2019

MSc

4th Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-403

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

UNIT - I

Full Marks: 25

(Magneto Hydro-dynamics)

Answer Q. No. 1 and any TWO from the rest

	and the second s		
 Answer anv 	TWO questions:		

- a) Describe, how to work Magneto-Hydrodynamics as a power generator.
- b) Write, the statement of Alfven's theorem.
- c) Explain the terms 'drift velocity' and 'line of force' in MHD.
- 2. (a) Write down the basic equations of magneto-hydrodynamics and hence deduce the magnetic induction equation in MHD flows.
 - (b) Find the rate of change of magnetic energy in magneto-hydrodynamic. 3
- 3. (a) Define magnetic Reynolds number and explain its significance.
 - (b) For a conducting fluid in a magnetic field, show that the magnetic body force per unit volume, i.e. $\mu (\nabla x H) x H$ is equivalent to a tension μH^2 per unit area along the lines of force, together with a hydrostatic pressure $\frac{1}{2}\mu H^2$, where symbols have their usual meaning .
- 4. (a) Prove that in a steady non-uniformly rotating star, the angular velocity must be constant over the surface traced out by the rotation of the magnetic lines of force about the magnetic field axis .
 - (b) Give the mathematical formulation of MHD flow past a porous plate and derive its velocity expression .

[Internal Assessment : 05 marks]

2 X 2

UNIT - II

Full Marks: 25

(Soft Computing)

Answer Q. no 5 and any TWO from the rest.

5. Answer any TWO questions:

2x2

- (a) What is the importance of Defuzzification methods in fuzzy control system?
- (b) Give the schematic diagram of the working cycle of Binary Genetic Algorithm.
- (c) Draw the McCulloch Pitts neuron model for the Boolean function

$$f(x_1, x_2, x_3) = x_1 x_2 \overline{x}_3 + \overline{x}_1 x_2 \overline{x}_3$$

- (d) What do you mean by the terms soft and hybrid computing?
- 6. (a) Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$ be two universes of discourses. Also, let

$$\tilde{A} = \{(1,0.4), (2,0.7), (3,0.9), (4,0.3)\},\$$

$$\tilde{B} = \{(b, 0.6), (c, 0.8), (d, 1.0)\}$$
 and

$$\tilde{C} = \{(a, 0.9), (b, 0.0.5), (c, 0.1)\}.$$

Determine the fuzzy relation of the following rule:

"IF
$$x$$
 is \tilde{A} THEN v is \tilde{B} ELSE v is \tilde{C} ".

3

(b) What do you mean by fuzzy inference system (FIS) ? Write the steps of Mamdani's method in FIS. (2+3)

7. Using Binary Coded Genetic Algorithm, solve the following (one iteration only)

Max
$$f(x) = x^2, 0 \le x \le 31$$

Given

POP SIZE = N = 4,
$$P_c = 1.0, P_m = 0.04$$

Random Nos. for selection: 0.11, 0.24, 0.45, 0.85

Random Nos. for Mutation:

Positions for crossover:

$$POS1 = 4, POS2 = 2$$

Initial population:

01101, 11000, 01000, 10011

8. (a) Verify the output of logical OR function by a single perceptron Given initial

weights = $W = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and initial bias = b = -1.

(4)

8

(b) Write short note of the following terms:

(i) Network topology (ii) Perceptron learning rule.

(2+2)

[Internal Assessment: 05 Marks]