List of figures

Figures	Page No.
Figure 1A.1. α -amylose, a polymer of α -(1 \rightarrow 4) linked D-glucose.	4
Figure 1A.2. Cellulose, a polymer of β -(1 \rightarrow 4) linked glucose.	4
Figure 1A.3. Pectin, a polymer of α -(1 \rightarrow 4) galacturonic acid	5
Figure 1A.4. Structure of Chitin, β -(1 \rightarrow 4)-linked N-acetyl-D-	
glucosamine and Chitosan, β -(1 \rightarrow 4)-linked D-glucosamine.	5
Figure 1A.5. Heparin, a polymer of $(1 \rightarrow 4)$ -linked sulfated hexosamine	
and uronic acid.	6
Figure 1A.6. Guar gum, a polysaccharide of $(1 \rightarrow 4)$ -linked β -D-manp	
units with side chains of $(1\rightarrow 6)$ -linked α -D-galp	6
Figure 1A.7. Different parts of Mushroom	7
Figure 1A.8. Possible immune mechanism: β -D-glucan as BRM to	
target cancer cells	12
Figure 1B.1: Top down and bottom up approach for the synthesis of	
metal nanoparticles	15
Figure 1B.2. Various approaches adopted in the synthesis of metal	
nanoparticles	16
Figure 1B.3. A schematic representation of polysaccharides mediated	
synthesis and stabilization of metal nanoparticles.	17
Figure 1B.4. Classification of Nanomaterials (a) 0D, (b) 1D, (c) 2D, (d)	
3D	20
Figure 2.1. Schematic diagram of structural analysis of polysaccharides	24
Figure 2.2. Schematic diagram of isolation and purification of	
polysaccharides from alkaline extract of the fruit bodies. <i>Termitomyces</i>	
heimii	26
Figure 2.3. Schematic diagram of isolation and purification of	_0
polysaccharides from aqueous extract of <i>Lentinus fusipes</i> .	28
Figure 2.4. Schematic diagram of preparation of alditol acetates	<u> </u>
Figure 2.5. Schematic diagram of preparation of PMAA of PS	31
Figure 2.6. Schematic diagram of periodate oxidation of $(1 \rightarrow 6)$ -	

linked hexopyranoside.	32
Figure 2.7. Schematic diagram of periodate oxidation study	33
Figure 2.8. Schematic diagram of NMR spectroscopic methods for the	3
determination of structure of a polysaccharide.	5
Figure 3.1. (a) Chromatogram of crude polysaccharide on Sepharose-6B	
column. (b) Chromatogram showing the homogeneous nature of PS-I	
isolated from mushroom T. Heimii	50
Figure 3.2. Determination of molecular weight of the PS-I isolated from	
T. heimii	50
Figure 3.3. Schematic presentation of methylation experiment of PS-I.	52
Figure 3.4. Schematic presentation of periodate oxidised reduced	
products of methylated PS-I.	53
Figure 3.5. ¹ H NMR spectrum (500MHz, D ₂ O, 30 °C) of PS-I isolated	
from the mushroom T. heimii.	54
Figure 3.6. ¹³ C NMR spectrum (125MHz, D ₂ O, 30 °C) and part of	
DEPT-135 spectrum (D ₂ O, 30 °C) (inset) of PS-I.	55
Figure 3.7. Part of HSQC spectrum of PS-I isolated from the mushroom	
T. heimii.	55
Figure 3.8. Part of ROESY spectrum of PS-I isolated from the mushroom	
T. heimii.	57
Figure 3.9. ¹³ C NMR spectrum (125MHz, D ₂ O, 30 °C) of Smith-	
degraded glycerol-containing disaccharide of PS-I isolated from the	
mushroom T. heimii.	59
Figure 3.10. MTT assay showing in-vitro cytotoxicity of PS-I on	
peripheral blood lymphocytes.	61
Figure 3.11. Concentration of reduced glutathione (GSH) level in normal	
human lymphocytes treated with different concentrations of PS-I.	62
Figure 3.12. Concentration of oxidized glutathione (GSSG) level in	
normal human lymphocytes treated with different concentrations of PS-I.	62
Figure 3.13. Concentration of MDA level of PS-I treated normal human	
lymphocytes toevaluate lipid peroxidation	63

Figure 3.14. MTT assay showing in-vitro cell viability of PS-I on

nicotine stimulated peripheral blood lymphocytes.	63
Figure 3.15. Concentration of nitric oxide (NO) release in nicotine	
stimulated human lymphocytes treated with PS-I.	64
Figure 3.16. Fluorescence microscopic images (100X magnifications)	
showing intracellular ROS generation in lymphocytes. The scale bar	
represents 20µm (i) Control; (ii) Nicotine treated; (iii) Nicotine + 25	
μ g/ml of PS-I; (iv) Nicotine + 50 μ g/ml of PS-I. (v) Nicotine + 100 μ g/ml	
of PS-I; (vi) Nicotine + 200 µg/ml of PS-I; (vii) Nicotine+400 µg/ml of	
PS-I; (viii) Histogram showing the mean fluorescent intensity.	65
Figure 3.17. Flow cytometry of human lymphocytes: (i) without any	
treatment (ii) Lymphocytes treated with 10 mM of Nicotine; and (iii)	
Lymphocytes treated with 10 mM of nicotine $+ 200 \mu g/ml$ of PS-I.	66
Figure 4.1. Chromatogram of crude polysaccharide isolated from an	
edible mushroom L. fusipes using Sepharose 6B column.	70
Figure 4.2. Determination of molecular weight PS-II isolated from	
mushroom L. Fusipes.	70
Figure 4.3: GLC-MS analysis of alditol acetates of methylated PS-II.	71
Figure 4.4. Schematic presentation of methylation experiment of PS-II.	72
Figure 4.5. Schematic presentation of periodate oxidation reactions of	
PS-II.	73
Figure 4.6. FT-IR spectrum of PS-II isolated from an edible mushroom	
L. fusipes.	74
Figure 4.7. ¹ H NMR spectrum (700MHz, D ₂ O, 30 °C) of PS-II	75
Figure 4.8. ¹³ C NMR spectrum (175MHz, D ₂ O, 30 °C) and part of	
DEPT-135 spectrum (D ₂ O, 30 °C) (inset) of PS-II.	75
Figure 4.9. The HSQC spectrum of (a) anomeric part and (b) other than	
anomeric part of PS-II.	76
Figure 4.10. Part of ROESY spectrum of PS-II isolated from the	
mushroom <i>L. fusipes</i> .	78
Figure 4.11. Part of the HMBC spectrum of PS-II isolated from the	
mushroom L. fusipes.	80

Figure 4.12. ¹³C NMR spectrum (125MHz, D₂O, 30 °C) of Smith-

degraded glycerol-containing material of PS-II.	82
Figure 4.13. MTT assay showing in-vitro cytotoxicity of PS-II on	
peripheral blood lymphocytes.	84
Figure 4.14. Concentration of reduced glutathione (GSH) level in normal	
human lymphocytes treated with different concentrations of PS-II.	84
Figure 4.15. Concentration of oxidized glutathione (GSSG) level in	
normal human lymphocytes treated with different concentrations of PS-II.	85
Figure 4.16. Concentration of MDA level of PS-II treated normal human	
lymphocytes toevaluate lipid peroxidation.	85
Figure 4.17 (a) lymphocytes treated with 10 mM of Nicotine only and (b)	
lymphocytes treated with 10 mM of nicotine +160 μ g/ml of PS-II.	86
Figure 4.18. Scavenging ability of PS-II on DPPH radicals.	87
Figure 4.19. In vitro macrophage activation using different	
concentrations of PS-II (in terms of NO production).	87
Figure 4.20. Effect of varied concentrations of PS-II on splenocyte	
proliferation.	88
Figure 5.1: Structure of hetero polysaccharide isolated from hot water	92
extract of Lentinus squarrosulus (Mont.) Singer.	
Figure 5.2: UV-vis spectra of AgNPs–PS with 0.05% (w/v) of PS at	
different time intervals. The peak at around 404 nm corresponds to the	
SPR of AgNPs.	93
Figure 5.3: UV-vis spectra of AgNPs–PS at different time intervals a)	
with 0.025% (w/v) of PS. The SPR peak at around 423 nm b) with	
0.025% (w/v) of PS. The SPR peak at around 449 nm.	93
Figure 5.4: (a) TEM images and the corresponding selected area electron	
diffraction (SAED) patterns (inset) of AgNPs-PS. (b) Particle size	
distribution histogram. (c) XRD patterns of freeze dried AgNPs- glucan	
conjugates, all the peaks could be indexed to fcc lattice of silver.	94
Figure 5.5: Efect of varying concentration of Ag NPs–PS conjugates on	
the growth of Escherichia coli strain MREC33 in MH broth.	95

Figure 5.6. DNA degradation using FACS analysis of *E. coli* MREC33 cells (A) DAPI treated control cells; (B) cells treated with DAPI and 40 μ g/mL AgNPs–PS conjugates. Side scattering analysis of: (C) DAPI treated control cell; and (D) AgNP–PS and DAPI treated MREC33 cell using FACS.

Figure 5.7. Hemolysis study of human RBCs treated with LD_{50} concentration of AgNPs–PS conjugates. RBCs suspended in water used as positive control and in PBS as negative control.

Figure 5.8. Synergistic antibacterial effects of the Ag NPs–PS conjugate at 5 μ g/ml in combination with (a) ampicillin, (b) azithromycin, (c) kanamycinand (d) netilmicin.

98

97