2015

M.Sc.

4th Semester Examination

ELECTRONICS

PAPER-ELC-404

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(VLSI Technology)

Answer Q. No. 1 and any three from the rest.

- 1. (a) What is gettering?
 - (b) How is a silicon dioxide layer grown for masking in VLSI technology?
 - (c) Mention the advantages and disadvantages of electron beam lithography.

- (d) What is CMOS latchup?
- (e) What do you understand by hard yield and soft yield?

 2×5
- 2. (a) Describe an ion implantation system with a schematic diagram.
 - (b) What are the problems entangles in ion implantation?

 How can that be solved?
 - (c) Mention SIMOX process and its uses.

- (a) Describe electron cyclotron resonance (ECR) plasma etching with a schematic diagram of an ECR reactor.
 - (b) The electron densities in reactive ion etching (RIE) and hish-density plasma (HDP) systems range from 10^9 to 10^{10} cm⁻³ and 10^{11} to 10^{12} cm⁻³ respectively. Assuming the RIE chamber pressure is 200 mT and HDP chamber pressure is 5 mT. Calculate the ionization efficiency in RIE reactors and HDP reactors at room temperature.
 - (c) Explain the role of O_2 in plasma etching of Si in $CF_4 + O_2$ plasma.

4+(2+2)+2

- **4.** (a) What are the different types of voltage break-down mechanism present in MOSFETs?
 - (b) How does a LDD structure reduce short channel effects?
 - (c) Explain a DMOS structure with a schematic disgram.

 Mention its merits and demerits.

2+3+(3+2)

- 5. (a) Draw a schematic diagram of a three phase CCD.
 - (b) Explain the operation of the CCD with potential energy and charge distribution of the device on the applications of clock pulses. Draw the clock wave forms and output signal.
 - (c) A three-phase n-type surface-channel CCD has the following specifications:

Electron density: $N_{max} = 2 \times 10^{12} \text{ cm}^{-2}$

Relative dielectric constant of the insulator : $\varepsilon_{ir} = 3.9$

Insulator thickness: $d = 0.15 \mu m$

Insulator cross section : $A = 0.5 \times 10^{-4} \text{ cm}^2$

Power dissipation allowable per bit: P = 0.67 mW

(i) Determine the maximum stored charges per well.

- (ii) Find the required applied gate voltage.
- (iii) Choose the clock frequency.

$$2+(3\frac{1}{2}+1\frac{1}{2})+(1+1+1)$$

- 6. (a) What are the Moore's law and Rent's rule?
 - (b) Estimate the number of gates that can be included on a logic-gate array chip which is to assembled in pin grid array package. Consider the Rent's exponent 0.5 and the average number of terminals required by a single logic block 4.5.
 - (c) Mention the different electrical performance criteria considered at the IC package. How is the most important practical electrical design problem in IC packages reduced?

$$(2+2)+2+(2+2)$$

Internal Assessment - 10