M.Sc. 1st Semester Examination, 2013

ELECTRONICS

(Electronics Circuit Lab)

(Practical)

PAPER-ELC-106

Full Marks: 50

Time: 3 hours

Answer any one question, selecting it by a lucky draw

The figures in the right-hand margin indicate marks

1.	Design regulated power supply using 78xx group of IC regulator and study its performance.	
	Output Voltage = ···· V,	
	Output Current = \cdots mA.	
	(a) Working formula.	4
	(b) Drawing of circuit diagram with labelling.	3
	(c) Circuit implementation on breadboard.	3
	(d) Recording of data for getting the characteristic of load and line regulations. 5 +	5
	(e) Drawing of graph. 4 +	4
	(f) Calculation of percentage regulation and stability factor. 2+	2
	(a) Discuss the results obtained	2

2.	Design regulated power supply using power transistor as pass element and an OP-AMP as comparator.
٠.	Output Voltage = V, Output Current = mA.
	(a) Working formula. 4
	(b) Circuit diagram and labelling. 3
	(c) Design considerations and components to be used.
	(d) Circuit implementation on breadboard. 4
	(e) Recording of data for load and line regulations. 4+4
	(f) Drawing of graphs. $3+3$
	(g) Calculation of percentage regulation and stability factor. 2+2
	(h) Discussion of the regults obtained

3.	Study the performance of a logarithmic amplifier using OP-AMP.
	(a) Working formula. 4
. •	(b) Circuit diagram with labelling. 3
	(c) Design considerations and components to be used.
	(d) Recording of data by varying the input voltage at small steps.
	(e) Drawing of graphs. 4+4
	(f) Discuss the nature of the graphic obtained and also the results.
, ,	(g) Comment on possible application of the

Design an active low-pass Butterworth filter with a roll off rate 20 dB/decade having cut off frequency 2 kHz and pass band gain of 2. Study its performance. (a) Working formula. (b) Circuit diagram with labelling. 3 (c) Design considerations and components to be used. (d) Implementation of the circuit on breadboard. 3 (e) Recording of data for frequency response characteristics. 8 (f) Drawing of graphs. (g) Finding and comparison of cut off frequency and roll-off rate with supplied value. $\left(2+1\frac{1}{2}\right)\left(2+1\frac{1}{2}\right)$

(h) Discussion of the results obtained.

5.	Design an active high-pass Butterworth filter with cut off frequency of 3 kHz and pass band gain of 2 using only one R-C section and study its performance.	
	(a) Working formula.	4
	(b) Circuit diagram with labelling.	3
	(c) Design considerations and components to be used.	4
	(d) Implementation of the circuit.	3
	(e) Recording of data for frequency response characteristics.	8
	(f) Drawing of graph.	4
.	(g) Finding and comparison of the cut-off frequency and roll-off rate with the given values. $\left(2+1\frac{1}{2}\right)+\left(2+1\frac{1}{2}\right)$	$\left(\frac{1}{2}\right)$
	(h) Discussion of the results obtained	ーノ

6.	Design of R-C coupled amplifier using transistors and study its performance.	
	(a) Working formula.	4
	(b) Circuit diagram with labelling.	3
	(c) Design considerations for gain =	5
	(d) Implementation of the circuit on bread- board.	.3
	(e) Recording of data for frequency response characteristics.	10
	(f) Drawing of graph.	4
	(g) Calculation of bandwidth.	3
	(h) Discussion of the results obtained	3

7.	Design a second order active high-pass Butterworth filter and study its performance.	
	(a) Working formula.	4
٠,	(b) Circuit diagram with labelling.	3
	(c) Design consideration for cut off frequency = kHz and gain = 2.	5
	(d) Implementation of the circuit on breadboard.	3
	(e) Recording of data for frequency response characteristics.	8
	(f) Drawing of graph.	4
	(g) Finding and comparison of the cut-off frequency and the roll-off rate with the known values. (2 + 1) + (2 +	1)
	(b) Discussions of the results obtained	• 2

8.	Design an active high-pass Butterworth filter at a cut off frequency of 3 kHz and pass band gain of 2 using only one R-C section and study its performance.	
	(a) Working formula.	4
	(b) Circuit diagram with labelling.	3
	(c) Design considerations and components to be used.	4
	(d) Implementation of the circuit.	3
	(e) Recording of data for frequency response characteristics.	8
	(f) Drawing of graph.	4
	(g) Finding and comparison of the cut-off frequency and roll-off rate with the given values. $\left(2+1\frac{1}{2}\right)+\left(2+1\right)$	
	(h) Discussion of the results obtained	้ว

).	Study the performance of an antilogarithmic amplifier using OP-AMP.
	(a) Working principle.
	(b) Drawing of circuit diagram with labelling. 3
	(c) Circuit implementation on breadboard.
	(d) Recording of data by varying the input voltage at small steps.
	(e) Drawing of graphs. 4 + 4
	(f) Discussions about the nature of the curves and the results obtained.
	(g) Comment on possible application of the circuit.