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Candidates are required to give their answers in their
- own words as far as practicable.

Illustrate the answers wherever necessary.

Group—A
1. Answer any five of questions : = 2x5
(a) What is saddle point in a game problem ?
(b) What is dominant strategy in a game 'problvem 2

. () What is decision graph ?
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(d Give an example of an optimum control problem.

(e) Distinguish horizontal terminal line and truncated
vertjcal line in optimum control problem.

() What is the economic interpretation of 4 in the
Hamiltoman function ?- ' ‘

(@ Give an example of a simultaneous differential
equation system ' '

v(h) What is metric? -
(i) What do you mean by topology of the plﬁne ?
() What afe the requirements of constraint qualification
in the context of non liner programming problem?
Gx;,oup‘—-B'
2: An§wer any two questions.: 5x2

(a) Draw the phase diagram for the following differential
equation system. : :

yi=y2-3 y3 = %»—

N |-

o) Explain the problems of Nash equilibrium.
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(c) What is the significance of maximum value function
- or indirect objective functlon in the envelope
theorem.

d Show that the fulfillment of saddle point criterion

implies constrained maximum at that point.

Groupéc

3. Answer any two questions : | 10x2

(a) What is Hamiltonian function ? State the necessary
conditions for optimisation with Hamiltonian. Solve
the following problem using Hamiltonian.

1
2
Maximise Io(x—u ) dt’
Subject to x =4 and x(0) = 2 and x(1) =
- (b} Explain carefully the fdllowing terms in topology:

Topological space, limit point closed set, boundary'
point, finer topology.

() () Reduce the following game to an LPP

Player B
Player A 13
ayer 4 5 -3

7 3 -2
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(i) Using game theory show why common property
resources will always be exploited beyond the
point that is most desirable from the collective
viewpoint.

~ (d) Derive. the Kuhn—’I‘uckev conditions in case of a
‘maximisation problem . o
Consider a consumer who maximizes utility U=x,x,
subject to p;Xx;+p,x,<M. Check whether the
constrained maximum point and -the saddle point of
the Lagrangian function are same or not. 5
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