2019

MSc

2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-202

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Numerical Analysis)

1. Answer any FOUR questions:

(2x4)

- a) Compare Newton-Cote's quadrature and Gausian quadrature.
- The iterative methods are better than direct methods to solve a system of linear equations. Explain.
- Write the sufficient conditions for the convergence of Newton-Raphson method to solve a system of nonlinear equations containing two variables and three variables.
- d) What are the advantages to approximate a function using orthogonal polynomials?
- e) Write down the steps to evaluate $\int_a^b f(x) \mathrm{d}x$ by Monte-Carlo method.
- f) Is the following function a cubic spline? Justify.

$$P(x) = \begin{cases} x^3 - 4x^2 + 5x - 2, & 1 \le x \le 3 \\ x^3 + x^2 + 25x + 43, & 3 \le x \le 4 \end{cases}$$

- g) Write down the expressions of zeros of the chebyshev polynomial of degree n.
- h) What does mean by absolute and relative stable of

$$\frac{dy}{dt} = \lambda y$$
, $y(0) = y_0$

2. Answer any FOUR questions:

4x4

- a) Discuss Gauss-Jordan method to find the inverse of a square matrix by partial pivoting method.
- Explain a suitable method to solve a system of tri-diagonal linear equation.
- c) Find the least squares solution of the system of equations x + y=3.0; 2x y=0.03, x + 3y = 7.03 and 3x + y = 4.97.
- d) Define Chebyshev polynomial. Show that it is even under certain conditions to be stated by you. Express x^4 in terms of Chebyshev polynomials.
- e) Describe approximation of a continuous function using orthogonal polynomials.
 - f) Evaluate the value of the integration $\int_1^2 \frac{1}{1+x} \ dx$ by Gauss Legendre four points quadrature formula.

- g) Discuss the stability of Euler's method of the ODE $\frac{dy}{dt} = \lambda y$, $y(0) = y_0$.
- h) Solve the following BVP, $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 10x$ with boundary conditions y(0)=0 and y(1)=0, at the points x=0.25, 0.50, 0.75.
- 3. Answer any TWO questions:

8x2

- a) Describe LU-decomposition method to solve a system of linear equations.
- b) Describe an implicit method to solve the following equation:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

Subject to the boundary conditions $u(0,t) = f_1(t)$, $u(1,t) = f_2(t)$ and initial condition u(x,o) = g(x)

- c) Find all the eigen values and corresponding eigen vectors of the symmetric 8 matrix $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ using Jacobi's method.
- d) What do you mean by spline interpolation. Describe natural cubic spline 1+7 Interpolation.

[Internal Assessment: 10 Marks]