2008

M.A./M.Sc.

2nd Semester Examination ECONOMICS

PAPER-VII (EC-1203)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer all questions.

1. Answer any five questions:

 2×5

- (a) Define inverse function.
- (b) What is the property of 'Reflexivity'?
- (c) Give an example of Nash equilibrium strategy.
- (d) Distinguish between action and a strategy of a player.
- (e) Construct the power set of the following set. $A = \{1, 2, 3\}$

- (f) What are the basic ingredients of dynamic optimisation problem?
- (g) What are the different types of variable terminal points?
- (h) Give a macroeconomic example of functional.
- What is current value Hamiltonian?
- (i) Mention the features of NLP.

2. Answer any two questions:

5×2

(a) Find

1+4

- (i) Nash equilibrium and
- (ii) Mixed strategy equilibrium for the player in the following game

Player-2

	• • • • • • • • • • • • • • • • • • • •	Left	Right
	Тор	6, 8	8, 9
Player-1			
	Bottom	7, 9	7, 8

(b) State and prove Galileo's Theorem.

1+4

(c) State and prove Kuhn-Tucker sufficiency theorem.

(d) Draw the phase diagram for the following differential equation system.

$$\dot{y}_1 = -3y_1 + 6$$

$$\dot{y}_2 = -2y_2 + 2$$

3. Answer any two questions:

10×2

- (a) (i) Describe in a simplest way the dynamic games of complete and perfect information. Illustrate Backward Induction outcome.
 - (ii) Explain the following with a suitable example.

Subgame, Information set, Perfect Recall. 4+6

- (b) Prove that $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$ where symbols carry their usual meanings. Let $\{X, \geq\}$ be a set of integers with $x, y \in x$ such that $x \geq y$ means x is divisible by y for all x and y.
- (c) You are given the following problem

Minimise
$$C = x_1$$

s. t. $x_1^2 - x_2 \ge 0$
and $x_1, x_1 \ge 0$

Solve graphically.

Does the optimal solution occur at a cusp? Check whether the optimal solution satisfies (a) the constraint qualification and Kuhn-Tucker necessary and sufficient conditions.

(d) What is meant by Hamiltonian? What is maximum principle? Find the optimal paths of control, state and co-state variables for the following problem:

Max
$$\int_0^1 (y - u^2) dt$$

subject to $y' = u$
 $y(0) = 2$
 $y(1)$ free.