M.COM. 2nd Semester Examination, 2013 ADVANCED BUSINESS STATISTICS

PAPER-COM - 203

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

UNIT - I

1. Answer any two questions:

5 × 2°

- (a) Define a uniform distribution. Why is this distribution so called ? Illustrate your answer with graphs.
- (b) A life insurance company insures the lives of 5000 persons aged 45. If studies show the

(Turn Over)

probability that any 45-years old person will die in a given year to be 0.001, find the probability that the company will have to pay at least two claims during a given year.

- (c) Write a short note on purposive sampling. When would you prefer this sampling design to other sampling designs?
- (d) A multiple -choice test contains 8 questions with 3 answers to each question (of which only one is correct). A student answers each question by rolling a balanced dice and he ticks the first answer if he gets 1 or 2, the second answer if he gets 3 or 4, and the third answer if he gets 5 or 6. To get a star marks, the student must secure at least 75 percent correct answers. If there is no negative marking, what is the probability that the student secures a star marks?
- Answer any one question :

 10×1

(a) (A) Suppose 10 percent of new scooters

will require warranty service within the first month of its sales. A scooter manufacturing company sells 1000 scooters in a month.

- (i) Find the mean and standard deviation of scooters that require warranty service.
- (ii) Calculate the skewness and kurtosis of the distributions.
- (B) The income of a group of 10,000 persons was found to be normally distributed with mean Rs. 1,750 p.m. and standard deviation Rs 50.
 - (i) Find out the expected number of persons getting more than Rs 1,832 p.m.
 - (ii) What was the lowest income among the richest 100? 4+6
- (b) (A) What is meant by "stratified random sampling"? Explain the procedure and advantages of stratification.

(B) How do you distinguish between 'standard error' and 'standard deviation'?

UNIT - II

3. Answer any two questions:

 5×2

- (a) Distinguish between type I error and type II error. Explain your answer as clearly as you can.
- (b) Define a likelihood function and hence explain the concept of the maximum likelihood method of estimation.
- (c) What steps would you follow in the case of testing of any statistical hypothesis?
- (d) In a laboratory experiment, two random samples gave the following results:

Sample	Size	Sample mean	Sum of squares of deviations from mean			
1	10	15	90			
2	12	14	108			

Test the equality of variances at 10 % level of significance.

[Given $F_{0.05;9.11} = 2.90$ and $F_{0.05;11.9} = 3.07$]

4. Answer any one question:

 10×1

- (a) (i) In the following cases, state which test out of z-test, paired-t test, 't'-test, F-test, χ²-test, U-test, H-test is appropriate?
 - (A) To test the significance of mean of a sample of size 25, where σ is known.
 - (B) To test for independence of attributes.
 - (C) To test the equality of means of 6 populations, where the populations are non-normal.
 - (D) To test the significance of difference between the means of two large samples.

- (E) To test the equality of two population means, where two samples are pairwise-dependent.
- (F) To test the equality of two population variances with two samples of size 20 each.
- (ii) In a certain city 250 men in a sample of 1000 were found to be smokers. In another city, the number of smokers was 750 in a random sample of 2000. Does this indicate that there is a greater proportion of smokers in the second city than in the first? Test at $\alpha = 0.05$.

 $\left(\frac{1}{2} \times 6\right) + 7$

- (b) (A) Write down the situation when we are compelled to apply non-parametric test for testing a statistical hypothesis.
 - (B) A paper of 10 students on International Finance has been examined and marked by three teachers A, B and C independently. The final marks obtained by them are recorded as follows:

Student Roll No.	ı	2	3	4	5	6	7	8	9	10
Marks by A	73	82	64	53	75	72	45	60	80	68
Marks by B	78	77	68	-60	73	70	48	ഒ	77	72
Marks by C	68	79	63	55	70	80	48	61	73	74

Apply Kruskal-Wallis H test to determine whether the marks given by three teachers differ significantly, at $\alpha = 0.05$.

[Given :
$$\chi^2_{0.05,9} = 16.92$$
; $\chi^2_{0.05,2} = 5.99$] $3 + 7$

[Internal Assessment: 10 Marks]