BCA/IS/DEL/1197/19 (Pr.) (Set-1)

BCA 1st Semester Examination, 2019 DIGITAL ELECTRONICS LAB

(Practical)

PAPER - 1197

Full Marks: 100

Time: 3 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[SET-I]

Answer any two questions taking one from each Group (Lottery basis): 30×2

GROUP - A

1. Design a Full Adder using NOR gates.

- 2. Implement basic gates using NOR gates.
- 3. Design a 8:1 MUX using minimum number of NAND gates and verify its truth table.
- 4. Implement Full Adder using 3 × 8 decoder and other necessary gates.
- 5. Implement the Boolean function using a MUX $F(A, B, C, D) = \sum (0, 1, 4, 7, 12, 13, 15)$
- 6. Design a 3 to 8 line decoder using two 2 to 4 line decoder and other necessary gates.
- 7. Implement Y = A'BC + AB' + B'C' using NAND gates only.
- 8. Design a circuit to convert Gray code to binary code.
- 9. Design a 1-bit comparator and verify its truth table.

- 10. Design a 2 to 4 line decoder using NAND gates only.
- 11. Design a half adder using NAND gates only and a full adder using two half adders.
- 12. Design a full subtractor using NOR gates only and verify its truth table.
- 13. Implement $z = \overline{x + y} + y + \overline{yz}$ using NAND gates only and verify its truth table.
- 14. Design a 4 bit 2's complement adder subtractor using 7483 or an equivalent and X-OR gates.
- 15. Implement the following Boolean function using a MUX:

$$F(W, X, Y, Z) = \sum (0, 1, 3, 4, 8, 9, 15)$$

GROUP - B

16. Construct clocked S-R flip-flop using NAND gates and verify its operation.

- 17. Design a T flip-flop using NAND and verify its output.
- 18. Convert a J-K F/F using D-F/F and verify its truth table.
- 19. Design a S-R F/F using J-K F/F and verify its truth table.
- 20. Design a 3-bit binary counter using J-K F/F.
- 21. Design a asynchronous down counter (MOD-6) using suitable gates.
- 22. Design a synchronous counter that counts 0,1, 3, 5, 7-9 using J-K F/F.
- 23. Design a Master-Slave JK flip-flop using NAND gates only and realize its characteristic table.
- 24. Design a 4-bit shift register using D F/F.
- 25. Design MOD-5 Synchronous Counter.

- 26. Design a 4 bit ripple counter using J-K flip-flop.
- 27. Design an asynchronous up counter (MOD 10).
- 28. Design a 4 bit bidirectional shift register using J-K flip-flop.
- 29. Design a 4 bit SISO register using D flip-flop and verify its truth table.

VIVA - 05 PNB - 05 [Internal Assessment - 30] BCA/IS/DEL/1197/19(Pr.) (Set-2)

BCA 1st Semester Examination, 2019 DIGITAL ELECTRONICS LAB

(Practical)

PAPER - 1197

Full Marks: 100

Time: 3 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[SET-2]

Answer any two questions taking one from each Group (Lottery Basis):

 30×2

GROUP-A

1. Implement basic gates using NAND gates.

- 2. Design a Half-Subtractor using NAND gates.
- 3. Design a 3×8 decoder using two 2×4 decoder.
- 4. Design a 4:1 MUX using NAND gate only.
- 5. Design a circuit to convert binary to gray code.
- 6. Implement the boolean function using a MUX: $F(A, B, C, D) = \Sigma(0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 15)$.
- 7. Design 8:1 MUX using two 4:1 MUX and other necessary gates.
- 8. Design a 1-bit comparator and verify its truth table.
- 9. Implement $Y = \Sigma (0, 1, 2, 8, 10, 11, 14, 15)$ using NAND gates only.
- 10. Design a circuit to convert gray to binary.

GROUP-B

- 11. Construct clocked J-K flip-flop using NAND gates and verify its truth table.
- 12. Design a D flip-flop using NAND gates and verify its truth table.
- 13. Design a MOD-5 asynchronous counter.
- 14. Design a MOD-6 synchronous counter.
- 15. Design a 4-bit SISO register using J-K flip-flop and verify its operation.
- 16. Design a 3-bit binary counter.
- 17. Design a synchronous counter to count

0-1-3-5-7-9-11

18. Design a 3-bit asynchronous down counter.

19. Design a 4-bit asynchronous up counter.

20. Design a MOD-8 synchronous counter.

Viva - 05 Marks

PNB - 05 Marks

Internal Assessment-30 Marks