M.Sc. 1st Semester Examination, 2014

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Graph Theory)

PAPER-MTM-106

Unit - I

Full Marks: 25

Time: 1 hour

The figures in the right-hand margin indicate marks

1.	Answer any <i>two</i> questions: 2×2		2
	(a) Determine the values of m and n such that $K_{m,n}$ is Eulerian.		2
	(b)	Give an example of a non-plannar graph which satisfies the Euler's formula for planner graph.	2
	(c)	Define the terms " radius" and "diameter" of a connected graph.	2

Turn Over

2. Answer any four questions:

 4×4

- (a) Show that any connected cycle free graph with n vertice has (n-1) edges.
- (b) Define binary tree. How many cut vertices a binary tree with n vertice may have? Justify your answer. 1+3
- (c) Are the following graphs isomorphic. Justify your answer.

- (d) Determine whether k_4 contains the following: 1+1+1+1
 - (i) A walk that is not a trail.
 - (ii) A trail that is not a closed path.

- (iii) A closed trail that is not a cycle.
- (iv) A path that is cycle.
- (e) What do you mean by the term "Chromatic polynomial" of a graph. Show that chromatic polynomial of a tree with n vertice is

$$P_n(\lambda) = \lambda(\lambda - 1)^{n-1}$$
 1+3

(f) Define planar graph. Show that any simple planar graph has at least a vertex of degree 5 or less. 1+3

[Internal Assessment: 05 Marks]