2019

DESIGNAND ANALYSIS OF ALGORITHM

PAPER -2101

Full Marks: 100

Time: 3 hours

Answer Q.No. 1 and any four from the rest

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any five questions:

- 2×5
- (a) Suppose, I have written few steps to solve a problem. But the solution proposed by me does not terminate. Can it be referred as an "algorithm"? Justify your answer.
- (b) What is tail recursion?

- (c) What is the worst-case time complexity of merge sort algorithm?
- (d) Why do we need to study minimum spanning tree?
- (e) Define time and space complexity.
- (f) What do you mean by greedy programming technique?
- (g) Define Big oh(O) notation of complexity.
- (h) What type of data structures are used in BFS and DFS?
- 2. (a) Write a greedy algorithm for solving 0/1-knapsack problem.
 - (b) Describe Depth-First search of graph traversal algorithm with example.
 - (c) What is Tower of Hanoi problem? 5+7+3
- 3. (a) What is NP hard class of problem?

- (b) What do you mean by clique decision problem? Give an approximation solution for this problem.
- (c) What is circuit satisfiability problem? 3 + (3 + 5) + 4
- 4. (a) Write down the Quicksort algorithm using divide and conquer strategy.
 - (b) Explain time complexity of Merge sort for different cases.
 - (c) Explain the advantage of using tail recursive function over non-tail recursive function. 6+5+4
- 5. (a) Write down the matrix chain multiplication algorithm using dynamic programming.
 - (b) Explain the difference between dynamic programming approach and greedy approach.
 - (c) Write down the algorithm of Tower of Hanoi problem. 8+3+4
- 6. (a) Explain BFS and DFS algorithms for graph traversal with examples.

- (b) Write Prim's algorithm for minimum spanning tree.
- (c) Explain the 15 puzzle problem briefly. (4+4)+4+3
- 7. Write short notes on any three: 5×3
 - (i) Binary search
 - (ii) Travelling Salesman problem
 - (iii) Circuit Satisfiability Problem
 - (iv) Kruskal's Algorithm
 - (v) Graph Colouring Problem.

[Internal Assessment: 30 Marks]