Total Pages-9 UG/III/MATH/H/VIII/18(New)

2018

MATHEMATICS

[Honours]

PAPER - VIII

Full Marks: 60

Time: 3 hours

The figures in the right hand margin indicate marks

[NEW SYLLABUS]

GROUP-A

(Numerical Analysis)

[Marks: 25]

1. Answer any two questions:

 8×2

(a) Derive the Newton Cote's formula (closed type) for n sub-intervals to determine the value of $\int_a^b f(x)dx$. Hence deduce the

formula for n = 2. Find the degree of the polynomial for which Simpson's 1/3 rule gives exact value. 4+2+2

- (b) (i) Define divided difference upto third order. Show that these differences are independent of the order of the arguments in which they appear.
 - (ii) Describe the Regula-Falsi method for computing a simple real root of an equation f(x) = 0 and give its geometrical interpretation.
- (c) (i) A function f(x) defined in [0, 1] in such a way that f(0) = 0, $f\left(\frac{1}{2}\right) = -1$, and f(1) = 0. Find the interpolating polynomial p(x) approximating f(x). If $\left|\frac{d^3 f}{dx^3}\right| \le 1$ for $0 \le x \le 1$, show that $|f(x) p(x)| \le \frac{1}{2}$.

4

4

- (ii) What types of methods are available in numerical analysis to get the solution of a system of linear algebraic equations? State the condition for convergence of Gauss-Seidal method for numerical solution of a system of linear equations.
- 2. Answer any three questions:

 3×3

4

- (a) Explain loss of significant digit in numerical computation and give an example where this relation holds $(a + b) + c \neq a + (b + c)$ in numerical computations. 2 + 1
- (b) Deduce the formula

$$\frac{d^r}{dx^r}f[x,x,...r \text{ times } x] = rf[x,x,...(r+1)\text{times } x]$$

and
$$\frac{d}{dx} f[x] = r! f[x, x, ...(r+1) \text{ times } x],$$

where the symbols have their usual meanings. 3

(c) Prove that the Lagrange's formulae can be

put in the form
$$P_n(x) = \sum_{r=1}^n \frac{\phi(x)f(x_r)}{(x-x_r)\phi'(x_r)}$$

where $\phi(x) = \prod_{r=0}^n (x-x_r)$.

- (d) Find the condition of convergence of the method of fixed point iteration for the numerical solution of an equation f(x) = 0.
- (e) Write down the quadratic polynomial which takes the same value as f(x) at x = -1, 0, 1 and integrate it to obtain the integration rule

$$\int_{-1}^{1} f(x)dx \cong \frac{1}{3}f(-1) + 4f(0) + f(1)$$
 3

GROUP-B

(Real Analysis - III)

[Marks: 25]

3. Answer any one question:

 15×1

(a) (i) If a sequence of functions $\{f_n\}_n$ converges

uniformly on [a, b] to a function f and if $c \in [a, b]$ such that

$$\lim_{x \to c} f_n(x) = a_n \quad (n \in N) \quad \text{show that}$$

- (1) $\{a_n\}_n$ converges
- (II) $\lim_{x\to c} f(x)$ exists

and (III)
$$\lim_{x\to c} \lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \lim_{x\to c} f_n(x)$$

 $2+2+2$

(ii) Let
$$\{f_n(x)\}=\frac{a^2}{a^2+n^2x^2}$$
, $a \ne 0$.
Show that $\{f_n(x)\}$ is uniformly convergent in $[A, B]$ where $0 \le A \le B$ but not uniformly convergent in $[-1, 1]$.

(iii) Let I = [a, b] be a closed bounded interval and for each $n \in N$, $f_n : I \to \mathbb{R}$ be integrable on I to the function g then, prove that g is integrable on I and

$$\sum \int_a^b f_n(x) dx = \int_a^b g(x) dx.$$
 6

(b) (i) State and prove the Weierstrass M-test in connection with the uniform convergence of an infinite series of real-valued functions. Use this test to

prove that the series $\sum_{n=1}^{\infty} \frac{(n+1)^3}{3^n \cdot n^5} x^n$ is uniformly convergent on [-3, 3]. 1+3+3

- (ii) Show that the series of functions $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ is uniformly convergent for real values of x.
- (iii) State Dirichlet's condition for Fourier series.
- 4. Answer any one question:

 8×1

3

(a) (i) Find the Fourier series of the periodic function f(x) with period 2π , defined as:

$$f(x) = \begin{cases} -2 & \text{for } -\pi \le x < 0 \\ 2 & \text{for } 0 \le x < \pi \end{cases}$$

(ii) Find radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{n!(x+2)^n}{n^n}.$$

(b) (i) Show that

$$\sum_{n=1}^{\infty} \frac{x}{\{1+(n-1)x\}(1+nx)}$$

is uniformly convergent on any finite interval [a, b], where 0 < a < b.

(ii) If f is bounded and integrable on $[-\pi, \pi]$ and if

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, (n = 0, 1, 2,)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, (n = 0, 1, 2,)$$

Then prove that the series

$$\sum_{n=1}^{\infty} (a_n^2 + b_n^2) \text{ converges.}$$
 4

5. Answer any one question:

 2×1

- (a) If f(x) be the sum function of the power series $\sum_{n=0}^{\infty} a_n x^n$ on (-R, R) for some R > 0 and if f(x) = -f(-x) for all $X \in (-R, R)$, prove that $x_n = 0$ for all even n.
- (b) Show that if a sequence of functions $\{f_n(x)\}$ is uniformly convergent on [a, b] then it is pointwise convergence on [a, b].

GROUP-C

(Linear Algebra)

[Marks: 10]

6. Answer any one question:

 8×1

5

(a) (i) Prove that a linear transformation $L: V \to W$ is non-singular if and only if the set $\{Lx_1, Lx_2 \dots Lx_n\}$ is a basis of W whenever the set $\{x_1, x_2 \dots x_n\}$ is a basis of V.

- (ii) The matrix $m(\mathring{T})$ of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ relative to the ordered bases ((0, 1, 1), (1, 0, 1), (1, 1, 0)) of \mathbb{R}^3 and ((1, 0), (1, 1)) of \mathbb{R}^2 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$. Find T.
- (b) When a linear transformation is said to be invertible? If a linear transformation is invertible then prove that the inverse transformation is also linear. Let a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by T(x, y, z) = (x y, x + 2y, y + 3z), $(x, y, z) \in \mathbb{R}^3$. Show that T is invertible and determine its inverse T^{-1} . 1+3+4
- 7. Answer any one question:

 2×1

3

- (a) Let V and W be vector spaces over a field F. Let $T: V \rightarrow W$ be a linear mapping. Then prove that Ker T is a subspace of V.
- (b) Define Nullity and Rank of a linear mapping.
 Give example.