Total No. of pages: 8

2019

Part-II MATHEMATICS

(Honours)

Paper-V

[New Syllabus]

Full Marks - 90

Time: 4 Hours

The Questions are of equal value for any group/half. The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A (Real Analysis - II) Marks : 50

Answer any two question:

15×2

- (a) (i) If $f:[a,b] \to R$ is continuous on [a,b] then prove that f is Riemann integral on [a,b] is the converse true ? justify.
 - (ii) State and prove fundamental theorem of

P.T.O.

integral calculus.

$$f(x) = \begin{cases} \sin x, x \text{ is rational} \\ x, x \text{ is irrational} \end{cases}$$

Evaluate
$$\int_{0}^{\frac{\pi}{2}} f$$
, $\int_{0}^{\frac{\pi}{2}} f$ and hence show that f is not R-integrable on $[0, \frac{\pi}{2}]$

(4+1)+(1+4)+(3+2) (b) (i) Let the functions f: [a,b] → R and g: [a,b] → R be both R-integrable on [a,b] then show that fg is R-integrable on [a,b].

$$F(x) = \int_{a}^{x} f(t)dt$$
, $x \in [a,b]$ the prove that $F(x)$ is differentiable at any point $c \in [a,b]$ at which f is continuous and $F'(c) = f(c)$

(iii) Show that
$$\iint_{E} \frac{dxdy}{(1+x^2+y^2)^2} = \frac{\sqrt{3}}{2} \tan^{-1} \frac{1}{2}$$

(c) (i) Let
$$f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ x, & 1 < x \le 2 \end{cases}$$

Verify that the function F defined by

$$F(x) = \int_{0}^{x} f(t)dt$$
, $x \in [0,2]$ is differentiable on

[0,2] and
$$F'(x) = f(x), x \in [0,2]$$

(ii) Let a be only point of singularity of f in [a,b] and f, g are both integrable on $[a+\epsilon,b]$ for all ϵ satisfying $0 < \epsilon < b-a$. If there exists a positive number λ such that $0 < f(x) < \lambda g(x) \ \forall x \in (a,b]$ then prove that $\int_a^b f(x) dx$ converges if $\int_a^b g(x) dx$ converges

and
$$\int_{a}^{b} g(x)dx$$
 diveeges if $\int_{a}^{b} f(x)dx$ diverges.

$$(3+2)+5+5$$

(iii) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \log \sin x dx$$
.

Answer any **two** questins.
$$2\times8$$
 (a) (i) Let (a,b) be any point in the domain of defination of $f(x,y)$. Let $f_x(a,b)=0$ and

$$f_y(a,b) = 0$$
 and, $f_{xx}(a,b) = A$, $f_{xy}(a,b) = B$, $f_{yy}(a,b) = C$. If $AC - B^2 > 0$ and $A A < 0$ then show that $f(a,b)$ will be a maximum

value of f(x,y).

(ii) Discuss the convergens of $\frac{\pi}{2} \int_{1}^{\infty} (\cos x)^{l} (\sin x)^{l} dx.$

(b)

(c) (i) Show that the second mean value theorem (weierstrass form) is applicable to
$$\int_{a}^{b} \frac{\sin x}{x} dx$$

Hence evaluate $\int_{-\infty}^{\infty} \frac{\sin nx}{x} dx$.

Prove that $\int_{-\infty}^{\infty} e^{-mx} \frac{\sin nx}{x} dx = \tan^{-1} \frac{n}{m} (m > 0).$

4+4

6+2

where $0 < a < b < \infty$. Also prove that $\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \le \frac{4}{a}$.

(ii) Find the expansion of $f(x, y) = \sin(xy)$ in powers of (x - 1) and $\left(y - \frac{\pi}{2} \right)$ up to and including second degree terms using Taylor's theoren.

3. Answer any one question

3. Answer any one question. 1x4(a) If $0 show that <math>\Gamma(p)\Gamma(1-p) = \int_{0}^{\infty} \frac{x^{p-1}}{1+x} dx$.

M/19/B.Sc/Part-II/Math.-V(H) 4 Contd.

4

(b) Show that

 $\lim_{x \to 0} \frac{\int_{0}^{\infty} \sin \sqrt{t} dt}{x^3} = \frac{2}{3}$

Group - B

(Metric space)

Marks - 15

4. Answer any one question:

1×8

- (a) (i) Show that the set l_{∞} of all bounded sequence $\{x_n\}$ fo real numbers with function 'd' defined by $d(\{x_n\},\{y_n\}) = \sup\{|x_n y_n| : n \in N\}$ for all $\{x_n\}\{y_n\} \in l^{\infty}$ is a metric space.
 - (ii) Prove that the discrete space (x, d) is a complete metric space. 4+4
- (b) (i) Let (*X*,*d*) be a metric space, Prove that the union of an arbitrary collection of open sets of X is open.
 - (ii) Let A and B be two sets in a metric space (X, d). Show that A⊆B⇒Ā⊆B when Ā and B are the closure of the set A and B.

4+4

M/19/B.Sc/Part-II/Math.-V(H) 5

P.T.O.

(a) For any two points x, y, a, b in a metric space (X,d), show that

$$\left|d(x,y)-d(a,b)\right| \leq d(x,a)+d(y,b).$$

- (b) Define cauchy sequence in a metric (space, Prove that every convergent sequence is a cauchy sequence.
- 6. Answer any one question.

 1×3

- (a) Define a decreasing sequence of non empty sabsets of a metric space (X, d) State the Cantor's intersection theorem. (1+2)
- (b) Prove that a finite set has no limit point 3

Group - C

(Complex Analysis)

Marks - 10

7. Answer any **one** question :

1×8

- (a) (i) Show that harmonic function u(x, y) satisfies the differential equation $\frac{\partial^2 u}{\partial z \partial \overline{z}} = 0$ when z = x + iy.
 - (ii) Using Milne's method find the analytic function whose real part is

$$e^{-x}\left\{\left(x^2-y^2\right)\cos y+2xy\sin y\right\}$$

4+4

(b) (i) If a function f(x,y) = u + iv is differentiasle at a point $z_0 = x_0 + iy_0$. Then show that the partial derivatives u_x , u_y , v_x , v_y exists and u_x v_y , v_y , v_y at the point v_y , v_y .

- (ii) Show that $f(z) = \overline{z}$ is continuous at $z = z_o$ but is not analytic at $z = z_o$ 5+3
- 8. Answer any **one** questions. 1×2
 - (a) Show that the real and imaginary parts of a analytic function are harmonic functions. 2
 - (b) If f is analytic function prove that 2

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|.$$

Group - D

(Tensor Calculus)

Marks-15

9. Answer any **one** question.

8×1

(a) (i) If B_{ij} are components of a covarient tensor of second order and Cⁱ, D^j are components of two contravanient vectors, show that Bij Cⁱ D^j is an invariant.

M/19/B.Sc/Part-II/Math.-V(H) 7

P.T.O.

(ii) Prove that
$$\left\{ij\right\} = \frac{\partial}{\partial x^{j}} \left(\log \sqrt{g}\right)$$
 where $g = \left|g_{ij}\right|$

(b) (i) If
$$B_{ij} = A_{ji'}$$
 where A_{ij} is a covariant tensor, show that B_{ij} is a tensor of order 2

4+4

3

 $a^{jk}[ij,k] = \frac{1}{2}a^{jk}\frac{\partial g_{jk}}{\partial x^i}$

(b) For the cuvatime tensor
$$R_{ijk}^l$$
, prove that $R_{ijk}^l + R_{iki}^l + R_{kii}^l = 0$.

(b) If
$$x^{i} = a_{p}^{i}$$
, y^{p} and $z^{i} = b_{q}^{i} x^{q}$ show that $z^{i} = b_{p}^{i} a_{q}^{p} y^{2}$

M/19/B.Sc/Part-II/Math.-V(H) 8