NEW

2017

BCA

4th Semester Examination OPERATIONS RESEARCH

PAPER-2203

Full Marks: 100

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer any seven questions:

 7×10

3

- (a) Define an extreme point of a convex set, can there
 be any convex set without any extreme point? Prove
 that an extreme point of a convex set is a boundary
 point of the set.
 - (b) Prove that the dual of the dual is primal.

2. (a) Use Charnes M method to solve the following LPP

Maximize $Z = x_1 + 5x_2$

Subject to:
$$3x_1 + 4x_2 \le 6$$

$$x_1 + 3x_2 \ge 3$$

$$x_1 \ge 0, x_2 \ge 0$$

- (b) Prove that the feasible region of LPP is a convex set.
- 3. (a) Explain the term dominance in connection with game theory. Use the property of dominance to reduce the game where pay-off matrix is the following and hence solve the game.

$$\begin{bmatrix} 3 & 5 & 4 & 2 \\ 5 & 6 & 2 & 4 \\ 2 & 1 & 4 & 0 \\ 3 & 3 & 5 & 2 \end{bmatrix}$$

- (b) What is an artificial variable and why it is necessary to introduce in LPP.
- 4. (a) A manufacturer makes red and blue pen. A red pen takes twice as much as time to make a blue pen one. If the manufacturer makes only blue pens, 500 can be made in a day. A red pen sells for Rs. 8 and at most

150 can be sold in a day. A blue pen sells for Rs. 5 and at most 250 can be sold in a day. The manufacturer desires to maximize his revenue. Formulate the manufacturer's problem as a linear programming problem.

(b) Using graphical method to solve the following L.P.P.

Maximize
$$Z = 5x_1 + 3x_2$$

Subject to:
$$2x_1 + 5x_2 \le 10$$
 5
 $5x_1 + 2x_2 \le 10$
 $2x_1 + 3x_2 \ge 6$
 $x_1, x_2 \ge 0$

5. (a) Define following terms:

Slack variable, Surplus variable

2

(b) Solve the following L.P.P. by Simplex method:

Maximize
$$Z = 3x_1 + 2x_2 + 2x_3$$

Subject to:
$$2x_1 - x_2 + 3x_3 \le 18$$

 $x_1 + x_2 + 2x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$

- 6. (a) Write down mathematical formulation of general Transportation problem.
 - (b) Find the initial basic feasible solution of the following balanced T.P. using VAM method:

	D_1	D_2	D_3	D_{4}	\boldsymbol{a}_{i}
$O_{\rm i}$	15	28	13	21	18
O_2	22	15	19	14	14
O_3	16	12	14	31	13
O_4	24	23	15	30	20
\boldsymbol{b}_{j}	16	15	10	24	

- 7. (a) Write down the rules for constructing a network. 3
 - (b) A project consists of eight activities with the following time estimates:

Activity	Immediate	Time (days)		
State Advisor - N	Predecessor	to	t_m	t_p
Α	» ***	1	1	7
В	A	1	4	7
C	_	2	2	8
D	Α	1	1	1
E	В	2	5	14
F	С	2	5	8
G	D, E	3	6	15
Н	F, G	1	2	3

(i) Draw the PERT Network.

- (ii) Find the expected time for each activity.
- (iii) Determine critical path.
- 8. (a) Define sequencing problem with its underlying assumptions.
 - (b) Find the optimal assignments for the assignment problem with the following cost matrix: 7

	M_1	M_2	M_3	M_4	M_5
J_1	3	8	2	10	3
J_2	8	7	.2	9	7
J_3	6	4	2	7	5
J_4	8	4	2	3	5
J_5	9	10	6	9	10

- 9. (a) Write down advantages of Two-phase method in compare to Big-M method.
 - (b) Solve the following L.P.P. by Two-phase method:

$$Maximize Z = 2x_1 + 3x_2$$

Subject to:
$$2x_1 + x_2 \ge 1$$

$$x_1 + 2x_2 \ge 1$$

$$x_1, x_2 \ge 0.$$

10. (a) Define following terms (any five):

. 5

- (i) Strategy;
- (ii) Pure strategy;
- (iii) Mixed strategy;
- (iv) Pay off matrix;
- (v) Maximum criterion;
- (vi) Minimum criterion;
- (vii) Saddle point;
- (viii) Value of the game;
 - (ix) Zero-sum game.
- (b) Determine the solution of the following game:

Player B

Player
$$A$$
 A_1 $\begin{bmatrix} 3 & 1 \\ A_2 & \begin{bmatrix} 2 & 4 \end{bmatrix} \end{bmatrix}$

5

[Internal Assessment — 30]