2018

CHEMISTRY

[Honours]

PAPER - IV

Full Marks: 45

Time: 2 hours

The figures in the right hand margin indicate marks

[NEW SYLLABUS]

GROUP - A

Answer any one questions:

 15×1

1. (a) Show that wave function

$$\psi_1 = \sin \frac{\pi x}{a}$$
, and $\psi_2 = \cos \frac{\pi x}{a}$

are orthogonal in the interval 0 < x < a.

(Turn Over)

(b) A beam of X-ray is scattered by 45° from the beam of direction, the scattered X-ray has a wavelength 2.2 pm. What is the wavelength of X-ray in the direction of beam?

(c) Define chemical potential of a substance in a mixture. Show that

$$\left(\frac{\partial \mu i}{\partial p}\right)_{T,nj} = \overline{V}_i.$$
 1+2

(d) At 25°C the specific conductance of a saturated solution of AgBr after substracting that of water is 1·174 × 10⁻⁷ ohm⁻¹ cm⁻¹. The ionic mobilities of Ag⁺ and Br⁻ are 6.4 × 10⁻⁴ and 8.1 × 10⁻⁴ cm² sec⁻¹ volt⁻¹. Calculate solubility product of AgBr at 25°C.

(e) Derive the expression of liquid junction potential for the following concentration cell with transference

$$Ag(s)|AgCl(s)|ZnCl2(a1)|ZnCl2(a2)|AgCl(s)|Ag(s)$$

$$(a1 > a2).$$
4

UG/II/CHEM/H/IV/18(New)

(Continued)

2. (a) Find the commutator $[\hat{A}, \hat{B}]$ where

$$\hat{A} = \left(\frac{d}{dx} + x\right) \text{ and } \hat{B} = \left(\frac{d}{dx} - x\right).$$
 3

- (b) A sample is either glucose or sucrose. How will you confirm the sample by osmotic pressure measurement?
- (c) Give example of a chemical cell with one electrolyte. Write the cell reaction and the expression of e.m.f of the cell. 1+1+1
- (d) ΔG° value of a reaction is positive. Can the reaction be spontaneous? Comment. 2
- (e) At 700 K, for the gaseous reaction $H_2(g) + I_2(g) = 2 HI(g)$, equilibrium constant K = 55. If in a container 5 moles of HI, 2 moles of H_2 and 1 mole of I_2 are taken at 700 K, in which direction the reaction will occur and what will be the equilibrium composition?

3

GROUP - B

Answer any two questions from the following :10 \times 2

- 3. (a) Derive the Gibbs Duhem relation $\sum nid\mu i = 0.$ 3
 - (b) Define cryoscopic constant of a solvent. Find its value for H_2O . 1+1
 - (c) Calculate the freezing temperature of water if the pressure be increased by 1 atm., given $l_f = 80$ cal gm⁻¹

$$\rho_{ice} = 0.9163 \text{ gm/c.c.}$$

$$P_{H_2O(t)} = 0.9998 \text{ gm/c.c at } 0^{\circ}\text{C.}$$

- (d) What is the S.I. unit of specific conductance and molar conductance?
- 4. (a) Discuss the effect of addition of an inert gas to the equilibrium of the following reaction.

$$3H_2 + N_2 \rightleftharpoons 2NH_3$$

3

13 N	(b)	Show that $\frac{d^2}{dx^2}$ is a Hermitian operator.	3
20	(c)	Calculate pH of 10^{-8} (N) NaOH solution at 25°C.	3
	(d)	Give example of an electrode concentration cell.	1
5.	(a)	Draw and explain conductometric titration curve of AgNO ₃ solution by HCl.	2
	(b)	Why resistance instead of conductance is not plotted against volume of titre added during conductometric titration?	2
	(c)	Define isotonic solution. The osmotic pressure of a sample of blood is 7 atm at 37°C. Find the percentage strength of the sodium chloride solution that is isotonic with the blood at this temperature.	+ 3
2	(<i>d</i>)	If ΔL is the uncertaity in the angular momentum of a particle and $\Delta \theta$ is the uncertainty in angular position, show that	-
		$\Delta L \cdot \Delta \theta \geq \hbar/2$.	2

6.	(a)	Define abnormal transport number with an	
19	2.5	example.	2
	(b)	With the help of vapour pressure vs. temperature plot explain the reasons of depression of freezing point of a solution.	•
	(c)	Derive the expression for pH range of an acid base indicator.	
E .	(d)	At what minimum value of pH a ppt. of $Mg(OH)_2$ form in a $0.001(M)$ solution of $Mg(NO_3)_2$? Ksp of $Mg(OH)_2$ at experimental temperature = 6×10^{-12} .	. 3
		GROUP - C	
7.	Ans	wer any five questions: 2>	< 5
	(a)	Solubility of AgCl in 0.1 (M) KNO ₃ solution is higher than that of water. Explain.	
	(b)	Calculate the entropy of mixing if 6gm H ₂ gas is mixed with 8 gm He gas at 27°C.	

- (c) Show that $\psi(x) = \exp(i\hbar x)$ is an eigenfunction of the x component linear momentum operator p_x . What is its eigenvalue?
- (d) Quinhydrone electrode cannot be used above pH 8. Explain the statement.
- (e) For the reaction $SO_2(g) + {}_1O_2(g) \rightleftharpoons SO_3(g)$ $K_p = 1.7 \times 10^{12} \text{ at} \overline{2}00^{\circ}\text{C}$. Calculate K_p for $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ at same temperature.
- (f) Represent the cell where following reaction will occur

$$2FeCl_3 + SnCl_2 = 2FeCl_2 + SnCl_4$$

What is the standard e.m.f of the cell at 25°C?

At 25°C
$$E^{\circ}_{Sn^{4+}/Sn^{2+}} = 0.15V$$

 $E^{\circ}_{Fe^{4+}/Fe^{2+}} = 0.77V$

- (g) Define Vant Hoff's factor. How it is related with degree of association?
- (h) Ammonium acetate solution acts as buffer. Explain.