Total Pages-15 UG/III/CHEM/H/VI/18 (New)

2018

CHEMISTRY

[Honours]

PAPER - VI

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Use separate scripts for Group - A and Group - B

[NEW SYLLABUS]

GROUP - A

(Organic)

Group - A(a)

Answer any one question:

 15×1

1. (a) What is latent polarity? "Convergent strategy of synthesis is more ideal than linear strategy" — Explain. 1+2

(Turn Over)

- (b) Draw the conformation you predict to be the most stable for 1+1
 - (i) β-D-Allopyranose
 - (ii) β-L-glucopyranose.
- (c) Acetyl acetone shows λmax value in water
 at 274 nm (t, 2000) and in isooctane at –
 272 nm (t, 12000). Explain the observation.
- (d) Give the steps of the reaction of coumarin with 2-mol of the Grignard Reagent (Ph Mg Br), followed by heating with H₂SO₄. 2
- (e) Predict the product(s) in each case and explain the difference: 2

$$\begin{array}{c|c}
\hline
 & i) & Ph Mg Br \\
\hline
 & ii) & Ph - CH_2 - CI
\end{array}$$

$$A + B ; \qquad \qquad ii) & K \\
\hline
 & ii) & Ph - CH_2 - CI$$

- (f) How can lysine (PI = 9.6) be separated from glycine (PI = 5.97) by electrophoresis? 2
- (g) Write the role of m-RNA and t-RNA in protein synthesis.

2.	(a)	"Broad signals are often observed in ¹ H-NMR spectra associated with — OH and — NH ₂ resonances" — Explain.	
	(b)	What is the finger print region in the IR spectrum of organic compound? Why is it so called?	
į	(c)	Synthesize alanylglycine Me-ester using DCC.	3
	(d)	How can the sequence -	
		Sugar $\xrightarrow{1. \text{HIO}_4}$ $\xrightarrow{2. \text{aq Br}_2}$ $\xrightarrow{\text{H}_3\text{O}^+}$	22
40		Show if a methylglucoside has a pyranose or furanose ring?	3
	(e)	How do epimers and anomers differ?	1
v	(f) (CH ₂) ₄	$(COOH)_2 \xrightarrow{\text{I. SOCI}_2(\text{leq})} A \xrightarrow{Br_2} B \xrightarrow{\text{Red P}} C \xrightarrow{\Delta}$	•D
		Find out the structure of $A \rightarrow D$.	2
		The O – H stretching frequency is 3600 cm ⁻¹ . Calculate the O – D stretching frequency?	2

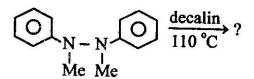
(Turn Over)

UG/III/CHEM/H/VI/18 (New)

Group - A(b)

Answer	any two	questions:	10 ×

- 3. (a) Toluene can be oxidised to benzal dehyde or benzoic acid. How it can be confirmed that oxidation produces benzoic acid not benzaldehyde by H¹-NMR spectroscopy?
 - (b) "RNA is hydrolyzed 3-billion times faster than DNA" in alkaline medium" Explain. 2
 - (c) Write the retrosynthetic path of 2, 4, 6-Tribromobenzoic acid using FGA and FGI strategy with out disturbing — COOH group. Also write the forward synthetic route from benzoic acid. $1\frac{1}{2}+1\frac{1}{2}$
 - (d) Show that [H₂S + H₂S] cycloaddition is photochemically allowed by FMO approach. 3
- 4. (a) Guanosine is hydrolysed more rapidly than adenosine in acid medium Explain with proper reason.


(b) Find out the structure of A, B & C: 1+1+1

$$\underbrace{Me_2NCHO}_{POCl_3, \Delta} A \xrightarrow{NaBH_4} B \xrightarrow{Me_2NH_2Cl} C$$

(c) Predict the product (X) with proper stereochemistry and explain.

$$\bigcirc \bigcap_{Ph} + \bigcup_{O} \xrightarrow{\Delta} X$$

- (d) How the use of TMSCl can solve the problems in ring synthesis through acyloin condensation?
- (a) Write the structure of the compound C₅H₁₁Cl which shows two singlets in it's ¹H-NMR spectrum with reasons.
 - (b) Draw the structure of Uridylic acid. 2
 - (c) Predict the product(s) with mechanism: 2

(d) Write the retrosynthetic route and forward synthetic path of the following two compounds taking the following Labelled cyclopentenone as one of the starting material:

2+2

- 6. (a) Write down the steps involved with mechanism in Skraup Quinoline synthesis starting from aniline and acrolein.
 - (b) Distinguish the following molecule by UV spectroscopy:

2

(c) An organic compound shows following spectral data:

Man: 130; IR: 3082, 2862, 1825, 1755, 1455 cm⁻¹ ¹H-NMR: δ 1·30 (t, j = 7·1 Hz) and 2·20 (q, j = 7·1 Hz and ratio of peak areas = 3: 2. Establish the structure of the compound with proper explanation.

(d) How would you accomplish the following conversion and explain:

Group
$$-A(c)$$

- 7. Answer any five questions:
 - (a) Between thiophene and furan, which one

UG/III/CHEM/H/VI/18 (New)

(Turn Over)

 2×5

4

is better diene in Diels-Alder reaction and why?

- (b) Sketch the ¹H-NMR spectrum with integration showing relative chemical shift of isomeric dibromo ethanes.
- (c) Write three synthetic equivalent of acyl (-COCH₃) group.
- (d) How would you distinguish between Methylacrylate and vinylacelate by IR spectroscopy?
- (e) How can you carry out the following transformation?

$$\bigoplus_{H}^{H} \longrightarrow \bigoplus_{H}^{H}$$

- (f) What is isoelectric point? Write the significance of it.
- (g) What is end absorption? Why is it so called?

- (h) Predict the product (A). $\bigcap_{i} \frac{i) \operatorname{Na}(r,t)}{ii) \operatorname{H}_3O^+} A.$ iii) O_2
- (i) Fructose can not give positive Tollen's TestCritisize or justify.
- (j) What is vaccum UV? Why it is so called?

GROUP - B

(Inorganic)

Group - B (a)

Answer any one question:

 15×1

- 8. (a) What do you understand by notation Δ (delta) and Λ (lambda) for chiral complexes?
 - (b) Which metal ion is present in carbonic anhydrase enzyme? Emunerate the anhydrase activity of this enzyme.
 - (c) Draw the synergic bonding in metal carbonyls.

(d)	Comment on the following CO stretching	
	frequencies:	3
	$Ni(CO)_4$ $Co(CO)_4$ $Fe(CO)_4^{2-}$	
	$2037 \text{ cm}^{-1} 1918 \text{ cm}^{-1} 1788 \text{ cm}^{-1}$	
(e)	Chromium acetate monohydrate is practically diamagnetic. although Cr (II) is a d ⁴ -system. Explain.	2
(1)	How is Ferroune Synthesized?	
()	How is retroune by nates 200.	
(g)	Give an example of a masking agent in complexometric titration.	IN .
(a)	Sketch a catalytic cycle for the hydro-	

(b) Find the expression for CFSE for d⁵ and d⁶ ions in weak and strong octahedral fields in terms fo Dq and pairing energy.
 2+2

organometallic catalyst indicating steps where insertion and oxidative addition

reactions occur.

9.

(<i>c</i>)	Na ₂ [Fe(CN) ₅ NO].	2
(d)	Draw the structures of the two isomers of Co ₂ (CO) ₈ . How can they be distinguished by IR spectroscopy? 2+	2
(e)	What is 'Lanthanide contraction'?	1
i	Group - B (b)	
	Answer any two questions: 10 x	2
10. (a)	Using Orgel diagram assign the spectral transitions of $[Ni(en)_3]^{2+}$ showing broad absorptions with $\lambda_{max} \approx 325,550$ and 900 nm. Which bands are in the visible region? $3 +$	1
(b)	[Co(H ₂ O) ₆]Cl ₂ is pale pink but turns into deep blue when concentrated HCl is added in excess – why?	2
(c)	$[NiCl_4]^{2^-}$ is paramagnetic while $[Ni(CN)_4]^{2^-}$ is diamagnetic — Explain.	2
(d)	Draw all the possible isomeric structures for $[M(en)_2Cl_2]^+en$ = ethylenediamine.	2
UG/III/CHE	M/H/VI/18 (New) (Turn Over)

- 11. (a) How does nature protect Fe (II) in hemoglobin from its irreversible oxidation in presence of O₂? What do you mean by cooperative interaction in O₂ affinity of hemoglobin? 2+1
 - (b) What is 'linkage isomerism'? Discuss different coordination modes in [Pt(SCN)₂ (NH₃)₂] and [Pt(NCS)₂ (PR₃)₂].
 - (c) Discuss the isolation of Au from its principal ore. Write chemical reactions.
 - (d) Explain why V(CO)₆ is readily reduced to the monoanion.
- 12. (a) Calculate a value for μ_{eff} for [Ni(en)₃]²⁺ taking into account spin-orbit coupling. Compare your answer with μ(spin-only) and the value of 3·16 μ_B observed experimentally for [Ni(en)₃] [SO₄].

$$\Delta_{\text{oct}} = 11500 \text{ cm}^{-1}$$
 $\lambda = -315 \text{ cm}^{-1}$

2 + 1

- (b) What is BOD₅ (five days biochemical oxygen demand)? If the BOD₅ for some waste water is 200 mg/L, and the ultimate BOD is 300 mg/L, find the reaction rate constants k (base e) and k (base 10). 1+2
- (c) Explain the principle of chelation therapy with reference to the removal of arsenic.
- (d) Low oxidation state organometallic complex tend to obey the 18-electron rule. Justify with example.
- 13. (a) NO as a 3 electron donor shows IR spectra of γ (NO) in the range 1650-1900 cm⁻¹ whereas NO as 1 electron donor show γ (NO) in the range 1525-1690 cm⁻¹. Comment on the bonding mode of NO.
 - (b) A Td complex of Co(II) gives three absorption bands with extinction coefficients about 20 dm³ mol⁻¹ cm⁻¹ in the visible range. The lowest energy band is at 6000 cm⁻¹. Predict the energies of the other two bands. Given free ion value of B (Racah parameter) for Co (II) is 971 cm⁻¹.

- (c) Suggest why Co₃O₄ adopts a normal rather than inverse spinel structure. 2
- (d) Show that Rh in [(CO)₂Rh (μ-Cl)₂Rh (CO)₂] does not obeys 18-electron rules.

Group - B(c)

14. Answer any five questions:

 2×5

- (a) Determine the term symbol for the ground state of Ho³⁺.
- (b) Bands arising from f-f transitions are sharp having low intensities.
- (c) Account for the observation that the color of trans-[Co(en)₂F₂]⁺ is less intense than that of cis [Co(en)₂F₂]⁺.
- (d) COD is sometimes used as a way to estimate the ultimate BOD. Comment.
- (e) Name two Zn(II)-containing enzymes.
- (f) What do you mean by masking agent? Give an example.

- (g) What is nitrogenase? What is its biological function?
- (h) 'Octahedral' Cu(II) complexes are often described as having a (4+2) coordination pattern. Suggest the origin of this description.
- (i) Do you expect Zn^{2+} to form stable, octahedral complexes with π -acceptor ligands? Give reasons for your answer.