M.Sc. 1st Semester Examination, 2014

CHEMISTRY

PAPER - CEM-101

Full Marks: 40

Time: 2 hours

Answer five questions taking one question from each Group

The figures in the right-hand margin indicate marks

GROUP - A

1. (a) Find the constrained maxima of the function, $f(x) = e^{-x^2-y^2}$ subject to the condition, x + y = 1.

(b) Write the appropriate functional dependence of 'H' and 'S' and complete the following equation: $2\frac{1}{2} \times 2$

(i)
$$\left(\frac{\partial H}{\partial T}\right)_{p,n} = \left(\frac{\partial H}{\partial T}\right)_{p,n} + ?$$

(Turn Over)

(ii)
$$\left(\frac{\partial S}{\partial T}\right)_{u,v} = \left(\frac{\partial S}{\partial T}\right)_{u,v} + ?$$

2. (a) How do you determine the convergence or divergence of an infinite series using ratio test? Use ratio test to justify whether the following series converges or diverges:

$$\frac{1}{2} + \frac{2^2}{2^2} + \frac{3^2}{2^3} + \frac{4^2}{2^4} + \frac{5^2}{2^5} + \dots \qquad 2+2$$

- (b) Expand the function e^x in the power of x + 2.
- (c) Write down the Fourier series for the function f(x) [odd function] in the interval
 -1 to +1.

GROUP - B

- 3. (a) What is meant by Hermitian operator?
 - (b) State and prove Turn over rule. 6
- **4.** Derive $\hat{L} \times \hat{L}$ and comment on the result. 6+2

(Continued)

GROUP -UC 15

- 5. (a) What is the utility of partial molar quantity in thermodynamics?
 - (b) What do you mean by fugacity of a gas?

 Discuss how this is measured by measuring the compressibility factor of the gas. 1+3
 - (c) "In a binary system, the greatest decrease in Gibb's free energy on mixing occurs having equal number of moles of two components."
 Justify the statement.
- 6. Starting from Maxwell expression for number of molecules having the velocity component lying between u and (u + du), v and (v + dv), w and (w + dw) deduce the number of molecules having velocities lying between c and (c + dc).

GROUP - D

7. (a) The linearised Poisson-Boltzmann equation, considering Debye-Hückel ionic atmosphere theory for Very drute solution is:

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\psi_r}{dr} \right) = \left(\frac{4\pi}{\epsilon KT} \sum_{i} n_i^0 z_i^2 e_0^2 \right) \psi_r$$

where symbols have their usual significances. Find the expression of ψ_r .

(b) Why

$$\left(\frac{4\pi}{\epsilon KT}\sum_{i}n_{i}^{0}z_{i}^{2}e_{0}^{2}\right)^{-1/2}$$

is called the effective thickness of ionic atmosphere in Debye Hückel theory?

- 8. (a) Derive an expression of Gibbs energy of ionic solvation using Born model.
 - (b) Estimate the transfer Gibbs energy of Cl (radius: 181 pm) from water ($\epsilon = 78.54$) to ethanol ($\epsilon = 24.30$) at 298 K by Born model. Given electronic charge, $e_0 = 4.802 \times 10^{140}$ csu.

GROUP - E

9. (a) How do you classify the molecules according to their moment of inertia along the three perpendicular directions? Justify the class of benzene according to your classification. 2 + 2

(Continued)

5

3

- (b) Justify or criticize the following statements: 2×2
 - (i) Rotational lines of a non-rigid rotator are equispaced.
 - (ii) It is possible to obtain the vibrational frequency from the rotational spectral data of a non-rigid rotator.
- 10. (a) Deduce the expression of dissociation energy of an Anharmonic Oscillator. State the consequence of anharmonicity to a diatomic oscillator. 3+2
 - (b) Write down the energy expression of a diatomic vibrator. Show that the P and R branch lines are equispaced. (Assume there is no coupling between the rotational and vibrational motion of the molecule).