a relationship between rough sets and MV-algebra theory and introduced the

notion of rough ideal with respect to an ideal of an MV-algebra, which is an

extended notion of ideal in an MV-algebra. Estaji et al. (29) introduced the

concept of upper and lower rough ideals in a lattice and they studied some

properties on prime ideals. Samanta and Chakraborty (104) categorized the

various generalized approaches for lower and upper approximations of a set

in term of implication lattice. Yang (127) formulated a new lattice structure

named as rough concept lattice. Kong et al. (50) introduced the method

construction of rough lattice based on compressed matrix which can solve the

redundancy of construction process and obtain corresponding rule. Wang et

al. (119) studied object oriented concept lattice and property oriented con-

cept lattice. Thillaigovindan and Subha (115) have discussed the relationship

between rough set theory and near-ring. They considered a near-ring as the

universal set and introduced the notions of rough right (left, two-sided) ideal

and rough sub near-ring with respect to an ideal of a near-ring. Jun (47)

has studied roughness in G-semigroup and discussed the properties of sub-

semigroup/ideals in G-semigroup. Despite this overlap, rough set theory may
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be considered as an independent discipline in its own right. A wide range of

applications of methods based on rough set theory alone or in combination

with other approaches have been discovered in the following areas as computer

engineering, decision analysis and systems, economics, electrical engineering

(e.g., control, signal analysis, power systems), environmental studies, digital

image processing, informatics, medicine, molecular biology, robotics, social sci-

ence, software engineering etc.

Molodtsov (67) incorporated the concept of soft set as a completely new math-

ematical tool with adequate parameterization for dealing with uncertainties.

This concept is free from the parameterization inadequacy syndrome of fuzzy

set theory, rough set theory, probability theory. Maji et al. (60) studied on

the theory of soft sets initiated by Molodtsov and developed several basic no-

tions of soft set theory. Ali et al. (2) introduced the notion of restricted

union, restricted intersection, restricted difference, and extended intersection

between two soft sets. They established the notion of complement in soft set

and also proved that certain De Morgan’s laws hold in soft set theory. Ozturk

and Inan (78) explained the interconnections between the various operations

in soft set and defined the notion of restricted symmetric difference of soft

sets and investigated its properties. Furthermore, Babitha and Sunil (5) gave

definitions for the soft set relation as a subset of cartesian product of two soft

sets. After that, Babitha and Sunil (6) defined the partially ordered soft set

by introducing ordering on soft sets. Park et al. (80) focused the discussion

on equivalence relation and they established that complete lattice is defined

on the poset of equivalence soft set relations under a soft set. Qin and Hong

(90) initiated a theoretical study of the algebraic structures of soft sets with

lattice structures and introduced the notion of soft equality relation and also

investigated its related properties. It was proved that soft equality relation is

a congruence relation with respect to some operations. Aktas and Cağman (1)
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found an algebraic connection between soft set and algebraic system and intro-

duced soft groups. Also, Manemaran (66) discussed fuzzy soft sets algebraic

structures and defined fuzzy soft group. He discussed some operations on fuzzy

soft groups and established related results. Furthermore, definitions of fuzzy

soft functions and fuzzy soft homomorphism are also defined. Finally, the

theorems on homomorphic image and homomorphic pre-image were discussed

in detail. Feng et al. (30) studied soft set in semirings and investigated the

notions of soft semirings, soft subsemirings, soft ideals, idealistic soft semirings

and soft semiring homomorphism. Soft set theory is extended to the theory of

BCK/BCI - algebras (48). Majumdar and Samanta (63) proposed two types

of similarity measure between soft sets and made a comparative study of two

techniques. The lattice structure of soft set has been found in [(55), (75)].

Shabir and Naz (108) initiated the study of soft topological spaces. Topolog-

ical structure of fuzzy soft set began with the work of Tanay and Kandemir

(114). Applications of soft set theory in other disciplines and real life problems

are now catching momentum. Molodtsov has successfully applied the soft set

theory in many different fields such as smoothness of functions, game theory,

operations research, Riemann integration, Perron integration, and probability.

Cagman et al. (18) extended soft set to fuzzy soft sets and applied it in de-

cision making method. Maji et al. (59) gave first practical application of soft

sets in decision making problems using the notion of knowledge reduction in

rough set theory. Soft set theory has potential applications in many different

fields due to its no necessity to describe the membership function. As a result,

this makes that the soft set theory is so simple and popular in applications

of various areas. Soft set theory based classification algorithm can be applied

to texture classification. Cagman et el. (17) defined soft matrices and their

operations to construct a soft max-min decision making method which can be

successfully applied to the problems that contain uncertainties. Applications
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of soft set theory in various fields have been found in [(16), (18), (20), (33),

(59)].

1.4 Objective and Scope of the Thesis

The main objective of the thesis has been defined after an extension literature

survey based on the status in problems of mathematical extension and asso-

ciated with some specific framework such as lattice structure of rough set in

case of equivalence indiscernibility relation, homomorphism, rough lattice and

rough ideal, hybridization of soft set, rough set and fuzzy set, lattice struc-

ture of soft set, soft set relation and approximation of soft set in modified

soft rough approximation space. The novel and significant contribution in the

present research work under report are summarized as follows:

(i) In order to study the properties of lattice in an approximation space

based on Pawlak’s notion of indiscernibility relation among the objects

in a set. Rough modular lattice and rough distributive lattice are defined.

(ii) In order to study an algebraic connection between soft set and algebraic

system like lattice theory in a soft approximation space. Notions of soft

rough lattice are introduced.

(iii) To study the lattice theory in the framework of rough set. Rough ideal

and rough homomorphism are studied in rough set environment.

(iv) To study rough set and soft set in different types of approximation spaces.

Modified soft rough approximation space is defined using soft set. The

concept of rough soft set is also introduced in modified soft rough ap-

proximation space.

(v) To study soft set relation in a new way; and based on this relation, lattice

theory on soft sets is discussed.
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(vi) To form a hybridization structure between rough-soft set and fuzzy set.

Fuzzy rough soft set is also introduced in modified soft rough approxi-

mation space.

(vii) To study congruence relation on soft set and to enrich the theoretical

development of lattice theory under soft set environment.

1.5 Organization of the Thesis

The research work under report and evaluation are organized ten chapters.

First Chapter presents a brief introduction related to my research work, the

brief history and some preliminaries of rough set theory and soft set theory.

Finally some definitions on order and lattices are also discussed. Chapter-2 is

devoted to study the lattice theory under rough set environments and defined

rough lattice, rough sublattice and complete rough lattice. Moreover, the no-

tions of rough modular lattice and rough distributive lattice are established

in Pawlak’s approximation space. Study of rough ideal and homomorphism

and their applications to lattice are initiated in Chapter-3. We provide the

definition of rough ideal of rough lattice and the properties of lattice under

an approximation space are studied. Besides, the concept of rough homo-

morphism in rough lattice under an approximation space is introduced. In

Chapter-4, we study an algebraic connection between soft-rough set and alge-

braic system and thereby introduce the notion of soft rough lattice in a soft

approximation space. The concept of a soft rough lattice, soft rough sublat-

tice, modular soft rough lattice and distributive soft rough lattice are defined.

Chapter-5 describes the lattice theory in the framework of soft rough set. We

consider the soft approximation space by means of soft set and define the no-

tions of upper and lower soft rough ideals in a lattice. In Chapter-6, we present

approximation of soft set in modified soft rough (MSR) approximation space
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i.e., approximation of an information system with respect to another informa-

tion one. Besides, the concept of rough soft set is introduced in a modified soft

rough approximation space. Moreover, the measure of roughness of soft set

is defined in MSR approximation space and the order relation is introduced

on soft set. Furthermore, lattice theory is studied in the MSR-approximation

space under a modified rough soft environment. In Chapter-7, we incorporate

an another approach for Cartesian product on soft set relation. Lattice theory

on soft sets considering with soft set relation is studied. Soft congruence rela-

tion over lattice is depicted in Chapter-8. The concept of congruence relation

on soft sets is studied over lattice and hereby defined the notions of soft con-

gruence relation. In Chapter-9, we implement the concept of fuzzy rough soft

set in MSR approximation space which can be viewed as a pair of soft set and

its roughness. Also lattice theory is studied on fuzzy rough soft set. The last

chapter contains the conclusions and scope of future works.

The chapters wise summary of the proposed works are given below:

In Chapter 2, rough modular lattice and rough distributive lattice are intro-

duced based on Pawlak’s indiscernibility relation. At first, the rough lattice

is constructed and interpreted based on the equivalence relation. Then the

different types of lattice under the rough set environment are established by

incorporating a pair of sets in an approximation space. It is seen that the dis-

tributive property of lattice is extended to the area of uncertainty according to

our defined Rough Distributive Lattice (RDL). We also show that modularity

property of ordinary lattice in crisp set is extended to area of uncertainty for

rough set which is the generalization of lattice theory. We make a connection

between the rough set and the lattice theory both of which have wide fields

of application in the areas of computer science. [One part of this chapter has

been published in Journal of Uncertain Systems (World Academic
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Union), SCOPUS, Vol. 7, No. 4 (2013), pp. 289-293 and another part

in Malaya Journal of Matematik (University Press, Singapore), Vol.

2, No. 3 (2014), pp. 273-276].

In Chapter 3, we introduce the notion of rough ideals which is a generalized

notion of ideals of a lattice. Important properties of rough ideals are also

developed in this chapter. We consider the approximation space by means of

an equivalence relation and also describe the rough set as pair of sets (lower

and upper approximation sets). The objective of this chapter is to study the

properties of lattice under an approximation space based on Pawlak’s notion of

indiscernibility relation between the objects in a set. Several important results

are established. Also this chapter is devoted to study of homomorphism of

rough lattice. [A part of this chapter is Communicated to International

Journal].

In Chapter 4, an algebraic connection between the soft rough set and the

algebraic structure named as lattice is established. As a result, lattice structure

is developed on soft rough set; and the concept of soft rough lattice based on

soft approximation space is defined. After that we investigate the several

properties and theorems on soft rough lattice. Finally we justify our proposed

soft rough lattice with supporting examples by Hasse diagram. [A part of

this chapter has been published in Kragujevac Journal of Mathematics

(University of Kragujevac, Serbia), SCOPUS, Vol. 39, No. 1 (2015),

pp. 15-20].

Rough and soft sets are two different mathematical tools for dealing with un-

certainty. Soft rough set, proposed by Feng et al. (32) is a study on roughness

through soft set. In Chapter 5, we formulate a general mathematical concept

defined on lattices in the framework of soft rough set. This chapter is devoted

to study the lattice theory in the framework of soft rough set. The set from
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lattice structure is treated here as universal set and defined soft rough set on

it. We construct the soft rough ideal and study their properties in soft approx-

imation space. [A part of this chapter has been published in The Journal

of Fuzzy Mathematics (International Fuzzy Mathematics Institute,

USA), Vol. 24, No. 1 (2016), pp. 49-56].

In Chapter 6, we introduce the concept of approximation on an information

system with respect to another information one based on an MSR-approximation

space. We construct the rough soft set and study their properties in MSR-

approximation space. Besides, we establish the connection between a rough

set and a lattice theory by measuring the roughness of a soft set. We en-

deavor to establish a link between soft set and rough set in connection with

an application in lattice. [A part of this chapter has been published in Fuzzy

Information and Engineering (Elsevier), Vol. 7, No. 3 (2015), pp.

379-387].

In Chapter 7, the concept of cartesian product on soft sets is introduced

in an another way. Besides this, based on this cartesian product, a soft set

relation is defined. Soft set relation is also constructed based on the induced

binary relation in the set of parameters of soft sets. A connection between

the relations is also established. Moreover, lattice theory is studied on soft

sets considering with soft set relation. Based on the ideas of the Cartesian

product and soft set relation, we newly formulate the soft lattice, soft modular

lattice, soft distributive lattice and soft equivalent relation which are the unique

characteristic of this chapter. [A part of this chapter is Communicated

to International Journal].

In Chapter 8, we establish the soft congruence relation over lattice. Several

properties of soft congruence relation are studied. Approximations of subset

of a lattice are studied with respect to soft congruence relation. That is the
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roughness of a subset of lattice is discussed using the soft set relation. We

also discuss the properties of lattice ideal with respect to the soft congruence

relation. [A part of this chapter has been published in Hacettepe Journal of

Mathematics and Statistics (Hacettepe University, Turkey), SCIE,

IF: 0.277, 2017, DOI: 10.15672/HJMS.2017.436 ].

Soft set theory, rough set theory and fuzzy set theory are all treated as math-

ematical tools to deal with uncertainty for variety of problems. A possible

hybridization of these theories is an interesting topic to the researchers. In

Chapter 9, we propose the concept of fuzzy rough soft set in MSR approxi-

mation space which can be viewed as a pair of soft set and its roughness. We

define the union and the intersection of fuzzy rough soft set with several exam-

ples. Also we establish the important properties of fuzzy rough soft set with

respect to fuzzy rough soft union and intersection. [A part of this chapter

is Communicated to International Journal].

Chapter 10 contains conclusion of the whole study presented in this thesis

and direction of the future work emerging from this thesis.
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Chapter 2

Rough Modular and Distributive
Lattice∗

In this chapter, rough modular lattice and rough distributive lattice are intro-

duced based on Pawlak’s indiscernibility relation. At first, the rough lattice

is constructed and interpreted based on the equivalence relation. Then the

different types of lattice under the rough set environment are established by

incorporating a pair of sets in an approximation space. We consider the ap-

proximation space by means of an equivalence relation and also we present the

rough set as pair of set (lower and upper approximation sets). The aim of this

chapter is to study the properties of lattice in an approximation space based

on Pawlak’s notion of indiscernibility relation among the objects in a set. It

is seen that the distributivity property of lattice is extended to the area of

uncertainty according to our defined Rough Distributive Lattice (RDL). We

also show that modularity property of ordinary lattice in crisp set is extended

to area of uncertainty for rough set which is the generalization of lattice theory.

∗One part of this chapter has appeared in Journal of Uncertain Systems, SCO-
PUS, 7, 289-293, (2013), and another in Malaya Journal of Matematik 2, 273-
276, (2014)
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2.1 Introduction

Rough set was first introduced by Pawlak (81) which is a framework for sys-

tematic study of incomplete knowledge. Thereafter, researchers have put their

attention to incorporate lattice into rough set. In (43), Iwinski defined rough

lattice and rough order and he described that rough set can be viewed as a

pair of approximations. Again he defined the rough lattice without using any

indiscernibility concept of rough set. Järvinen (46) proposed the lattice struc-

ture on rough sets which played an important role in rough set and Pawlak’s

information system. Rana and Roy (92) introduced a unique approach to form

lattice by choice function in rough set. Estaji et al. (29) introduced the concept

of upper and lower rough ideals in a lattice and they studied some properties

on prime ideals. Samanta and Chakraborty (104) categorized the various gen-

eralized approaches for lower and upper approximations of a set in term of

implication lattice. Yang (127) formulated a new lattice structure named as

rough concept lattice. Kong et al. (50) introduced the method construction of

rough lattice based on compressed matrix which can solve the redundancy of

construction process and obtain corresponding rule. Wang et al. (119) studied

object oriented concept lattice and property oriented concept lattice.

Several concepts have been proposed to form lattice by rough set and most of

these are based on tolerance relation. We construct the rough modular lattice

and rough distributive lattice based on equivalence relation which is the main

motivation of this chapter and to establish a connection between rough set and
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lattice structure. Also we define the modular lattice and distributive lattice in

the rough set environment using indiscernibility relation.

Here we recall some basic properties and definitions related to rough set.

Definition 2.1.1 Let U be the set of universe and ρ be an equivalence relation

on U . An equivalence class of x(∈ U) is denoted by [x]ρ and defined as follows:

[x]ρ = {y ∈ U : xρy}, where xρy imply (x, y) ∈ ρ.

Definition 2.1.2 The sets A?(X) = {x ∈ U : [x]ρ ⊆ X} and A?(X) = {x ∈

U : [x]ρ ∩ X 6= φ} are respectively called lower and upper approximations of

X ⊆ U . The pair S = (U, ρ) is called an approximation space and the pair

(A?(X), A?(X)) is called the rough set of X in S and is denoted by A(X). The

difference B(X) = A?(X)−A?(X) is called boundary region of X and treated

as the area of uncertainty.

Theorem 2.1.1 Let A(X) = (A?(X), A?(X)) and A(Y ) = (A?(Y ), A?(Y )) be

two rough sets under the approximation space S = (U, ρ), then

(i) A(X) ∪ A(Y ) = (A?(X) ∪ A?(Y ), A?(X) ∪ A?(Y ))

(ii) A(X) ∩ A(Y ) = (A?(X) ∩ A?(Y ), A?(X) ∩ A?(Y )).

Proof: Straightforward.

Now we define the Cartesian product of two rough sets.

Definition 2.1.3 The Cartesian product of two rough sets A(X) = (A?(X), A?(X))

and A(Y ) = (A?(Y ), A?(Y )) is defined as follows:

A(X)× A(Y ) = {(x, y) : x ∈ A?(X) and y ∈ A?(Y )}.
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Definition 2.1.4 A rough set A(Y ) is said to be rough subset of a rough set

A(X) if A?(Y ) ⊆ A?(X) and A?(Y ) ⊆ A?(X) and it is denoted by A(Y ) ⊆

A(X).

2.2 Rough lattice

In this section, we introduce the rough lattice and rough modular lattice and

some properties of them. Here we describe the rough lattice based on Pawlak’s

notion of roughness. Let (L,∨,∧) be a lattice and also let S = (L, ρ) be an

approximation space. Let X ⊆ U and A(X) = (A?(X), A?(X)) be the rough

set of X in S.

Definition 2.2.1 A(X) is said to be rough join-semi lattice if x∨ y ∈ A?(X),

∀ x, y ∈ X, and A(X) is said to be rough meet-semi lattice if x ∧ y ∈ A?(X),

∀ x, y ∈ X.

Example 2.2.1 Consider the lattice (L,∨,∧) of all positive integers where

x ∨ y = lcm of {x, y} and x ∧ y = gcd of {x, y}, ∀ x, y ∈ L, where lcm and

gcd stand for least common multiple and greatest common divisor respectively.

Let ρ be an equivalence relation on L defined by xρy iff x = y, ∀ x, y ∈ L. Let

X = {2, 3, 4, 6, 12} then A?(X) = X and A?(X) = X under the approximation

space (L, ρ). Clearly x ∨ y ∈ A?(X), ∀ x, y ∈ X. But 4 ∧ 3 = 1 /∈ A?(X).

Therefore A(X) is a rough join semi-lattice. On the other hand if we take

Z = {1, 2, 3, 4, 5, 6}. Then x∧y ∈ A?(Z), ∀ x, y ∈ Z. But 4∨6 = 12 /∈ A?(Z).

Therefore A(Z) is a rough meet-semi lattice.

Definition 2.2.2 A(X) is said to be rough lattice in S if it is rough join-semi
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lattice as well as rough meet-semi lattice i.e., ∀ x, y ∈ X

(i) x ∨ y ∈ A?(X)

(ii) x ∧ y ∈ A?(X).

Theorem 2.2.1 Let x, y, z ∈ X, then the rough lattice (A(X),∨,∧) satisfies

the following properties:

(i) x ∨ x = x and x ∧ x = x (Idempotency )

(ii) x ∨ y = y ∨ x and x ∧ y = y ∧ x (Commutativity)

(iii) x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z (Associativity)

(iv) x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x (Absorption)

(v) x ≤ y ⇔ x ∧ y = x⇔ x ∨ y = y (Consistency).

Definition 2.2.3 A rough lattice A(X) is said to be bounded rough lattice if

X has zero and unit in A?(X).

Definition 2.2.4 A rough subset A(Y ) of a rough lattice A(X) in an approx-

imation space S = (L, ρ) is said to be rough sublattice if A(Y ) itself forms a

rough lattice with respect to the same operation.

Proposition 2.2.1 If A(X) = (A?(X), A?(X)) is a rough lattice in an ap-

proximation space S = (L, ρ) such that A?(X) = X, then A?(X) is a sublattice

of L.

Proof: Since A(X) = (A?(X), A?(X)) is a rough lattice in the approximation

space S = (L, ρ), then clearly, x ∨ y ∈ A?(X), and x ∧ y ∈ A?(X), ∀ x, y ∈

A?(X). This completes the proof of the proposition.
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Proposition 2.2.2 If L is a modular lattice and A(X) is a rough lattice in

S = (L, ρ) such that A?(X) = X then A?(X) is a modular lattice.

Proof: Since A?(X) = X and A(X) is a rough lattice, therefore by Proposition

2.2.1 and Lemma 1.2.1, A?(X) is a sublattice of L and hence A?(X) is a

modular lattice.

Proposition 2.2.3 If L is a distributive lattice and A(X) is a rough lattice

in S = (L, ρ) such that A?(X) = X then A?(X) is a distributive lattice.

Proof: Since A?(X) = X and A(X) is a rough lattice, therefore by Proposition

2.2.1, A?(X) is a sublattice of L. and hence by Lemma 1.2.2, A?(X) is a

distributive lattice.

Definition 2.2.5 A rough lattice A(X) under an approximation space S =

(L, ρ) is said to be a complete rough lattice if every non-empty subset of X has

least upper bound and greatest lower bound in A?(X).

Proposition 2.2.4 A rough lattice A(X) under an approximation space S =

(L, ρ) is complete rough lattice if A?(X) is a complete sublattice of L.

Proof: Let A?(X) is a complete sublattice of L. Then every non-empty subset

of A?(X) has least upper bound and greatest lower bound in A?(X). Since

X is a non-empty subset of A?(X), therefore X has least upper bound and

greatest lower bound in A?(X). Therefore, A(X) is a complete rough lattice.

2.3 Rough modular lattice

Here we define Rough Modular Lattice (RML) in Pawlak’s approximation

space. Let (L,∨,∧) be a lattice and S = (L, ρ) be an approximation space.
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Definition 2.3.1 Let (A(X),∨,∧) is a rough lattice under an approximation

space S = (L, ρ), then (A(X),∨,∧) is said to be rough modular lattice (RML)

if ∀ x, y, z ∈ A?(X) with x ≥ y, x ∧ (y ∨ z) = y ∨ (x ∧ z).

Example 2.3.1 Let U = {a, b, c}. The power set of U , P (U) = {φ, {a}, {b}, {c},

{a, b}, {b, c}, {c, a}, U} forms a lattice where the operators ∨ and ∧ are defined

as A ∨ B = A ∪ B and A ∧ B = A ∩ B and the order relation is set inclu-

sion. Consider an equivalence relation ρ on P (U) by AρB iff O(A) = O(B) ∀

A,B ∈ P (U), where O(A) and O(B) denote the number of elements in the set

A and B respectively. Let X = {φ, {a}, {a, b, c}}. Then A?(X) = {φ, {a, b, c}}

and A?(X) = {φ, {a}, {b}, {c}, {a, b, c}}. Clearly A(X) is a rough lattice. Also

∀ A,B,C ∈ A?(X) with A ⊇ B, A ∧ (B ∨ C) = B ∨ (A ∧ C) i.e., A(X) is a

RML.

Proposition 2.3.1 Rough sublattice of a RML is RML.

Proof: Let A(M) is a RML and A(N) is a rough sublattice of A(M). There-

fore, A?(N) ⊆ A?(M) and hence if x, y, z ∈ A?(N) with x ≥ y imply x, y, z ∈

A?(M) with x ≥ y. Since A(M) is modular rough lattice, therefore, x∧(y∨z) =

y ∨ (x∧ z). Therefore, if x, y, z ∈ A?(N) with x ≥ y, x∧ (y ∨ z) = y ∨ (x∧ z).

This completes the proof of the proposition.

Proposition 2.3.2 If L is a modular lattice and A(X) is a rough lattice then

A(X) is a RML.

Proof: Since A(X) is a rough lattice, therefore ∀ x, y, z ∈ A?(X) with x ≥ y

imply x, y, z ∈ L and since L is modular, then x ∧ (y ∨ z) = y ∨ (x ∧ z). So

A(X) is a RML.
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Proposition 2.3.3 If A(X) is a RML in S = (L, ρ) and if A?(X) = X then

X is modular sublattice of L and vice-versa.

Proof: Since A(X) is RML and A?(X) = X, therefore modular equality

holds in X. Also by Proposition 2.2.1, A?(X) is sublattice of L and therefore

A?(X) = X is modular sublattice of L.

Conversely, let A?(X) = X is modular sublattice of L. Therefore A?(X) is

rough lattice and also modular equality holds in A?(X). So A(X) is RML.

Proposition 2.3.4 Two rough lattices A(X) and A(Y ) are RML iff A(X)×

A(Y ) is RML.

Proof: Let us consider that A(X) and A(Y ) be RML and A(X) = (A?(X),

A?(X)) and A(Y ) = (A?(Y ), A?(Y )). Let (x1, y1), (x2, y2), (x3, y3) ∈ A?(X) ×

A?(Y ) with (x1, y1) ≥ (x2, y2). Therefore

(x1, y1) ∧ ((x2, y2) ∨ (x3, y3)) = (x1 ∧ (x2 ∨ x3), y1 ∧ (y2 ∨ y3))

= (x2 ∨ (x1 ∧ x3), y2 ∨ (y1 ∧ y3))

= (x2, y2) ∨ ((x1, y1) ∧ (x3, y3)).

Therefore A?(X)× A?(Y ) is RML.

Conversely, let A?(X)× A?(Y ) be RML. Let x1, x2, x3 ∈ A?(X) with x1 ≥ x2

and y1, y2, y3 ∈ A?(Y ) with y1 ≥ y2 then

(x1, y1), (x2, y2), (x3, y3) ∈ A?(X)× A?(Y ) and (x1, y1) ≥ (x2, y2).
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Since A?(X)× A?(Y ) is RML, we find

(x1, y1) ∧ ((x2, y2) ∨ (x3, y3)) = (x2, y2) ∨ ((x1, y1) ∧ (x3, y3))

or, (x1, y1) ∧ (x2 ∨ x3, y2 ∨ y3) = (x2, y2) ∨ (x1 ∧ x3, y1 ∧ y3)

or, (x1 ∧ (x2 ∨ x3), y1 ∧ (y2 ∨ y3)) = (x2 ∨ (x1 ∧ x3), y2 ∨ (y1 ∧ y3))

which indicates, x1∧(x2∨x3) = x2∨(x1∧x3) and y1∧(y2∨y3) = y2∨(y1∧y3).

Hence A(X) and A(Y ) are RML.

2.4 Rough distributive lattice

In this section, we study distributive lattice in rough set environment and de-

fine Rough Distributive Lattice (RDL) and establish some propositions which

combine with rough approximation and RML.

Definition 2.4.1 Let (A(X),∨,∧) is a rough lattice under an approximation

space S[= (L, ρ)], then (A(X),∨,∧) is said to be rough distributive lattice

(RDL) if ∀ x, y, z ∈ A?(X), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Example 2.4.1 The set L = {1, 2, 4, 5, 10, 20} of factors of 20 forms a lattice

where the operators ‘∨’ and ‘∧’ are defined as a ∨ b =least common multiple

of {a, b} and a ∧ b =greatest common divisor of {a, b} and the order relation

is divisibility. Let us consider an equivalence relation ρ on L by xρy iff “x is

congruent to y modulo 2” ∀ x, y ∈ L. Let X = {2, 4}. Then A?(X) = φ and

A?(X) = {2, 4, 10, 20}. Clearly A(X) is rough lattice. Also ∀ x, y, z ∈ A?(x),

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Therefore A(X) is a RDL.

Proposition 2.4.1 Rough sublattice of a RDL is RDL.
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Proof: Let A(X) is a RDL and A(Y ) is a rough sublattice of A(X). Therefore

A?(Y ) ⊆ A?(X) and hence if x, y, z ∈ A?(Y ) then x, y, z ∈ A?(X) and since

A(X) is RDL, therefore, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Therefore if

x, y, z ∈ A?(Y ), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Proposition 2.4.2 If L is a distributive lattice and A(X) is a rough lattice

then A(X) is a RDL.

Proof: Since A(X) is a rough lattice, A?(X) ⊆ L. Therefore ∀ x, y, z ∈ A?(X)

imply, x, y, z ∈ L and since L is distributive, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Therefore ∀ x, y, z ∈ A?(X), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) i.e., A(X) is

a RDL. This completes the proof of the proposition.

Proposition 2.4.3 If A(X) is a RDL in S = (L, ρ) and if A?(X) = X then

X is distributive sublattice of L and vice-versa.

Proof: Since A(X) is RDL and A?(X) = X, therefore ∀ x, y, z ∈ A?(X) = X,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Also by Proposition 2.2.1, A?(X)

is sublattice of L and since sublattice of a distributive lattice is distributive,

therefore A?(X) = X is distributive sublattice of L.

Conversely, let A?(X) = X is distributive sublattice of L. Therefore A?(X) is

rough lattice with x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), ∀ x, y, z ∈ A?(X). So

A(X) is RDL.

Proposition 2.4.4 Two rough lattices A(X) and A(Y ) are RDL iff A(X) ×

A(Y ) is RDL.

Proof: Let A(X) and A(Y ) be RDL and also let A(X) = (A?(X), A?(X))

and A(Y ) = (A?(Y ), A?(Y )). Let (x1, y1), (x2, y2), (x3, y3) ∈ A?(X) × A?(Y ).
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Then x1, x2, x3 ∈ A?(X) and y1, y2, y3 ∈ A?(Y ). Therefore

(x1, y1) ∧ ((x2, y2) ∨ (x3, y3)) = (x1 ∧ (x2 ∨ x3), y1 ∧ (y2 ∨ y3))

= ((x1 ∧ x2) ∨ (x1 ∧ x3), (y1 ∧ y2) ∨ (y1 ∧ y3))

= (x1 ∧ x2, y1 ∧ y2) ∨ (x1 ∧ x3, y1 ∧ y3)

= ((x1, y1) ∧ (x2, y2)) ∨ ((x1, y1) ∧ (x3, y3)).

Hence A(X)× A(Y ) is RDL.

Conversely, let A(X) × A(Y ) be RDL. Let x1, x2, x3 ∈ A?(X) and y1, y2, y3 ∈

A?(Y ). Then (x1, y1), (x2, y2), (x3, y3) ∈ A?(X) × A?(Y ). As A(X) × A(Y ) is

RDL, therefore

(x1, y1) ∧ ((x2, y2) ∨ (x3, y3)) = ((x1, y1) ∧ (x2, y2)} ∨ ((x1, y1) ∧ (x3, y3))

or, (x1, y1) ∧ (x2 ∨ x3, y2 ∨ y3) = (x1 ∧ x2, y1 ∧ y2) ∨ (x1 ∧ x3, y1 ∧ y3)

or, (x1 ∧ (x2 ∨x3), y1 ∧ (y2 ∨ y3)) = ((x1 ∧x2)∨ (x1 ∧x3), (y1 ∧ y2)g∨ (y1 ∧ y3)),

which gives

x1 ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) and y1 ∧ (y2 ∨ y3) = y1 ∧ y2) ∨ (y1 ∧ y3).

This implies that A(X) and A(Y ) are RDL.

Proposition 2.4.5 Every RDL is RML but converse is not true.

Proof: Let A(X) is a RDL. Therefore x, y, z ∈ A?(Y ),

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

If x ≥ y and x, y, z ∈ A?(Y ), then

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

= y ∨ (x ∧ z).
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Hence A(X) is a RDL.

The converse is not true which is illustrated by the following example:

Example 2.4.2 Let K4 = {e, a, b, c} be the Klein’s four group. Let L be the

set of all subgroups of K4. Then L = {{e}, {e, a}, {e, b}, {e, c}, K4}. L forms

a lattice under set inclusion and the operations ‘∨’ and ‘∧’ are defined by

A ∨ B = A ∪ B and A ∧ B = A ∩ B, ∀ A,B ∈ L. Let us consider an

equivalence relation ρ on L defined by AρB iff O(A) = O(B), ∀ A,B ∈ L.

Let X = {{e}, {e, a}, {K4}}. Then A?(X) = {{e}, {K4}} and A?(X) =

{{e}, {e, a}, {e, b}, {e, c}, {K4}}. Clearly, A(X) is a rough modular lattice but

A(X) is not rough distributive lattice.

2.5 Conclusion

Lattice and ordered set play an important role in the area of computer sci-

ence. Lattice and ordered set can be applied in various fields such as area of

knowledge representation, text categorization and data mining order in a fun-

damental way. In this chapter, the concept of rough modular lattice and rough

distributive lattice have been introduced based on Pawlak’s indiscernibility re-

lation. At first, the rough lattice has constructed and interpreted based on

the equivalence relation and then we have studied various properties of them

in compare to ordinary lattice. Then the different types of lattice under the

rough set environment have been established by incorporating a pair of sets in

an approximation space. The rough lattice (as we defined) is a rough set with

two binary operations and it behaves in a lattice like manner within the rough

boundary. We also have showed that modularity property of ordinary lattice
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in crisp set is extended to area of uncertainty for rough set which is the gen-

eralization of lattice theory. This concept may be useful on lattice structure

when the elements are imprecise. We have addressed a connection between

rough set and lattice theory both of which have wide fields of applications in

the area of computer science. This chapter has made special interest for lattice

structure, when the elements of the set are imprecise.
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Chapter 3

Rough Ideal and Homomorphism
and Their Applications to Lattice∗

In this chapter, we analyze the rough ideal of rough lattice through rough set

environment. The definition of rough ideal of rough lattice and the properties

of lattice under an approximation space are studied. Besides, the concept of

rough homomorphism in rough lattice under an approximation space is in-

troduced. We consider the approximation space by means of an equivalence

relation and also describe the rough set as pair of sets (lower and upper ap-

proximation sets). The objective of this chapter is to study the properties

of lattice under an approximation space based on Pawlak’s notion of indis-

cernibility relation between the objects in a set. Several important results are

established. Finally, we include various examples to usefulness and truthful-

ness of the proposed study in this chapter.

3.1 Introduction
The study of the algebraic structure of the mathematical theory proves itself

effective in making the applications more efficient. Many researchers have

studied the algebraic structure on rough sets. A few of them are presented

here with their works. Pomykala and Pomykala (87) showed that the set of

rough sets forms a stone algebra. Iwinski (43) suggested a lattice theoretic

∗A part of this chapter has communicated to the International Journal
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approach to the rough set. Thomas and Nair (116) studied the concept of

intuitionistic fuzzy sublattices and intuitionistic fuzzy ideals of a lattice. Xiao

et al. (122) presented a relationship between rough sets and lattice theory.

Davvaz (24) studied roughness based on fuzzy ideals. The generalized rough

sets over fuzzy lattices have been explored by Liu (55). Rana and Roy (96)

established set valued homomorphism in rough lattice.

From the mathematical point of view, lattice (21) is a partially ordered set in

which any two elements have a unique supremum and an infimum. Lattices

can also be characterized as algebraic structures satisfying certain axiomatic

identities. Since the two definitions are equivalent, lattice theory draws on

both order relation and universal algebra. Lattice and order set have wide

fields of applications in computer science, engineering, discrete mathematics,

data mining, number theory, group theory etc. In addition to the above,

many applications utilize lattices and ordered set in fundamental ways. These

include such areas as knowledge representation, tex categorization and data

mining, where order plays an fundamental organizing principle. Also, for the

application of lattice and ordered set to inductive logic programming, ordered

set form basic models. On the other hand in our complex world, there are many

situations occur, where we cannot use traditional methods to solve problems

in economics, engineering, environment, social science, medical science etc.

because of various types of uncertainties present in these problems. For that

situation lattice theory under uncertain environments can be applied with the

help of rough set.

In this chapter, we focus our main intention to develop the lattice theoretic

foundation based on rough set theory. This chapter formulates a continuous

study on rough lattice. We present a general framework for the study of

approximation in lattice. We consider a lattice as a universal set and study the

rough sets in a lattice. We endeavor the notion of rough ideal and to establish

a link between a rough set and a lattice structure through rough ideal. Also

we define the upper rough homomorphism, lower rough homomorphism and

rough homomorphism of rough lattice under rough set environment.
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3.1. Introduction

First we recall some preliminaries from Chapters 1 and 2. Let L be the set

of universe and ρ be an equivalence relation on L. The pair (L, ρ) is called an

approximation space and we denote this approximation space by S throughout

the chapter. The pair A(X) = (A?(X), A?(X)) is the rough set of X in S.

Definition 3.1.1 (81) A rough set A(Y ) is said to be rough subset of a rough

set A(X) if A?(Y ) ⊆ A?(X) and A?(Y ) ⊆ A?(X) and it is denoted by A(Y ) ⊆
A(X).

Definition 3.1.2 (21) Let (L,∨,∧) be a lattice and A ⊆ L. Then A is a

sublattice if a ∈ A, b ∈ A imply a ∨ b ∈ A and a ∧ b ∈ A, where the symbol ∨
and ∧ stands for supremum and infimum respectively.

Definition 3.1.3 (21) Let (L,∨,∧) be a lattice and A ⊆ L. Then, A is called

an ideal if

(i) a ∈ A and b ∈ A imply a ∨ b ∈ A,
(ii) b ∈ L, a ∈ A imply a ∧ b ∈ A.
Clearly, every ideal of a lattice L is a sublattice and the collection of all ideals

of L is denoted by I(L). It is obvious that I(L) is a lattice.

Definition 3.1.4 (9) A(X) is said to be rough lattice in S if ∀ x, y ∈ X,
(i) x ∨ y ∈ A?(X),

(ii) x ∧ y ∈ A?(X).

We denote this rough lattice as (A(X),∨,∧).

Definition 3.1.5 (9) A rough subset A(Y ) of a rough lattice (A(X),∨,∧) in

an approximation space S is said to be rough sublattice if A(Y ) itself forms a

rough lattice with respect to same operation.

Definition 3.1.6 (9) Let (A(X),∨,∧) is a rough lattice under an approxima-

tion space S, then (A(X),∨,∧) is said to be Rough Modular Lattice (RML) if

∀ x, y, z ∈ A?(X) with x ≥ y, x ∧ (y ∨ z) = y ∨ (x ∧ z).
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Definition 3.1.7 (100) Let (A(X),∨,∧) is a rough lattice under an approx-

imation space S, then (A(X),∨,∧) is said to be Rough Distributive Lattice

(RDL) if ∀ x, y, z ∈ A?(X), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Definition 3.1.8 (21) Let L and K be two lattices. A mapping f : L→ K is

called a homomorphism if ∀ x, y ∈ L,
(i) f(x ∨ y) = f(x) ∨ f(y),

(ii) f(x ∧ y) = f(x) ∧ f(y).

3.2 Rough ideal
Here, we introduce the rough ideal of rough lattice and to define the properties

of rough ideal and rough lattice. Let (L,∨,∧) be a lattice and also let S =

(L, ρ) be an approximation space. Let X ⊆ U and A(X) = (A?(X), A?(X))

be the rough set of X in S.

Definition 3.2.1 A rough subset A(Y ) of the rough lattice A(X) is said to be

rough ideal of rough lattice A(X) in an approximation space S if it satisfies

the following conditions:

(i) a, b ∈ Y imply that a ∨ b ∈ A?(Y ), and

(ii) if a ∈ A?(Y ) and b ∈ A?(X) then a ∧ b ∈ A?(Y ).

We denote the set of sets whose rough sets are rough ideal by S(I). Clearly

S(I) is non-empty because every rough lattice is its own rough ideal. Also the

empty set φ is in S(I).

Example 3.2.1 The set L = {1, 2, 4, 5, 10, 20} of factors of 20 forms a lattice

where the operators ∨ and ∧ are defined as a ∨ b =least common multiple of

{a, b} and a ∧ b =greatest common divisor of {a, b} and the order relation

is divisibility. Let us consider an equivalence relation ρ on L by xρy iff “x

is congruent to y under modulo 2” ∀ x, y ∈ L. Let X = {1, 2, 5}. Then

A?(X) = {1, 5} and A?(X) = {1, 2, 4, 5, 10, 20}. Clearly A(X) is rough lattice.

Let Y = {2, 5} then, A?(Y ) = φ and A?(Y ) = {1, 2, 4, 5, 10, 20}. Clearly

A(Y ) ⊆ A(X) and also 2, 5 ∈ Y imply 2 ∨ 5 = 10 ∈ A?(X) and ∀ y ∈ A?(Y )
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and x ∈ A?(X) imply x ∧ y ∈ A?(Y ). Therefore, A(Y ) is a rough ideal of the

rough lattice A(X).

Proposition 3.2.1 Every rough ideal is a rough sublattice.

Proof: Let A(Y ) be a rough ideal of a rough lattice A(X) in the approximation

space S. Therefore, ∀ a, b ∈ Y imply, a ∨ b ∈ A?(Y ) (by Definition 3.2.1).

Again, a ∈ Y ⊆ A?(Y ), b ∈ Y ⊆ A?(Y ) ⊆ A?(X) imply a ∧ b ∈ A?(Y ).

Hence A(Y ) is a rough sublattice of A(X).

Proposition 3.2.2 S(I) is a lattice.

Proof: Straightforward.

Proposition 3.2.3 If A(Y ) and A(Z) are two rough ideals of A(X) then

A(Y ∩ Z) is also a rough ideal of A(X).

Proof: Let A(Y ) = (A?(Y ), A?(Y )) and A(Z) = (A?(Z), A?(Z)) are two

rough ideals of the rough lattice A(X) = (A?(X), A?(X)). Let x, y ∈ (Y ∩Z)

then x ∨ y ∈ A?(Y ) and x ∨ y ∈ A?(Z). Therefore, x ∨ y ∈ A?(Y ) ∩ A?(Z) =

A?(Y ∩ Z). Also, let x ∈ A?(Y ∩ Z) and i ∈ A?(X) and since A(Y ) and

A(Z) are rough ideals of A(X). Therefore, x ∧ i ∈ A?(Y ) and x ∧ i ∈ A?(Z)

i.e., x ∧ i ∈ A?(Y ) ∩ A?(Z) = A?(Y ∩ Z). This completes the proof of the

proposition.

Proposition 3.2.4 If A(Y ) and A(Z) are two rough ideals of the rough lattice

A(X) then A(Y ∪ Z) also be a rough ideal of A(X) if Y ⊆ Z or Z ⊆ Y.

Proof: Let x, y ∈ (Y ∪ Z). Then x, y ∈ Y or x, y ∈ Z or in both. Since

A(Y ) and A(Z) are both rough ideals of A(X), therefore x ∨ y ∈ A?(Y )

and x ∨ y ∈ A?(Z). So, x ∨ y ∈ A?(Y ) ∪ A?(Z) = A?(Y ∪ Z). Again let

x ∈ A?(Y ∪ Z) = A?(Y ) ∪ A?(Z) and y ∈ A?(X). Therefore x ∈ A?(Y ) or

x ∈ A?(Z). Since A(Y ) and A(Z) are both rough ideals of A(X), therefore,

x ∧ y ∈ A?(Y ) and x ∧ y ∈ A?(Z), this imply x ∧ y ∈ A?(Y ) ∪ A?(Z) =

A?(Y ∪ Z).
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Proposition 3.2.5 If A(X) is a rough lattice in an approximation space S

and A?(X) = X. Then A?(X) is a rough ideal of A(X).

Proof: Since A?(X) = X, A?(X) is a rough sub-lattice of A(X). Let x, y ∈
A?(X) then since A(X) is a rough lattice, therefore x ∨ y ∈ A?(X). Let

x ∈ A?(A?(X)) and y ∈ A?(X). Since A?(A?(X)) = A?(X) and A(X) is

a rough lattice. Therefore, x ∧ y ∈ A?(X). This evinces the proof of the

proposition.

Remark: From Proposition 3.2.6, we conclude that if A?(X) = X then A(X)

is a rough ideal itself.

3.3 Rough homomorphism in rough lattice
Here, we establish a correspondence between two rough lattices and hereby in-

troduce the notions of rough homomorphism. Let (L1,∨1,∧1) and (L2,∨2,∧2)

be two lattices, and S1 = (L1, ρ1) and S2 = (L2, ρ2) be two approximation

spaces.

Definition 3.3.1 Let (A(X),∨1,∧1) and (A(Y ),∨2,∧2) be two rough lattices

under the approximation spaces S1 = (L1, ρ1) and S2 = (L2, ρ2) respectively.

A mapping f ? : A?(X) → A?(Y ) is said to be upper rough homomorphism if

the following conditions are satisfied.

(i) f ?(a ∨1 b) = f ?(a) ∨2 f ?(b) ∀ a, b ∈ A?(X), and

(ii) f ?(a ∧1 b) = f ?(a) ∧2 f ?(b) ∀ a, b ∈ A?(X).

A mapping f? : A?(X) → A?(Y ) is said to be lower rough homomorphism, if

the following conditions are satisfied.

(i) f?(a ∨1 b) = f?(a) ∨2 f?(b) ∀ a, b ∈ A?(X), and

(ii) f?(a ∧1 b) = f?(a) ∧2 f?(b) ∀ a, b ∈ A?(X).

The pair (f?, f
?) is called rough homomorphism from the rough lattice A(X)

to A(Y ) in the approximation space S = (L, ρ).

That is, a rough homomorphism (f?, f
?) is a correspondence,

(f?, f
?) : (A?(X), A?(X))→ (A?(Y ), A?(Y )), and is defined as (f?, f

?)(a, b) =
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(f?(a), f ?(b)), where a ∈ A?(X), b ∈ A?(X) and f?(a) ∈ A?(Y ), f ?(b) ∈
A?(Y ).

Example 3.3.1 The set L = {1, 2, 4, 5, 10, 20} forms a lattice under the oper-

ators ‘∨’ and ‘∧’ and we define as a∨ b = least common multiple of {a, b} and
a∧ b = greatest common divisor of {a, b} and the order relation is divisibility.

Let us consider an equivalence relation ρ on L by xρy iff “x is congruent to

y under modulo 4” ∀ x, y ∈ L. Let X = {1, 4, 5}. Then A?(X) = {1, 5} and

A?(X) = {1, 4, 5, 20}. Clearly A(X) is a rough lattice.

Let U = {a, b}. The power set of U is P (U) = {φ, {a}, {b}, U} which forms

a lattice under the operators ∨ and ∧ and we treat as A ∨ B = A ∪ B and

A∧B = A∩B and the order relation is set inclusion. Consider an equivalence

relation r on P (U) by ArB if O(A) = O(B) ∀ A,B ∈ P (U), where O(A) and

O(B) denote the orders of A and B respectively. Let Y = {φ, {a, b}}. Then

A?(Y ) = {φ, {a, b}} and A?(Y ) = {φ, {a}, {b}, {a, b}}. Clearly A(Y ) is a rough

lattice.

Let f? : A?(X) → A?(Y ) and f ? : A?(X) → A?(Y ) be two set valued map-

pings and are defined by f?(1) = φ, f?(5) = {a, b}, f ?(1) = φ, f ?(4) = {a},
f ?(5) = {b}, f ?(20) = {a, b}. Then (f?, f

?) is a rough homomorphism from

A(X) to A(Y ).

Proposition 3.3.1 If f ? : A?(X) → A?(Y ) is an onto homomorphism and

x, y ∈ A?(Y ) with x < y, then there exist a, b ∈ A?(X) with a < b such that

x = f ?(a) and y = f ?(b).

Proof: Since f ? : A?(X)→ A?(Y ) is an onto homomorphism and x, y ∈ A?(Y )

then there exist a, c in A?(X) such that f ?(a) = x and f ?(c) = y. Now, we

have, f ?(a ∨ c) = f ?(a) ∨ f ?(c) = x ∨ y = y as x < y. Also since a ≤ a ∨ c.
Now if a = a ∨ c, then x = f ?(a) = f ?(a ∨ c) = f ?(a) ∨ f ?(c) = y i.e., x = y

which is impossible. Therefore, a < a ∨ c. Now if we consider b = a ∨ c, then
proof of the proposition is completed.

Proposition 3.3.2 Upper rough homomorphic image of a rough modular lat-

tice is rough modular lattice.
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Proof: Let A(X) be a rough modular lattice and f ? : A?(X)→ A?(Y ) be an

onto upper rough homomorphism. Let x, y, z ∈ A?(Y ) be any three elements

with x > y. Since f ? is onto homomorphism, so, ∃ a, b, c ∈ A?(X) such that

f ?(a) = x, f ?(b) = y, f ?(c) = z where a > b.

Now, A?(X) is rough modular and a, b, c ∈ A?(X) and a > b, thus we get

a ∧ (b ∨ c) = b ∨ (a ∧ c).
Now x ∧ (y ∨ z) = f ?(a) ∧ (f ?(b) ∨ f ?(c))

= f ?(a) ∧ f ?(b ∨ c)
= f ?(a ∧ (b ∨ c))
= f ?(b ∨ (a ∧ c)
= f ?(b) ∨ f ?(a ∧ c)
= y ∨ (x ∧ z).

This shows the proof of the proposition.

Proposition 3.3.3 Upper rough homomorphic image of a rough distributive

lattice is rough distributive lattice.

Proof: Suppose that A(X) is a rough distributive lattice and f ? : A?(X) →
A?(Y ) be an onto upper rough homomorphism. Let x, y, z ∈ A?(Y ) be any

three elements. Since f ? is onto upper rough homomorphism, then there exist

a, b, c ∈ A?(X) such that f ?(a) = x, f ?(b) = y, f ?(c) = z.

Now A?(X) is rough distributive and a, b, c ∈ A?(X), thus we get

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Now x ∧ (y ∨ z) = f ?(a) ∧ (f ?(b) ∨ f ?(c))
= f ?(a) ∧ f ?(b ∨ c)
= f ?(a ∧ (b ∨ c))
= f ?((a ∧ b) ∨ (a ∧ c))
= f ?(a ∧ b) ∨ f ?(a ∧ c)
= (f ?(a) ∧ f ?(b)) ∨ (f ?(a) ∧ f ?(c))
= (x ∧ y) ∨ (x ∧ z).

Hence, A(Y ) is a rough distributive lattice.
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3.4 Conclusion
For the first time, in this investigation, we have introduced the notion of rough

ideals which is a generalized notion of ideals in a lattice. Important properties

of rough ideals are also developed in this chapter. We have established a

connection between the rough set and the lattice theory both of which have

wide fields of applications in the areas of computer science. This chapter has

made on special interest for lattice structure, when the elements of the set are

imprecise.
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Chapter 4

Soft Rough Lattice∗

Rough and soft sets are both mathematical tools for dealing with uncertainty.

But soft set theory is utilized for the first time, to generalize Pawlak’s rough

set model. Soft rough set is a possible fusion between these two mathematical

approaches to vagueness. In this chapter, an algebraic connection between soft

rough set and algebraic system is investigated and thereby introduce the notion

of soft rough lattice in a soft approximation space. We define the concept

of a soft rough lattice, soft rough sublattice, modular soft rough lattice and

distributive soft rough lattice. Finally, we include some examples to illustrate

the definitions.

4.1 Introduction
In 1999, Molodtsov (67) introduced soft set as a mathematical tool for dealing

with uncertainty. Thereafter a rapid growth of applications [(59)-(67)] of soft

set has been found in many fields of mathematics.

The rough set theory is often a useful and powerful approach to dealing with

uncertainty but have some inherent difficulties which mentioned by Molodtsov

(67). Soft set theory is a possible way to solve the difficulties of rough set.

Thereafter a possible fusion of rough set and soft set has been proposed by

Feng et al. (32) for the first time and introduced the concept of soft rough set.

∗A part of this chapter has appeared in Kragujevac Journal of Mathematics, SCO-
PUS, 39(9), 13-20, (2015).
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In this theory generalized rough set has been studied based on soft set.

In this chapter, we find an algebraic connection between soft rough set and

algebraic system and thereby introduce the notion of soft rough lattice in a

soft approximation space.

4.2 Soft set and soft rough set: an overview
Let U be an initial universe of objects and E be the set of parameters and

A ⊆ E. P (U) is the power set of U.

Definition 4.2.1 (33) Let S = (F,A) be a soft set over U . Then the pair

P = (U, S) is called a soft approximation space. Let X ⊆ U. We define the

following operations on P.

apr(X) =
⋃
a∈A

{F (a) : F (a) ⊆ X} and

apr(X) =
⋃
a∈A

{F (a) : F (a) ∩X 6= φ},

which are called soft lower and upper approximations respectively of X and

the pair (apr(X), apr(X)) is called soft rough set of X with respect to P and

is denoted by Sr(X). If apr(X) = apr(X), X is said to be soft definable;

otherwise X is called soft rough set.

The set of all soft rough sets over U is denoted by SR(U) with respect to soft

approximation space P .

Suppose S = (F,A) is a soft set over U and P = (U, S) is the correspond-

ing soft approximation space. Then soft approximations satisfy the following

properties:
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apr(φ) = apr(φ) = φ,

apr(U) = apr(U) =
⋃
a∈A

{F (a)},

apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ),

apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y ),

apr(X ∪ Y ) = apr(X) ∪ apr(Y ),

apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y ),

X ⊆ Y ⇒ apr(X) ⊆ apr(Y ) and apr(X) ⊆ apr(Y ).

Definition 4.2.2 Let Sr(X) = (apr(X), apr(X)) and Sr(Y ) = (apr(Y ), apr(Y ))

be two soft rough set. Then soft rough union and soft rough intersection of

Sr(X) and Sr(Y ) are defined by

Sr(X) t Sr(Y ) = (apr(X)
⋃

apr(Y ), apr(X)
⋃

apr(Y )) and

Sr(X) u Sr(Y ) = (apr(X)
⋂

apr(Y ), apr(X)
⋂

apr(Y )),

respectively, where the symbols t and u stand for soft rough union and inter-

section respectively.

Definition 4.2.3 Let Sr(X) = (apr(X), apr(X)) and Sr(Y ) = (apr(Y ), apr(Y ))

be two soft rough sets. Then Sr(Y ) is said to be soft rough subset of Sr(X),

denoted by Sr(Y ) v Sr(X) if apr(Y ) ⊆ apr(X) and apr(Y ) ⊆ apr(X), where

v stands for soft rough inclusion relation.

4.3 Soft rough lattice
Let S = (F,A) be a soft set over U and P = (U, S) be a soft approximation

space and SR(U) be the set of all soft rough sets over U with respect to P .

Definition 4.3.1 Let L ⊆ SR(U), and ∨ and ∧ be two binary operations on

L. The algebraic structure (L,∨,∧) is said to be soft rough lattice if
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(i) ∨ and ∧ are associative

(ii) ∨ and ∧ are commutative

(iii) ∨ and ∧ satisfy absorption laws.

Example 4.3.1 Let Y = {u1, u2, u3}, A = {e1, e2, e3, e4}. Let S = (F,A) be

a soft set over Y given by F (e1) = {u1}, F (e2) = {u3}, F (e3) = φ, F (e4) =

{u1, u3}. Let X1 = φ,X2 = {u1}, X3 = {u2}, X4 = {u2, u3}, X5 = {u1, u3}.
For simplicity, we denote the subset of Y , other than φ and Y by sequence of

letters. For example {u1, u3} is written as u1u3. The soft rough sets on the

soft approximation space P = (Y, S) are given by Sr(X1) = (φ, φ), Sr(X2) =

(u1, u1u2), Sr(X3) = (φ, u1u2), Sr(X4) = (u3, Y ), Sr(X5) = (u1u3, Y ), Sr(Y ) =

(Y, Y ). Then the set L = {Sr(X1), Sr(X2), Sr(X3), Sr(X4), Sr(X5), Sr(Y )}
form soft rough lattice with the operations t and u which are shown in the

Tables 4.3.1 and 4.3.2 as follows:

Table 4.3.1: Soft rough union on L.

t Sr(X1) Sr(X2) Sr(X3) Sr(X4) Sr(X5) Sr(X6)
Sr(X1) Sr(X1) Sr(X2) Sr(X3) Sr(X4) Sr(X5) Sr(X6)
Sr(X2) Sr(X2) Sr(X2) Sr(X2) Sr(X5) Sr(X5) Sr(X6)
Sr(X3) Sr(X3) Sr(X2) Sr(X3) Sr(X4) Sr(X5) Sr(X6)
Sr(X4) Sr(X4) Sr(X5) Sr(X4) Sr(X4) Sr(X5) Sr(X6)
Sr(X5) Sr(X5) Sr(Y ) Sr(Y ) Sr(Y ) Sr(Y ) Sr(Y )
Sr(X6) Sr(Y ) Sr(Y ) Sr(Y ) Sr(Y ) Sr(Y ) Sr(Y )

Table 4.3.2: Soft rough intersection on L.

u Sr(X1) Sr(X2) Sr(X3) Sr(X4) Sr(X5) Sr(X6)
Sr(X1) Sr(X1) Sr(X1) Sr(X1) Sr(X1) Sr(X1) Sr(X1)
Sr(X2) Sr(X1) Sr(X2) Sr(X3) Sr(X3) Sr(X2) Sr(X2)
Sr(X3) Sr(X1) Sr(X3) Sr(X3) Sr(X3) Sr(X3) Sr(X3)
Sr(X4) Sr(X1) Sr(X3) Sr(X3) Sr(X4) Sr(X4) Sr(X4)
Sr(X5) Sr(X1) Sr(X2) Sr(X3) Sr(X4) Sr(X5) Sr(X5)
Sr(X6) Sr(X1) Sr(X2) Sr(X3) Sr(X4) Sr(X5) Sr(X6)

The Hasse diagram of this soft rough lattice L appears in Figure 4.3.1.

58



4.3. Soft rough lattice

Figure 4.3.1: Soft rough lattice.
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Theorem 4.3.1 Let (L,∨,∧) be a soft rough lattice and Sr(X), Sr(Y ) ∈ L.

Then a relation � defined by Sr(X) � Sr(Y ) ⇔ Sr(X) ∨ Sr(Y ) = Sr(Y ) or

Sr(X) ∧ Sr(Y ) = Sr(X) is an order relation on L.

Proof: Reflexive: Sr(X) � Sr(X) ⇔ Sr(X) ∨ Sr(X) = Sr(X).

Antisymmetric: Let Sr(X) � Sr(Y ) and Sr(Y ) � Sr(X). Then

Sr(X) = Sr(X) ∧ Sr(Y )

= Sr(Y ) ∧ Sr(X)

= Sr(Y ).

Transitive: Let Sr(X) � Sr(Y ) and Sr(Y ) � Sr(Z). Then

Sr(X) ∧ Sr(Z) = (Sr(X) ∧ Sr(Y )) ∧ Sr(Z)

= Sr(X) ∧ (Sr(Y ) ∧ Sr(Z))

= Sr(X) ∧ Sr(Y )

= Sr(X).

Therefore Sr(X) � Sr(Z).

Lemma 4.3.1 Let L ∈ SR(U). The soft rough inclusion relation ‘v’ is an

order relation on L.
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Chapter 4: Soft Rough Lattice

Theorem 4.3.2 Let (L,∨,∧) be a soft rough lattice and Sr(X), Sr(Y ) ∈ L.
Then

(i) Sr(X) ∧ Sr(Y ) � Sr(X) and Sr(X) ∧ Sr(Y ) � Sr(Y )

(ii) Sr(X) � Sr(Y ) ∨ Sr(X) and Sr(Y ) � Sr(X) ∨ Sr(Y ).

Proof: (i) By the definition of order relation ‘�’,

(Sr(X) ∧ Sr(Y )) ∨ Sr(X) = Sr(X) ∨ (Sr(X) ∧ Sr(Y )) = Sr(X)

Therefore Sr(X) ∨ Sr(Y ) � Sr(X).

The proof of (ii) can be done in a similar way.

Theorem 4.3.3 Let (L,∨,∧) be a soft rough lattice and

Sr(W ), Sr(X), Sr(Y ), Sr(Z) ∈ L. Then

Sr(W ) � Sr(X) and Sr(Y ) � Sr(Z) implies

(i) Sr(W ) ∧ Sr(Y ) � Sr(X) ∧ Sr(Z) and

(ii) Sr(W ) ∨ Sr(Y ) � Sr(X) ∨ Sr(Z).

Proof: From Theorem 4.3.1, we have

Sr(W ) ∧ Sr(X) = Sr(W ) and Sr(Y ) ∧ Sr(Z) = Sr(Y ).

Now

[Sr(W ) ∧ Sr(Y )] ∧ [Sr(X) ∧ Sr(Z)] = [Sr(W ) ∧ Sr(X) ∧ Sr(Y )] ∧ Sr(Z)

= [(Sr(W ) ∧ Sr(X)) ∧ Sr(Y )] ∧ Sr(Z)

= [Sr(W ) ∧ Sr(Y )] ∧ Sr(Z)

= Sr(W ) ∧ [Sr(Y ) ∧ Sr(Z)]

= Sr(W ) ∧ Sr(Y ).

This completes the proof of the proposition.

Theorem 4.3.4 Sr(X)∨ Sr(Y ) and Sr(X)∧ Sr(Y ) are the least upper bound

and greatest lower bound of Sr(X) and Sr(Y ) respectively.
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Proof: From Theorem 4.3.2, Sr(X) ∧ Sr(Y ) and Sr(X) ∨ Sr(Y ) are lower

bound and upper bound of Sr(X) and Sr(Y ) respectively. Now we are to show

that the lower bound and upper bound are respectively greatest lower bound

and least upper bound of Sr(X) and Sr(Y ). Assume that, Sr(X) ∧ Sr(Y ) is

not greatest lower bound of Sr(X) and Sr(Y ). Then there exists Sr(Z) such

that

Sr(X) ∧ Sr(Y ) � Sr(Z) � Sr(X) and Sr(X) ∧ Sr(Y ) � Sr(Z) � Sr(Y )

Hence Sr(Z) ∧ Sr(Z) � Sr(X) ∧ Sr(Y )

or, Sr(Z) � Sr(X) ∧ Sr(Y ).

Therefore Sr(Z) = Sr(X) ∧ Sr(Y ). Hence a contradiction arises. Therefore

Sr(X) ∧ Sr(Y ) is the greatest lower bound of Sr(X) and Sr(Y ).

By the similar way we can show that Sr(X) ∨ Sr(Y ) is the least upper bound

of Sr(X) and Sr(Y ).

Definition 4.3.2 Let (L,∨,∧,�) be a soft rough lattice and K ⊆ L. If K is a

soft rough lattice with the operation of L then K is called soft rough sublattice

of L.
(u1u3, u1u2u3)

(u3, u1u2u3)

(u3, u3)

(φ, φ)

(φ, u1u2)

(u1, u1u2)

Figure 4.3.2: Distributive soft rough lattice.
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Example 4.3.2 In Example 4.3.1, let K = {Sr(X2), Sr(X3), Sr(X4), Sr(X5)}.
Then K is a soft rough sublattice of L.
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Theorem 4.3.5 Every soft rough lattice is a soft rough sublattice itself.

Proof: Straightforward.

Definition 4.3.3 A soft rough lattice (L,∨,∧,�) is said to be distributive soft

rough lattice if ∀ Sr(X), Sr(Y ), Sr(Z) ∈ L, then

Sr(X) ∧ (Sr(Y ) ∨ Sr(Z)) = (Sr(X) ∧ Sr(Y )) ∨ (Sr(X) ∧ Sr(Z))

Example 4.3.3 For the soft set (F,A) given in Example 4.3.1 if we con-

sider X1 = φ, X2 = {u2}, X3 = {u3}, X4 = {u1, u2}, X5 = {u2, u3},
X6 = {u1, u3}, then Sr(X1) = (φ, φ), Sr(X2) = (φ, u1u2), Sr(X3) = (u3, u3),

Sr(X4) = (u1, u1u2), Sr(X5) = (u3, u1u2u3), Sr(X6) = (u1u3, u1u2u3). Then

the set L = {Sr(X1), Sr(X2), Sr(X3), Sr(X4), Sr(X5), Sr(X6)} is distributive

soft rough lattice with the operations t, u. The Hasse diagram of it appears

in Figure 4.3.2.

Definition 4.3.4 A soft rough lattice (L,∨,∧,�) is said to be modular soft

rough lattice if ∀ Sr(X), Sr(Y ), Sr(Z) ∈ L, with Sr(X) � Sr(Y ) the following

equality holds:

Sr(X) ∧ (Sr(Y ) ∨ Sr(Z)) = Sr(Y ) ∨ (Sr(X) ∧ Sr(Z)).

Example 4.3.4 Let U be the the set of universe and A be the set of param-

eters are defined as: U = {u1, u2, u3, u4} and A = {e1, e2, e3, e4}. Let the soft

set S = (U,A) over U is given by F (e1) = {u1, u2}, F (e2) = {u1}, F (e3) =

{u3, u4}, F (e4) = {u2}. Let X1 = φ,X2 = {u1}, X3 = {u4}, X4 = {u2}, X5 =

{u1, u2, u3}. Then the soft rough sets on the soft approximation space P =

(U, S) are given by Sr(X1) = (φ, φ), Sr(X2) = (u1), Sr(X3) = (φ, u3u4),

Sr(X4) = (u2, u1u2), Sr(X5) = (u1u2, u1u2u3u4). Then the set L = {Sr(X1),

Sr(X2), Sr(X3), Sr(X4), Sr(X5)} is modular soft rough lattice. Hasse diagram

of it appears in Figure 4.3.3.
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Figure 4.3.3: Modular soft rough lattice.
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Theorem 4.3.6 A distributive soft rough lattice is always modular soft rough

lattice.

Proof: Let (L,∨,∧,�) is said to be distributive soft rough lattice,

then ∀ Sr(X), Sr(Y ), Sr(Z) ∈ L, we have

Sr(X) ∧ (Sr(Y ) ∨ Sr(Z)) = (Sr(X) ∧ Sr(Y )) ∨ (Sr(X) ∧ Sr(Z)).

Now if Sr(X) � Sr(Y ), then Sr(X) ∧ Sr(Y ) = Sr(Y ).

Therefore Sr(X) ∧ (Sr(Y ) ∨ Sr(Z)) = Sr(Y ) ∨ (Sr(X) ∧ Sr(Z)).

4.4 Conclusion
Soft rough set is generalization of rough set based on soft set. In this chap-

ter, we have established an algebraic connection between soft rough set and

algebraic structure named as lattice. As a result, lattice structure has been de-

veloped on soft rough set and defined this concept as soft rough lattice based on

soft approximation space. After that we have investigated the several proper-

ties and theorems on soft rough lattice. Finally we have justified our proposed

soft rough lattice with supporting examples by Hasse diagram.
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Chapter 5

Soft Rough Approach to
Lattice-Ideal∗

Rough and soft sets are two different mathematical tools for dealing with un-

certainties. Soft rough set is the study on roughness through soft set. Soft

rough set is a fusion, proposed by Feng et al. (32) between these two mathe-

matical approaches to vagueness. The aim of this chapter is to study the lattice

theory in the framework of soft rough set. We consider the soft approximation

space by means of soft set and define the notions of upper and lower soft rough

ideals in a lattice. The numerical examples are presented to support of our

study.

5.1 Introduction
Rough set consists of two key notions: rough set approximations and informa-

tion systems. Rough set approximations are defined by means of an equivalence

relation namely indiscernibility relation. Many interesting and meaningful ap-

plications in the field of mathematics, computer science and other related fields

have been designed with the help of Pawlak’s rough set model. A key concept

in Pawlak’s rough set is an equivalence relation. Similar studies have been

made by different researchers. As for example, Skowron and Stepaniuk (109)

discussed the tolerance approximation spaces in their study. Slowiniski and
∗A part of this chapter has appeared in The Journal of Fuzzy Mathematics, 24(1),

49-55, (2016).

65



Chapter 5: Soft Rough Approach to Lattice-Ideal

Vanderpooten (110) presented a generalized definition of rough approxima-

tions based on similarity. Greco et al. (38) proposed the rough approximation

by dominance relations. Concept of rough set with cover is another gener-

alization. Actually, different types of generalization are based on different

granulation structures.

A possible fusion of rough set and soft set is proposed by Feng et al. (32) and

introduced the notion of soft rough sets, where instead of equivalence classes,

standard soft set model is used to form the granulation structure of the uni-

verse, namely the soft approximation space.

Several researchers have showed great interest to study the lattices in the light

of rough set environment. For example, see [(24), (29), (46), (55), (77), (79),

(92)]. But it is noticed that, no detail studies have been made on lattices

under soft rough set. To fill up the gaps, this chapter formulates a general

mathematical concept defined on lattices in the framework of soft rough set.

We treat the lattice as a universal set and then study the lattices in the shade

of soft rough set. We incorporate soft rough ideal and discuss their properties

in the soft approximation space which is the main motivation of this chapter.

5.2 Preliminaries
Here we recall some preliminaries which are given in Chapter 4. Let U be the

set of initial universe of objects and E be the set of parameters and A ⊆ E.

P (U) is the power set of U.

Definition 5.2.1 Let S = (F,A) be a soft set over U . Then the pair P =

(U, S) is called a soft approximation space. Let X ⊆ U , we define the following

operations on P.

apr(X) =
⋃
a∈A

{F (a) : F (a) ⊆ X} and

apr(X) =
⋃
a∈A

{F (a) : F (a) ∩X 6= φ},

which are called soft lower and upper approximations respectively of X and

the pair (apr(X), apr(X)) is called soft rough set of X with respect to P and
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is denoted by Sr(X). If apr(X) = apr(X), X is said to be soft definable;

otherwise X is called soft rough set.

The set of all soft rough sets over U is denoted by SR(U) with respect to some

soft approximation space P.

Proposition 5.2.1 Suppose S = (F,A) is a soft set over U and P = (U, S) is

the corresponding soft approximation space. Then soft approximations satisfy

the following properties:

apr(φ) = apr(φ) = φ

apr(U) = apr(U) =
⋃
a∈A{F (a)}

apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y )

apr(X ∪ Y ) ⊇ apr(X) ∪ apr(Y )

apr(X ∪ Y ) = apr(X) ∪ apr(Y )

apr(X ∩ Y ) ⊆ apr(X) ∩ apr(Y )

X ⊆ Y ⇒ apr(X) ⊆ apr(Y ) and apr(X) ⊆ apr(Y ).

Definition 5.2.2 (32) Let S = (F,A) be a soft set over U. If
⋃
a∈A{F (a)} =

U , then S is said to be a full soft set.

Definition 5.2.3 (32) Let S = (F,A) is a soft set over U . If for any a1, a2 ∈
A, there exists a3 ∈ A such that F (a3) = F (a1) ∩ F (a2), whenever F (a1) ∩
F (a2) 6= φ, then S is said to be intersection complete soft set.

Proposition 5.2.2 (32) Let S = (F,A) be the intersection complete soft set

over U. Then we have apr(U) = apr(U) = U.

Proposition 5.2.3 (32) Let S = (F,A) be an intersection complete soft set

over U. Then we have apr(X ∩ Y ) = apr(X) ∩ apr(Y ) for all X, Y ⊆ U.

Definition 5.2.4 (32) A soft set S = (F,A) over U is called a partition soft

set if {F (a) : a ∈ A} forms a partition of U.
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By definition, we immediately have that every partition soft set is a full soft

set.

Proposition 5.2.4 (32) Suppose that S = (F,A) is a partition soft set over

U and P = (U, S) is the corresponding soft approximation space. Then soft

rough approximation satisfies the following properties:

(i) apr(X) ⊆ X ⊆ apr(X)

(ii) apr(X ∩ Y ) = apr(X) ∩ apr(Y )

(iii) apr(X ∪ Y ) = apr(X) ∪ apr(Y ).

Proposition 5.2.5 (32) Let S = (F,A) be a partition soft set over U . Then

apr(apr(X)) = apr(X) for all X ⊆ U.

5.3 Soft rough ideal
Let S = (F,A) be a soft set over a lattice (L,≤,∨,∧) and P = (L, S) a soft

approximation space. Also let X be sub-set of L. Through out the chapter,

we denote the notation L for a lattice.

Definition 5.3.1 X is called an upper soft rough ideal of L in the approxi-

mation space P if apr(X) is an ideal of L. X is called a lower soft rough ideal

of L in the approximation space P if apr(X) is an ideal of L. X is said to be

soft rough ideal of L in P if it is both lower and upper soft rough ideals.

Empty set φ is always a soft rough ideal and if S = (L, F ) is a full soft set

then L is trivial soft rough ideal in the approximation space P = (L, F ).

Example 5.3.1 Let L = {u1, u2, u3, u4} be a lattice. The partial order relation

over L is defined as shown in Figure 5.3.1. The soft set S = (F,A) over L

is defined as follows: F (e1) = {u1}, F (e2) = {u2, u3}, F (e3) = {u4}, F (e4) =

{u1, u3}. Here X = {u1, u3} is a soft rough ideal of L in the approximation

space P = (L, S) where apr(X) = {u1, u3} and apr(X) = {u1, u2, u3, }.
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Figure 5.3.1: Lattice.
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Proposition 5.3.1 Let X be soft rough ideal of L in the soft approximation

space P = (L, S). Then apr(X) and apr(X) are sublattices of L.

Proof: Let a, b ∈ apr(X). Then by definition a ∨ b ∈ apr(X). Let a, l ∈
apr(X) this implies a ∈ apr(X) and l ∈ L and by definition of lower soft

rough ideal a ∧ l ∈ apr(X). Therefore apr(X) is a sublattice of L. Similarly,

we can prove apr(X) is a sublattice of L.

Proposition 5.3.2 Let S = (F,A) be an intersection complete soft set over L

and P = (L, S) be a soft approximation space. Then intersection of two lower

soft rough ideals is an ideal.

Proof: Let X, Y be two lower soft rough ideals of lattice L. Since S is an

intersection complete soft set, apr(X ∩ Y ) = apr(X) ∩ apr(X). Now apr(X)

and apr(Y ) are ideals of L and since intersection of two ideals is an ideal. This

completes the proof of the proposition.

Proposition 5.3.3 Let S = (F,A) be a soft set over L and P = (L, S) a soft

approximation space. Then union of two upper soft rough ideals is an upper

soft rough ideal if one is contained in the other.
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Proof: Let X, Y be two upper soft rough ideals of L and also let X ⊆ Y .

Then apr(X) ⊆ apr(Y ). Now apr(X
⋃
Y ) = apr(X)

⋃
apr(Y ) = apr(Y ),

which is an ideal.

Proposition 5.3.4 Let S = (F,A) be a soft set over L and P = (L, S) a soft

approximation space. If X is a lower soft rough ideal, then apr(X) is a lower

soft rough ideal.

Proof: Let X be a lower soft rough ideal of L in P. Therefore apr(X) is an

ideal. Let x, y ∈ apr(apr(X)). Since apr(apr(X)) ⊆ apr(X) for any X ⊆ L.

Therefore x, y ∈ apr(X). Since apr(X) is an ideal, therefore x ∨ y ∈ apr(X).

Then x ∨ y ∈ F (a) ⊆ X for some a ∈ A. But apr(X) =
⋃
a∈A{F (a) :

F (a) ⊆ X}. Hence, we have x ∨ y ∈ F (a) ⊆ apr(X) for some a ∈ A. Thus

x ∨ y ∈ apr(apr(X)). Again let x ∈ apr(apr(X)) and l ∈ L, this imply

X ∈ apr(X), l ∈ L and since apr(X) is an ideal, therefore x ∧ l ∈ apr(X).

Similarly, we can prove x ∧ l ∈ apr(apr(X)). Therefore the proof of the

proposition is completed.

Proposition 5.3.5 Let S = (F,A) be a soft set over L and P = (L, S) a soft

approximation space. If X is an upper soft rough ideal then apr(X) is a lower

soft rough ideal.

Proof: Let X be an upper soft rough ideal of L in P . Therefore apr(X)

is an ideal of L. We have to prove that apr(apr(X)) is an ideal of L. Let

x, y ∈ apr(apr(X)). Since apr(apr(X)) ⊆ apr(X) for any X ⊆ L. Therefore

x, y ∈ apr(X). Since apr(X) is an ideal, therefore x ∨ y ∈ apr(X). Then

x ∨ y ∈ F (a) and F (a) ∩X 6= φ for some a ∈ A. But apr(X) =
⋃
a∈A{F (a) :

F (a) ∩X 6= φ}. Hence, we have x ∨ y ∈ F (a) ⊆ apr(X) for some a ∈ A. So

x ∨ y ∈ apr(apr(X)). Again, let x ∈ apr(apr(X)), l ∈ L, then X ∈ apr(X)),

l ∈ L and since apr(X) is an ideal, therefore x∧ l ∈ apr(X). Similarly, we can

establish x ∧ l ∈ apr(apr(X)). Hence apr(X) is an lower soft rough ideal of L

as required.

Proposition 5.3.6 Let S = (F,A) be a partition soft set over L and P =
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(L, S) is a soft approximation space. If X is a upper soft rough ideal then

apr(X) is also soft rough ideal.

Proof: Let X be an upper soft rough ideal of L in P . Therefore apr(X) is an

ideal of L. We have to prove that apr(X) is an ideal of L. We know that for a

partition soft set apr(apr(X)) = apr(X). Since apr(X) is an ideal, therefore,

apr(apr(X)) is an ideal. This completes the proof of the proposition.

5.4 Conclusion
The set from lattice structure is treated here as universal set and defined soft

rough set on it. We have constructed the soft rough ideal and studied their

properties in a soft approximation space. We have established the connection

between soft rough set and lattice theory both of which have wide field of

applications in the area of computer science and information sciences. The

contents of this chapter may be extended to more results on lattices under soft

rough environment.
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Chapter 6

Approximation of Rough Soft Set
and Its Application to Lattice∗

The approximation of soft set is presented in modified soft rough (MSR) ap-

proximation space in this chapter, i.e., approximation of an information system

with respect to another information one. Besides, the concept of rough soft

set is introduced in a modified soft rough approximation space. Various prop-

erties are studied like subset, union, intersection on rough soft set with some

propositions presented on rough soft set. Moreover, the measure of roughness

of soft set is defined in MSR-approximation space and the order relation is

introduced on soft set. Furthermore, lattice theory is studied in the MSR-

approximation space under a modified rough soft environment. Finally, some

realistic examples are considered to usefulness and illustrate of the chapter.

6.1 Introduction
Soft set theory (SST) and rough set theory (RST) are treated as mathematical

tools to deal with uncertainty. A connection between these two has been made

by Feng et al. (32) and introduced the notion of soft rough set. In their

model, they described the parameterize subset on the universe of discourse.

As a result, some unusual situations have occurred, like upper approximation

of a non-empty set may be empty. Upper approximation of a subset may not
∗A part of this chapter has appeared in Fuzzy Information and Engineering , Else-

vier, 7, 379-387, (2015).
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contain the set which does not occur in classical rough set theory. To overcome

these difficulties, Shabir et al. (107) redefined a soft rough set model called

MSR set.

In this chapter, we study the approximations of an information system with

respect to another information ones. We approximate a soft set with respect

a modified soft rough approximation space and introduce the notion of rough

soft set. Here, we endeavor to establish link between soft set and rough set

in connection with an application in lattice. Also, we introduce the concept

of measure of roughness in a soft set and consequently some propositions and

examples are presented here.

6.2 Preliminaries
Here, we present some preliminary definitions on MSR set and also recall the

concept of information system and indiscernibility relation which are very much

essential in the sequel.

Definition 6.2.1 An information system (or a knowledge representation sys-

tem) is a pair (U,A) of non-empty finite sets U and A where U is a set of ob-

jects and A is a set of attributes; each attribute a ∈ A is a function a : U → Va,

where Va is called set of values of attribute a.

Let U be a non-empty set of universe and R be an equivalence relation on

U . The pair (U,R) is called Pawlak’s approximation space. The equivalence

relation R is often called indiscernibility relation and related to an information

system. An indiscernibility relation R = I(B), B ⊆ A is defined as:

(x, y) ∈ I(B)⇔ a(x) = a(y), ∀ a ∈ B,

where x, y ∈ U , and a(x) denotes the value of attribute a for object x.

Using this indiscernibility relation, one can define the following operations as:

A?(X) = {x ∈ U : [x]R ⊆ X} and A?(X) = {x ∈ U | [x]R ∩X 6= φ}.

For any X ⊆ U , A?(X) and A?(X) are called lower and upper approximations

of X respectively. If A?(X) 6= A?(X), then X is called the rough set in the
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approximation space (U,R). The difference A?(X)−A?(X) is called boundary

region of X and is treated as the area of uncertainty.

Let U be an initial universe of objects and E be the set of parameters and

A ⊆ E. P (U) is the power set of U .

Definition 6.2.2 (107) Let (F,A) be a soft set over U , where F is a mapping

from A to P (U), i.e., F : A → P (U), where P (U) is the power set of U. Let

ψ : U → P (A) be another mapping defined as ψ(x) = {a : x ∈ F (a)}. Then

the pair (U, ψ) is called MSR approximation space and for any X ⊆ U , lower

MSR-approximation and upper MSR-approximation respectively are defined as

follows:

Xψ = {x ∈ U : ψ(x) 6= ψ(y) ∀ y ∈ Xc}, where Xc = U −X,

Xψ = {x ∈ U : ψ(x) = ψ(y) for some y ∈ X}.

If Xψ 6= Xψ, then X is said to be modified soft rough set.

Example 6.2.1 Let U = {u1, u2, u3, u4, u5} be the set of schools considered

as universal set and an attribute set A = {e1, e2, e3, e4}. Here e1 denotes

good location, e2 denotes sufficient teachers, e3 denotes good maintenance of

discipline, e4 denotes good relation in teacher-student. Let the soft set (F,A)

over U be given by the following table:

Table 6.2.1: Table represents the soft set.

e1 e2 e3 e4
u1 1 1 0 0
u2 0 0 1 1
u3 1 1 1 0
u4 0 1 1 1
u5 0 1 0 1

Here 1 and 0 denote ‘yes’ and ‘no’ respectively. Then from the definition of

MSR set, ψ : U → P (A) is defined as follows:

ψ(u1) = {e1, e2}; ψ(u2) = {e2}; ψ(u3) = {e4}; ψ(u4) = {e1, e3} = ψ(u5).
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Let X = {u1, u3, u5}. Therefore for the MSR-approximation space (U, ψ), we

can write

Xψ = {u1, u3} and Xψ = {u1, u3, u4, u5}.

Clearly, Xψ 6= Xψ, so X is a modified soft rough set.

6.3 Rough soft set
In this section, the notion of rough soft set in modified soft rough approxima-

tion space is introduced.

Definition 6.3.1 Let (F,A) be a soft set over U and (U, ψ) be an MSR-

approximation space with respect to A. Let (G,B) be another soft set over

U . (G,B) is said to be rough soft set with respect to a parameter e ∈ B if

G(e)
ψ
6= G(e)ψ, (G,B) is said to be a full rough soft set or a simply rough one

if G(e)
ψ
6= G(e)ψ ∀ e ∈ B and we denote it by RsG(eB). We denote rough soft

set with respect to e by RsG(e) = (G(e)
ψ
, G(e)ψ).

Example 6.3.1 Considering a universal set of batsman U = {u1, u2, u3, u4, u5,
u6, u7, u8} and an attribute set A = {e1, e2, e3} where e1 denotes Bold out, e2
denotes Catch out, e3 denotes LBW. Let (F,A) be a soft set representing the

record of the player given by the following table:

Table 6.3.1: Table represents the data on information system.

e1 e2 e3
u1 1 1 1
u2 1 0 1
u3 0 1 1
u4 1 0 1
u5 0 0 1
u6 1 0 0
u7 1 1 0
u8 0 0 1

Here 1 and 0 denotes ‘yes’ and ‘no’ respectively. Then from the definition of

MSR set, ψ : U → P (A) is defined as follows:
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ψ(u1) = {e1, e2, e3}; ψ(u2) = {e1, e3}; ψ(u3) = {e2, e3}; ψ(u4) = {e1, e3};
ψ(u5) = {e3}; ψ(u6) = {e1}; ψ(u7) = {e1, e2}; ψ(u8) = {e2}.
Let (G,B) be another soft set defined as

G(e1) = {u1, u2, u4, u6, u7}; G(e2) = {u1, u3, u4, u6};
G(e3) = {u2, u3, u5, u6, u7, u8}; G(e4) = {u1, u2, u3, u5, u6, u7}, where e1 de-

notes Bold out, e2 denotes Catch out, e3 denotes LBW and e4 denotes Run out.

Lower MSR-approximation set and upper MSR-approximation set of (G,B) are

G(e1)
ψ

= {u1, u2, u4, u6, u7}; G(e1)ψ = {u1, u2, u4, u6, u7};
G(e2)

ψ
= {u1, u3, u6}; G(e2)ψ = {u1, u2, u3, u4, u6};

G(e3)
ψ

= {u3, u5, u6, u7, u8}; G(e3)ψ = {u2, u3, u4, u5, u6, u7, u8};
G(e4)

ψ
= {u1, u3, u5, u6, u7}; G(e4)ψ = {u1, u2, u3, u4, u5, u6, u7}.

Clearly, (G,B) is a rough soft set with respect to parameters e2, e3 and e4.

Proposition 6.3.1 Let (F,A) be a soft set over U and (U, ψ) be an MSR

approximation space with respect to A. Let (G1, B1), (G2, B2) be two rough soft

sets. Then

H(e) =


G1(e), if e ∈ B1 −B2,
G2(e), if e ∈ B2 −B1,
G1(e) ∪G2(e), if e ∈ B1 ∩B2

is a rough soft set if B1 ∩B2 = φ.

Proposition 6.3.2 Let (F,A) be a soft set over U and (U, ψ) be an MSR

approximation space with respect to A. Let (G1, B1), (G2, B2) be two rough soft

sets. Then ∀ e ∈ B1 ∩B2, H(e) = G1(e) ∩G2(e) is a rough soft set.

Definition 6.3.2 Let (F,A) be a soft set over U and (U, ψ) be an MSR ap-

proximation space with respect to A. Let (G1, B1), (G2, B2) be two rough soft

sets. (G1, B1) is said to be rough soft subset of (G2, B2) if

(i) B1 ⊆ B2, and

(ii) ∀ e ∈ B1, G1(e)
ψ

= G2(e)
ψ
and G1(e)ψ = G2(e)ψ.

We write (G1, B1) v (G2, B2), where v denotes soft rough subset.
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Definition 6.3.3 The union of rough soft sets RsG(e1) and RsG(e2) with

respect to the parameters e1 and e2 respectively in MSR-approximation space

(U, ψ) is denoted by RsG(e1)tRsG(e2) and is defined as RsG(e1)tRsG(e2) =

(G(e1)
ψ
∪G(e2)

ψ
, G(e1)ψ ∪G(e2)ψ).

The union of rough soft sets RsG(eA) and RsG(eB) is defined as RsG(eA) t
RsG(eB) = (G(e)

ψ
∪G(f)

ψ
, G(e)ψ ∪G(f)ψ) for all e ∈ A and f ∈ B.

Definition 6.3.4 The intersection of rough soft sets RsG(e1) and RsG(e2)

with respect to parameters e1 and e2 respectively in MSR-approximation space

(U, ψ) is denoted by RsG(e1) uRsG(e2) and is defined as

RsG(e1) uRsG(e2) = (G(e1)
ψ
∩G(e2)

ψ
, G(e1)ψ ∩G(e2)ψ).

The intersection of rough soft sets RsG(eA) and RsG(eB) is defined as

RsG(eA) u RsG(eB) = (G(e)
ψ
∩ G(f)

ψ
, G(e)ψ ∩ G(f)ψ) for all e ∈ A and

f ∈ B.

Proposition 6.3.3 Let (G,B) be a soft set over U and (U, ψ) be a MSR-

approximation space. Then set (RsG(e),t,u), ∀ e ∈ B together with (U,U)

and (φ, φ) form a lattice where the order relation ⊆ is defined as RsG(e1) ⊆
RsG(e2) ⇒ G(e1)

ψ
⊆ G(e2)

ψ
and G(e1)ψ ⊆ G(e2)ψ.

Example 6.3.2 Consider the Example 6.3.1, for simplicity, we denote the

subset of U , other than φ and U by sequence of numeric suffices. For example

u1, u2, u4, u6, u7 is written as 12467. The Hasse diagram of lattice under the

soft rough set is given in Figure 6.3.1.

Figure 6.3.1: Lattice under rough soft set.
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Proposition 6.3.4 Let (G1, B1) be a soft subset of (G2, B2). If (G2, B2) is a

rough soft set, then (G1, B1) is rough soft subset of (G2, B2).

Proof: Since (G1, B1) is soft subset of (G2, B2), therefore G1(e) = G2(e) for

all e ∈ B1. Therefore G1(e)
ψ

= G2(e)
ψ
and G1(e)ψ = G2(e)ψ for all e ∈ B1.

Hence (G1, B1) is rough soft subset.

Definition 6.3.5 Let (F,A) be a soft set over U and (U, ψ) be an MSR ap-

proximation space with respect to A. Let (G,B) be another soft set over U .

We define

G(e1)
ψ

= G(e2)
ψ
⇔ G(e1) ' G(e2),

G(e1)ψ = G(e2)ψ ⇔ G(e1) ' G(e2),

G(e1)
ψ

= G(e2)
ψ
and G(e1)ψ = G(e2)ψ ⇔ G(e1) ≈ G(e2).

These binary relations are called lower rough soft, upper rough soft and rough

soft equal relations respectively.

Proposition 6.3.5 The rough soft equal relation is an equivalence one.

Proof: Straightforward.

6.4 Measure of roughness of soft set
In this section, we study the measure of roughness of a soft set with respect

to an MSR-approximation space.

Definition 6.4.1 Let (F,A) be a soft set over U and (U, ψ) be an MSR-

approximation space. Let (G,B) be another soft set over U . Measure of

roughness of (G,B) with respect to parameter e ∈ B is denoted by RG(e) and

is defined as follows:

RG(e) =
|G(e)

ψ
|

|G(e)ψ|
.

Clearly, 0 ≤ RG(e) ≤ 1. Now, we define binary relation ‘≡’ on soft set (G,B)

as G(e1) ≡ G(e2) if and only if RG(e1) = RG(e2) for e1, e2 ∈ B.

79



Chapter 6: Approximation of Rough Soft Set and Its Application to Lattice

Proposition 6.4.2 ‘≡’ is an equivalence relation on (G,B). The partition

[G(e)]≡ has a strict order in its element.

Proof: The measure of roughness of all members of a class is the same. There-

fore, each class is characterized by a unique number belonging to interval [0, 1].

So there is a strict order among these classes.

Proposition 6.4.3 (G,B) forms a chain by the order relation ≡ .

Proof: Since relation ‘≡’ partitions the soft set and the partition has a strict

order relation, therefore the soft set forms a chain.

Example 6.4.1 Suppose (F,A) is a soft set over U = {u1, u2, u3, u4, u5, u6}
and the set of parameters is A = {e1, e2, e3, e4}, where e1 denotes under stress,

e2 denotes young age, e3 denotes drug addicted, e4 denotes healthy. The soft

set (F,A) is given in Table 6.4.1.

Table 6.4.1: Table represents the data on information system.

e1 e2 e3 e4
u1 0 1 0 1
u2 0 1 0 1
u3 0 0 0 1
u4 0 0 0 0
u5 1 0 0 0
u6 0 0 0 1

Now (U, ψ) is the modified soft rough approximation space where ψ : U → P (A)

is defined as ψ(u1) = {e2, e4}; ψ(u2) = {e2, e4}; ψ(u3) = {e4}; ψ(u4) = φ;

ψ(u5) = {e1}; ψ(u6) = {e4}. Let (G,B) be another soft set over U and the

set of parameters B = {e1, e2, e3, e4}, where e1 denotes smokers; e2 denotes

smokers and drinkers; e3 denotes men; e4 denotes people live in city. The soft

set (G,B) is given in Table 6.4.2.

Lower MSR-approximation and upper MSR-approximation of (G,B) are

G(e1)
ψ

= φ; G(e1)ψ = {u1, u2}; G(e2)
ψ

= {u4}; G(e2)ψ = {u4}; G(e3)
ψ

=

{u3, u4, u5, u6}; G(e3)ψ = {u1, u2, u3, u4, u5, u6}; G(e4)
ψ

= {u1, u2}; G(e4)ψ =

{u1, u2, u3, u6}. Clearly, (G,B) is a rough soft set with respect to parameters

e1, e3, e4. Now RG(e1) = 0, RG(e2) = 1, RG(e3) = 2/3, RG(e4) = 1/2.
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Table 6.4.2: Table represents the another data on information system.

e1 e2 e3 e4
u1 1 0 1 1
u2 0 0 1 1
u3 0 0 1 1
u4 0 1 0 0
u5 0 0 0 0
u6 0 0 0 0

The Hasse diagram of this chain is given in Figure 6.4.1.

Figure 6.4.1: Chain form by rough soft set.

6.5 Conclusion
Soft and rough sets are two different approaches to uncertainty and rough

soft set is a fusion of these two theories. We have introduced the concept of

approximation on an information system with respect to another information

one based on an MSR-approximation space. We have constructed the rough

soft set and studied their properties in MSR-approximation space. Besides,

we have established the connection between a rough soft set and a lattice

theory by measuring the roughness of a soft set. The theme of this chapter

may be extended to further results in lattices under different environments of

soft-rough relations.

81





Chapter 7

An Another Approach for
Cartesian Product on Soft Set
Relation and Its Application to
Lattice∗

In this chapter, the concept of cartesian product on soft sets is introduced in

a new way. Besides this, based on this cartesian product, a soft set relation

is defined. Soft set relation is also constructed based on the induced binary

relation in the set of parameters of soft sets. A connection between the re-

lations is also established. Moreover, lattice theory is studied on soft sets by

considering with soft set relation.

7.1 Introduction
In this chapter we study lattice structure of soft set based on the Cartesian

product of soft sets. Up-to-date, many researchers have shown great interest

to study on soft set and they established the various properties on it. However,

some studies [(5), (6), (90)] are available to define the Cartesian product and

soft set relation on a soft set, but in this chapter, we describe the Cartesian

product for soft set relation on soft set in new way. Moreover, based on the

ideas of the Cartesian product and soft set relation, we newly formulate the

∗A part of this chapter has communicated for publication to the International Journal.
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soft lattice, soft modular lattice, soft distributive lattice and soft equivalent

relation.

7.2 Preliminaries
Here, we present some basic definitions on soft sets, which are the most useful

to design of our proposed study.

Throughout this chapter, U is an universal set, P (U) is the power set of U and

E is a set of the parameters. A soft set over U is a parameterized family of

subsets of U . Every set F (e), ∀ e ∈ A from this family may be considered as the

set of e-elements of the soft set (F,A) or considered as the set of e-approximate

elements of the soft set. According to this manner, we can view a soft set (F,A)

as consisting of collection of approximations: (F,A) = {(e, F (e)) : e ∈ A}.
Without loss of generality, we write simply F (e) for the pair (e, F (e)) and if

F (e) = V , then we write Ve for the pair (e, V ).

Example 7.2.1 Let (F,A) describe the family of students interested in differ-

ent subjects. Suppose there are four students in the universe U which is given

by U = {u1, u2, u3, u4} and A = {e1, e2, e3}, where e1 stands for Mathematics,

e2 stands for Science, e3 stands for English. Suppose F (e1) = {u1, u2, u3},
F (e2) = {u1, u2}, F (e3) = {u2, u3, u4}. Thus the soft set (F,A) over U is

given by

(F,A) = {(e1, F (e1)), (e2, F (e2)), (e3, F (e3))}
= {F (e1), F (e2), F (e3)}
= {{u1, u2, u3}e1 , {u1, u2}e2 , {u2, u3, u4}e3}.

Definition 7.2.1 (60) Let (F,A) and (G,B) be two soft sets over U. (G,B)

is said to be a soft subset of (F,A), if the following conditions are satisfied;

(i) B ⊆ A, and

(ii) F (e) = G(e), ∀ e ∈ B.

We denote (G,B) v (F,A) where “v” stands for subset over a soft set.

Two soft sets (F,A) and (G,B) over a common universe U are said to be equal

if (G,B) v (F,A) and (F,A) v (G,B).
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Definition 7.2.2 (60) Union of two soft sets (F,A) and (G,B) over a com-

mon universe U is a soft set (H,C), where C = A ∪B, and ∀ e ∈ C,

H(e) =


F (e), if e ∈ A−B,
G(e), if e ∈ B − A,
F (e) ∪G(e), if e ∈ A ∩B.

We write (H,C) = (F,A)t (G,B) where the symbol “t” stands for union over

the soft sets.

Definition 7.2.3 (60) Intersection of two soft sets (F,A) and (G,B) over a

common universe U is a soft set (H,C), where C = A ∩ B, and ∀ e ∈ C,

H(e) = F (e) ∩G(e).

We write (H,C) = (F,A) u (G,B) where the notation “u” defines for inter-

section over the soft sets.

7.3 Cartesian product and relation
In this section, we introduce a new concept on Cartesian product between the

two soft sets and then we define soft relation which is a subset of this Cartesian

product.

Definition 7.3.1 Cartesian product between the two soft sets (F,A) and (G,B)

over U is defined as

(F,A)× (G,B) = {(F (a), G(b)) : F (a) ∈ (F,A) and G(b) ∈ (G,B)}.

The elements of Cartesian product of two soft sets are considered as the pair

of set of parameter-approximate elements.

An example is incorporated to understand Definition 7.3.1

Example 7.3.1 Let U = {u1, u2, u3, u4, u5, u6, u7, u8} be a set of people and

let A = {red, white, indigo, pink} describe the different colors of shirts that

people like to wear i.e., A = {r, w, i, p}, where r, w, i and p represent for

red, white, indigo and pink respectively. Let B = {engineer, teacher, doctor}
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denote the different professions of people, i.e., B = {e, t, d}, where e, t and d
imply for engineer, teacher and doctor respectively. Then the soft set (F,A) =

{F (r), F (w), F (i), F (p)} defines the set of people choose to wear different color

shirts and the soft set (G,B) = {G(e), G(t), G(d)} indicates the people having

different professions, where F (r) = {u1, u2, u4, u6}, F (w) = {u2, u3, u5, u4},
F (i) = {u5, u6, u8, u4}, F (p) = {u3, u5, u8} and
G(e) = {u1, u2, u6, u7}, G(t) = {u3, u5, u8}, G(d) = {u3, u5, u6, u8, u4}.

The Cartesian product of (F,A) and (G,B) is considered as follows:

(F,A)× (G,B) = {(F (r), G(e)), (F (r), G(t)), (F (r), G(d)), (F (w), G(e)),

(F (w), G(t)), (F (w), G(d)), (F (i), G(e)), (F (i), G(t)), (F (i), G(d)),

(F (p), G(e)), (F (p), G(t)), (F (p), G(d))}.

Definition 7.3.2 Let (F,A) and (G,B) be two soft sets over a common uni-

verse U . A soft set relation from (F,A) to (G,B) is a subset of (F,A)×(G,B).

If R is a relation from (F,A) to (G,B), then R ⊆ (F,A) × (G,B). We write

(F (r), G(t)) ∈ R if and only if F (r)R G(t) for r ∈ A and t ∈ B.

Definition 7.3.3 A soft set relation on (F,A) is a subset of (F,A)× (F,A).

Example 7.3.2 Consider the Example 7.3.1 and also define the following.

Let R = {(F (r), G(e)), (F (r), G(t)), (F (p), G(t)), (F (p), G(d))} which is a re-

lation from (F,A) to (G,B) and ρ = {(G(e), G(e)), (G(t), G(t)), (G(d), G(d)),

(G(e), G(t)), (G(d), G(t))} which is a soft set relation on (G,B).

Definition 7.3.4 Let R be a soft set relation on (F,A). Then R is said to be

(i) Reflexive if (F (a), F (a)) ∈ R, ∀ a ∈ A;

(ii) Symmetric if (F (a), F (b)) ∈ R imply (F (b), F (a)) ∈ R, a, b ∈ A;

(iii) Transitive if (F (a), F (b)) ∈ R and (F (b), F (c)) ∈ R imply (F (a), F (c)) ∈
R, a, b, c ∈ A;

(iv) Antisymmetric if (F (a), F (b)) ∈ R and (F (b), F (a)) ∈ R imply F (a) =

F (b).
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Definition 7.3.5 A soft set relation R on (F,A), which is reflexive, antisym-

metric and transitive is called partial order relation on (F,A).

A soft set together with a partial order relation is called a partial ordered soft

set or po-soft set. For the soft set (F,A) with order relation ‘�’; we denote

po-soft set as ((F,A),�).

Definition 7.3.6 The Cartesian product of two po-soft sets ((F,A),�1) and

((G,B),�2) is a set which is defined as follows:

(F,A)× (G,B) = {(F (a), G(b)) : F (a) ∈ (F,A), G(b) ∈ (G,B)}.

Proposition 7.3.1 The Cartesian product of two po-soft sets ((F,A),�1) and

((G,B), �2) is a po-soft set under the relation �3 and is defined by

(F (a1), G(b1)) �3 (F (a2), G(b2)) ⇔ F (a1) �1 F (a2) in ((F,A),�1) and

G(b1) �2 G(b2) in ((G,B),�2).

Proof: Reflexivity: (F (a), F (b)) �3(F (a), F (b)), ∀ (F (a), F (b)) ∈ (F,A) ×
(G,B), as F (a) �1 F (a) in (F,A) and G(b) �2 G(b) in G.

Antisymmetry: Assume that the two relations are

(F (a1), G(b1)) �3 (F (a2), G(b2)) and (F (a2), G(b2)) �3 (F (a1), G(b1)). Then

F (a1) �1 F (a2), G(b1) �2 G(b2) and F (a2) �1 F (a1), G(b2) �2 G(b1). This

gives F (a1) = F (a2) andG(b1) = G(b2), hence (F (a1), G(b1)) = (F (a2), G(b2)).

Transitivity: Let (F (a1), G(b1)) �3 (F (a2), G(b2)) and

(F (a2), G(b2)) �3 (F (a3), G(b3)). Then F (a1) �1 F (a2), G(b1) �2 G(b2) and

F (a2) �1 F (a3), G(b2) �2 G(b3). These provide that F (a1) �1 F (a3) and

G(b1) �2 G(b3). Hence (F (a1), G(b1)) �3 (F (a3), G(b3)).

Definition 7.3.7 Let “�” be a partial order relation on (F,A) and F (a), F (b)

∈ (F,A). F (a) and F (b) are said to be comparable in the ordered relation “�”
if F (a) � F (b) or F (b) � F (a). F (a) and F (b) are said to be incomparable if

they are not comparable.

Definition 7.3.8 If ((F,A), �) is a po-soft set in which every two members

are comparable then, it is called a soft chain.
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7.4 Lattice structure of soft sets
In this Section, we study on lattice structure of soft set by considering the

following definitions.

Definition 7.4.1 Let (G,B) be a non-empty subset of ((F,A),�). Then,

(i) An element F (a) ∈ (F,A) is called an upper bound of (G,B) if G(x) �
F (a), ∀ G(x) ∈ (G,B).

(ii) If F (a) is an upper bound of (G,B) such that F (a) � F (b) for all upper

bounds of (G,B) then F (a) is called a least upper bound or supremum of

(G,B). We denote sup(G,B) for supremum of (G,B).

(iii) An element F (a) ∈ (F,A) is called a lower bound of (G,B) if F (a) �
G(x), ∀ G(x) ∈ (G,B).

(iv) If F (a) is a lower bound of (G,B) such that F (b) � F (a) for all lower

bounds F (b) of (G,B); then F (a) is called a greatest lower bound or

infimum of (G,B). We denote inf(G,B) for infimum of (G,B).

Definition 7.4.2 A po-soft set ((F,A),�) is said to be a soft lattice if for

every F (a), F (b) ∈ (F,A), a, b ∈ A; sup{F (a), F (b)} and inf{F (a), F (b)}
exist in (F,A).

We write sup{F (a), F (b)} = F (a) 5 F (b) and inf{F (a), F (b)} = F (a) 4
F (b), where 5 and 4 denote the supremum and infimum between the soft sets

respectively.

Example 7.4.1 Let (F,A) = {F (a), F (b), F (c), F (d)} is a soft set where

F (a) = {u1}, F (b) = {u1, u3, u4}, F (c) = {u1, u2, u4}, F (d) = {u1, u2, u3, u4}
and A = {a, b, c, d}. Then the soft set (F,A) is soft lattice. Here the ordered

relation is set inclusion. Supremum and infimum are ordinary set union and

intersection respectively. The Hasse diagram of this soft lattice is shown in

Figure 7.4.1.
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Figure 7.4.1: The Hasse diagram of Soft Lattice.

{

F (a)

F (c)

F (b)

F (d)

Definition 7.4.3 A soft lattice ((F,A),�,4,5) is said to be a distributive

soft lattice if for F (a), F (b), F (c) ∈ (F,A), then the following equality holds:

F (a)4 (F (b)5 F (c)) = (F (a)4 F (b))5 (F (a)4 F (c)).

Definition 7.4.4 A soft lattice ((F,A),�,5,4) is said to be a modular soft

lattice if for F (a), F (b), F (c) ∈ (F,A) with F (a) � F (b), then the following

equality holds:

F (a)4 (F (b)5 F (c)) = F (b)5 (F (a)4 F (c)).

7.5 Soft set relation
Here, we introduce a soft set relation determined by the parameters of soft set.

Definition 7.5.1 Let (F,A) be a soft set. Let ρ be a relation on A. Soft set

relation Rρ on (F,A) induced by ρ which is defined as aρb ⇒ F (a)RρF (b),

a, b ∈ A.

Example 7.5.1 Let p1, p2, p3 and p4 be the person suffer to the diseases such

as ‘blood sugar’, ‘high blood pressure’, ‘cholesterol’ and ‘uric acid’ respectively.
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Let A be the age of persons i.e., A = {40, 45, 50, 55}. Let a binary relation ρ on

A is defined as ‘aρb’ iff a is less than b, ∀ a, b ∈ A. Then the soft set relation

on (F,A) is given by

Rρ = {(F (40), F (45)), (F (40), F (50)), (F (40), F (55)), (F (45), F (50)),

(F (45), F (55)), (F (50), F (55))}.

Proposition 7.5.1 Let (F,A) be a soft set. If ρ is an equivalence relation on

A, then Rρ is a soft equivalence relation on (F,A).

Proof: Reflexive: ρ is an equivalence relation on A, therefore, (a, a) ∈ ρ, ∀
a ∈ A. This implies that (F (a), F (a)) ∈ Rρ, ∀ F (a) ∈ (F,A).

Symmetric: (a, b) ∈ ρ and (b, a) ∈ ρ, so (F (a), F (b)) ∈ (F,A) and (F (b), F (a)) ∈
(F,A).

Transitive: Let (a, b) ∈ ρ and (b, c) ∈ ρ, a, b, c ∈ A, then (F (a), F (b)) ∈ Rρ and

(F (b), F (c)) ∈ Rρ. Since ρ is an equivalence relation on A, therefore (a, c) ∈ ρ
and this implies that (F (a), F (c)) ∈ Rρ.

Proposition 7.5.2 Let (F,A) be a soft set. If ρ is a soft partial order relation

on A, then Rρ is a partial order relation on (F,A).

Proof: Proof is similar to the proof of Proposition 7.5.1.

7.6 Conclusion
Here, we have newly incorporated the Cartesian product between the two soft

sets. In addition to the above, we have introduced a binary relation on soft set

in different ways and have studied some of its important properties. Also, the

soft set relation has been determined by the parameters of soft set which is a

unique characteristic of this chapter. We have generated the lattice structure

of soft set using soft set relation. Different examples are supplied to show the

effectiveness and usefulness of the proposed study in this chapter.
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Chapter 8

Soft Congruence Relation Over
Lattice∗

In this chapter, we first describe soft congruence relation over a lattice. We

then define the concepts of complete soft congruence relation. Besides this,

the concepts of upper and lower approximations of a subset in a lattice are

depicted based on this soft congruence relation. We then give their related

properties with examples to investigate their characterizations.

A congruence relation over lattice describes two operations. Many researchers

have studied the algebraic structure of rough set such as semi-ring, group, ring

and lattice and have been concentrated on congruence relation. Here we use

soft congruence relation instead of equivalence relation to granulate the uni-

verse. Soft congruence relation may provide a new direction to study algebraic

structure of rough set and soft set over lattice. In this chapter, we describe

the soft binary relation as well as soft congruence relation over lattice. We

obtain some important properties of soft binary relation considering lattice as

a universal set. Moreover, based on the ideas of congruence relation, we define

soft congruence relation on lattice. Beside this, we approximate the subset

of a lattice under soft congruence approximation space, and investigate the

characteristic of ideal of the lattice under this soft congruence approximation

space.

∗A part of this chapter has appeared in Hacettepe Journal of Mathematics and
Statistics, SCIE, IF: 0.277, DOI: 10.15672/HJMS.2017.436
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8.1 Preliminaries
In this section, we present some basic definitions and results of soft set theory

which are the most useful in the sequel. Let U be an initial universe set and

let E be a set of parameters which are usually initial attributes, characteristic,

properties of objects in U. Also let P (U) denote the power set of U and A ⊆ E.

Definition 8.1.1 (60) Union of two soft sets (F,A) and (G,B) over a com-

mon universe U is a soft set (H,C) where C = A ∪ B and ∀ a ∈ C, H is

defined as follows:

H(a) =


F (a), if a ∈ A−B,
G(a), if a ∈ B − A,
F (a) ∪G(a), if a ∈ A ∩B.

We write (H,C) = (F,A) t (G,B) where the symbol “t” stands for union

between two soft sets.

Definition 8.1.2 (2) Intersection of two soft sets (γ,A) and (δ, B) over a

common universe U is a soft set (Y,D) where D = A ∪ B, and ∀ a ∈ D, and

Y is described as follows:

Y (a) =


γ(a), if a ∈ A−B,
δ(a), if a ∈ B − A,
γ(a) ∩ δ(a), if a ∈ A ∩B.

We write (Y,D) = (γ,A)u(δ, B) where the notation “u” stands for intersection
between two soft sets.

Definition 8.1.3 (16) Let (F,A) and (G,B) be two soft sets over U . Then

AND−product of (F,A) and (G,B) is defined as follows:

(H,C) = (F,A) ∧ (G,B)

where C = A×B and H(a, b) = F (a) ∩G(b) for all (a, b) ∈ A×B.
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8.2 Soft congruence relation on lattice
In this section, we introduce the concept of soft congruence relation over lattice

and thereafter we present their related properties. Let us first, we discuss some

basic notions of lattice theory. Suppose that (L,≤) is a partially order set.

For all a, b ∈ L if a ∨ b and a ∧ b exist, then L is called a lattice, where a ∨ b
and a∧ b are supremum and infimum of {a, b} respectively. Let L be a lattice

and A ⊆ L. Then A is called a sublattice of L if a ∈ A; b ∈ A imply a∨ b ∈ A
and a ∧ b ∈ A. A is called an ideal if

(i) a ∈ A and b ∈ A imply a ∨ b ∈ A,

(ii) a ∈ L, b ∈ A imply a ∧ b ∈ A.

Definition 8.2.1 An equivalence relation ρ on a lattice L is called a con-

gruence relation if aρb and cρd hold and imply that (a ∧ c) ρ (b ∧ d) and

(a ∨ c) ρ (b ∨ d) together hold. Since ρ is an equivalence relation on L, then ρ

would partition L in equivalence classes where for any a ∈ L, equivalence class

of a is given as

[a]ρ = {x ∈ L : xρa}.

Definition 8.2.2 (33) Let (ρ,A) be a soft set over L × L, where ρ is a set

valued function defined by ρ : A → P (L × L). Then (ρ,A) is called a soft

binary relation over L.

Definition 8.2.3 Let (ρ,A) be soft binary relation over L. (ρ,A) is called

a soft equivalence relation over L if each ρ(e)[6= φ], e ∈ A is an equivalence

relation on L.

Definition 8.2.4 A soft equivalence relation (ρ,A) over L is called a soft

congruence relation over L if each non null ρ(e), e ∈ A is a congruence relation

on L.
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Example 8.2.1 Let L = {a, b, c, d} be a lattice. The partial order on L is

defined as shown in Figure 8.2.1 and A = {α, β}. Let us consider a set valued

function ρ : A→ P (L× L) which is given by

ρ(α) = {(a, a), (b, b), (c, c), (d, d), (a, c), (c, a), (b, d), (d, b)}

and

ρ(β) = {(a, a), (b, b), (c, c), (d, d), (a, c), (c, a), (b, c), (c, b), (a, b), (b, a), (d, c),
(c, d), (a, d), (d, a), (b, d), (d, b)}

Then (ρ,A) is a soft congruence relation on L.

@
@
@
@
@
@
@@�

�
�
�
�
�
��
@

@
@
@

@
@

@@�
�
�

�
�
�

�� b

d

c

a

F igure 8.2.1 : Lattice.

Proposition 8.2.1 Let (F,A) and (G,B) be soft congruence relations over L.

Then (H,C) = (F,A)t(G,B) is soft congruence relation over L if F (e) ⊆ G(e)

or G(e) ⊆ F (e) for all e ∈ A ∪B.

Proof: From Definition 8.1.1, we know that

H(e) =


F (e), if e ∈ A−B,
G(e), if e ∈ B − A,
F (e) ∪G(e), if e ∈ A ∩B,

for all e ∈ C. Suppose that e ∈ A − B. Then H(e) = F (e). Since F (e) is a

congruence relation on L, H(e) is a congruence relation on L. Suppose that

e ∈ B−A. ThenH(e) = G(e). Since G(e) is a congruence relation on L, H(e) is
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a congruence relation on L. Let e ∈ A∩B. Since F (e) ⊆ G(e) or G(e) ⊆ F (e),

H(e) = F (e) ∪ G(e) = F (e) or H(e) = F (e) ∪ G(e) = G(e). Since F (e) and

G(e) are congruence relations, H(e) is congruence relation. Hence the proof is

completed.

Proposition 8.2.2 Let (F,A) and (G,B) be two soft congruence relations

over L. Then, (H,C) = (F,A) u (G,B) is soft congruence relation over L.

Proof: From Definition 8.1.2, we know that

H(e) =


F (e), if e ∈ A−B,
G(e), if e ∈ B − A,
F (e) ∩G(e), if e ∈ A ∩B

for all e ∈ C. Suppose that e ∈ A − B. Then H(e) = F (e). Since F (e) is a

congruence relation on L, F (e) is a congruence relation on L. Suppose that

e ∈ B − A. Then H(e) = G(e). Since G(e) is a congruence relation on L,

G(e) is a congruence relation on L. Let e ∈ A ∩B, then H(e) = F (e) ∩G(e).

Since intersection of two congruence relations is a congruence relation, H(e)

is a congruence relation over L. Hence (F,A) u (G,B) is congruence relation.

8.3 Approximations under soft congruence rela-
tion

Let (ρ,A) be a soft congruence relation on L. Then each ρ(e), e ∈ A is

a congruence relation over L. Let ψ =
⋂
α∈A ρ(e). Then ψ is a congruence

relation on L. The equivalence class of x ∈ L under this congruence relation

is described as [x]ψ = {y ∈ L : (x, y) ∈ ψ}.

We define the pair (L, ψ) as soft congruence approximation space.

Definition 8.3.1 Let (L, ψ) be a soft congruence approximation space and X

be a non-empty subset of L. Then the lower and upper approximations of X

are defined as:

(i) ψ?(X) = {y ∈ L : [y]ψ ⊆ X},
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(ii) ψ?(X) = {y ∈ L : [y]ψ ∩X 6= φ}.

If ψ?(X) = ψ?(X) then X is called definable otherwise X is called rough.

Example 8.3.1 Considering Example 8.2.1, then

ψ =
⋂
α∈A

ρ(α) = {(a, a), (b, b), (c, c), (d, d), (a, c), (c, a), (b, d), (d, b)}

is a congruence relation on L. The congruence classes are given by {a, c},
{b, d}. Let X = {a, c, d}, then in the soft congruence approximation space

(L, ψ), ψ?(X) = {a, c} and ψ?(X) = {a, b, c, d}. Clearly X is rough.

Definition 8.3.2 Let ψ be a congruence relation on L and S be a non-empty

subset of L. S is called an upper rough ideal (sublattice) of L if ψ?(S) is an

ideal (sublattice). S is called a lower rough ideal (sublattice) if ψ?(S) is an

ideal (sublattice). S is called a rough ideal of L if it is both an upper rough

ideal and a lower rough ideal.

Definition 8.3.3 Let ψ be a congruence relation on L, then ψ is called a

complete congruence relation if [a]ψ ∨ [b]ψ = [a ∨ b]ψ and [a]ψ ∧ [b]ψ = [a ∧ b]ψ
for all a, b ∈ L.

If ψ is a complete soft congruence relation on L, we define the pair (L, ψ) as

complete soft congruence approximation space over L.

Proposition 8.3.1 Let ψ be a soft congruence relation on a non-empty set L.

If A and B are non-empty subsets of L, then

(1) ψ?(A) ⊆ A ⊆ ψ?(A),

(2) ψ?(A ∪B) = ψ?(A) ∪ ψ?(B),

(3) ψ?(A ∩B) = ψ?(A) ∩ ψ?(B),

(4) A ⊆ B ⇒ ψ?(A) ⊆ ψ?(B) and ψ?(A) ⊆ ψ?(B),

(5) ψ?(A ∪B) ⊇ ψ?(A) ∪ ψ?(B),
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(6) ψ?(A ∩B) ⊆ ψ?(A) ∩ ψ?(B),

Proposition 8.3.2 Let L be a lattice and (L, ψ) be a complete soft congruence

approximation space over L. If A is a sublattice of L, then A is an upper rough

sublattice.

Proof: Let a, b ∈ ψ?(A), then [a]ψ ∩ A 6= φ and [b]ψ ∩ A 6= φ, so there exist

x and y such that x ∈ [a]ψ ∩ A and y ∈ [b]ψ ∩ A. So, x, y ∈ A and since A

is a sublattice of L, hence x ∨ y ∈ A. Again x, y ∈ A and ψ is a complete

soft congruence relation on L, therefore x ∨ y ∈ [a]ψ ∨ [b]ψ = [a ∨ b]ψ. Hence
x ∨ y ∈ [a ∨ b]ψ ∩ A, so a ∨ b ∈ ψ?(A). Similarly we can prove a ∧ b ∈ ψ?(A).

So, the proposition is obvious.

Proposition 8.3.3 Let L be a lattice and (L, ψ) be a complete soft congruence

approximation space over L. If A is a sublattice of L, then A is a lower rough

sublattice of L if it is non-empty.

Proof: Let a, b ∈ ψ?(A), then [a]ψ ⊆ A and [b]ψ ⊆ A. But ψ is a complete

soft congruence relation on L, therefore [a]ψ ∨ [b]ψ = [a ∨ b]ψ. Let k be any

element of [a ∨ b]ψ. So there exist x ∈ [a]ψ and y ∈ [b]ψ such that k = x ∨ y.
Now x ∈ [a]ψ ⊆ A and y ∈ [b]ψ ⊆ A, i.e., x, y ∈ A, and since A is a sublattice,

k = x ∨ y ∈ A, that is k ∈ [a ∨ b]ψ imply k ∈ A. So [a ∨ b]ψ ⊆ A . Therefore

a ∨ b ∈ ψ?(A). Similarly we can prove a ∧ b ∈ ψ?(A). Hence the proof is

completed.

Proposition 8.3.4 Let ψ be a congruence relation on a lattice L. If A and B

are ideals of L, then ψ?(A ∩B) = ψ?(A) ∩ ψ?(B).

Proof: Let x ∈ ψ?(A) ∩ ψ?(B). Then [x]ψ ∩ A 6= φ and [x]ψ ∩ B 6= φ.

Then there exist y ∈ A and z ∈ B such that xψy and xψz hold. So we

can write (x ∨ x)ψ(y ∨ z) that is xψ(y ∨ z). Since A and B are ideals of

L, we have y ∧ z ∈ (A ∩ B) and hence [x]ψ ∩ (A ∩ B) 6= φ which implies

x ∈ ψ?(A∩B) that is ψ?(A)∩ψ?(B) ⊆ ψ?(A∩B). Also by Proposition 8.3.1,

ψ?(A ∩B) ⊆ ψ?(A) ∩ ψ?(B). Hence we have ψ?(A ∩B) = ψ?(A) ∩ ψ?(B).
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Proposition 8.3.5 Let ψ be a complete soft congruence relation on a lattice

L. If A is an ideal of L, then A is an upper rough sublattice of L.

Proof: If A is an ideal of L, then A is a sublattice of L and then this propo-

sition follows from the Proposition 8.3.2.

Proposition 8.3.6 Let (F,A) and (G,B) be soft congruence relations over L.

Then (H,C) = (F,A) ∧ (G,B) is soft congruence relation over L.

Proof: Let (a1, b1) and (a2, b2) ∈ H(α, β) for all (α, β) ∈ A × B. Then

(a1, b1) and (a2, b2) ∈ F (α), and (a1, b1) and (a2, b2) ∈ G(β). Since (F,A)

is congruence relation, (a1 ∧ a2, b1 ∧ b2), (a1 ∨ a2, b1 ∨ b2) ∈ F (α). Similarly,

(a1 ∧ a2, b1 ∧ b2), (a1 ∨ a2, b1 ∨ b2) ∈ G(β). Thus, (H,C) is congruence relation

over L.

Proposition 8.3.7 Let {(F,Ai) : i ∈ I} be a non-empty family of soft con-

gruence relation over L. Then,∧
{(F,Ai) : i ∈ I}

is soft congruence relation over L.

8.4 Conclusion
Soft congruence relation is a new kind of soft set relation. In this chapter, we

have established the soft congruence relation over lattice. Several properties

of soft congruence relation have been studied. Approximations of subset of a

lattice have been studied with respect to soft congruence relation. That is the

roughness of a subset of lattices has been discussed using the soft set relation.

We have also discussed the properties of lattice ideal with respect to the soft

congruence relation. In addition to the above, we have concluded that the

concept of the chapter has opened a new platform for algebraic study.
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Chapter 9

Fuzzy Rough Soft Set and Its
Application to Lattice∗

A modified soft rough (MSR) approximation space is constructed on employing

the soft set in the chapter. Approximation of a soft set is considered with

respect to another soft set in an MSR approximation space. Roughness of a

rough soft set is measured under an MSR approximation space and hereby the

concept of fuzzy rough soft set is defined. By defining fuzzy rough soft set in

an MSR approximation space, flavour of theories on soft sets and rough sets

and fuzzy sets are retained altogether. Some properties of fuzzy rough soft set

are derived. Moreover, lattice theory is studied on the fuzzy rough soft set.

9.1 Introduction
At present, uncertainty is an important and interesting topic to the researchers

as it has considered in many situations like engineering, economics, social sci-

ence, computer science, environmental science, medical science etc. Fuzzy set

theory, probability theory, rough set theory and soft set theory are successfully

applied to solve the problem with uncertainties in these areas. The concept of

fuzzy set was introduced by Zadeh (133) applied to solve the problem. Fuzzy

set allows that objects belong to a set or a relation to a given degree ranging

between 0 and 1 i.e., a membership function is needed to define it.

∗A part of this chapter has communicated to the International Journal
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A connection between the soft set and the rough set has been discussed by

Feng et al. (32). They introduced the notion of the soft rough set, where in-

stead of equivalence classes parameterized subsets of a set is employed to find

lower and upper approximations of a subset. But in their discussion, some

cases may be occurred, where upper approximation of a nonempty set may

be empty. Again upper approximation of a subset X may not be contained

in the set X. These situations do not occur in (classical) rough set theory.

To overcome this difficulty, Shabir et al. (107) redefined the soft rough set

model and called Modified Soft Rough (MSR) set whose lower and upper ap-

proximations are different from the (classical) rough set theory and soft set

theory. MSR-sets satisfy all the basic properties of rough sets. Roy and Bera

(101) approximated the soft set in the MSR approximation space and defined

the notion of rough soft set. But in this investigation, an attempt is taken to

connect the rough soft set with the fuzzy set in an MSR approximation space.

In this chapter, we calculate the measure of roughness of rough soft set in a

modified soft rough approximation space and introduce the notion of fuzzy

rough soft set. We also define here absolute fuzzy rough soft set and null fuzzy

rough soft set. We study the properties like subset, union, intersection on

fuzzy rough soft set and provide some examples to analyze the definitions. We

also present some propositions on fuzzy rough soft set. An order relation on

fuzzy rough soft set is also included on fuzzy rough soft set and its application

is discussed through an example with the help of Hasse diagram.

9.2 Preliminaries
In rough set theory, indiscernibility relation, generated by information about

objects of interest are of basic importance. When two objects have the same

value over a certain group of attributes, we say they are indiscernible with

respect to this group of attributes, or have the same description with respect to

the indiscernibility relation. Indiscernibility relation is an equivalence relation.

By this equivalence relation, we form equivalence class and all the equivalence

classes form a partition of the universe, which are the basic building blocks
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of universal set called granules. Any subset of objects of the universe are

approximated by two sets, called the lower and the upper approximations and

can be viewed as the sets of elements which certainly and possibly belong to

the set. Pair of these two approximations is called Rough Set.

Definition 9.2.1 A fuzzy set Ã in X is characterized by a membership func-

tion µÃ(x) which associates with each points in X to a real number in the

interval [0, 1] with the value of µÃ(x) at x representing the grade of member-

ship µÃ(x) of x in A.

A fuzzy set Ã can be written an Ã = {(x, µÃ(x)) : x ∈ X}. According to Zadeh

(133), intersection, union, and complement of fuzzy set are defined componen-

twise as follows:

(µÃ ∩ µB̃)(x) = min{µÃ, µB̃},
(µÃ ∪ µB̃)(x) = max{µÃ, µB̃},
(µÃ)c(x) = 1− µÃ(x),

where µÃ(x) and µB̃(x) are membership functions of two fuzzy sets Ã and B̃

respectively in X and x ∈ X; and (µÃ)c(x) denotes the complement of the

membership function (µÃ)(x).

Definition 9.2.2 (60) A pair S = (F,A) is called a soft set over U, where

F : A→ P (U) denotes a set valued mapping and P (U) is the power set of U.

Definition 9.2.3 (60) Let (G1, B1) and (G2, B2) be two soft sets over U .

Then (G1, B1) AND (G2, B2, ) is denoted by (G1, B1)∧(G2, B2, ) and is defined

by (G1, B1) ∧ (G2, B2) = (H1, A × B), where H1(x, y) = G1(x) ∩ G2(y), ∀
(x, y) ∈ A×B.

Definition 9.2.4 (60) Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets

over U . Then (G1, B1) OR (G2, B2, ) is noted by (G1, B1) ∨ (G2, B2, ) and is

defined by (G1, B1)∨ (G2, B2) = (H2, A×B), where H2(x, y) = G1(x)∪G2(y),

∀ (x, y) ∈ A×B.

Definition 9.2.5 (33) Let (F,A) be a soft set over U and ψ : U → P (A) be

another mapping defined by ψ(x) = {a : x ∈ F (a)}. Then the pair (U, ψ)
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is called the MSR approximation space and for any X ⊆ U , lower MSR-

approximation, Xψ and upper MSR-approximation, Xψ respectively are defined

as follows:

Xψ = {x ∈ U : ψ(x) 6= ψ(y) ∀ y ∈ Xc}, where Xc is the complement of X

i.e., Xc = U −X,

Xψ = {x ∈ U : ψ(x) = ψ(y) for some y ∈ X}.
If Xψ 6= Xψ, then X is said to be a modified soft rough set.

Example 9.2.1 Let U = {p1, p2, p3, p4, p5} be the universal set and a set of

parameters A = {e1, e2, e3, e4}. Let the soft set (F,A) over U is stated in below:

F (e1) = {p1, p2, p4}, F (e2) = {p1, p2, p4, p5}, F (e3) = {p5}, F (e4) = {p2, p3, p5}.
Then from the definition (i.e., Definition 6.2.2) of MSR set ψ : U → P (A) is

constructed as follows:

ψ(p1) = {e1, e2}, ψ(p2) = {e1, e2, e4}, ψ(p3) = {e4}, ψ(p4) = {e1, e2}, ψ(p5) =

{e2, e3, p4}. Let X = {p1, p2, p3}. Then for the MSR approximation space

(U, ψ), we can write

Xψ = {p2, p3} and Xψ = {p1, p2, p3, p4}. Clearly, Xψ 6= Xψ and hence X is

the modified soft rough set.

Definition 9.2.6 (9) Let (F,A) be a soft set over U and (U, ψ) be an MSR-

approximation space with respect to (F,A). Let (G,B) be another soft set over

U . Then (G,B) is said to be rough soft set with respect to the parameter e ∈ B
if G(e)

ψ
6= G(e)ψ. (G,B) is said to be a full rough soft set or a simply rough

one if G(e)
ψ
6= G(e)ψ, ∀ e ∈ B and it is denoted by RsG(eB). Therefore, rough

soft set with respect to the parameter e is given by RsG(e) = (G(e)
ψ
, G(e)ψ).

Example 9.2.2 Consider the universal set U, soft set (F,A) and set valued

function ψ : U → P (A) as given in Example 9.2.1. Let (G,B) be another soft

set over U , where B = {e1, e2}, G(e1) = {p2, p5} and G(e2) = {p1, p3, p5}.
Then the lower MSR approximation and the upper MSR approximation set of

(G,B) in (U, ψ) are G(e1)
ψ

= {p2, p5}, G(e1)ψ = {p2, p5}, G(e2)
ψ

= {p3, p5},
G(e2)ψ = {p1, p3, p4, p5}. Clearly, (G,B) is rough soft set with respect to the

parameter e2.
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Definition 9.2.7 (9) Let (F,A) be a soft set over U and (U, ψ) be an MSR-

approximation space. Let (G,B) be another soft set over U. Measure of rough-

ness of (G,B) with respect to the parameter e ∈ B is denoted by RG(e) and is

defined as follows:

RG(e) =
|G(e)

ψ
|

|G(e)ψ |
.

where |G(e)
ψ
| and |G(e)ψ| denote the cardinality of the sets G(e)

ψ
and G(e)ψ

respectively. Clearly, 0 ≤ RG(e) ≤ 1.

9.3 Fuzzy rough soft set
Here, we discuss for every soft set (G,B) over U there is an associated fuzzy

set. It is known that each soft set (G,B) over U , roughness of (G,B) with

respect to the parameter e ∈ B, in MSR-approximation space is a number

from the interval [0, 1]. Hence, we can define a fuzzy set for every soft set. We

denote the notation (U, ψ) as an MSR approximation space with respect to A

for the soft set (F,A) over U in this chapter.

Definition 9.3.1 Let (G,B) be a soft set over U . Then fuzzy rough soft

set of (G,B) over (U, ψ) is defined as: {(G(e), RG(e)) : G(e) ∈ (G,B)}, where
RG(e) is the roughness of (G,B) with respect to the parameter e ∈ B.

Example 9.3.1 Consider the Example 9.2.2, roughness of (G,B) is given

by RG(e1) = 1 and RG(e2) = 1
2
. Therefore, the fuzzy rough soft set of (G,B) is

given by {(G(e1), 1), (G(e2),
1
2
)}.

Definition 9.3.2 A fuzzy rough soft set (G,B) over (U, ψ) is said to be null

fuzzy rough soft set if RG(e) = 0, ∀ e ∈ B and we use the symbol (Gφ, B).

Definition 9.3.3 A fuzzy rough soft set (G,B) over (U, ψ) is said to be

absolute fuzzy rough soft set if RG(e) = 1, ∀ e ∈ B and we denote it by

(GU , B).
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Example 9.3.2 In Example 9.2.1, let (G,C) be another soft set over U

which is defined as follows:

G(e1) = {p1}, G(e2) = {p4}.
Then in the MSR approximation space (U, ψ), lower and upper MSR approx-

imations of (G,C) are given by G(e1)
ψ

= φ, G(e1)ψ = {p1, p4}, G(e2)
ψ

= φ,

G(e2)ψ = {p1, p4}. Also roughness of (G,C) is given by RG(e1) = 0 and

RG(e2) = 0. So (G,C) is a null fuzzy rough soft set.

If we consider the soft set (G,D) over U defined as G(e1) = {p2, p5} and

G(e2) = {p2, p3, p5}. Then in the MSR approximation space (U, ψ), G(e1)
ψ

=

{p2, p5}, G(e1)ψ = {p2, p5}, G(e2)
ψ

= {p2, p3, p5}, G(e2)ψ = {p2, p3, p5}. Now

RG(e1) = 1 and RG(e2) = 1. Hence (G,D) is an absolute fuzzy rough soft set.

Definition 9.3.4 Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets over

(U, ψ) with membership functions RG1(eB1
) and RG2(eB2

) respectively. (G1, B1)

is said to be fuzzy rough soft subset of (G2, B2) if

(i) B1 ⊆ B2, and

(ii) RG1(e) = RG2(e) ∀ e ∈ B1.

We write (G1, B1) vF (G2, B2), where the symbol ‘vF ’ denotes fuzzy rough

soft subset.

Definition 9.3.5 Two fuzzy rough soft sets, (G1, B1) and (G2, B2) over

(U, ψ) is said to be equal if (G1, B1) vF (G2, B2) and (G2, B2) vF (G1, B1).

Proposition 9.3.1 If (G1, B1) is a soft subset of (G2, B2) then (G1, B1) is

a fuzzy rough soft subset of (G2, B2).

Proof: Let (G1, B1) be soft subset of (G2, B2), then

(i) B1 ⊆ B2, and

(ii) G1(e) = G2(e) ∀ e ∈ B1.

Therefore G1(e)
ψ

= G2(e)
ψ

and G1(e)ψ = G2(e)ψ, ∀ e ∈ B1. This gives

RG1(e) = RG2(e) ∀ e ∈ B1. This completes the proof of the proposition.

Proposition 9.3.2 Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets

over (U, ψ) with membership functions RG(eB1
) and RG(eB2

) respectively. Then
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H(e) = (G1, B1) t (G2, B2), B1 ∩ B2 = φ is a fuzzy rough soft set. The

membership function of fuzzy rough soft set is denoted by RH(e) and is given

as follows:

RH(e) =

{
RG(eB1

), if e ∈ B1 −B2,

RG(eB2
), if e ∈ B2 −B1.

Definition 9.3.6 Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets over

(U, ψ) with membership functions RG1(eB1
) and RG2(eB2

) respectively. Then the

union of (G1, B1) and (G2, B2) is defined as (G1, B1) tF (G2, B2) = (H,C),

where C = B1 ∪ B2; the symbol ‘tF ’ denotes fuzzy rough soft union, and the

membership function is described as follows:

RH(e) =


RG1(eB1

), if e ∈ B1 −B2,

RG2(eB2
), if e ∈ B2 −B1,

max{RG1(e), RG2(e)}, if e ∈ B1 ∩B2.

Definition 9.3.7 Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets over

(U, ψ) with membership functions RG1(eB1
) and RG2(eB2

) respectively. The in-

tersection of (G1, B1) and (G2, B2) is defined as (G1, B1)uF (G2, B2) = (H,C),

where C = B1 ∩ B2; the symbol ‘uF ’ means fuzzy rough soft intersection, and

the membership function is given by RH(e) = min{RG1(e), RG2(e}, e ∈ C.

Definition 9.3.8 Complement of a fuzzy rough soft set (G,B) with member-

ship function RG(eB) is denoted by (Gc, B) and the rough membership function

is given by RGc(eB) = 1−RG(eB).

Definition 9.3.9 Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets

over (U, ψ) with membership functions RG1(eB1
) and RG2(eB2

) respectively. Then

(G1, B1) AND (G2, B2), denoted by (G1, B1)∧F (G2, B2), defined by (G1, B1)∧F
(G2, B2) = (H1, A× B), where H1(x, y) = G1(x) ∩G2(y) and the membership

function is given by

RH1(x,y) = min{RG1(x), RG2(y)}, ∀ (x, y) ∈ A×B.

Definition 9.3.10 Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets

over (U, ψ) with membership functions RG1(eB1
) and RG2(eB2

) respectively. Then
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(G1, B1) OR (G2, B2) is denoted by (G1, B1) ∨F (G2, B2) and is defined as

(G1, B1) ∨F (G2, B2) = (H2, A × B), where H2(x, y) = G1(x) ∪ G2(y) and the

membership function is given by RH2(x,y) = max{RG1(x), RG2(y)}, ∀ (x, y) ∈
A×B.

Proposition 9.3.3 Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets

over (U, ψ) with the membership functions RG1(eB1
) and RG2(eB2

) respectively.

Then

(i) (G1, B1) ∨F (G2, B2) = (G2, B2) ∨F (G1, B1)

(ii) (G1, B1) ∧F (G2, B2) = (G2, B2) ∧F (G1, B1).

Proposition 9.3.4 Let (G1, B1) and (G2, B2) be two fuzzy rough soft sets

over (U, ψ) with the membership functions RG1(eB1
) and RG2(eB2

) respectively.

Then the following results hold:

(i) ((G1, B1) tF (G2, B2))
c= (G1, B1)

c uF (G2, B2)
c

(ii) ((G1, B1) uF (G2, B2))
c= (G1, B1)

c tF (G2, B2)
c.

Proof:

(i) Case 1: Let e ∈ B1 − B2 and RG1(e) = p. Then RG2(e) = 0. Therefore,

R(G1tFG2)c(e) = 1− p. Also

R(G1
c uF G2

c)(e) = min{RG1
c(e), RG2

c(e)}

= min{1− p, 1}

= 1− p.

Case 2: If e ∈ B2 −B1, then the proof can be established in similar way as in

Case 1.

Case 3: Suppose e ∈ B1 ∩B2, then

R(G1
c uF G2

c)(e) = min{RG1
c(e), RG2

c(e)}

= 1−max{RG1(e), RG2(e)}

= R(G1tFG2)c(e).

(ii) Proof is similar to that of proof (i).
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Proposition 9.3.5 For any two fuzzy rough soft sets (G1, B1) and (G2, B2)

over (U, ψ), the following conditions establish.

(i) (G1, B1) tF (G2, B2) = (G2, B2) tF (G1, B1) and

(G1, B1) uF (G2, B2) = (G2, B2) uF (G1, B1).

(ii) (G1, B1) tF (φ,B) = (G1, B1) and (G1, B1) uF (φ,B) = (φ,B2),

where (φ,B) denotes the null fuzzy rough soft set.

(iii) (φ,B) tF (φ,B) = (φ,B), (φ,B) uF (φ,B) = (φ,B).

Now, we define a binary relation ‘�’ on fuzzy rough soft set (G,B) over (U, ψ)

as G(e1) � G(e2) if and only if RG(e1) = RG(e2) for e1, e2 ∈ B.

Clearly, ‘�’ is an equivalence relation on (G,B). We denote equivalence class

of (G(e1), RG(e1)) by the relation ‘�’ as [G(e1)]�.y

y

Figure 9.3.1: Chain of fuzzy rough soft set.

y

(G(d), 1
2
)

(G(e), 3
5
)

(G(t), 1
3
)

Proposition 9.3.6 Every fuzzy rough soft set forms a chain by the order

relation ‘�’.

Proof: Straightforward.

Example 9.3.3 Let U = {p1, p2, p3, p4, p5, p6} be the set of people in a

social gathering. Let the parameter set A described the shirts of three col-

ors namely red, white and blue i.e., A = {r, w, b}, where r, w and b stand

for red, white and blue respectively. Let us consider the soft set (F,A) with

F (r) = {p1, p3, p4}, F (w) = {p1, p2, p4, p5, p6} and F (b) = {p1, p2, p3, p6}.
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Then from definition of MSR set ψ : U → P (A) is constructed as: ψ(p1) =

{r, w, b}, ψ(p2) = {w, b}, ψ(p3) = {r, w}, ψ(p4) = {r, w}, ψ(p5) = {w},
ψ(p6) = {w, b}. Let B = {doctor, teacher, engineer} = {d, t, e}, where d,

t and e denote doctor, teacher and engineer respectively. Let (G,B) be an-

other soft set over U is defined as: G(d) = {p1, p2, p4}, G(t) = {p1, p2},
G(e) = {p1, p3, p5, p6}. Then for the MSR approximation space (U, ψ), we

can write G(d)
ψ

= {p1, p4}, G(d)ψ = {p1, p2, p4, p6}, G(t)
ψ

= {p1}, G(t)ψ =

{p1, p2, p6}, G(e)
ψ

= {p1, p3, p5}, G(e)ψ = {p1, p2, p3, p5, p6}. Therefore, the

fuzzy rough soft set of (G,B) is given by {(G(d), 1
2
), (G(d), 1

3
), (G(d), 3

5
)}. Then

[(G(d), 1
2
)]� = {(G(d), 1

2
)}, [(G(t), 1

3
)]� = {(G(t), 1

3
)}, [(G(e), 3

5
)]� = {(G(e), 3

5
)}.

Clearly, fuzzy rough soft set of (G,B) forms a chain by the order relation ‘�’.
The Hasse diagram for this chain is depicted in Figure 9.3.1.

9.4 Conclusion
Soft set theory, rough set theory and fuzzy set theory have been all treated

as mathematical tools to deal with uncertainty for variety of problems. A

possible hybridization of these theories is an interesting topic to the researchers.

In this study, we have proposed the concept of fuzzy rough soft set in MSR

approximation space which can be viewed as a pair of soft set and its roughness.

We have defined the union and the intersection of fuzzy rough soft set with

several examples. Also we have established important properties of fuzzy rough

soft set.
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Conclusion and Scope of Future
Works

10.1 Conclusion
Lattice and order set have wide fields of applications in computer science, en-

gineering, discrete mathematics, data mining, number theory, group theory

etc. In addition to the above, many applications utilize lattices and ordered

set in fundamental ways. These include such areas as knowledge representa-

tion, text categorization and data mining, where order plays an fundamental

organizing principle. Also, for the application of lattice and ordered set to in-

ductive logic programming, ordered set form basic models. On the other hand

in our complex world, there are many situations occur, where we cannot use

traditional methods to solve problems in economics, engineering, environment,

social science, medical science etc. because of various types of uncertainties

present in these problems. Probability theory, fuzzy set theory, rough set the-

ory, soft set theory are novel mathematical tools to solve real world uncertain

problems approximately. That is why, the study on lattice theory under uncer-

tain environments with the help of rough set, soft set and their hybridizations

i.e., rough soft sets are initiated. We present a general frame work for the

study of approximation in lattice. We have studied the properties of lattice in

an approximation space based on Pawlak’s notion of indiscernibility relation

among the objects in a set. Rough modular lattice and rough distributive
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lattice are defined in Pawlak’s approximation space. In order to study an al-

gebraic connection between soft set and algebraic system like lattice theory

in a soft approximation space. Notions of soft rough lattice are introduced.

In this thesis, rough-ideal and rough-homomorphism are studied in rough set

environments. We have initiated to study rough set and soft set in different

types of approximation spaces. Rough soft set is defined in a modified soft

rough approximation space. We have presented soft set relation in a new way;

and based on this relation we have introduced lattice theory on soft sets. In

this thesis we have presented a hybridization structure between fuzzy set and

rough-soft set and, as a result fuzzy rough soft set is introduced. To enrich

the theoretical development of lattice theory under soft set environment, the

notion of soft congruence relation is introduced. In this study, we have tried

to made a fusion between fuzzy set and rough soft set. Here we have measured

the roughness of rough soft set and introduced the concept of fuzzy rough soft

set in MSR-approximation space. Moreover, lattice theory is studied on the

fuzzy rough soft set. In the whole thesis we have tried to incorporate lattice

theory in uncertain environments.

In this thesis we have studied uncertainty in algebra with the help of rough set,

soft set and soft rough set. We have constructed different approximation spaces

based on Pawlak’s approximation space and then have approximated a subset

of the universal set. In this study, hybrid model combining rough sets with soft

sets, rough soft sets are exploited to extend many practical applications based

on rough sets or soft sets. As a consequence, the output results in each chapter

certainly have been arrested the attention of researchers who are highly hopeful

that this thesis will widely help in and contribute to growth and development

of interest among interested researchers who are involving in such areas.

10.2 Scope of Future Works
There are many directions of future works emerging from this thesis. A few of

them are appended below:
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• The concept of rough modular and rough distributive lattice can be ex-

tended in knowledge representation problems.

• Soft rough ideal and soft rough homomorphism in connection with other

algebra may be designed.

• Researchers may put their attention on soft rough approaches to ring ideal.

• Researchers can apply the hybrid structure (Rough-Soft) in decision making

problem.

• Researchers can formulate soft rough ideal to some applied fields such as

knowledge representation theorems, information system etc.

• The concept of soft rough ideal may be extended to more results on lat-

tices under soft rough environment.

• Researchers can implement rough congruence relation and soft rough con-

gruence relation over lattice.

• Soft congruence relation of soft lattice and fuzzy soft congruence relation

can be designed based on our defining soft congruence relation.

• The researchers can define soft rough lattice newly based on our proposed

soft set relation.

• Researchers may defined fuzzy rough soft relation, congruence relation and

lattice ideal under fuzzy rough soft set, which may be the extended work of

this thesis.

• In this thesis, we have studied lattice theory under uncertain environment
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and the obtained results may be apply in that situation where the information

about the data are imprecise.

• Finally, one can applied lattice theory for practical problems on engineering,

computer science, data mining, decision making problem, knowledge represen-

tation system and other real-life problems under uncertain environment.
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