M.Sc. 1st Semester Examination, 2012 **ELECTRONICS**

(Mathematical Methods and Numerical Analysis)

(Theory)

PAPER-ELC-101

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any three questions from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer all questions:

 2×5

- (a) Define convolution integral.
- (b) Find the Fourier transform of $e^{-a|x|}$, when a > 0.

(2)

- (c) Explain the analyticity of a complex function in term of Cauchy-Riemann equation.
- (d) Find the Laplace transform of $t \sin a t$ and $e^{kt} \sin at$ from known properties
- (e) Write the following algebraic expressions in C equivalent form:

(i)
$$(a+b)^{1/2} + \log_e |x+y|$$

(ii) $y = a^x + e^x (1 + x^2 + \cos x)$.

2. (a) Prove the recurrence relation

$$2J_n'(x) = J_{n-1}(x) - J_{n+1}(x)$$

where $J_n(x)$ is Bessel function of order n.

(b) Show that

$$P_e(-W) = (-1)^l P_e(W).$$

(c) Using Laplace transform, solve the following differential equation, —

$$y''(t) - 3y'(t) + 2y(t) = 4e^{2t}$$

with $y(0) = -3$, $y'(0) = 5$.

- 3. (a) Prove that $u = e^{-x}(x \sin y^{-}y \cos y)$ is harmonic and find 'v' such that u + iv is analytic.
 - (b) Write down the numerical algorithm of Newton -Raphson method to a transcendental equation. The function $f(x) = e^{2x} e^x 2$ has a zero on the interval [0, 1]. Find this zero correct to four significant digits using this method. 4 + (2 + 4)
- 4. (a) Sketch the function F(t) given in terms of unit step function F(t) = 2U(t) 3U(t-3) + U(t-4) and obtain its Laplace transform.
 - (b) Prove that $1 + 3P_1 + 5P_2 + \dots + (2n+1)P_n = \frac{d}{dz}(P_{n+1} + P_n)$ where P_n is the Legendre Polynomial.
 - (c) Write the following algebric expressions in C equivalent form

(i)
$$(a+b)^{1/2} + \log_e |x+y|$$

(ii) $y = a^x + e^x (1 + x^2 + \cos x)$. $(2+2) + 4 + 2$

5. (a) Find a root of the equation $x^2+x-7=0$ by bisection method correct upto two decimal places. Assume that one root lies between 2.188 and 2.204.

(h) Write a program in C to compute the value of the series

$$J_0(x) = 1 - \frac{x^2}{2^2 \cdot 1! \cdot 1!} + \frac{x^4}{2^4 \cdot 2! \cdot 2!} - \frac{x^6}{2^6 \cdot 3! \cdot 3!} + \cdots$$

for a given value of x by direct summation of successive terms upto and including the first term that has a magnitude greater than 10^{-8} . 5+5

6. (a) Evaluate y(1·1) using Runge-Kutta method of order 4 for initial value problem

$$\frac{dy}{dx} = x^2 + y$$

and given y(1) = 0 and x = 0.1.

(b) Evaluate

$$\int_0^6 \frac{dx}{1+x^2}$$

by using Simpson's $\frac{1}{3}$ rd rule, correct to four decimal places dividing the interval (0, 6) into six parts each of width h = 1. 5 + 5

[Internal Assessment: 10 Marks]