2011

M.A/M.Sc.

2nd Semester Examination

ECONOMICS

PAPER-VII (ECO-203)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any five of questions:

- 2×5
- (a) What is saddle point in a game problem?
- (b) What is dominant strategy in a game problem?
- (c) What is decision graph?

(Turn Over)

- (d) Give an example of an optimum control problem.
- (e) Distinguish horizontal terminal line and truncated vertical line in optimum control problem.
- (f) What is the economic interpretation of λ in the Hamiltonian function?
- (g) Give an example of a simultaneous differential equation system.
- (h) What is metric?
- (i) What do you mean by topology of the plane?
- (j) What are the requirements of constraint qualification in the context of non liner programming problem?

Group-B

2. Answer any two questions:

5×2

(a) Draw the phase diagram for the following differential equation system.

$$y_1' = y_2 - 3$$
 $y_2' = \frac{y_1}{4} - \frac{1}{2}$

(b) Explain the problems of Nash equilibrium.

- (c) What is the significance of maximum value function or indirect objective function in the envelope theorem.
- (d) Show that the fulfillment of saddle point criterion implies constrained maximum at that point.

Group-C

3. Answer any two questions:

10×2

(a) What is Hamiltonian function? State the necessary conditions for optimisation with Hamiltonian. Solve the following problem using Hamiltonian.

Maximise
$$\int_0^1 (x - u^2) dt$$

Subject to $\dot{x} = u$ and x(0) = 2 and x(1) = 0.

(b) Explain carefully the following terms in topology:

Topological space, limit point, closed set, boundary point, finer topology.

(c) (i) Reduce the following game to an LPP:

Player B

Player A
$$\begin{bmatrix}
1 & -1 & 3 \\
4 & 5 & -3 \\
7 & 3 & -2
\end{bmatrix}$$

- (ii) Using game theory show why common property resources will always be exploited beyond the point that is most desirable from the collective viewpoint.
- (d) Derive the Kuhn-Tuckev conditions in case of a maximisation problem.

Consider a consumer who maximizes utility $U=x_1x_2$ subject to $p_1x_1+p_2x_2 \le M$. Check whether the constrained maximum point and the saddle point of the Lagrangian function are same or not. 5