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1L.1INTRODUCTION
What is a graph? _ 4 ,

Alinear graph (or simply a graph) G= (V,E) consists of a set of objects V={v,v,,.......} called vertices
and anothér setE={e,e,,........} whose elements are called edges, such that each edge e, is defined with an
unordered pair (v, vj) of vertices. The vertices v, \/ associated with edge e, are called end vertices of e,. Thc most
common representation of a graph is by means of a diagram, in which the vertices are represented as points and
eachedgeasaline segment joining its end vertices. |

An edge having the same vertex as both its end vertices is called a self-loop (or simply a loop) viz. e, inthe
fig 1. There may be more than one edge associated with a given pair of vertices for example, edge e ¢, in figure 1.
Such edge are referred to as parallel edges.

A graph that has neither self loop nor parallel edge is called a simple graph.

Vi €3

€4
€s

€6

V3

Fig.1: Graph with five vertices and seven edges

Incidence and Degree : :
When a vertex v, is an end vertex of some edge éj, e is said to be incident with v, for example, edges e,, ¢,
& e, are said to be incident with vertex v,. Two non parallel edges are said to be adjacent if they are incident on
a common vertex. For example, e, & ¢, are adjacent. |
Similarly, two vertices are said to be adjacent if they are the end vertices of the same edge. For example, v,
& v, are adjacent but v, & v, are not. |
- The number of edges incident on a vertex v, with self-loops counted twice is called the degree d(v,) of vertex v..
* For example, d(v)=d(v,)=d(v,)=3,d '(vz) =4and d(v,)=1. The degree of a vertex is some times also

refered to as its valency.
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........................................................................................................................................... Graph Theory I
Let us now consider a graph G with e edges and n vertices v,, v,, . v,. Since each edge contributes two

degrees, the sum of the degrees of all vertices in G is twice the number of edges in G’ that is

n

2 dw)=2e..(L1)

i=l
For example for the graph in fig. 1,
d (v))+d(v,) +d(v,) +d(v,) +d(v,)
= 3+4+3+3+1
. =14 =twice the number of edges.

Theorem 1.1: The number of vertices of odd degree in a graph is always even.
Proof : If we consider the vertices with odd and even degrees separately, the quantity in the left side of (1.1)
" can be expressed as the sum of two sums each taken over vertices of even and odd degrees respectively, as

follows:

Sd)= Ty} Tl 02)

i=

Since the L. H. S of (1.2) is even and the first expressioii on the R. H. S is even (being a sum of even

numbers), the second expression must alsobe even.

Zd("f) =aneven number ... (1.3)
odd _

‘Because in (1.3), each d(v,) is odd, the total number of terms in the sum must be even to make the sum an
evennumber. |

Hence the theorem.® , , : .
Regular Graph : A graph in which all vertices are of equal degree is called a regular graph.

\Z] V2
Vg : V7

Vs %

\] V3

-Fig, 2: Regular Graph.
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Isolated Vertex : Vertex having no incident edge is called an isolated vertex. In other words, isolated
vertices are vertices of zero degree. Vertices v, and v, in fig. 3 are isolated vertices.

Pendant Vertex : A vertex of degree one incalleda pendant vertex or an end vertex. Vertex v, isa pendant

vertexinfig. 3.
Vi 5/ ® Vi

Vs
Fig.3 ,
Null graph : In the definition a a graph G=(V, E) it is posSible for the edge set E to be empty. Such a graph
‘without any edge is called null graph. Every vertex in a null graph is an isolated vertex. |

Problem 1.1 : Show that the maximum degree of any vertex in a simple graph with n vertices is (n-1).
Solution : Since the graphisa simple graph therefore no selfloop and parallel edge is presentinit. So in

) maximum case ina simple graph one vertex can be connected with the remammg vertices. So, inasimple graph

with n vertices a vertex can be connected with maximum (n-1) vertices. Hence the maximum degree of any vertex

is a simple graph with n vertices is (n- 1).e

Problem 1.2 : Show that the maximum number of edges in a simple gi‘aph withn ve;'tices isn (n-l)‘ 2.

-~ Solution : A simple graph has maximum number of edges only when there is an edge between every pair of
vertices. Therefore out of n vertices, every two vertices can be joined in"c, wayé i.e., n(n-1)/2 ways. So the
maximum number of edges present in a simple graph of n vertices is n(n-1)/2.e

Subgraph A graph g is said to be a subgraph of a graph G if all the vertices and all the edges of g are in
G, and each edge of g has the same end vertices in g as in G (fig. 4).

A

Ve V2

€10 €4

V3

Fig. 4
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........................................................................................................................................... Graph Theory 1

Walk : A walk is defined as a finite altematirig sequence of vertices and edges beginning and ending with
vertices such that each edge is incident with the vertices preceding and following it. No edge appears more than
once in a walk. A vertex, however, may appear more than once. ‘ ’

Closed Walk and Open Walk : If a walk begins and ends at the same vertex, then it is called a closed walk.
A walk that is not closed is called an open walk. -

Example : Inthe above fig.4,v, e v, e, v, € v1 isaclosed walk and v, e, v, e, v, €, v, is an open walk.

Path : Anopen walk in which no vertex appears more than once is called a path A path does not intersect
itself. The number of edges in a path is called the length of a path. In fig.4,v,e,v, e, v, e , 18 a path of
length 3. ' 4
Circuit: A closed walk in which no vertex (except the initial and the final vextex) appears more than once is

called a circuit, ie. a circuit is a closed non-intersecting walk. e. g. in fig. 4, v, €, v, e, v, €, v, is acircuit of

length 3.

1.2 Connectivity :

Connected Graph : A graph G is said to be connected if there is at least one path between every pair of
vertices in G. Otherwise G is disconnected. A

A disconnected graph consists of two or more connected subgraphs, each of which is called a component.

Consider a vertex v, ina disconnected graph G. By definition, not all vertices of G are joined by paths to v,.
Vertex v, and all the vertices of G that have paths to v, together with all the edges incident on them form a

O

component

Fig. 5. A disconnected graph

Theorem 1.2 : A graph G is disconnected if and only if its vert2x set V can be partitioned into two non-
empty disjoint subsets V, and V, such that there exists no edge in G whose one end vertex is in subset

v, and the other in subset V..

Directorate of Distance Education 5



Proof : Suppose that sucha partitioning exists. Consider two arbitrary verticesaand bof G, such thata €
V,andb € V,. No path can exist between vexﬁcee aand b; otherwise there would be at least one edge whose one
end vertex would be in V, and the other in V,. Hence if such a partition exists G is not connected.

Conversely, let G be a disconnected graph. Consider a vertex ain G Let V| be the set of all vertices that are
joined by paths to a. Since G is disconnected V, does not include all vertices of G. The remaining vertices will form
a (nOn empty) set V,. No vertex in V, is joined to any in V , by anedge. Hence the partition.e

Theorem l 3 : If a graph (connected or dxsconnected) has exactly two vertices of odd degree, there must A
- beapath j joining these two vertices. _

Proof: Fora connected graph, theorem is obkus For dxsconnected graph, let there be two components
G, and G respectlvely Letv,andv, be the two vertices of odd degree contain G, and G respectlvely But since
no graph can have an odd number of odd degree vertices. Therefore it is impossible thata component contains
only one odd degree vertex. Hence, v, and v, must be in the same component and have a path between them. e

Euler Graph : Ifina graph G, we can find a closed, walk running through every edge exactly once, then the
graph is called an Euler graph and such a walk is called an Euler line.

Euler graphis always connected except for: any 1solated vemces the graph may have

X>< =y

Fig. 6 : Euler Graphs

Unicursal Graph : An open walk that includes or traces all the edges of a graph without retracing any edge
is called unicursal line or an open Euler line. A graph that has a unicursal line will be called a unicursal graph.

Theorem 1.4 : A given connected graph Gi is an Euler graph if and only if all vertices of G are of even
degree
Proof : Neeessary Part: :
‘Suppose that G is an Euler graph. It therefore contains an Euler line, While tracing this Euler line, we observe
that every time the walk meets a vertex v, it goes through two “new” edges incident on v, with one we “entered” v
- and with the other “exited”. This is true not only for all intermediate vertices of the walk but also for the terminal

6 Directorate of Distance Education
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Graph Theory 1

vertex because we “exited” and “entered” the same vertex at the beginning and end of the walk, respectively. Thus
if G is Euler graph, the degree of every vertex is even.
Sufficient Part : ' . o
To prove the sufficiency of the condition, assume that all vertices of G are of even degree. Now we construct
awalk staxtmg atanarbitrary vertex v and going through the edges of G such thatno edge is traced more than once.
We continue tracing as far as possxble Smce every vertex is of even degree, we can exit from every vertex we
enter. The tracing can not stop at any vertex but v and since v is also of even degree, shall eventually reach v when
* the tracing comes to an end. If this closed walk h we just traced, includes all the edges of G, G is an Euler graph.
' Ifnot, we remove from G all the edges in h and obtain a subgraph . Since G is connected, h’ musttouchhat least
| at one vertex a. Starting from a, we can again éonstruct_a new walk in graph h’ and this walk can be combined with
h. This process can be repeated until we obtain a closed walk that traverses all the edges Qf G. Thus Gis an Euler

graph.e

Theorem 1.5: A connected graph G is an Euler graph if and only if it can be decomposed into circuits.
Proof : Suppose graph G can be decomposed into edge disjoint circuits. Since the degree of every vertex in

acircuit is two, the degree of every vertex in G is even. Hence Gisan Euler graph.

Fig. 7

" Conversely, let G be an Euler graph. Consider a vertex v,. There are at least two edges incident on v,. Let
one of these edges be between v, & v,, since vertex v, is also of even degree it must have at least another edge, say
between v, and v,. Proceeding in this fashion, we eventually arrive at avertex that has previously been traversed,
thus forming a circuit I'. Let us remove I' from G. All vertices in the remaining graph must also be of even degree.
From the remaining graph remove another circuit in exactly the same way as we removed I" from G. Continue this

process until no edges are left. Hence the theorem .

Directorate of Distance Education



Algebra .........................................................................................................................................................

Application ;

Koénigsberg Bridge Problem :

The problem is depicted in the above fig. 8. Two isolands C and D formed by the Pregel River in K6nigsberg (now

renamed Kaliningrad) were connected to each other and to the banks A and B with seven bridges as shown in the

figure. The problem was to start at any of the four land areas of the city A, B, C or D walk over each of the seven

bridges exactly once and return to the starting point (with out swimming across the river, of course).

Euler represented this situation by means of a gfaph, as shown in the fig. 8. We find that not all its vertices are

- of even degree. Hence, it is not an Euler graph. Thus it is not possible to fine a closed walk containing all the bridges

A ) ) -
\——F c b
B , =

Fig. 8 : Konigsberg Bridge Problem & its graph

exactly once.

Hamiltonian Circuit and Path :
A Hamiltonian circuit in a connected graph is defined as a closed walk that traverses every vertex of G
exactly once, except the starting & ending vertex. If we remove any one edge from the Hamiltenian circuit we are

left with a path called Hamiltonian path which traverses every vertex of G exactly once.

Fig. 9 : Hamiltonian Circuit

Complete graph/ Universal Graph/ Clique . )
A simple graph, in which there exists an edge between every pair of vertices is called a complete graphor
universal graph or clique. ’ ' ‘

8 Directorate of Distance Education
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VAN

Fig. 10: Complete Graphs

 Since every vertex is joined with every other vertex through one edge, the degree of every vertex is (n-l) in
a complete graph G of nvertices. Also the total number ofedgesinG s n(n-1)/2. ‘

Itis always possxblc to construct a Hamiltonian circuitina complete graph onn vertices.
Arbitrarily Traceable Graphs :
An Euler graphis said to be an arbitrarily traceable graph ifevery vertex v of it has the property thatan Euler

line is always obtained when one follows any walk form the vertex v according to the single rule that whenever one

arrives at a vertex one shall select any edge which has not been previously traversed.

Fig. 11 : Arbitrarily Traceable Graph

e Y

Fig 12: Tree

1.3 Tree

Directorate of Distance Education . ' , 9
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Tree : Atree is a connected graph without any circuit. Tree has to be a simple graph because self loop and
parallel edge both form circuits. To represent genealogy of family or a river with its tributaries and subtributaries,
tree is used most effectively.

| PROPERTIES : | |
Property 1 :There is one and only one path beﬁveen every pair of vertices in a tree T.
Proof Since Tis a connected graph, there must ex1st at least one path between every pair of vertices in T,
‘Now suppose that between two vertices aand b of T there are two distinct paths The union of these two paths will

contain a c1rcmt and T can not bea tree

Property 2 : If in a graph G there is one and only one path between every pair of [ vertices, then Gisa
tree, . ,
Proof Exxstence of apath between every paxr of vertlces assures that G is connected A circuit m agraph
(with two or more vertices) implies that there is at least one pair or vertices a, b such that there are two distinct
paths between a and b. Since G has one and only one path between every pa1r of vertices, G can have no circuit,

therefore, Gis a tree.

Property 3 : A tree with n vertices has n-1 edges.
- Proof': The theorem will be proved by induction on the number of vertices. It is easy to see that the theorem
istrue forn=1,2, & 3. Assume that the theorem holds for all trees with fewer than n vertices.

/'.."_,,.... -..~\'.'~" ek P \\\

LY Vi @] T @V t2
L "‘..“ . '..-" \.,,' .,,..v"
=1 = T —

Fig. 13: Tree T with n vertices

Let us now consider a tree Twithnvertices.In T let e, be an edge with end vertices v.and V. As there isone
and only one path between every pair of vertices in a tree, then there is no other path betweenv, & v,  excepte,.
Therefore, deletlon ofe, from T will disconnect the graph. F urthermore, T-¢, consists of exactly two components

t, and t, and since there were no circuits in T'to begin with, each of these components is a tree. Both these trees,

10 ’ Directorate of Distance Education



........................................................................................................................................... Graph Theory 1
t, and t, have fewer that n vertices each, and therefore by the induction hypothesxs each contains one less edge

than the number of vertices in it. Thus T-e, consists of n-2 edges (and n vertices). Hence T has (n-1) edges

Property 4 : Any connected graph with n vertices and (n-1) edges is a tree. .
Proof : Let T be a connected graph with n vertices and n-1 edges. To show that T is atree, itis sufficient to
prove that T is circuit free. Let if possibie there exist a circuit with n, vertices where n,<n. Then there are n, edges
inthe circuit, we are left with (n-n, ) vertices. Since T is connected we must have at least (n-n,) edges to connect
(n-n,) vertices. Therefore total edges is (n-n,) +n,=n which is a contradiction. Therefore our assumption is

incorrect. Hence the graph is circuit free and so it is a tree.

Property 5: A circuit free gi'aph with n vertices and (n-1) edges is a tree.
Proof : Let the graph be disconnected and the number of connected component be k where k >2. Therefore
each component is circuits free and connected which forms a tree. ‘
~ Letcomponents are T,T, S T, containsn, 1, ........0, NO. of verticesand e, €, ........ ¢, number
of edges respectively. ’
~ The total number of edges

= (n-k) <n-1
Therefore a contradiction arises. Hence the graph must be connected and so this is atree.

Note : We may have noticed another important feature of a tree. Its vertices are connected together with the
minimum number of edges. A connected graph is said to be minimally connected if removal of any one edge from
it disconnects the graph. A minimally connected graph cannot have a circuit; otherwise we could remove one ofthe
edges in the circuit and still leave the graph connected. Thus a minimally connected graph is atree. Conversely ifa
connected graph G is not minimally connected, there must exist an edge e, in G such that G-¢; is connected.

 Therefore e, is in some circuit which implies that G is not a tree.

Remark : The results of the preceding five theorems, can be summarized by saying that the followmg are
five different but equivalent definitions of atree i.e., agraph G with n vertices is called atree if

Directorate of Distance Education - 11
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1) Gisconnected and circuit less or
2)  Gisconnected and has n-1 edges, or
3) Giscircuitless and hasn-1 edges, or
4)  There s exactly one path between every pair of vertices in G, or
5) - -Gisminimally connected graph.

Problem 1.3 : In any tree with two or mofe vertices there are at least two pendant vertices.

Solution : In a tree of n vertices we have (n-1) edges and hence 2(n-1) degrees to be divided among n
vertices. Since no vertex can be of zcro degree in a tree, S0 we must have at least two vertices of degreeconeina
trec.e A

A non-pendant vertex in a tree is called an internal vertex. _

- Binary Tree : A binary tree is defined as a tree in which there is exactly one vertex of degree two, and
each of the remaining vertices is of degree one or three. Since the vertex of degree two is dxstmct from all other
vertices, this vertex i is called a root. The binary tree is a rooted tree.

Fig. 14 : Binary Tree

Properties of binary tree:
Property 1: The number of vertices nin a binary tree is aiways odd.

Proof: This is because there is exactly one vertex of even degree and the remaining (n-1) vertices are of odd
degree. Since the number of vertices of odd degree in a graph is always even. So, (n-1) is even and hence n must
be odd

Property 2 : Let p be the number of pendent vertices in a binary tree T, then (n-p-1) is the number of
vertices of degree three. :

Therefore : [p+3(n-p-1)+2 x1] =2(n-1)

Or,3n-2p-1=2n-2

Or,n-2p=-1

12 ' Directorate of Distance Education



........................................................................................................................................... Graph Theory 1
Onp= n+1/2
Or, n-p = p-1
which implies that the number of internal vertxces in a binary tree is one less than the number of pendant
vertices.

Spanning Trees : A tree T is said to be a spanning tree of a connected graph G if T is a subgraph of G
and T contains all vertices of G.

™,
b, €1
’\\"
by ,
N,
¢ b ’b-t
[

Fig. 15: Spanning Tree

We can find a spanning tree from each component ofadisconnected graph. Thus a disconnected graph with
k components has spanning forest consisting ofk spanmng tree.
Branch and Chord : The edges of the connected graph which are present in a spanning tree are called

 branches ofa tree.
The edges of the connected graph which are not present in a spanning tree are called chords. See fig. 15 for

| example, {b,, b, b;, b,} are branches and {c,, c,, ¢,} are chords.

Theorem 1.6 : Every connected graph has at least one spanning tree.
Proof : To trace out a spanning tree, we start from any vertex whenever we come across a circuit, we delete

any of the edges of the circuit. Thus we get at least one spanning tree.e

Fundamental Circuits : Addition of any chord to the spanning tree will create a circuit called fundamental
‘circuit.

Infig. 15, {b,b,,b,,b,} is the spanning tree. Adding ¢, we geta fundamental circuit. {b,, b, ¢,}.

Distance and Centre : Ina connected graph G the distance d(v,, v)) between two of its vertices v, & v, is
the length of the shortest path (i.e., the number of edges in the shortest path) between them.

Distance between vertices of a connected graph is a metric.

Directorate of Distance Education 13



The eccentricity E(v) of the vertex vina graph G is the distance from v to the vertex furthest from vin G.
i.e., E(v)=12X {d (v,v)}

A vertex with minimum ecentricity in graph is called centre of G.

Theerem 1.7 : Every three has either one or two centres.

Radius & Diameter : The eccentricity of a centre (which is the distance from the centre of the tree to the
furthest vertex) in a tree is defined as the radius of the tree.

' The diameter of a tree T is defined as the length of the longest pathinT.

Rank : Rank of a graph denoted by r and defined by r= n-k where n is the number of vertices & k is the
number of components. Since each component contains at least one vertex, n>k.

Hencer=n-k 20.

Again each component is connected and tree is a minimally connected graph. So, ife be the number of edges
of a graph, thene >n-k

i.e.,e-ntk >0,

- Hence, we define nullity = = e-n+k |
Rank of G is the number of branches in any spanning tree or forest of G.
Nullity of G is the number of chords in G and rank + nullity=number of edges in G

1.4 Cut Sets and Cut Vertices : . ,
Cut Sets: In a connected graph G, a cutset is a set of edges whose removal from G leaves G disconnected,

provided removal of no proper subset of these edges disconnects G.
a

d
 Fig. 16

Infig. 16, the set of edges {a,n b, d}, {é, b, c}, {a, e}, {f} are cutsets.
Since removal of any edge from a tree breaks the tree into two parts. Every edge of a tree is a cutset. -

Number of cutset in a tree with n vertices in (n-1).
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Graph Theory 1

Connectivity and Separability : ,

Edge connectivity : The number of edges in the smallest cutset (i.e., cutset with fewest number of edges) is
defined as the edge connectivity of G, i.e., the edge connectivity of a connected graph can be defined as the
minimum number of edges whose removal or deletion makes the graph disconnected. The edge connectivity ofa
tree is one. | ' ’

Vertex Connectlvxty The vertex connectivity of a connected graph G is defined as the minimum number
of vertices whose removal from G leaves the remammg graph disconnected.

Separable Graph A connected graph is said to be separable if its vertex connectivity is one. All other
connected graph are called non-seperable e.g., atree isa separable graph A separable graph consists of two or
more non separable subgraphs. Each of the largest non-separable subgraph is called a block. A non separable

connected graph ponsists of just one block.

Fig. 17: Separable Graph

*_Cut Vertex: Ina Separable graph a vertex whose removal disconnects the graph is called a cut vertex, cut-
node or an articulation point. '

Theorem1.8: Th‘é edge connectivity of a graph G cannot exceed the degree of the vertex of the smallest

degreein G. L ,
Proof : Let vertex v, be the vertex with the smallest degree in G Let d(v)) be the degree of v;. Vertex vican

be separated from G by removing the d(v,) edges incident on vertex v, Hence the theorem.e

Theorem 1.9 : The vertex connectivity of any graph G can never exceed the edge connectivity of G.
Proof: Let r denote the edge connectivity of G. Therefore, there exists a cutest Sin G withredges. Let S
partition the vertices of G mto subsets V and V. By removing at most r vertices from V., (or V,) on-which the

edgesinSare m01dent we can effect: the removal of at least S from G. Hence the theorem. e

Directorate of Distance Education 15



AIZEBYG ...ttt o sssssssae s e e eeeeeeeeeeseeeeoseeeeeeee

Theorem 1.10 : Every cutset in a connected graph G must contain at least one branch of every spanning
tree of G. .

Proof': Let the spanning trees of G are T, T, - T, and S, be of cutset. Let there be no common edges
between T, & S,.Thenremoval of S, from G does not effect T, which means that removal of S, doesnotmake G

disconnected. This contradiction proves the theorem. e

Theorem 1.11 : In a connected graph G, any minimal set of edges containing at least one branch of
every spanning tree of G is a cutset.

Proof : Let Q be the set containing at least one branch of every spanning tree of G. Since in(G-Q) we
cannot get any spanning tree of G, (G-Q) must be disconnected. Further, addition of any one edge of Q in (G-Q)
will create at least one spanning tree. Therefore Q is the minimal set of edges whose removal from G disconnects

G. Hence Qisacutset.e

Theorem 1.12 : Every circuit has an even numbers of edges in common with any cut set.

Proof : Let G be a connected graph. Consider a cutest S in graph G. Let the removal of S partition the
vertices of G into two subsets V,and V,. Considera circuit I"in G. If all the vertices in I" are entirely within vertex
set V, (or V,), the number of edges common to S and I"is zero an even number.

If on the other hand, some vertices of " are in V, andsome in V,, we traverse back and forth between the
sets V, and V, as we traverse the circuit. Because of the closed nature of a circuit, the number of edges we traverse
between V, and V, are even.e

Fundamental Cut-Sets: Let T be a spanning tree of a connected graph G Take any branch bin T. Removal
of bmakes T disconnected. Consider the same partition of vertices in G and the cutset S in G that corresponds to.
this partition. Then cutset S will contain only one branch of T and some of the chords of T. Such a cutset S is known
as fundamenttal cutset with respect to T. Every branch of spanning tree will give unique fundamental cut set.

Fundamental Cutsets with respect to T= { €, €, €, €, €,} of fig. 18 are as follows

€

€3

Fig. 18
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........................................................................................................................................... Graph Theory 1
fiom e, : {e;, e, ¢,},

fiom e,: {e,, €, €}

fiom e,: {e, e},

fiom e,: {e, e},

from e;: {e,¢,¢€,}.

Theorem 1.13 : With respect to a given spanning treea chord c, that determines a fundamental circuitI"
occurs in every fundamental cut-set associated with the branches inI" and in no other | '
Proof: Let T be the given spanning tree of a graph G. Then let fundamental circuitI" ‘made by the chord c |
‘contains k branches b,, b, ....b ie.I'={c, bv b, s b} I
Let Sj be the fundamental cut set, determined by branch bj ] 1,2, 3 k

s Sj= {b Cpp Cps 4+ €3, €, €y e € , are chords.
The edge b. is common inT & S - |
By the prev1ous theorem I & S, must have aneven number of common edges butc,, c cannot be
common to b,by .. b‘ 'Iherefore c must be one of (N c . €, ie,cis mcluded 1n every cutset correspondmg
tobranchesin[. | |
~ Letus consider another clutset which is defined by b, S={b,.,c € c’ }v If c is COnatnon inr&
S’ then bm must be one of b P b2, by to make the number of common edges eyen whlch isa contradiction.

Therefore ¢, cannot be mcluded in any cutset correspondmg to branches of tree other than those inl.e

| Complement Complernent ofa simple graph with n vertices is deﬁned tobe ts complement w1th respect
to the complete graph Kn and is denoted by G’ or G
ClearlyGU G =K,

- Fig: 19
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‘Summary :

Graphs can be used to represent almost any problem involving discrete arrangements of objects, where
concern is not with the internal properties of these objects, but with the relationships among them. Particularly,
trees form the most important topic in graph theory. Different types of trees together with their properties and
applications are discussed. In contrast to a spanning tree (Which keeps the vertices together), a cutset separates the
vertices. Consequently, there is boundto bea close relatlonshxp between the two, whxch is described, here by

_some theorems.

Exercise :
1. Show tree in whxch its dxameter is not equal to twice the radius. Under what condztlon does this
mequahty hold? Elaborate. ‘
2. - Showthata path is its own spanning tree.
Write downall possible disconnected graphon four vertices? Find the number of' oomponents ineach
case. |
4 | Prove that any subgraph g of a connected graph G is contamed in some spanmng tree of Gif and only
| ifg contains no circuit.
. Showthatif Gisatree, and all the degrees of vertices in G are odd, then the number of edges is odd
_' 6. Show that the glaph ofa rhombxc dodecahedron (with eight vertices of degree three and six vemces of
O degree four) has no Harmltoman path (and therefore no Harmltoman cncmt)
7. \Determme the number of vertices and edges ina tree consxstmg of 2n pendant verttces, 3n vertxces of
| degree 2 and n vertices of degree 3. _ ;
8. Howmany cut vertices a binary tree on 2n+ 1 vertices may have? Justify you answer.

18 . ' Directorate of Distance Education.
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. 2.3 Colouringand Matching.
2.4 Directed Graph. |
2.5 . Matrix Representation ofa graph.
. 2.6 Graph-tehoretic Algokri’thms,

Excercise.

Objectives

1. Tointroduce the concept of planarity and other related topics which are of great si"ghiﬁcance.

2. . Togiveanidea of different types of isomorphisms used in graph theory.

3. Todevelop the concept of proper colouring of the vertices of a graph and the concept of matching,
both of which have great significance in practical life.

4.  Todiscuss about the directed graphs-graphs in which edges have directions.
To demonstrate the use of matrices in studying graphs.
To use the high-speed electronic computers in solving graph-theoretic problems.



2.1 Planar graph and non planar graph:
Planar Graph : A graph G is said to be planar if there exists some geometric representation of G which can

be drawn on a plane such that no two of its edges intersect. A graph Gis saidto be a planar graph if it can be
represent on a plane such that no two edge of g intersect except at the vertices. A graph that cannot be drawn on
aplane without a crossover between its edges is called non planar Note that the “meeting’ of edges at vertex is

not considered as intersection. :
Embedding : A drawing of a geometric representation of a graph on any surface such that no edges interest

is call embedding,

Fig. 1: Planar Graphs

Thus to declare that graph G is non planar, we have to show that of all possxble geometnc representatlon of

G none can be embedded ina plane.
- A geometric graph G is planar if there exists a graph isomorphic to G that is embedded ina plane otherw1se

G is non planner. An embedding of a planar graph G on a plane is called a plane representation of G. -
Kuratowski’s Graphs: A natural question is now that how we tell if a graph G is planar or non planar? To
answer this question let us discuss the graphs of fundamental importance. These are called Kuratowski’s graph

after the polish mathmatician Kasimir Kuratowski who discovered their unique property.
- Type-I: K, the complete with five vertices.
Type-II: K, the utility graph involving three households H,, H,, H, and three services viz. Gas, water and

electricity essentlal to all the houses.

Fig. 2: Non planar Graphs
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Properties : -

i) BothK andK,, are regular and non planar graphs

i) = Removal ofone edge or a vertex makes each, a planar graph.

i)  Kuratowski’s first graph K, is the non planar graph with the smallest number of vertices and Kuratowskl S
second graph K., is the non-planar graph with the smallest number of edges. Thus both are the
simplest non planar graphs.

Region : A region is an area of a planar graph bounded by the edges such that the area cannot be subdivided.

Region is also called window, mesh or face.

The plane lying outside a graph (region 5 of the fig. 3) is called the infinite, exterior region.

Fig. 3: Regions of a Planar Graph,

2.2 Isomerphic Graphs:
~Two graphs G and G’ are said to be isomorphic to-each other if there is a one to one correspondence
between their vertices and between edges such that incidence relationship is preserved. In other words suppose
that the edge ¢ is incident on vertices v, & v, in G then the corresponding edge ¢’ of G’ must be incident on the

| vertices v, & v, that correspond to v, & v, respectively.

. '
Gj Gy

Fig. 4: Isomorphic Graphs
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Homeomorphic Graphs : Two graphs are said to be homeomorphic if one graph can be obtained from the
other by the creation of edges in series (i.e., by insertion of vertices of degree two) or by the merger of edge in
series (i.e., deletion of vertices of degree two) A graphis planar ifand only if every graph thatis homeomorphxc to
Gisplanar, ‘

o—
Fig. 5: Homeomorphic Graphs

1-Isomorphism : Two graphs G, & G, are said to be 1-isomorphic if they become isomorphic to each other
under repeated application of the following operation.

Operation-1: Split a cut vertex into two vertices to produce two disjoint subgraphs. ‘

From this definition it follows that two non separable graph are 1 isomorphic ifand only if they are isomorphic.

Fig. 6: I-Isomorp‘hic Graphs

2-Isomorphism : Inthe 2 connected gxaph (graph with vertex connectivify 2) G, let vertices x & y be a pair
of vertices whose removal from G will leave the remaining graph disconnected.

In other words, G consists of a subgraph, g, & g, such that g, and g, have exactly two verticesx & y in
common. Suppose that we perform the following operation2 on G.

Operation 2 : Split the vertex x into X, & x, and the vertex yinto y, & ¥, suchthat Gis split intog andg,.
Let vertices x, & y, go with g, and X, & y, with g,. Now we join the graph 8, & g, by merging x, withy, & x, with
Yy | '

Two graphs are said to be 2-isomorphic 1f they become 1somorphlc after undergoing operation 1 or operation
2 or both the operations any number of times. '
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Isomorphic graphs are always 1-isomorphic and 1-isomorphic graphs are always 2-isomorphic, but the

converse is not true.
X ; <
. Cx 2
L y2
y yi
G ' g: g - G

Fig. 7: 2-Isomorphic Graphs

Tht;orem 2.1: A necessary and sufficient condition for a graph G tobe plahar is that G does not contain
“either of Kurotowski’s two graphs or any graph homeomorphic to éither of them.

Euli\r’s Theorem 2.2 : A connected planar graph with n vertices and eedges has e-n+2 regions, i.e., the
number of regions f= e-n+2 or, n-e+f=2.

ProoffTheA theorem will be proved by induction on the nuinber of edges e of G.

For e=0we get n—l f 1, n-e+tf=2

Fore= lwegetn—lf 2n-e+f 2 

Fore=0wegetn=2,f=1,n-etf=2

e=0 ' e=1 e=1
Fig, 8: Connected Graphs

Let the theorem be true for all graphs with atmost (e-1) edges and G be a graph with e edges, n vertices and
fregions. ,

IfGisatree, thene=n-1, f=1, n-e+f=n-n+t1+f=2.

IfGisnotatree, let e, be an edge contained in some circuitin G then G —e, is a planar connected graph with
n verticés, (e-1) edges and (f-1) regions. So by induction hypothesis we have, n-(e-1) +(f-1)=2
or, n-e+f=2 ' '

Therefore the therem holds good for G.e

Directorate of Distance Education 23



AIGEBIQcoveceessssis st ee oo oo eeeoeeeeeeeseeeeeeeeee

Simple connected plaxiar graph:
Inasimple planar connected graph non-existence of self loop or parallel edge, implies that the number of
edges of the boundary of a region must be at least three.
Let T be the total number of edges of the boundaries of all the regions in a simple planar connected graph .
withf regxons
T23f and also T < 2e, since every edge in the boundary of at most two regions.
3f<T<2e
| ~3f<2e=>e2312
Also we know, f=e-n+2
~3e-3n+6<2e
ie,e<3n-6 ;
which is a necessary condition for smlple planar connected graph, but not sufficient.
Inthe case of K, the complete graph of five vertices, n=5, e=1 0, 3n-6=9<e. Thus the graph violets mequahty
and hence it is not planar.
Kuratowski’s K,,, satisfies the inequality because =9, 3n-6 =3 x 6-6 yet the graph is non-planar

Problem 2.1 : Show that a simple planar graph has at least a vertex of ‘degree 5 or less.
Solution: If the graph is disconnected, we consider one connected component of it and proceéd.' -
Let, if possible, the graph has the vertices, all of which are of degree 6 at least.
Let T be the total degrees in the graph.
~. T=2eand T >6n, where nis the number of vertices and e is the number of edges.
or,2e26n |
or, e 23n. L
But for a simple connected graph e < 3n-6. This contradiction disproves the assumption.e

Problem 2.2 : Show that in a connected simple planar graph with 6 vertices and 12 edges each of the
regions is bounded by three edges.
Solution: Here n=6, e =12, then n-e+f=2 givesf=8

Le., total no. of regions in the graphis 8.
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Since the graph is connected simple planar, no selfloop, parallel edge is present in the graph. Therefore at
least 3 edges are in the boundary of a region.

Let, there be at least one region bounded by four edges, other 7 regions by 3 edges.
Total no. of edges in the boundary, T=7x3 +4 =21 +4=25
AgainT<2e=>2,12=24

which is a contradiction. So each region is the graph bounded by 3 edges.e

Geometrical Dual : Consider the plane representation of a graph with fregions. Let us place F points F,
,» ... F one in each of the regions. Next let us join these F points according to the following procedure:

Iftwo regions i & j are adjacent draw a line joining points F, and F, that intersect the common edge between
i and j th region exactly once. If there is more than one common edge draw one line for each of the common edges.

For an edge e lying entirely in one region say F, draw a selfloop at point F, intersecting e exactly once. By this
procedure we obtain a new graph G* consisting of f vertices F o

...... F,.and of edges joining these vertices.
Such a graph G* is called a dual of G.

-

-
L e————

Fig. 9: Dual

Properties :

)  Anedgeformingaselfloop in G gives a pendant edge in G*.
i)  Anpendantedgein G givesaselfloop of G*.

ify Edges inseries in G produce parallel edges in G"f.
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iv)  Parallel edges in G produce edges in series in G*.

v)  The number of edges constituting the boundary of a region i in G is equal to the degree of the
corresponding vertex F, in G* and vice versa.

vi)  The graph G* is also planar.

vi) G* and G are dual graph.

viii)  Ifn, e, £, 1, 1 be the number of vertices, edges, regions, rank and nullity of G respectively and n*, e*,
£*, r*, p* be the corresponding quantities in G* then n* = £, e* =g, f* =n, r* =, p*=r.

Self Dual Graph : If a planar graph G is isomorphic to its own dual it is called a self dual graph.
| Theorem 2.3 : A graph has dual if & only if it is planar. '

2.3 - Colouring and Matching:

- Chromatic number : Minimum number of colours required to colour the vertices ofa graph properly (i.e.,
no two adjacent vertices are of the same colour) is called the chromatic number of the graph. A graph G that
requires k different colours for its proper colouring is called a k chromatic graph and the number k is called the
chromatic number of G. |

In colouring graph there is no need in considering disconnected graphs. How we colour vertices in one
component of a disconnected gra'phyhas no effect on the colouring of the other components. Therefore it is usual to
investigate colouring of connected graph only. All pamllel edges between two vertices can be replaced by a single
edge without effecting adjacency of vertices. Selﬂoop inay be disregarded. :

Thus for colouring problems we needed to consider only simple connected graphs. Some observations that
follow directly from the definition Justintroducedare

1)  Agraph consisting of only isolated vertex isone chromatic.

2 2 2.

Fig. 10: Colouring of Graphs
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2) A graph with one or more edges (not a selfloop) is at least 2 chromatic.

3)  Acomplete graphofn vertices is n chromatic asall its vertices are adjacent. Hence a graph containing
a complete graph of r vertices, is at least 3 chromatic.

4) A graphconsisting of simply one circuit withn23 vertices is 2 chromatic ifn is even and 3 chromatic

ifnisodd.

Theorem 2.4 : Every tree with two or more vertices is two chromatic.
Proof: Select any vertex v in the tree T. Paint v with colour 1. Paint all vertices adjacent to v with colour 2.
Next paintall vertices adjacent to these (those that just have been colored with 2) using colour 1. Continue this
process till every vertex in T has been pamted Nowin T we find that al vertices at odd distance from v have colour
2 while v and verities of even distance form v have colour 1. Now along any path in T the vertices are of alternating
colour. Since there is one and only one path between any two vertices in a tree, no two adjacent vertices have the
same colour. Thus T has been coloured with two colours.e ’
Though a tree is 2 chromatic not every 2 chromatic graphis a tree (the utility graph, for instance, isnot a tree.
Butis 2 chromatic). - '
Bipartite Graph : A graph G is called bipartite if its vertex set V can be decomposed into two disjoint
subsets V, &V, such that every edge in G joints a vertex in V| witha vertex in V. Obviously a bipartite graphcan
‘haveno self—loop A set of parallel edges between a pair of vertices can all be replaced with one edge without
affecting bipartiteness of graph. o
Clearly every 2 chromatic graph is bipartite because the colouring partitions the vertex set into the subsets V,
and V such that no two vertex in'V, (or V,) are adjacent. '
Similarly, every bipartite graph 2 chromatic with one trivial exception. A graph of two or more isolated |

vertices and with no edges is bipartite but is one chromatic.

Theorem 2.5 : If G (V, V,) is a bipartite graph then every circuit of it (if exists) has even length.
Proof: Let v, = v, v;....V, =V, be a circuitin G (V,, V,) and without loss of generality, assume that

v,eV,. Thensince G(V,, V,) is blpamte, v,€ V, and by the same agreement v,eV, andsoon.lt follows that

‘ v_eV, and hence the circuit has even length. . g

Chromatic Polynomial : A given graph Gof n vertices can be properly coloured in many different ways

using a sufficiently by large number of colours. This property ofa graph is expressed by means of a polynomlal
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called chromatic polynomial of G and is defined as apolynomial in AP (M) which gives the number of ways of
properly colouring a graph G with n vertices using A or fewer colours.

Let ¢, be the number of different ways of properly colouring G using exactly i colours. There are c be the
different ways of selecting exactly i colours out of A colours. Since i can be any posmve integer from 1 to n, the
chromatic polynomial is given by

P(A)= Zc,(—) Z (X)e -

i=k

Where k is the chromatic number of the graph G. Each ¢, has to be evaluated individually for the given graph

Theorem 2.6: A graph of n vertices is a complete graph iff its chromatic polynomlal isP, (A)=A (A-1)
(A2)...(A-n+1), N _

Proof : With A colours, there are A dlﬁ'erent ways of colourmg any selected vertex of a graph. A second
vertex can be coloured properly in exactly (A-1) ways, the third in (A-2) ways, the fourth i in(A-3) ways........ and
thenthin (A-n+1) waysiff every vertex is adjacent to every other. That is, iff the graph is complete. e

Properties : Let G be a graph with n vertices e edges and k components G,, G, ...G,. Then

) P Q)isof degree n.

i) Theco-efficient of A"inP (A)is 1.

i)  The co-efficient of AtinP (A)is(-e).

iv)  The constant term of P_(A) is zero.

vy P})= n Pn, (1) where n, is the number of vertices in the  component of G

vi) The smallest exponent of A inP_(A) with the non-zero co-efficient is k where k is the number of

components of G.

Theorem 2.7 : A n vertices graph is a tree iff its chroniatic polynomial
P, (\)=A (A-1)*
Proof : Necessary Part.
(By mathematical induction on n)
P,(A) =A
P,(A) =AMA-1)
Letitbe true for atree T with less than n vertices. Let v be apendant vertex of T, Deleting v we getatree T
with (n-l)vemces Therefore, its chromanc polynomialis =

28 Directorate of Distance Education



......................................................................................................................................... Graph Theory I

P (A)=A (A-1)"

Now add v and since it has only one adjacent vertex, we have (A-1) colours in hand to colour v. We can not
use the only one colour by which the said adjacent vertex has been coloured. '

P (D) = AMA-1)"2 (A-1)

=A (A-1) ™!

Sufficient Part : _

Since co-efficient of A inP_(A) is one, T is connected by property (vi) i.e., the smallest exponent of Ain P,
- (\) with the non-zero co-efficient is the number of components present in the graph and the co-efficient of A™! is -
(n-1) so that T has (n-1) edges by the property (iii) that the co-efficient of A ™! in P_ () is negative of the number
of edges present in the graph. Hence T is a tree.e

Theorem 2.8 : The vertices of every planar graph can be properly coloured with five colours.

Proof: Let n be the number of vertices of the given gréph. Forn=1,2, 3,4, 5 the theorem holds obviously.
Let us assume that the theorem is true for a graph with less than n vertices. Now we consider a graph G withn
vertices. ‘ ‘ | |

G has at least one vertex v having less than or equal to five: degfees Select the vertex v ahd deléte it fromG.
Then (G-v) can be coloured properly with five colours by our assumption. Now we insert v.If d(v) "1 or2or3or
4, then we can colour it easﬂy When d(v) =5 let all the colours have been used to colour the vertices adjacent to

V.

Suppose that there is a path in G’ = G-v between vertices ‘a’ and ‘¢’ coloured alternately with colours 1 and
3. Thenasimilar path between b and d coloured alternately with colours 2 and 4 can not exist, since it will make G

non-planar.
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Ifthere is no path between b and d coloured alternately with colours 2 and 4, starting from vertex b, we can
interchange colours 2 and 4 of all vertices connected to b through vertices of alternating colour 2 and 4. This
interchange will paint vertex b with colour4 and yet keep G’ properly coloured.

Since vertex d is still with colour 4 we have colour 2 left with which the vertex v can be coloured.

Ifthere is no path between aand c of vertices painted alternately with colour 1 and 3, we could have released
colour 1 or 3 to paint v. Hence the theorem. e

Four Colour Theorem : Every planar graph has a chromatic number of four or less.

[proved by Appel and Haken using large sale computers in 1976] »

Matching: A matchihg in a graph is a subset of edges in which no two edges are adjacent. ,
- Maximum Matching : Maximum matching is a matching to which no edge of the graph can be added.

a Jl
B : V] Jz
3 L
Fig. 12: Matching

Among these the maximum matching with the largest number of edges are called largest maximum matching,
- The number of edges in a largest maximum matching is called matching number of the graph.

Complete matching : In a bipartite graph having a vertex partition V, and V, a complete matching of

verticesinset V, into those in V, is a matching in which there is one edge incident with every vertex in V,ie., every
vertex in V, is matched against some vertexin V.
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Theorem 2.9 : A complete matching of V,and V, in a bipartite graph exists ifand only if every subset of

rvertices in V, collectively adjacent to r or more vertices in V, for all values of r.

a 5
4
2 a . - Js
a3 a3 : )y
a4
2 a4 Js
as '13;

Fig. 13: Complete matching
2.4 Directed Graph: ; ‘
Digraph : A directed graph (or édigraph) G consists of a set of vertices V= {v,, v, ...} aset ofedgesE
={e,, €, ....} and a mapping that maps every edge onto some ordered pair of vertices (v, V). As in the case of
undirected graph, a vertex is represented by a point and an edge by a line segment between v,and \/ with an arrow
directed from v, to v;. ’ .
The number of edges incident out of a vertex v,called the out degree of v, and is written as d* (v)). The

number of edges incident into v, is called the in degree of v,and is writtenas d"(v,).

j
f v
Vi 2 v
§ 3
o
A
h i al kb
v d
V4 <g v
5

Fig. 1 4 Digraph
From the figure 14,

d*(v)=3,d"(v)=1
d'(v,)=1d(v)=2 -
d*(v,)=4,d"(vp=0
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Inany digraph G the sum of all in degree is equal to the sum of all out degrees, each sum being equal to the number
ofedgesinG. » '

i.e.,id'(v,) = id +v,)=e

i=] I

Isolated Vertex : Anisolated vertex is a vertex in which the in degree and the out degree are both equal to
- zero, B

ie,d'(v)=0=d (v).

Pendant vertex : A vertex v ina digraph is called pendant vertex if

d* (V) +d () =1.

Parallel edge : Two directed edges are said to be parallel if they are mapped onto the same ordered pair of

vertices. In the above Fig. 14, a, b, and ¢ are parallel.
Simple Digraph : A digraph that has no selfloop or parallel edge is called a simple graph.

Asymmetric Digraph : Digraph that have at most one directed edge between pair of vertices, but are

allowed to have self-loops, are called asymmetric or antisymmetric.

Symmetric Digraph : Digraphs in which for every edge (a, b) (i.e., from vertex a to b) there s also an edge
(b, a).
Complete Digraphs : A complete symmetric digraph is a simple digraph in which there is exactly one

edge directed from every vertex to every other vertex, and a complete asymmetric digraph is an asymmetric

digraph in which there is exactly one edge between every pair of vertices.

A complete asymmetric digraph of n vertices contains n(n-1)/2 edges, but a complete symmetric digraph of
n vertices contains n(n-1) edges. A complete asymmetric digraph is also called a tournament or a complete
tournament,

A digraph is said to be balanced or pseudosymmétric oran isograph if for every vertex vi the in degree
equals the out-degree; that is d*(v)=d (v). A balanced digraph is said to be regular if every vertex has the same

in-degree and out degree as every other vertex.

Directed Walk : A directed walk from a vertex v, to v, is an alternating sequence of vertices and edges
beginning with v, and ending with j, such that each edge is oriented from the vertex preceding it to the vertex
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following it No edge in a directed walk appears more than once, but vertices may appear may more than once. In

fig 14,v,av,d v,hv isadirected walk.

Semi Walk : A semi walk in directed graph is a walk in corresponding undirected graph but is not a directed
walk. e.g. v, iv, g v,cv,isasemiwalkin fig 14.

A walk in a digraph can mean either a directed or a semi walk.

Semi Path : A semipathinadigraphisa path in corresponding undirected graph but not in the digraph.

Strongly Connected : A digraph G is said to be a strongly connected if there is at least one directed path
from every vertex to every other vertex.

Weakly Connected : Adigraph G is said to be Weakjy connected if its corresponding undirected graph is

connected but G is not strongly connected.

e

N .
Strongly Connected

~,

Weekly Connected

Fig, 15: Connectedness in Digraph

2.5 Matrix Representation of a graph :
Incidence Matrix: : _

Let G be a graph with n vertices, e edge'sb_and no self-loop. Define an n x e matrix

A= [aij] whose n rows corresponding to n vertices and the € columns correspond to the edges as follows:
The matrix element

a;=1, ifj th edge € isincident oni th vertex v,
=0, elsewhere. , ‘
Such a matrix A is called vertex-edge inciderice matrix or simply incidence matrix and is denoted by A (G).
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\78
N . , e, e e, e, € € e,
. 5 v 1 0 0o 0o 0 o 0\
& N e, ’v2»1 1 1 o0 o0 o0 0
\A 0 1 1 1 0 1
v % v, o 0 o 1 1 1
\Z!
‘. v\ 1 o 1 0o 1 o)
G
Fig 16: Incidence Matrix of G
The incidence matrix contains only two elements 0 and 1. Such a matrix is called a binary matrix ora (0,1)
matrix.
If we are given a incidence matrix A (G) we can construct its geometric graph without ambiguity.
Some Observations :
1) Sinceevery edge is incident on exactly two vertices, each column of A has exactly two 1’s.
2)  Thenumber of 1’s in each row equals the degree of the corresponding vertex.
3)  Arowwithall 0’s represents an isolated vertex.
4) Parallel edges in a graph produce identical columns in its incidence matrix.
5 Ifa graph G is disconnected and consists of two cdmponents g, and g, the incidence matrix A(G) of
graph G can be written in a block diagonal form as
A©)= ( Ag)| 0 ]
0 | A@)
where A(glv) and A(g,) are the incidence matrices of components gandg,
6)  Permutation of any two rows or columns in an incidence matrix simply corresponds to relabeling the
vertices and edges of the same gxaph. N
Two graphs G, and G, are isomorphic ifftheir incidence matrices A(G,)and A(G,) differs only by permutations
of rows and columns. ' | ' |
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Adjacency Matrix :

The adjacency matrix of a graph G with n vertex and no parallel edgeisann xn symmetric binary matrix
X= {xij]l defined over the ring of integers such that

x; =1, ifthereisan edge between ith & jth vertices.

=(), if there is no edge between them.
Some Observations : .

1)  Theentries along the principal diagonal of X are all 0’s iff the graph has no selfloop. A selfloop at the

i th vertex corresponds to x, =1. |
2)  Ifthe graph has no self-loop the degree of vertex equals the number of 1’s in thie corresponding row or

~ columnof X.

\z
v, Vs Vl v2 v3 v4 V.S
v (0 1 0 0 0)
v {1 0 10 1
v, 1 0 1 1
v 4\ v, o 1 1 1
G v, \ 0 1 1 1 0/

Fig. 17: Adjacency Matrix of G

3)  Permutation of rows and of the corresponding columns imply reordering the vertices. It must be noted
that the rows and columns must be arranged in the same order.

4) A graph Gisdisconnected and is in two components g, and g, iffits adjacency matrix X (G) can be

X(G)=[X(gl)§ 0 J
| 0 | X@)

partitioned as
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where X (g, ) is the adjacency matrix of the component g, and X (g,) is that of the component of g,
5)  Givenany square, symmetric binary matrix Q of order n, one can always construct a graph G of n
vertices (& with no parallel edge) such that Qis the adjacency matrix of G.
Circuit Matrix :
Let the number 6f different circuits in a graph G be q and the number of edgeé in G bee. Then a circuit matrix
B= [bij] of Gisaqxe, (0,1) matrix defined as follows:
b,.j =1, ifi th circuit includes j th edge and
=0, otherwise.
This is generally denoted by B(G)
Observatmns :
1) Acolumn With all zeros corresponds to a non circuit edge, e.g. edge hin Fig 18.
2)  Thenumberof I’sinarow is equal to the number of edges in the corresponding circuit.

3)  Itcanrepresentaselfloop and paralle] edges.

o X a b c d e f g h
| e 1 11 0 0 0.0 0 0
g ¢ 240 0 1 o0 1 0 1 0
f 1° 300 0 0 1 0o 1 1 o
d 4 L0 0 1 1 1 10 0

G |

Fig. 18: G with Circuits {a, b}, {c, e, gh{d, f, g te, d, f, e} and its circuit matrix

4) If gmph G is separable (or disconnected) and consists of two blocks (or comporients) g and g, the
circuit matrix B(G) can be written in a black diagonal formas - 2

B(G)=[B(g,)§ 0 J
L0 | B

where B (g,) and B (g,) are the circuit matrices of gandg, respectxvely

5) Permutation of any two rows or columns imply reordenng the circuits and edges.
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6) TwographsG,andG, will have same circuit matrix G, and G,are 2 isomorphic. In other words, the
circuit matrix does not specify a graph completely. It specifies the graph within 2 isomorphism.

Cut Set Matrix : We can define a cutset matrix C=[c,] in which the rows correspond to the cutsets and

the columns to the edges of the graph as follows:

¢, =1 ifithcutsetcontainsjth edge
=(), otherwise.
Observations :

1)  Permutation of rows and columns ina cutset matrix correspond simply to a renaming of cutsets and
edges respectively.

2)  Column with all zeros corresponds to an edge forming a selfloop.

3)  Parallel edges produce identical columns in the cutset matrix.
Culsets of G in fig 18 are {h}, {a, b}, {c, €}, {¢, d, g}, {f.d}, {e,g, I}, {8, c}, {e,d, g}.

h
N
0
0
0
0
0
0
0

—_— D D ek e OO O

_— OO = e OO O Q.
_ o — o © = o O o
P = =)
_ e o O e O O O

o o 0 o0 O - o o

0
Cut set mﬁtrix of the graph G in fig 18

0 1 N W A W R e
gooooo.—-}m

2.6. Graph Theoretic Algorithms:
Weighted graph shortest spannmg tree:

If graph G is a weighted graphi.e., if there is a real number associated with each edge of G, then the weight
of the spanning tree T of G is defined as the sum of the weights of all the branches in T. In general, different spanning
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trees of G has different weights. Amongall the spanning trees of G, one with the smallest weight is called a shortest
spanning tree or shortest distance spanning tree or minimal Spanning tree.
Algorithms for finding the shortest spanning tree in a weighted graph :

Vs 10 Vi

V2

19.5 T

Fig. 19 Shortest spanning tree T of weighted graph G.

Kruskal algorithm :

Listall edges of the graph G in order of non-decreasing weight. Next select the smallest edge of G. Then for
each successive step, select (from all remaining edges of G) another smallest edge that makes no circuit with the
previously selected edges. Continue until n-1 edges have been selected and these ed ges will construct the desired
shortest spanning tree.

Prim’s algorithm :

Draw nisolated vertices and label them Vis Vs ... V.. Tabulate the given weights of the edgeof Ginnbyn
table. Set the weights of non existent edges as very large Start from vertex v, and connect it to its nearest
neighbour (i.e., to the vertex which has the smallest entry inrow 1 of the table) say v,. Now consider v, and v, as
one sub graph and connect these sub graph to its closest neighbour (i.e., to vertex other than v, and v, that has the
smallest entry among all entries in rows 1 and k). Let this new vertex be v.. Nextregard the tree with vertices ViV,
and v, as one sub graph and continue the process until all n vertices have been connected by n-1 edges. For the

graph Gis fig 19, the 6 x 6 table is given below:
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1 2 3 S 6
v /o 10 16 11 10 17 O\
v, 10 - 95 « o« 19.5
v| 16 95 - 7 o« 12
v, 11 oc 7 - 8
\A 10 « < 8 -

o2

\17 19.5 12 7 9 - —/

Shortest path algorithm :
A large number of optimization problems are mathematically equivalent to finding shortest path ina graph.
Algorithm for finding out a shortest path, from a specified vertex (s) to another specified vertex (t) can be
stated as follows:
A simple weighted digraph G with n vertices is described byann X nmatrix D= [d,]
Where db. = weight of the directed edge from vertex i to vertex i@z 0)
d. =o

ij
d, =q if there is no edge fromitoj.

Ingeneral d;=d, and the triangle inequality need not be satisfied. That is d;+d, may be lessthand, . The
distance of a directed path p is defined to be the sum of the lengths of the edges in p. The problem s to find the

shortest possible path and its length from a starting vertex stoa terminal vertex T.

Dijkstra’s Algorithim :

This algorithm levels the vertices of the given digraph. At each stage in the algorithm some vertices have
permanent levels and other temporary levels. The algorithm begins by assi gning permanent level 0 to the starting
vertex s and temporary level «c to the remaining n-1 vertices. From then on, in each iteration another vertex gets a
permanent level according to the following rules:

1)  Eachvertexj thatis, not yet permanently leveled gets a new temporary level whose value is given by

min [old' level of j, (old label of i+ dij)]
where i is the latest vertex permanently labeled in the previous iteration and d, is the direct distance

between verticesiandj. -
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Ifiand j are not joined by an edge then d;=cc.
2)  Thesmallest value among all the temporary level is found and this becomes the permanent level of the

corresponding vertex. In case of a tie, select any one of the candidates for permanent labeling.

Step (1) and (2) are repeated alternately until the destination vertex t gets a permanent label.

2
A
> 8

7

N 2

‘B 3 4 10

1 - 4

C 3

Fig. 20: weighted digraph G

The first vertex to be permanently label is at a distance of 0 from s, The 2™ vertex to get a permanent label

is the vertex closest to s, From the remaining n-2 vertices, the next one to be permanently labeled is the 2 closest
vertex to s and so on.

The permanent label of each vertex is the shortest distance of that vertex from.

A B C D E F G

= [0} = * * * x Denotes permanent label.
7 @ oc oc oc oc Denotes the latest vertex
4 [(ﬂ o« 5 4 « permanently labelled.

[0] 14 s 11

[0] 12 11

O] @ 12

Iteration for finding shortest path from B to G of the graph in fig. 20.

The algorithm described does not actually list the shortest path from starting vertex to the terminal vertex, It
only gives the shortest distance. The shortest path can be easily constructed by working backward from the
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terminal vertex such that we go to the predecessor whose label differs exactly by the length of the connecting edge.
A tie indicates more than one shortest path. For the figure 20, the iterations show that the distance of the shortest

path from B to g is 7 and the path isB—»C —>E->G.

Remark :

1)  Inthisalgorithm if we continue the labeling until every vertex gets a permanent label we will get an algorithm
for thortest path from starting vertex s to all other vertices. ’

2)  Inthisalgorithm as more vertices acquired permanent labels, the aumber of addition and comparison needed
to modify the temporary labels continues to decrease. Notice that fora givenn, the continuation time is
independent of number of edges in the digraph.

3)  We have assumed distances dij are all non negative numbers. If some of the dis(ance are negative, this

algorithm will not work.

Summary :

One of the most fascinating areas of study is the interplay between considering a graph as a combinatorial
object and as a geometric figure. The existence of a dual graph, in addition to being a condition equivalentto that
of planarity, is important in its own right. Colouring is another very interesting problem of graph theory which has
been discussed in this chapter. Matching is an independent set of edges, i.e., a set of edges no two of which are
adjacent.

Many physical situations require directed graphs, Directed gra hs are employed in abstract representations
of computer programs, where the vertices stand for the program instructions and the edges specify the execution
sequence. Most of the important and fundamental features of directed graphs are discussed in this chapter. The use
of matrices in studying graphs has beeﬁ demonstrated in this chapter. Finally, computational aspects of graph

theory are presented here by the discussion of some graph-theoretic algorithms.

Exercise :
1. Showthatthe edges forminga fundamental circuit in a planar graph G correspond to aset of fundamental

cutset in the dual G*.
2. Prove thatthe geometric dual ofa self-loop-free non separable planar graph is also non separable.
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Show that the edges forming a spanning tree in planar graph G correspond to the edges forming a set of
chords in the dual G*. -

Show that the complete graph of four vertices is self-dual. Give another example of a self-dual graph.,
Show that if a bipartite graph has any circuits, they must all be of even length.

Show that a simple planar graph with less than 30 edges has a vertex of degree 4 or less.

Show that in a planar connected graph has less than 12 regions and degree of each vertices is at least 3 there
is aregion bounded by 4 or fewer edges. |

Show that the chromatic polynomial of a graph consisting of a single circuit of lengthn (i.e., ann -gon) is
P.(0) = (A1) + (A-1)( -1y |
Prove the every edges ina digraph belongs either to a directed circuit of a directed cut-set.

Amaximal planar graph is one to which no line can be added without losing planarity. Show that every region
inamaximal planar graph is atriangle.
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15.13 Suggested Further Readings
15.1 Introduction

The group theory arose mainly from attempts to “nd the roots .of a polynomial in terms of its coe-

.

cients. The learners are already familiar with group theory. In this module a recapitulation of group
theory is given. The recapitulation is needed to continue the study of abstract algebra. Some properties
of normal groups and the concept of quotient groups are studied here.

15.2 Objectives

After going through this unit you will be able to learn about -
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¢ What is group?

® Mes of groups

o ’Subseimigmu‘ps

* Subgroups

° Cosets and characteristic of a group

. Noi;mal_subgroup. and its properties.
. Qt;otient group and its properties

15.3  Keywords

Groups, subgroups, cyclic groups, normal subgroups, quotient gl_?‘bups.

15.4 Definition of Group

Before going to define group, we first define binary operation. It is a mapping from the set S x § into
S, i.e,, it is a function which associates to every pair of § x § a unique element of S. In other words,
‘»' is said to be a binary operation on S, iff a* b € & for all a,b € S'and a * b is unique.

Definition 15.1 (Groupoid) 4 non-empty set G together with a binary operation » is said to form
a groupoid if (G, «) satisfies the closure property, i.e., axb € G for alla,b G.

Definition 15.2 (Semi-group) 4 non-empty set G together with a binary operation x is said to form
6 semi-group if (G, ) satisfies the Sollowing properties: o '
-1. Closure: for alla,be G =>axb eqG.

2. Associative law: (a4 b) sc=qa» (b*c) for all a,b,c € G.

For example, (N, +) is a semi-group, where N is the set of natural .nunibers and +-is the ordinary
addition. :

Definition 15.3 (Monoid) If the semi-group (S, ) contains an identity element then it is called a
monoid. ' _ S

For'example, (Z,+) is a monoid with identity element 0 and (Z,.) is a monoid with 1 as identity
slement, ,

Definition 15.4 (Group) 4 non-empty set G together with a binary operation * is said to form o
group if (G, ») satisfies the following properties: '

1. Closure: for glla,b € G=axbegC,
2. Associstive law: (a *bd)sc=ax(bxc) foralla,bece G,

44 Directorate of Distance Education



Module 15 : Groups

...................................................................................................................................

8. Existence of identity: There exists an element e € G such that axe =a = e+ a for 4l a € G.
‘then e 19 called the identity element of G. '

4. Eristence of inverse: To.every a € &, there ezists an element @’ € G such that axad =dsa=e, -
" where e .is the identity element of G and a' is called the inverse element of a.

Some times the inverse of a is denoted by a=>.

Definition 18.5 (Abelian group or commutative group) A group (G, *) is said to be an abelion
or commutative group, if » is commutative in G, i.e, ifaxb=bx*a for alla,be G. '
A group which is not. commutative is called noncommutative.

Definition. 15.8. (Order of a flnite group) .The order of a.finite group is the number of distinct
elements in the finite set. o : : - ' - ~

If @ be a finite group with n distinct elements, then the order of the group G, to be denoted by O(G)
or |Gl.ig n. o

Definition 16.7 (Congruent modt_xlo) Let a and b be two integers and they are said to be congruepnt -
modulo m if a — b 1s divisible by m, m is o positive integer.. It is written as a=b (mad m). The:.,fmteéer'
m 13 called modulus of the congruence. :

For example, 4 = 2 (mod 2), 16=0 (mod 4), —6 = 2 (mod.4), etc. It may be noted.that, if e = b
(mod m) then the remainders are same when ¢ and b are divide by m. ’ : N N

In the congruent modulo m, the remainders are.0,1,2,...,m — 1. Based on the remainders, the set
-of allintegers can be divided into 7 mutually. disjoint sets. ‘These are known as residue classes and -
denoted by [0}, [1}, (2], ..., [m — 1]. The set of all these elements, again forms a set, which is denoted
b Zans 104 Zon = {0, 1, 2], .., fm ~ 1]}.

For example, m = 5 the residue classes are

o] =.{..,=10,-5,0,510,15,...}
1 = {..,-9,-41,6,11,16,...}
2 = {..,-8-3271217,...}
B8 = {..,-7,-2,3,8,13,18,...}
[4 = {...-6,-1,4,9,14,19,...}

| Also, Zs = {[0], (1), [2], [3], (4]}

Ad@ition and multiplication between two elements of Z,,
Let [g]; [b] be-sny two elements of Zp,. Then . o
e+ B = le+bl=l]

| el = eet=D) |
where, z (y) is the least positive remainder when a + b (xfespect‘i‘(ely a - b) is divided by.m.

Let n be a positive integer. Consider the set Zy, of all congruence classes of integers modulo n. ’:{‘hen
(Zy, +) is a commutative group. Also, it can be shown that the set Z, = {(1], (2},.'..‘,.[;; - 1}}'18 an:
abelian group under the composition of multiplication.of residue. classes modulo p, where p is prime.
Directorate of Distance Education
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15.5 Order of an Element of a Group

Suppose G is a group and the composition has been denoted multiplication. By the order of an element
a € G is'meant the least positive integer n, if one exists, such that a" = e (the identity element of G).

If there exists no positive integer n such that o™ = e, then' we say the order of a'is infinite ar zero.
The order of an glement a is denoted by o(a). '

In additive notation, o(a) isn ifna=¢. '

If general, for the group (G, «) the order of a is equaltonifgxax...ag=e.

S R : ‘n a'8 '

* Consider the group (Zg, +), where + is the addition among classes defined as [a] + |8} = [a +b]. The
order of the group Zg is 6. The order of the elements [0}, (1], 2], [3), {4], [5) are respectively 1, 6, 3, 2,
3, 8. For example, 8[2] = (2] + [2] + [2] = [6] = [0] and 3 is the smallest positive integer such that
3[2] = [0). ' _ - ‘

Definition 15.8 (Idempotent element) Let (S,0) be an algebraic structure (either groupoid, semi-
group, monoid or group). An elementd € S is said to be idempotent ifaoa = a.

Deflnition 15.9 "(Suﬁsemiéronﬁ) Let (G, *)rbc' a semigroup and § be a subset of G. If § itself a
'semigmup with respect to the same compogition x, then (S) %) 13 called the subsemigroup of G.

Example 15.1 Show that the set of .all idempotent elements in a .commutative semigroup S form a
- subsemigroup of S. R R : ‘

’Soiutipn.‘_ Let A be the set of all idempcatem elements of the commutative semigrbu‘p (S,';r). Then
AcS. ‘ ’ . }
Let a,b e Y. : o
Therefore, a ¥ a = g, bxb=b = _ » : (i)
-Now, o o

‘ax(bxa)»d [by associative]
ax{axb)xb  [by commutative
(a*a)»(bxb) [by associative]
a¥b + |using (i)]

(a%b)*(ax*bd)

B

Thus a = b is an idempotent element.
.Since a,b€ A, therefore ax b € A, ie. A is closed under » S .
Again, S satisfies associative property, therefore this property is also valid in A.- Hence A is a
subsemigroup of S. - : :

Example 18.2 Show that if both canceliation laws'b.old in the semigroup (S, *); then aﬁy idempotent

.

element in S is a two sided identity element.

Solution. Let a € S and a being aﬁvide-mpdte»ni: element, € S be any element of §:
Therefore, a + a = a. : o

Now, : ’

' asb = (awa)*b- [since @ = a'» a}

.= ax»(asd) - [by associative]
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This implles b = a % b by left.canceilation la&,i.e. axb=0b. Thus a is the left identity element in S.
Similarly, it can be shown that bxa=b, i.e. uis the right identity element in S. :
Therefore, a « b = b» @ = b. Hence a is the two gided identity element in 5.

Example 15.3 Let S be a semigroup and Z(S) = {z € K : 26 = sz for all s € S}. Show that Z(S)
. is a commutative subsemigroup of S. o , ;

Solution. Let 21,22 € Z(S). Then z)s =32 and. 238 = s23 for all $ € S.

Now, (2122)8 = z1(228) = z1(s22) = (218)22 = (821)22 = 8(2122).

That is, (2122)8 = 8(z123) for all s € §. Thuy z122 € Z(§). Hence Z(S) is closed.

Since Z(S) C S and S satisfies associative property, therefore Z(S) also satisfies this property.

Let 21,22 € Z(S). Therefore, z18 = sz for all s € §. In particular, if we chooge 8 = z; then from
the relation z1s = $2, we have 2122 = 2221, Thus Z(S) is commutative. '

Hence Z(8) is a commutative-subsemigroup. '

Quasi-group

A groupoid {G, *) is said to be & quasi-group, if any two elements a,b € G, each of the equations
a*2 = b and ¥ * a == b has a unique solution in G. : o - _
For example, the groupoid (Z, +) is-also a quasi-group. This is,because for any two. elements a, b € Z.
the unique solution x = b — ¢ in Z for the equation a +z = b and y = b — ¢ in Z for the equation
c+x=bandy=>5—a in Z for the equation y +a = b. ' A S
A subset of & group may or may not be.a group. Many different types of groups and their subgroups
are also important in the study of modern algebra.

15.6 Subgroups

Any non-empty subset H of a group G is called a 'cc:_mple,x of the group G. But, if H satisfies some
specific conditions then A is called & subgroup of the group G, which is defined in the following. '

Definition 15.10 (Subgroup) A non-empty subset H of a group G is said to be a subgroup of Gif
the composition in G is also a composition in K and for this composition H itself is a group.

For example, let (R, +) be a~group. Then its two subgroups are (Q,+) and (Z. +).
This e.xa.mpl.evshows that a group may have more than one subgroups..

Theorem 18.1 (i) The identity element of a subgroup is the same as that of the group.
(i) The inverse of any element of a subgroup.is the same as the inverse of the regarded as an element

of the group.
Note 15.1 It may be noted that every group G has at least two subgroups, viz., {e} and G itself.

These two subgroups are called trivial subgroups. If H is a'subgroup of the group G and H # {e}
and H # G, then H is called a nontrivial subgroups. .

Thus every group has a subgroup.
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Deflnition 15.11 Let H and K be two‘noa-empty subsets. of a group G. The product of H and K is
defined as HK = {hk : h € H and k € K} '

Theorem 15.2 If H is a subgroup of a group G, then HH = H,

Now, we present a very useful result to test whether a subset of a group is a subgroup or not.

Theorem 15.3 (Condition for subgroup) A necessary and sufficient condition for a non-empty
- subset H of a group G to be a subgroup is that, a,b€ H,ab™! € H where b~ is the inverse of b € G.

Theotem 15.4 A necessary an;i suffictent cb'ndit&b‘tiifor a non-empiy ﬁnite subset H of a group G to
be a subgroup is that a,be H = ab € H. v ‘

But, this condition is not valid for infinite group. For example, (Z,+) is a group but, its subset
Z* ={1,2,3,4,...} isnot a subgroup of G, though a + b € Z+for all a,b € Z+.

Theéeorem 15.5 IfH and K are two sﬁbMps bfa group G then HK is a subgroup of G ifHK = KH.

is a subgroup of G, it is sufficient to prove (HK)(HK)™! = HK.
Now, o : : «

‘Proof. Let H and X be any two suBgr'oups of a gr.oup G. Let HK = K H. In order to show that HK

HK)HE)™ = (HK)K-H™) = BKK-)H = HKH
o (- Kiisa subgroup therefore, KK ~! = K)

= K(HH™)
= KH (- KH=HK snd HH™! = H),
Therefore, HK = KH = HK is a subgroup of G.
Conversely, suppose that HX is a.subgroup. Then
(HE) ' =HK = K-'H-1 = gK = KH=HK
(' K is a subgroup so, K~! = K and H1= H), :
Hence the theorem. ' O

- Theorem 15.6 If H; and Hy are two subgroups of a group G then H, MNHy isalso a subgroup of G.

Definition 15.12 (Centre of a group) In a group G', define Z(GQ) = {r ¢ G gr =.xg for all
9 & G}. Then Z(G) is called the centre of the group G. o

From definition it follows that if @ is a oommutativb-gréﬁ}i thgn G = Z(G) and vice versa.
Theorem 15.7 Let G be a _q-muf. Then Z(G) is a subgroup of G.
Proof. 2(G) is non-empty, since e € Z (C’): Let.a,b € Z(3). ‘Then bg = gb. This implies gb~! = b~y
forallge G, - - : ' :

Now, (ab=!)g = a(b~1g) = a(gb~1) = (ag)b~! =, (ga)b~! = g(ab~1) for all ¢ € G. This shows that
ab~! € Z(G) and hgnce Z(Q) is a subgroup of G. . . : o :

48 Directorate of Distance Education



Module 15 : Groups

....................................................................................................................................

Definition 15,13 (Normalizer of an element) Let G be a group and a € G. The normalizer N(a)
of an clement a of G 18 the set of all those elements of G which commutes with a. That is,

N(a) {z € G : az = za}.
Lemma 15.1 The-normalz'zer N (d) of a € G is a subgroup of G.

Proof. By deﬁnitlon N(a) = {z € G : az = za}. Let z;,23 € N(a). Then az; = r1a and azg = 0.
To prove z; &€ N(a).
We have azz = @30 = =3 lazawg ! = 25 w002y
= 3’2 a = 0272 . .
= 25! € N(a).
Now. to prove zyz; ' € Na).
a(z1z7t) = (a:z:l)a:2 = (za)e;’ = z1(axy?) = 21 (25 0) = (z175 e
Therefore, izl e N (a) Hence N (a) is a subgroup of G. ’ d

-1

15.7 Cosets and Lagrange S Theorem.

Definition 15.14 Suppose G is a group and H is any subgroup of G. Let a be any element of G. The
set Ha = {ha:h € H} is called a right coset of H in G generated by a.
Similarly, the set aH = {ah : h € H} is called a left coset ofH’ in G generated by a.

Theorem 15.8 Any two left cosets of H in G are either zdentzcal or thcy have no common elernents.

Pmof Let aH bH be two left cosets of H and z be an elqment common to aH and bH
Therefore, > € aH = x = ahy for some-hy € H and z € bH = x = bhy for some hg € H.
Thus, ahy = bhy-or a = bhzhl and b= ahﬂzz
Now, aH = (bhgh;‘ YH = b(haH), where hg = hzhl
= bH since hgH = H. -
Thus, if there is a common element then a.H = bH, otherwise aH N bH = Q. C

Theorem 15.9 Any two left (nght) cosets of H in G have the same number of elements.
Theorem 15.10 Two left cosets aH and bH of a mbgroup H in G are identical iff a~'be H.

Proof. Let-aH = bH. Then for some h),hz € H, ahy = bha. Thus ahlhzl = b or h1h2 =a" b
Since H is a group, hy, hs € H = h1h2 € ‘H and therefore, a™'b € H S

Conversely, let a=b € H.
Let a~1b = hy: Then a(a™'b) '€ aH ='b P of. ‘
But, b € bH. Therefore, the left cosets aH and bH have a common element b and therefore, they

ave identical. O
Example 15.4 Fmd all the dxstmct left cosets of H =52 in the g;ronp (Z, +)

~ Solution. All the left cosets of H in (Z,+) are n+5Z foralln € Z.

Any ‘integer n can be written in the form n = 5¢+rr.= 0,1,
n+5Z = 5¢+r+5Z = r +5Z. Thereford; chere are hve distinct left cosets of 5Z in

0+ 52,1+ 5Z,2 + 5Z,3 + 5Z, 44 5Z.

2,3.4. Hence for any n € %,
Z and these are
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Definition 15.15 Let H be a subgroup of o groqu Then the number of distinct left (or right) cosets
of H in G, denoted by [G : HY, is called the indez of H inG. ' ‘

Theorem 15.11 (Lagrange’s thedh ) The om’er-of each subgroup of o finite group is a divisor of
 the order of the group. A : ’

From Lagré.nge’s theorem, we have
’ o(G)

—tel o o

| o(H) | | |
‘and k is the number of distinct left(right) cosets, which is nothing but the index of H in G. Therefore,

oAG) _ (. . |
Ec e

Thus the index of H in G is given by o(G)/o(H)..

15.8 Cyclic Group

In some cases, it is.observed that all elements of a group can.be generated by a single element of that
group. This type of group is called cyclic group, which is defined below.

Definition 15.18 4 cyclic group is a group in which every element can be generated by o single
element of the group. This single element is called theg‘enemtor of the cyclic group.

If o is & generator of the cyclic group, then the group is denoted by G = (a). .

If the operation is an ordinary addition, then the elements of the cyclic group (a) are of the form
{na, n is an integer} and if the operation is multiplication then the elements of the cyclic group (a) are
of the form {a™, n is an integer}. _ :

For example, G = {1, w, w?} is a group w.r.t. multiplication. It is also a cyclic group since w and w?
are the generators. ' A '

Some more example of cyclic groups are
(i) (Z,+) is a cyclic group whose generator is 1,

(1) (G, +), where G = {3n:n € Z} is a cyclic group whose generator is 3,
(iii) (Zn,+) is & cyclic group as its generator is {1).

The set of real numbers R forms a group under addition, but, it is not a cyclic group.

-Theqrém 15.12 1. Every cyclic gmﬁp s a commutative group. ‘
2. The inverse of a generator of a.cyclic group is also its generator.
3. -Every subgroup of a cyclic group is cyclic. :

-15.9 Normal Subgroup

In the theory. of group, it is observed that if the left and right coset;,s' of a subgroup coincide then this
subgroup has great significance than the ordinary subgroups. It is also seen that a subgroup of a group

induces two decompositions of the group in terms of its left and right cosets. These particular class of
subgroups are now called normal subgroups. :
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Definition 15.17 (Normal subgroup) A subgroup H .of a group G is said to be a normal subgroup
if every left coset of H is also & right coset.of H in G, i.e., Ha = aH, forallacG. .

For any group G, {e} and G are normal subgroups. Now, we can shown that every commutative
group is normal.

Theorem 15.13 Intersection of two normal subgroups of & group G is o normal éubgroup of G.te if
H and K are two normal subgroups of G, then HN K is also a normal subgroup of G.

- This theorém can be generalised as follows.
Corollary 15.1 The intersection of any family of normal subgroups of a group is a normal subgroup.

But, union of two norma subgroup is not necessarily a normal subgroup, as the union of two subgroup
is not necessarily a subgroup. o | i

Theorem 15.14 Let H be a normal subgroup of a groun G and K be any subgroup of G, then HNK
is a normal subgroup of K. ‘

Proof. Since H and K are subgrouﬁs of G, therefore HNK is also a subgroup of &. Also HNK € K.
Therefore, H N K is a subgroup of K. Now, we ha\‘revtpi_p'i‘o{re that H N K is a normal subgroup of

K. : .

- Let x be any element of X and a be’-a.{ly element of HNK. Then g € H and a € K
Since H is a normal subgroup of G, zaz~? € H. Also, K is a subgroup of G.
Therefobe, = € K,0 € K = zaz™! € K. Thus zaz™! €e HN K. o |
For z € K and a € H N K, we have seen that zar~! € HN K. Consequently, H 0 K is a normal

subgroup of K. ‘ ' R O

Corollary 15,2 (i) IfH is e normaZ subgroup of G and K be a-subgroup of G then HK,KH are both
subgroups of G and HK = KH. S Ce. K

(it) If H and K are both normal subgroups of G then HK,KH are also normal .§ubgmups 6f G,
moreover HK = KH. o '

Definition 15.18 (Simple group) A grduer’ is called a simple group f G # {e} and G has no
nontrivial (i.e., other than G and {e}) normal subgroups.- ‘

For mcémp}e, every group of prirhe_"crder,l ig simple.

15.10 * Quotient Group or Faétor Group

The collection of all cosets of a group form a.group under certain Bina.ry operation. This group is called
quotient group or factor group, which is discussed below.
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Proof. (i) Closure property
Let a,b € G then aH,bH € G/H.

Now, .
‘a(Hb)H . -
a(bH)H [Since H is a normal subgroup of G]
ab(HH) -
abH,

By closure property ab € G. Therefore, abH is & coset of H in' G end hence abH € G/H. Thus
G/H 18 closed with respect to coset multiplicatioz;. ' '

(i) Associative property

Let a,b,¢ € G, Then o, bH; cH € G/H.
(@GR (cH))

(aH)(bH)

nu

aH(bGH)

abeH 1
(abH)(cH)
{(aH)(bH)}(cH).

hunu

Thus the product of coeets in G/H satisfies the associative proberty., ' ‘
(i) Eristence of identity R

Let ¢ € G be the identity element.of G. Then H = ¢H € G/H. -
Also, if aH is any element of G/H' then H(aH) = (eH)(aH) = eaH = aH.
Therefore, the coset H (i.e. eH) is the identity element of G/H.

(iv) Existence of inverse B ’ o
Let aH € G/H. Then a~'H ¢ G/H. We have (aH)(6™ H) = aa~'H = off = and (e~ H)(eH) =
ol =eH=H S o

Therefore, the coset a1 H is the inverse of (aH), i.e. a='H .= (aH)™1, o

Thus each element of G/H possesses inverse. Hence G/H is a group with respect to the product of
cosets, ° ’ : , O

Definition 15.19 Let G be a group and H be a normal subgroup of G. Zﬁen the group G/H of all
cosets of H:in'G under the binary operation aH » bH = abH 13 called the quotient group or factor
group of G by H. _ - P S

Example 15.5 Let us consider the group S3 and ope of its subgroup H = {0, p3,p4}, where py =
(1),p3=(123),04=(13 2). It is shown that H is a normal subgroup of Ss.and [G: H] = ﬁg} =2,
Hence there are two distinct cosets of K in @ and these are poH and ppH where P2 = (12). Thus, the
quotient group is G/H = {poH, pyH}. o '

. The composition table for the group operation of the .guotieni: group is shown below.’

| wH pE

. poH | poH pH
pmH | pH pH
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Example 15.6 Let H be a eubgroup of a group G. such that [G' H] = 2. Then prove that H is a
normal sungoup of G

- Solution. Since |G :'H] = 2, i.e., the index is 2, the group has only two- dxstmct. left and right cosets.
One of them is H. Let a € G. Then a may or may not belongs to H. If a € H thenaH =H = Ha. If
a¢ H,then aH # H. Hence G= HUaH and HNaH = ¢. ThenaH =G —H.

Again, since a ¢ H and H has only two right cosets, then G = H U H a where HNHa= ¢ Thus
Ha=G-H. :
Therefore, aH = Ha for all a € G. Hence H is a normal subgroup of G

Example 15‘7 IfZis the group of integers under addition and H be the subgroup of Z consisting
of the multiplies of 5. Show that H is a normal subgroup 'of Z ‘Find also the quotient group Z/H.

Solution. It is known that Z, the set, of all mtegers, forms a commutatwe group under addition, Also,
H =582 ={..,-15,-10,-5,0,5,10,15,...} is a subgroup of Z under addition. 'Obviously, H is &
commutative subgroup Therefore, aH = Ha for all @ € Z and hence H is a normal subgroup.
“Second part. Let a = m € Z. Then by division algorithm, there exists g, € Zsuch that m = 5¢+7,0 <
r < 5. Thus, a+52 = (5q+7)+5Z =r+5¢+5Z =r+5Z. Hence Z/5Z = {r+52:r =0,1,2,3,4} =
{0+52,1+52,2+5Z,3 + 52,4 + 5Z}. - The composition table for the quotient group Z/5Z is shown
below.

0+ 5Z ..1+5z 2452 3+5Z 4+52
0+6Z | 0+6Z 1+5Z 2+5Z 3+52 4+5Z
1+5Z | 1 H5Z 2452 345Z 4+5Z 0+52
24+5Z | 2452 3+5Z 4452 045Z 1+5Z
3452 |3+5Z 4+5Z 0+5Z 1+5Z 2+5Z
4452 | 4+52 0+52 1+5Z 2+5Z 3-+5Z

Example 15.8 Find the quotient group Zyo/H, where H = {[0], (6]} is a normal subgroup of Zy,.

Solution. Here 0(Z1p) = 10 and o(H) = 2. Thus o(Zyo/H) = O(Zm)/O(H) = 5.
Hence Zyo/H has five elements. Now,

O}+H=H=[5+H
(U+H={[1],[6]} =[6] + H
(2] + H = {[2),I7} =[7] + H
8] + H = {[3],[8]} = [8] + #
(4l +H={[4,8]} =[9] + H

Hence the quotient group Zyo/H is {{0] + H, [1] + H,[2) + H, [3] + H (4] + H}.

Example 15.9 Let H be a subgroup of a group G. Itz € Hforsllz € G, then prove that H is a
normal subgroup of G and G/H is commutative. ’ :

Solution. By the given-condition, if g € G then g? € H. Let & € H. Then h~? € H.
SincegEGz#g“‘eGandg“"heG[HwasubgoupofG] .
Since g~*h € G = (¢~ 1h)? € H.
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Thus we have (9~11)2 ¢ H,9% € H. Since His a subgroup- of G, then. by cloger property . .
(97'hPh-lg2 e g '
= (g™ ) (g~ Mk~ Y(gg) € H
= (97h)g™} (hh~1)(gg) € H
= (07h)g~Vgg) € H
=g hge H. '
Hence H is a normal subgroup of G.

To prove G/H is commutative L
Let oH,bH € G/H. We have to prove xHyH = yHzH ie., ayH = yorH
or, (&) Hay) e H. : o
Now, (y&)~(zy) = @y (zy) = (@) 2 (yoy™1)3y2, o
Since 6? € H for all a € @, therefore, ey yzy2yt e g and hence
(yz)~zy) € H. Thus G/H is commutative, . . ' ;R

Lémq_na 15.2 4 aubg'ﬁupN of a group G is.a normal subgroup of @ ff the product of two right (left)
cosels of N in G 1s again q right (1eft) cosets of N in G, ' ’

-Proof. Let N be a normal subgroup of the’ group G. Let ¢,b € G. Since N is & normal subgroup,
Ne=aN forallae@. :
 Now, _

- N{aN) ‘
N(Na)b [since eV = Na
(NN)ab . .

Nab

(Na)(Nb)

Wi oH g

Therefore, (Na)(Nb) = Nab for all abeq.
This implies that the product of two right cosets of N is again a right coset of N in G.
Conversely, let (Na)(Nb) = Nab. : ' S
Let nj,np e N.
Therefore, (n1a)(ngb) € Nab
= njangbb™! € Nabb~! [since b € G = p~1 Xe
= niang, € Na : ‘
= nanga™! € Naa™?
= nilnange™! € oyl
= anga~! € ny'N
= ana™’ € N [since ny !N = N,
Hence N is a normal subgroup of G. A 0

15.11 Module Summary

In this module, some common terms like group, semigroup, subgroup, etc. -are defined. Some simple
properties of them are stated. Different types of subgroups, viz,, “cyclic subgroup, normal subgroups
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15.12 Self Assessment Queétions

L.

=S S N VORI X

10.
11.
12.
13.

14.
15.

16.

17..
" H is's normal subgroup of G iff a='Ha = H for all a € G.

18.
19.

20.

Find all distinct left cosets of H = 57 in the group (Z, +).

. In the multiplicative group C* = C — {0}, find all cosets of the subgroup H = {z2eC*: |4 - 1}.

Let G = (Zs, +). Determine all the left cosets of H = {{0}} in G.

. Let G = (Z4,+). Determine all the left cosets of H = {10); {1}, 12}, [3]} in G.

Determine all the left cosets of H == {0}, {4]} in (Zs,+):

. Let Z be the group of integers under the operation of addition, and let G = Z x-Z. Consider the

subgroup H = {(m,n) : m = n} of G. Find the left cosets of & in G.

Show that thé get of all right cosets of the suhgraph 7Z in the group (Z,+) is given by {7Z+ 1 :
r=0,1,2,...,6} :

Show that the set S of all cosets of Z in the additive group (R; +) .of all real numbers is given by
S={z+Z:0<z<1}. : '

., Let G =R x R be the group uhdei‘ binary operations o defined by (a,b) o (¢, d) = (a + ¢, b+d).

Let H = {(a,5a) : a € R}. Show that H ig a subgroup of G Describe the left cosets of H in G.
Prove that two left cosets aH and bH of a suﬁgroup H in G ave identical iff a0 € H . |
Prove that any two left cosets of Hin G ere eitherv idéntical or they have no common element.
Show that any two left (right) ‘cosets héve same gardinaﬁty. |

Let H be a subgroup of G and aH is a left coset other than H. Prove that al is not a sitﬁgroup
of G. .

.L_et H be a subgroup of G. If a € H then prove that oH = Ha = H.

Let G be a group and H, K are finite subgroups of G such that o(H) and o(K) are relatively
prime. Show that H N K = {e}. :

If H be a nonuul subgroup of a finite group G, then prove that o(G/H) = g{%

Let H be a subgroup of a group G and let ¢ € G. Define a~'Ha = {a~‘ha : h € H}. Prove that

Construct the composition table for the quotient group Z/3Z.

If Z is the group of integers under addition and H be the subgroup of Z consisting of the multiples
of 5. Show that H is a normal subgroup of Z. Find also the quotient group Z/H.

Let H be & normal subgroup of a group G. Prove that
(a) if G is abelian then G/H is also abelian '
(b) if G is cyclic then also G/H. )
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,M. Artin, Algebra, PHI, 1991.
J. B F\‘alexgh A First Ce ourse in. Abstmct Algebra l\m'osa. New. Delhi, 1982,

JiA, (:a}han Contemporary Abstmct Algebm, Narosa New Delhi, 1999.

J.P. Tremblay and R. Mariohar, chrete Mathematzwl .S'tmctures with, Applicat‘iom« to Cbmputer
Science, McGraw-Hill Book C‘umpanv 1975, :

B. Kolman, R.C. Busby and §. (‘ Ross. Dzscmtc Matheinatz’c_’:al Structures, 4ed, Pearsun Educa-
tion, 2000. ' .

M.K. Sen, S. Ghosh and I".:_Mﬁkhopadhyay.- f’opics tn-Abstract Algebra, 2éd, University Press,
2ed, 2006. :

D.S. Malik. J.M. Mordeson and MK. Sen. Fundamental of Abstract Algehr; The MeGraw-Hill
Companies, Inc., 1997. o > : .
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HOMOMORPHISM. OF GROUPS AND SYLOW .GROUP

'Modul,e Structure
16.1 Introduction
16.2 Objectives -
163 Keywords |
16.4 Homomorphism' of Groups
16.5 Isomoréhisin of Groups
16.6 Automorphism
16.7 Sylow Theorems
16 8 Direct Product of Groups
16.9 Module Summary
16.10 Self Assessment Questions
- 16.11 Suggested Further Readings

16.1 Introd iction

In this module, a special type of function is de“ned between two groups (i.e., the domain and the
codomain both are groups) with a particular restriction and leads to the concept of homomotp}nsm
This function -establishes a structural compatibility: between two groups. Then the concept of iso-

‘ morphism is gradually developed. In the next part of thxs modulo, the Sylow theorem and the class
equation are. mtroduced

16.2 Objectives
. After going through this unit you will be able to leam about - -
» What is group homomorphism?



Modlule 16 : Homomorphism of Groups and Sylow GFOUp .............cocovovooeoooooooo

© Kernel and image of homomeérphism

® What is group isomoiphisﬁn? |
¢ Automorphism _

e Conjugacy and oonjugacy'c!asé

¢ Sylow theorem

¢ Class equation

® Cauchy’s vheorems on groups

® P-Syldw grc-mpv |

e Solvable groups

e Direct product of groups

16.3 Keywords

Group hoinomorphism, kernel, image, isomorphism, automorphism, co'njugacy,‘oonjugacy class, Sylow
theorem, class equation, P-Sylow group, solvable groups, direct prodict of groups, '

16.4 Homoxhorphism of Groups

Definition 16.1 (Homomorphism) Let (G, +) and (G, o) be two groups and f : G — G’ be @ map-
ping from G to G'. ‘ .

If flawb) = f(a)o £(b), where a, b € G, then the mapping f is said to be a homomorphism of the
group G into the group G'. . , ' S - ‘

Example 16.1 Let (G, ) and (G',0) be two groups and f : G — G¥ by f(a) = ¢ for alla € G, where
¢’ is theidentity vlement of . ' o T 4
leta,b € G = axb e G. Then flaxb) =¢ =¢oe = f(a) @.f(b) for all a.b € G. Hence f is a
homomorphism. ' ' ‘ :
This homomorphism Is called the trivial homomorphism.
Example 18.2 Let us consider the group (GL(2,R), Jofall 2x 2 non-singular matrices under matrix
multiplication and the group (R*,.), where R* is the.set of all non-zerp real numbers. Define f :
GL(2,R) - R" by f(A) =det Aforall A e GL(2,R), where det A is the déterminant value of the
matrix A4, : ‘
Let A, B € GL(2,R). Then f(A.B) = det (AB) = det A.det B = f(A).£(B).
‘This shows that fis a homomorphism. o ‘ :

Example 16.3 Consider the groups (R, +) and (R*,.). Define I R;-»-» R+, where f(a) = e and R+

ia the set of all positive real numbers. ,
Then f(a + b) = e9+b = ¢aeb f(a)f(b) for all ,b € R. Henoce £ is & homomorphism.
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Example 16.4 Consider the group (Z,+) snd define f + Z - Z, where f(a) = a +3, for. alaeZ.
Then f(a+b) = (a+b)+ 8 = (a+8) + b= fla) +b# fla) + f(b), 6,b € Z. This shows that f'is
not a homomorphism. B . .

Example 16.5 Let G = (Z,+) and G' = (Z, +) be two groups and f : G — G’ be a mapping defined
by f(z) =|z] for all'z € G. This mapping is not homomorphism'as f(—3 -+ 2) = f(-1)=|=1]=1%#
5=1-3+(2 = f(-3) + f(2). ' S

Theorem 16,1 Let f : G — G’ be a homomorphism and e,€’ be the iden‘ity elements of Gand G
respectively. Then ' ~ B ‘ s

) f(e) = ¢ |

(i) f(a1) = {f(a)}~! for alla € G. : .

(iii) f(a") = {f(a)}" for alla € G and foralineZ.

Proof. I(i)_Since fis h.ompmorphism‘f(e.) = f(ee) = f(e)f(e). Nsb,- fle).e &, by‘ident‘fty property of
G, f(e) = fle)e. BEEE ' o
‘Therefore, f(e)e’ = f(e)f(e) and by cancellation law fle) =e¢. : o
{ii) Let o € G. Since f is homomorphisin’ fl@)f(@™1) = f(aa™?) = fle) = ¢ (by (i)). Similarly,
fta=1)f(a) = f(a~ta) = f(e) = €. Thus f(a™Y) is the inverse of 'f(a) in G'. .
 Therefore, f(a™!) = {f(a)}™". - | :
: (ili) Case I. Let n = 0.
"Then from (i) f(a®) = fle) = "= {f(@)}*
' Case Il Letn=1. ,
Then f(a') & f(a) = {fﬂa)}1~ |
_ _Casé II1. Let n = k, k is some positive integer.
Suppose that f(a*) = {£(a)}*. Then :
f(a**1) = f(a*a) = f(a¥)F(a) (since f is homomorphism)
={f(a)}*f(a) (by assumption) -
= {f(a)}**. :
Hence by mathematical induction, f (@) ={f(a)}" foralln > 1.
Case IV. Let n —m, where m is pbsitive integer. ' ’
Then f(a®) = f(a *) = f((a™1)™) = {f(a™1)}™ (since m > 0)
= ({f(a)} )™ (by () '
o ={f@} = {f@}" .
. Hence f(a") = {f(a)}* foralla e Gandn € Z.
Definition 16.3 (Image and Kernel of a Hoxhdméir}ihiz_&ﬁ;) Let (Gy*) ‘and (G',0) be two groups

and f : G — G’ be @ homomorphism. Then the image of f is denoted by Im f and is defined by
| Imf={fla)eG:aeCG} '
and}the.:..kcm@hofv f is denoted by ker f .avnd is defined by '
| ker f = {a € e, :j,.f(a)‘ == €, e"‘i§~ﬂic,idaﬁtity'clcmént ofG"}.
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Example . 18,8 A function f is defined as follows: = , : : .
f:{€—{0}, x} - {C - {0}, x}, where f{z) = 2%, C is the set of complex numbers and x {g.the usual.
multiplication. Is f a homomo:phism? Ifso find ker f. ‘ ' -

Solutfon. Let 21,2, € C — {0}. Now, f(Z1z2) = (m120)* = 2024 = f(21) [ (2,).

Hence:f is homomorphism. ' - IR
To find kernel, : . oo _
Obviously, 1 € {C — {0} is the identity elernent. If z € ker S then f(2) =1, le., z% = 1. This gives
z=-1,1,~4,3. Hence ker f = {-1,1,-4,i}. - ‘ ‘ ‘

Theorem 16.2 Let f : G — G' be a homomorphism. Then Im f is a subgroup of G'.

Proof. Since f(e) = e, where e,€ are the identity elements of G and G’ respectively. Therefore, Im f
i noo-empty. . L S '

Let a,b € G. ‘Then there exists some P,q € Im f such that f(a) = p and f(b) = q. Since G is a
group, ab~! € G and hence f(ab™1) € Im . Again, f is homomorphism, f(ab!) = fla)f(b7?) =

J(aHf(®)} 1 = pg~1. Thus pg~! € Im f. Therefore, Im .f. is a subgroup of G. | a
Theorem 16.3 Let f : G — G’ be ¢ homomorphism. Then ker f is'a normal subgroup of G

Proof. Let e, €' be the identities of G and G" respectively. Then f(e) = ¢'. Hence ker- f i3 non-empty.
Let a,b € ker f. Then f(a) = ¢ and f@=¢. o
Now, f(axb~1) = f(a) o f(b~) (since f is homomorphism)
! =fl@)o{f(B)} P =¢o(eN1=¢, '
- Therefore, a x b1 € ker . Thus ker S is a subgroup of G.. - . o
- To prove ker f is normal, let 9 € G and h € ker f. Since h € ker s J(h).=¢.
Now, f(g«hxg™") = f(g) o (k) 0 f(g=1) = f(g) o ¢ o f(g™}).= f(q) {f@)t=e¢.
Therefore, g» b« g~ € ker f and hence ker J is a normal subgroup of G. - .

16,5 Isomorphism of Groups’ |

- By definition homomorphism is a mapping. Since mapping are of different types, 80 -homomorphism-
can also be classified into different ways., | ‘ o S
- A homomorphism is said to be monomorphfism if it is one-to-one and is gaid to be epimorphism
if it is onto. . . e e I
.. I & homomarphism mapping f be one-to-one-and onto, then f is said to.be ‘a_n:'iso‘morphism of

* the group G onto the group G'. A group ¢ is said to be {somorpkic to’a group G, if ‘there exists an
Isomorphism from G onto G'. If G is isomorphic to G’ then we write G~ G, - '
In particular, if ' ¢ G theh the homomorphism involved is called endomorphism.

Example  16.7 Let Z be the additive group of all integers and:G be a multiplicative infinite cyclic
group with generator a. Let the mapping f : Z ~~ G be defined by f(n) = a™ Prove that f is a
homomorplism. Is it-an isomorphism? Justify your answer. T '
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Bolution, Let ny,n2 € Z. Now, f(ny +fig) = @140 = g™ gM = F(ny) f(n2).
This shown' that. f is homomorphism.
Let ny and n; be two distinct elementg of Z. Therefore, f(n1) =a™ and f(nz) =a™.
'If possible, let f(ny) = f(ng) => a™ = sy = ng, which contradicts that ny s nj.
Therefore, f(ny) # f(ng), Le., f is one-tko—one mapping.
Ca logy loga
Lety=f(n)=a or, : = foga 'loga =keZ.
Again, f(n) = f(k) =afF =y €G.
Therefore, f is onto mapping. Hence fis momorphxam

Theorem 16.4 A homomorphism f: G —- G of groups is-a monomorphism.if and only if ker f={e}.

Proof. Let f be monomorphism. Then f.ie: ono—to-one Let ¢-and ¢ be the identity elements of G and
G’ respectively. If a € ker f then f(a) = ¢’ = f(e). Since f i one-to-one, 6 = e. Hence ker f = {e}.

- Conversely, we assume -that ker f. = {e}. Let a,b € G such that f (a) = f(b) Obviously,
fa),{ f(B)}~! € G'. Therefore, f(a){f B}t =¢ = f @{f Y} =¢' = flab7N)=¢.

This shows that ab™! € ker f = {e}. Therefore, ab™! =eie., a= b. Thus f is one-to-ane and hence
fis mouomorph;sm O

‘Example 16.8 Let § = {1, -—1 i, —-z}bea.groupwrt multxphcatxon. Definea mappingf Z,+)—
. (S,.), where

1, ifn 4k

fm=19 5 _if?n=,41c-+2

. =3, ifn=4k+3,

where k is an integer and n € Z

Solution. Let m,n € Z. Then m = 4k +a,n = 4k + b;a,b = 0, 1 2,3. We construct the following’
tables to prove homomorphism of f.

fim+n)| 4k 4k+1 4k+2 4k +3 f(m)f(n)ldk 4k+1 4k +2 4k +3
4k 1 i -1 -1 4k 1 S | -i
dk+1 | i -1 —f 1 4k+1 |8 =1 —i 1
k+2 |-1 -i. 1 i k42 -1 —i 1 K
4k+3 | —i 1 i -1 4k +3 | =i 1 i -

These two tables w.re identical, so one can conclude that f(m +n) = f (m) f(n) for all myn € Z.
Thus. f is homomorphism. Since f is onto so it is epxmorphxsm but not ‘monomorphism, a8. f is not
one-one. -

Definition 16.3 A group G’ is called o homomorphic image of a group G if there exists an epi-
morphism ' f from the group G onto the group G'.

Example 16.9 Show that the group (Zg, +) isa homomor'phic image of (the group‘-(z +):

Solution. Define a mapping f : Z — Zy by .f(n) = [n] for all € Z. Now, f(m +. n) [m+n}
[m] + [n] = f(m) + f(n) for all m,n € Z. Hence f is homomorphism.

Let [p] € Zs. Then p € Z and hence f (p) = lp). Thus f is onto. Hence Zg is a homomorphxc image
of Z.
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Theorem 168.5 Let H de g normal subgroup. of a group G. Define o ma?ping ¢ from G to G/H by
¢(z) = Hz for ollz € Q. Then o is Mombrpkism of G onto. G{H .and kernel of & 48 K,

Proof. Copsider the mapping ¢ : G — G/ such.that. ¢(z) = Hz for all zeG.
Lot Hz be any element of G/H. Then z €.G, wa have $(z) = Hz.
Therefore, the mapping ¢ is onto G/H.
Let 0.6 € G then ¢(ab) = Hab = (Ha)(Hb) = ¢(a)p(b) fsince H {s normal]
Therefore, ¢ is homomorphism of G onto G/H.
Thus every quotient group of a group is 8 homomorphic image of the group.
To find kernel '
Let K be the kernel of this homomorphism . The identity element of the quotient group.G/H is the
coset H. Thus X = {2 € G : ¢(z) = H}. c :
Let z € K then ¢(z) = H. But. by definition of ¢, ¢(z) = Hz. Therefore, Hr = H'=> r € H.
Thus'K C H. | - | )
Again, let h be any element of H. Then Hh = H = ¢(h) ="H by definition. Theréfore, ke K.
Thus h € H = h € K. Therefore, & C K. S o (i)
From (1) and (i), X = H. - a

Theorem 16.8 (P\nidamental theorem of homomorphism). Every homomorphic image of a group .
G is isomorphic to some quotient group of G

Proof. Let G’ be the homomerphic image of G and f be the homomorphism from @ onto @, ie.,
f:G -G If K be the kerne] of this homomorphism then K is a normal subgroup of G: )
Let us consider the quotient group G//Kland define a mapping ¢ : G/K — @' by ¢(Kz) = f(z) for
all z € G. ' '
(1) To prove ¢ is well defined,
That is, to prove if 7,y € G and Kr = Ky then ¢(Kz) =¢(Ky).
Let Kz=Ky=zy~! ¢ K. By definition: of kernel flzy=1)i= ¢, where ¢ is thé identity-of G,
F@)f(y™) = ¢ [since fisa homomorphism] ' '
F@AFWI = ¢ = f(z) = 1(y).=> p(K) = $(KY).
Hence ¢ is well defined. .
(i) To prove ¢ is homomorphism.
Let Kz, Ky .G/K. Then o{(Kz)(Ky)} = ¢(Kzy) = f(ay) = [(2) {(y) = o(K2)6(K)
Hence ¢ is homomorphism.
(iii)" To prove ¢ is one-to-one. :
Lot Kz # Ky bus, 6(Kz) = #(Ky). -
Now, ¢(Kz) = ¢(Ky) = f(z) = f(y) = f(@)f(y)]"' = ¢
=S )=¢ = fzy~1) =¢". |
Therefore, 2y~! € K = Kz = K ¥, which contradicts that Kz # Ky. Thus for different Kz and
Ky, there are different images. Hence ¢ is one-to-one. -
(iv). To piove. ¢.1s onto.
Let y € G'. Then for some z € G, v = f(z), as f is onto.
Now, ¢(Kz) = f(z) = y. Therefore, ¢ is onto.
Hence ¢ is an isomorphism. of G/K onto G'. ’ O
Theorem 16.7 The product (composition of function) of two isomorphisms is also an isomorphism,
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PMof. Let f : G"g — Ga and g : Gz — G3 be two isomorphisms. Then -f and g are one-to-oﬁe and’
onto. The composite mapping (9f) : G1 Gs is also one-to-one and onto.
Also, (9f)(zy) = glf (zv)] = 9lF (@) F (W) = 9(F(@)a(£(¥)) lsince both f and g ave isomorphisms]

"This shows that (gf) is homoxhorphism and hence (gf) is an isomorphism. o

Theorem 16.8 A ﬁnitc. ,cycli'c group vof order n is.isomorphic to the additive group of residue classes
modulo n.

Proof. Let G = (a) be a finite cyclic group of order n, ie, G ="{¢'= .0,a,a0%,0%,...,a™} and
& = {[0},[1),[2),...,[n —1]}. G’ isan additive group. .
Define a mapping f : G — &, where f(a") = {r],0<r<n—-1.
To prove f is one-one. ' S .
leta" and a@®, 0 < r < n—1and 0 < s < n— 1 be two distinct elements of G. If possible, let
f(a") = f(a*). Then [r] = [s], ie.,r—s=kn, k€L ’
=1 —~g=0choosing k=0 A
=r=g3=>a" =a .
That is, different elements of G have different images. Thus f+is one-one.
Since O(G) = O(G') and f-is one-one, therefore, f is onto. - o ~
Also, f(a"a®) = f(a""*) = [r + 8] = [r] + [s] = f(a7) + f(a®), i.e., f i homomorphism.” Hence G is
isemorphic to G'. ' , . ‘ '

Bxarple .16.10 Show that (Q, +) 1s not isomorphic to(Q*,.)

Solution. Let f : Q — Q* be an isomorphism and 3 €Q*. o
" Hence there exists ¢ € Q such- that 3 = f(z) = flz/2+2/2)=f (z/2)f(zf2) = | f(:v/z)]?.
But, thére is.no rational number y such that 3 = y?. Hence there does pot‘ exist any isomqrphism

' between (Q.+) and (@, ).

16.6 . Automorphism
Iff:G—-Gisan isomorphism then fis -éalled?automorphism.

Example 16,11 I t G be a.ny group and g be a ﬁied element in G. Define ¢ : G — G by d(z) =
gzg~) for all z € G. Prové that ¢ is an sutomorphism of G.

Solution. Given ¢ : G — G such that ¢(z) = gzg~* forall z € G.
To prove ¢ 18 homomorphism.

Let 21,22 € G, then ¢(z1) = gz1g™" and ¢(z) = ga2g™"
Now,

g{z1z2)g™?

(9z1)(z29™") |
(971)(9~29)(z39™") [since gg™* = e € G]
(92197 ) 9z29™) '
(z1)d(x2).

d(z122)

muwornu
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" Thusgisa homomorphism.

To prove ¢ 1s one-to-one -

Let z;,x3 be two distinct elements of ¢ Rlamain). If poasibls let, #(z1) = ¢(z2).

= 92197! = gzag™? | |

= gr19”1g = gmag~lg

= gr1 = g3

= g7'g2) = g~lgz,

= I) = g, )

which contradicts that z, ¥ T3
Thus ¢ is-one-to-one mapping.

To prove ¢ is onto o ‘ .

Let y € G (codomain) then there exists an element € G (domain) such-that o(2)=y.

= gzg~l =y : .

= g2g~lg = yg

= 9T =yg

= g7lgz =g lyg :

= 2 =g7lyg € G (domain).
Therefore, ¢ is an-onto mapping. 4 _ _ .
Thus ¢ is one-to-one and onto homomorphism from G to G. Hence ¢ is autormorphism itself.

Definition 16.4 (Inner automorphism) If G is ¢ group. The mapping Ty 2 G~ QG defined by
Ty(z) =g 'zg foraller € G is an automoré:al}ism of G Imown‘as inner automorphism. :
An automorphism which is not inner is called an outer automorphism.

Let, usvgonlgider amapping f:a <+ a~ forsll g € G, where G is 8 group.' The mapping i 906-0!&8
and onto, because inverse of an element of a group is unique and-each element has an inverse.

Suppose G is abellan. Now f(ab) = (ab}~! = (ba)t=o~tp-1 < f (a)£(B).

Hence f is an automorphism of G. . A : .

U G is not abelian then f(ab) = (ab)~! = b~'a~) = f(§)f(a) # f(a) F(b). That is, f is not
homomorphism and hence in this case f is not an automorphism. :

Different automorphisms can be defined from a group to another group. Let A(G) be the set of all
automorphism of a group G, i.e. AG).={f: fisan automorphism of G}. ‘ :

It can be shown that A(G) is a group, which is proved in the following theorem.

Theorem 16.9 The set of all automorphisms:of a.group G into itself forms a group. with respect to
Junction composition. '

Proof. (i) Closure property ,
Let f,9 € A(G). Then f, g are one-to-one mapping of G onto itsclf. Therefore, fg is also one-to-one
mapping of G onto itself. :

Leta,be G thenabe G, Now

. flo(ab)] = f[j(a)g(b)) [since g € A(G))
l9(@))f[o(b)]
(f9)(a)(£g)(b)
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Therefore, fg € A(G). o :
Hence A(QG) is closed with respect to composition of function.

- (i) Associgtive property
We know that the composition of any mapping is associative. Thus A(G) is ...ouclative.

(iii) Ezistence of identity

Let 4 be the identity mapping of G. Then obviously 7 is one-to-one mapping of G onto itself,
Let a,b € G then ab € G. Therefore, i(ab) = ab = (i(a))(i(8)). -
Thus § € A(G) and hence identity element exists.

(iv) Ezistence of invense
Let f € A(G), then f~1 exists.
Since f is one-to-one mapping of G onto itself so f~! is also one-to-one.
Let a,b € G then there exists 7,y € G (domain) such that f(z) = a and f(y) = b.
Therefore, z = f~!(a) and y = f~1(b).
Now, ab = £(z) f(y) = f(ay) [since | € A(G)]
= zy = f~}(ab) ,
= /"N a)f~1(b) = f~*(ab)
= f~l e A(G). L . .
Therefore, each element of A(G) possesses inverse. Hence A(G) i a group with respect to composition
of function. ' 0

Thoorem 16.10 T,-1 is the inverse of inner automorphism To : z — a~lza, where Ty-1: z — aza™t.

Proof. Ta is defined as T (z) = a~*za for all z € G, a is & fixed element in G.

Then Ty-1(z) = (a~!) " za~! = aze™!. Let y = Ta(x) =-a~'2a, then z = aye~). Now, Ty-1(y) =
Ty 1 (Ta(z)) = Ty-1(a"1za) = a(a~'za)a™! = (aa~!)z(aa™?) = z.

Therefore, ToT,-1(x) =

Similarly, it can be shown that T5-17u(z) = 2.

Thus ToT,-1(z) = Ty-1Tp(z) =z for all z € G. ‘

Hence T, -1 is the inverse of Ty, i.e. the inverse of an inner sutomorphism 75 is an inner automor-
phism. 7,-1 is defined by T;-1 = aza™} for all 7 € G.

Theorem 18:11 7" - inner automorphisms of any group G form a subgroup denoted by In(G) of the
group of all automor ! ism of G.

Proof. Let I,(G) be the set of all inner automorphisms. ‘Let Ty(z) € In(G), where Ty(z) = a~tza.
The identity inner automorphism Te(z) = ¥ € I.(G). Thus In(G) is non-empty.

Let To; T € In(G). Therefore, To(z) = o~ za and Ti(z) = b-1zb.

Now,

To[Tp-1(z)]
T,(bxb™?)
a~(bzb™)a
(a™1b)z(ba)

- (b~la)"lz(b~ta)
Tp-14(2).

T
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Thus T,Ty-1 € Lo(G). Hence I,(G) is & subgroup of all automorphism of G. ~ ]

Example '16.12 Let G be a group and ¢ be an autbmorphism of G. If a.€ G is of order o(a) > 0
then of¢(a)) = o(a). o -

Solutlon. Leto(a) = n > 0. ‘Therefore, a*=2eand ™ st e for m < n. : (5
Woe have to prove that {¢(a)}" = ¢ and {¢(a)}™ #-e for m <n. ' :
Now, [¢(a)]" = {¢(a)é(s) -+ n timea}

= ¢(a.a. -+ n times) = $(a")'= g(e) = ¢,
If possible, let m be the order of ¢(a) where m < n;.
Therefore, {#(a)}™ = e. This implies ¢(a™) = e = ¢(e). [since ¢ is automdrphism)

=> u™ = ¢, which contradicts a™ # e,

Thus {¢(a)}* = e and {${a)}™ # e for m.< n. Hence o(#(d)) = o(a).

16.7 Sylow Theorems

If a,b be two elements of a group G, then b is suld to be conjugate to a if there exists an element
Z € G such that b = 272, If b is conjugate to a, then symbolically we shall write-bSa &nd this
velution in G is called the relation of conjugacy. Thus bua iff b= z~laz and conversely ¢ b iff
6 = 2™bg or b = zaz—!. :

 Lerama 16.1 The conjugacy relation is an equivalence relation.

Proof. (1) Reflexive )
Ifa€Gthenwehave a = e2ge => aSa forall a € C.
Thus the relation is reflexive. S
(it) Symmetry '
Let.a 2b holds. Then we have a = z~1bz for some z € @.
= 508" = b = b= (z7))~laz~? [since z~! € G).
Henge ba and the relation is symmetric.
(iti) Transitive ' »
Let a_band bZc. Then ¢ = 2~'bz and b = y~cy for some z, Y € G. We have.
a =gl =z (ytey)z = (z7y)e(yz) = (yz)~'c(yz) where yr € G.
Therefore 6 ¢ and thus the relation Is transitive. Hence the conjugacy relation in'a group G is an
equivalence relation. _ .0
The equivalence class for an element a € G with respect to this relation is called conjugacy class
of 6, which is denoted by cl(a).. Thus

o)={z€C:5 0} = {z € G:z=bab" for some b € G} = {wpz~": 2 € G}

~ If G is finite, then the number of .conjugacy classes are finite. If ay, G2y .. ., 0p BT representatives.
from each of the djstinct conjugacy classes, then :

‘ G = c(ay)Ucl(ag) U - Ucl(ay).
Deflnition 18.5 (Centralizer) Let G bea group and o € G. Then the. centralizer of.a is the subset
C'(a)-—:{we_(&':m;az}. ‘ '
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+ Clearly, ¢,a € C(a) and it can be shown that C(a) is a subgroup of G such that Z(G) € C(a).

Theorem 16.12 In a finite group G, for each a € G, the number of different conjugates of a'in G
equals the number of distinct left cosets of the subgroup C(a) in G, ie. |cd(a)| = [G : C(a)], where
|ci(a)] denotés the number of elemerits in cl(a). . . : ' o

Altematz‘zg;!_y, in a finite group G the number of elements in cl(a) of all elements conjugate to a in
G is the indez of normalizer of a inG, ie

o(@)

|el(a)] =[G : N(a)] = @)

Corollary 16.1 For a finite group G

o(G) = 3 fel(a)| = Z«{;{,—%

a€CG ae@

where the sum runs over one element a in each conjugate class.

Proof. ‘We know that the relation of conjugacy is an equivalence relation on G. Therefore, it partitions
G into disjoint conjugate classes. The union of all distinct conjugate classes will be equal to G and two
distinct conjugate classes will have no common element. Since G is a finite group therefore, the number
of distinct conjugate classes of G will be finite say equal to k. Suppose ¢l(a) denotes the conjugate
class of a in G and |cl(a)] dendtes the number of elements in this class.. If cl(a1), cl(az), - , cl{ax) are
the k' distinct conjugate classes of G then @@ = cl(as) Ucl(az) U - - - U cl(as). ‘ _

This implies that the number of elements of in G = the number of elements in cl(a;) + the number
of elements 1n cl(ag) +- -« + the number of elements in cl(a;). ' :
That is, o(G) = 3" |cl(a)|, the summation is being run over each element a in each conjugate class.

Hence A
= v _oG).

%6V = 2 e
0

Lerma 18.2 Let 7(G) be the centre of a group Gand leto € G, then ag Z(Q) iff N(a) = G.

Proof. Let a € Z(G; then by definition of Z(G), we have ar = za for all z € G. Also, N(a) = {z €
G:az =gza}. . , - ’ :
Obviously, N(a) C G. _
Now, a € Z{G) => ax = za for all z € G.
=2 € N(a) by definition of N(a).
- Y€ N(a).
e N(a)=G.

aly, let N(a) = G. Therefore, sz =zaforall z ¢ G. a

G be a group and Z(G) be the centre of G. If a € Z(G) then cl(a) = {a} and
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Proof. LetaGZ(G) ThusacommuteseadnginG '
Thatis, ga=agforallge G
o gag™) = 69§~}
= gag~twmaforall g e G.
Hence ci{a) = {a).
“Conversely, let cl(a) = {a}. Thus
9'agmaforallgeG. -
Sag=gaforallge G
=gaw=agforal ge G . '
@ a€2(G).. a
From this lemma it follows that the elements of Z(G) are self-conjugste elaments If a € Z(G), the
oonlugacyc!assofaismidtobetrivialoonjugacyclassbecausaitcontalnsaon!y

Thaorem 16.13 Let G be a finite group. and Z(G) is its ceritre. Let cl(ay), ctlaz),. ... cl(am) be the
distinct multi-numbered conjugacy classes of G. Then

o(G) = o[ Z(G)] + )_j lef(an)l,

where |cl{a)] denotes the numbcr of distinct elements in s the canfugacy c!ass cl(q;) This equation is
knows as class equatwn.

Proof. If a € 2(G), then |cl(a)] = 1. G is partitioned into distinct conjugacy clagsés. The elsments of
Z(G) form single xnembm‘ed oonjuga.cy clas&es and the elements of G- Z(G).balong to mult&tmmbered

conjugacy clpases.
. 0(G) = 0|Z(G)) + !G 2(G)| = o[Z(G)] + lcz(m)l +lel(aa)] ++ - < +|cd(am)]
where d(ay).cl(ag), - d(am) are distinct conjugacy classes of G Z(G).

Heace o{G) = oZ(G)] + 3. le(as). o
tm]

Corollary 16.3 Let G be a finite group and Z(G)-be the centre of G. Then the class equatmns of G"
can be written as

0G) = o|Z(G)] . 2O iz 3 16 ZE6)).
| ezz;'m oWl a:zz'.;ox

Thaorem 16.14_If o(G) = p™ where p is & prime number then the centre Z(G) # {r}

Preof. Since N(a) Is a subgroup of G, then by Lagrange’s theorem weé have’ o[N(a)}/p" Since p s
prime, 6{N(a)] must be of the form p**, where na is the integer such that 0 < na'< n, We have- -

o(G) - P
0= E vy " S

where summation runs over one élement 6 in encltcouju,gacy.cl&aa. _
We assume that there are precisely m elements In Z(G), Le. o[Z(G)) =3 m.
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Now, a € N(a) = N(a) = G -

= o[N(a)] = o(G)
= mp?
= NG =N,
Henes if ¢ ¢ Z(G) then na <,n. Then
7= 0(G) = o[Z(G o(G)
o{2( >l+a§m PO
= -5 2
e 2

Since p isa divisor of r.hg. this implies p divid
P es .. NowiiceZ(G),thenZG is non-empty, be.
m > 1. Thus the positive. Intcger m(s# 0) is multiple of the prime number p. The(mfi)re. m> IFg;noe

Z(G} must contains an element beside e. 0

Corollary 16.3 If o(G) = p? where p is o-prime nurnber's then G, is abelian.
Pwof Sins p is prime, by Theorem 16.14, 0[Z(G)} > 1.

But, Z(G) is a subgroup of G. Therefore, by Lagrange's theorem we have o(Z(G)}/p’ Sinee p is.

prime and 0[2(G)} > 1, o[Z(G)] =p or Py
g o{zgg?’s P, l:henGZ (G)= G siid:our procf is complete.
0 = p then ust contain an elem such
Now.z&Z(G)»zurwfzgzuz?G e thatoEG'butas!Z(G)
=T € No)
.= Z(G) C N(e) '
= ofN{a)}> 6{2(G)]  [a € N(a)and a ¥ Z(G))
= o[N(a)] > p..
But, N(q) is & subgroup of G and o[N(a)}/o(
Therefore, o[ N ()] = p? er N(a) = MGOW oW/e(C)
=> ¢ € Z(G) which . mtradicts,
Hente o[Z(G)] # out o|Z(G)] =%, Le. G = Z(0) which shows_that G s an abelin.

"I“hoomm 16.15 (Cauchy theorem for-abellan group) Suppose G is a. finite abelian group and.
p/o(G), s.e. p is.a divisor of o(G) where p is apnmcnumber Then there is an element a(s e) € G

such thet o? = e.

Proof. We prove this theorem by induction on the order of G.
Cleatly, the theorem is true for group of order one. Let the theorem be true for abelian groups o

order less than that of G.
If G has no proper subgroups, then G must be of prime order {because evecy group of composite

order pogsesses proper aubgmups) Since p is ptim and p/o{G); therefore o(@) must-be: oqua!l to p.
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Also, every group of prime order is cyclic, Therefore, each element g # e of G is a generator of G,
Thus G has P~ 1 elements a % e such that @ = q%G) = ¢, ; S :
. If G has a proper subgroup H, i.e, & # {e} and H # G, then if p/o(H), by induction hypothesis
the theorem is true for & since H is an ‘abelian group and o(H) < o(G). ‘Therefore, there exists an
element b € H, b # e such that b = €. But, b€ H = b € G because H.c G. Thus there exists an
element b € G, b # ¢ such that B = e . ‘ . - ‘
Suppose p does not divide o(H). Since G is abelian therefore H is a normal subgroup of G and so
G/H is a quotient group. ' : ' '
 Since G is abelian, therefore G/H is also abelian. Also we have o(G/H) = % < o(G) since
o(H) > 1. . , E :
Since p/o(G) and p does not divide o(H), therefore p is a divisor of % Hence by induction
hypothesis the theorem is true for the group G/H., :
Therefore, there exists an element ¢ € ¢ and He # G/H such that (He)? = H (since H is the
identity of G/H) : '
Therefore, o(He) =p. - I .
- Now, (HelP = H = HeP = H = & ¢ H. Therefore, (c?)°(H) = ¢ = (c?yp = ¢,
This implies either c®H) = ¢ op co(H) has order p. T coe '
- But %) 5t ¢ elge (Hepp = . yielding p/o(H), & contradiction, Thus co(#) has order p and @7 iy
the desired element of @, o o , a

Theorem 16.16 (Cauchy theorem) Let G be a group of finite order and p/o(G) where p s a prime
number. Then G contains an element of order p. ,

Proof. Suppose the theorem is true for gréups of order less-than that of G. We shall prove that the
theorem is ako true for @. If o(G) = 1, theu there is nio such p-and the theorem is obviously true.

If there exists a Ptoper subgroup H of G such that p/0(G), then by. our induction hypothesis the
theorem is true for X since o(H) < o(G). Therefore, there exists an element o ¢ & such that o(a) = p.
But.a € H 2 a € G because H ¢ G. Hence the result,

Now, let p does not divide o(H). Let Z be the centre of G. The class equation of G can be written-

o(G) = o(2) + 3~ 2C) | . | (i)

o[N(a)] .

as

o)

i oIN(a)] ©
I . [¢]

7/ 25 v 1 henee 5/ oG- 2 e

From (i) we conclude that »/o(Z). ‘

for all a € Z. ‘This implies

This completes the proof, , ' A

Example 16,18 Prove ihat=overy abelian group of order 6 is cyclic.
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'Solution. Let G be an abelian group of order 6. Smoe the prime infeo;ers 3 and 2 are both dmsors of
o(G), therefore by Cauchy's theorem for abelian groups there exists ciemcuts @ w.. i Lin Gy that
;{ya)b = 3; ofb) = We shall prove that anb) =6 a.nd oonsequent!y G wilt b~ - - e covn generated
o : L ’
- Wehave b st a since o(b™!) = o(b) = 2. whﬂe o(a) 3 TLU8 60 ,» } |
(l‘)k:sw&(ab)2 = a’b’ =ale=alste since o(b) = 2. Also, (ab)® ='a’b eb’ b3 Pb=1b # e since”
- ofa
“Therefore, we inust have o(ab) > 8. But o(ab) must be a divisor of o, .} i.e. 6 sihce o(ad) can
ne!therbe4nor it can bes Hencewenmsthave o(ab) = stmd consequex .. G is cyclic: .

Deﬁnltlon 16.6 (P-Sylow subgroup) Let G- be a ﬁmte gmup ‘and o(G’) p"‘nk wherep is o pmne-
number and p is not @ dmssor of n. Then a-subgroup H af G is said to be a p~Sylow .subgmup of G iff

O(H)=P’”

’I‘heorem 16;17 (Sylow’s 'L‘heorem) Let G be the group of infiniite oﬂder and
3 be the prime number
_ ﬁfm' f :mwidea o{G) (m bemg o poaitive integer} but p’“‘“ doea not dwide o(G’), -G hes a aubgroup of
er .

Pmof The theorem wm be proved by induction on a(G) It o(G').- 2 the only relevanc pr!xne 1s. 2 and
the group certainly has the subgroup of order. two namely itgelf. .

So we gssume.that the result is correct for all gmups of orde: less than the order of. G’ I‘kom thia
we will show that the result is valid for, G.

Suppose 2™ divides o(G) and p™*? does not divide o(G’), where p is prime and m > 1, Ep™/o(H)
. for. any subgroup H-of G, where H s G, then by induction hypothesis H has a subgroup T' of order

p"™. ‘However since T' i a subgroup of H and H iz a subgroup of G, T is a subgroup of G. ‘
. Thekefore, we assume that p™ does not-divide o(H), for any subgroup H of G' where H 75 G. Let
us consider the subgroup N(a) of G. Moreover if ¢ & Z(G) = Ny #G. .

By our assumption p™ does not divide 0[N (a)}; but p™ divides o(G), then wo mtmt have p divides
p(G’)/o{N(a)] foralla € G and a ¢ 2(G). 'I‘hen p dividw Z o(G)/o[N (a)] for ell ¢ € G and

o ¢ Z(G): -
L 'I‘horefore, tho class equation L ,
- ‘ ' . L e oG .
RCELLOLDY T
glws p divides o{Z(G)] - ‘ ‘ ) .

By Cauchy’s theorem Z(G) has aun element b(;é e) of order p. Let' B be the cyclic subgroup of G
generated by b. Therefore, B is of ord&r P - . .

_ Moreover, since d € Z(G), B must be normal in G.

~ Henos we can form the quotient group G = G/B

Now,  oG) oG

I o(?!)n;,r-"‘B; «©),
: g)enoe o(Q@) is certainly less than the order of G. We have p™=1 divides o(G), but p™ does not divide
of et _ , b
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- By induction hypothesis &7 has a-aubgroup P of order p™—1, . |
Lt P={ze@:zp € P}, ‘Therefote, £ is & subgroup of G..Thus

o)== LD

or o(P) = p™, which implies that o(P) = p™. Thérefore, P is required P-Sylow subgroup of G. This
completes the induction and hennethepmved. A : O

Examplo 16,14 If & 1s 5 P-Sylow subgiilBEG 6id = ¢ GEF 5V B i also & p-Sylow sibgooup
ofG. . . .’ , S ' ) o ’

Solutlon. Let G be a finite group and o(G) = p™n where p is a prime number and p is not a divisor
of n. foinpsyxowsubgmupof.atmow),apm. 2 o oo |
- Now z=Hz will be a p»Sylow subgroup. of @ f 2~' Ha i a subgroup of G and o(z~'Hz) mp™, .
First we shall show that 21Kz is a-subgroup of & Let z™ha, z71hz be any two elements of\
‘2”02, Then hy,hy e 4. - o T L
‘ h',x N (:c*"b;z)(a:"‘hzz)‘* = ér"lhjzz'xhz-l(z'l)"l == z"‘lueh{"z::_ z= k" z € 2~ Hz since
MbhTie H, - o CL ' . - ’ o '
. Therefore, z='Hz Is a subgroup of G, - : . o o L
Now, let f be a mapping from H to.2~'Hz défined as f(h) & 2=thz for all k € H.

[ is one-one - - , T
LethyhpeHthen . - . - L

Ih1)= J(hg) = 2~h 5 = =™ bz = hy wd by,

Hencéfiion&ona- SRR Lot

[ 18 onto ' .

Let z-'Az be any element of 2*'Hz, Then h & H and f(h) = z~1hz. Hence { is onto,

~ Therefore; o(z~! Hz) = o(H) =p™, ' , -

' Hetca z~1Hz is & p-Sylow group of G,

Exaniple' 18.15 ;fa' group G hes only one p-Sylow 8ubgroup H, then H ig xiogti’;al,ih G.

Bolution. Suppose a grdup G has only one b-syby subgroup H and z be any element of G.
By previous example, w“?Hzis also a p-Sylow "subgrotxp of G. But, H is the only p-Sylow subgroup

of G. Therefore, 2~ He = H for all'z € G..
Hence H is.a normal subgroup of G.

Solvdble groups _ .- _

Let G be a.group and G = Ne2N 2N 2 Ny 'm {e} be a finite chain of subgroups of G. The
chainiscgllgd a subnorimal series if each N; is normal in N;_,. e T
A group ' is sald to be solvable if if has a subnormial séries G = Ng'2 Ny 2 N; 2+ DNy = {e}

such that.each quotient group N;_1/N; is abelian, B o
Such & subnormal series is called a solvable serles of G.

-E:éampl’e 16.16 Show that every abelian group is solvable.
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Solution. Let G be an abelian group. Take Ny = G and Ny = {e}. Then G = Ny 2 Ny = {e} is a
solvable series for G. Obviously, Ni = {e} is a normal subgroup of Ny = G because if a is any element
of G, then a~'ea = a~la = e € {e}. . »

Further, since G Is abelian, the quotient group No/Ny = G/{~] is al - al Jlaa. Hence G is solvable
group. . ‘ ' :

16.8....Direct Product of Groups -

Let Gy dud G2 be two groups. Now, the cartesian product of the sets @, and G2 is the set G1 X G2
?fuall ordered pair (a1,41), where a; € Gy and by € Gz. Define a binary operation * on Gy x Gy as
ollows: ; . ’ -

(a1,b1) » (a3, b2) = (a1a2, b1b2) for all (a1,b1), (a2, b2) € G1 x Ga. - (16.1)

" Here ajag denotes the product of a3 and a3 in the group G and b1by denotes the product of ; and
by in the group Ga. : :
In the following theorem we shall prove that G1 x G2 is a group.

Theorem 16.18 Let Gy and G2 be two groups. Then the set
Gi x G2 = {(g1,92) : 91 € G1 and g3 € G2}

is a group undef the binary opmtion.; defined in (16.1). Moreover, . o
(i) Hy = {{a1,€2) € Gy x Gz : ez is the identity element of G2} i3 a normal subgroup of Gy X Gz and
Gy = Hy. , - . '

(i) Hy = {(e1,ba) € G x G : € is the identity of G1} is a normal subgroup of Gy x Gy such that

GzﬁHg. ’

Proof. 1t is obvious that tne operat;ion defined in (16.1) is well-defined binary operation on Gy x Ga.
The associativity of this operation follows from the group operations of Gy and G3. The element (e1,€2)
is the identity elem * of Gy x G2, where e; and e aré the identity elements of the groups Gy and G2

respectively. Finally \a;", b;“),is the inverse of (a1,b;) for all (a1,81) € G1 X G4. Hence (G x Gz, %)
is a group. o -

(i) Since (e1, e3) € Hy, Hy # ¢. Let (a1, e2), (a2, €2) € Hy1. Then (a1,€2) M az, e2) = (a7 ez, €3t e2) =
(a7'az,€3) € Hi, since aylag € G1. Now, for any (a1,01) € G1 x G2 and (g1,e2) € Hy, we find
that (a1,b1) * (g1, €2) * (a1,51)"! = (arg1a7), biéxbi?) = (e19107", €3) € Hy. Hence Hj is a normal
subgroup. Now the function f1: Gy — Hj, defined by fi{a1) = (a1, e3) is a bijective function and for
any a1,@ € G1, fila1a2) = (araz; e2) = (a1,€2) * (az,e2) = fi(a1) fi(az). Hence Gy = H.

(ii) Proof is similar to (i). o o o . S » c
The group (G1 x G, *) is called the external direct product or simply direct product of the
groups Gy and Gj. It is easy to observed that we can extend the definition for any finite number of

groups G1,Ga, ..., Gn.
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16.9 Module Summary

A function between two groups with a spgcific property is defined as homomorphisin of groups. Since
homomorphisx_n is a function, therefore it must have domuin and cadomain. The domain and codomain
are respectively called kernel and image. A bijective homomorphism is called isomorphism. Several
properties of homomorphisin and isomorphism are prescated heve. 1 che domain and codomain are
same then the homomorphism is termed as automorphism. A lot of properties on automorphism are
provided. The class equation and Sylow thecrem are studied here. The cauchy's théorem for abelian
groups and for arbitrary groups are stated and proved. A concept of solvable group with an exasmple
is given. The direct product between groups is defined in this module, :

16.10 Self Assessment Questions

1 Let G = (R, +) and G’ = (R*,.). Show'that f : G — G’, where fl@) =2"forallac Gis a
homomorphism. Find jts kernel.

2. If R is the additive group of real numbers and R., is the multiplicative group of positive numbers,
then prove that the mapping f: R — Ry defined by f(z) =e® (z € R) is an isomorphism.

3. Let (Z,+) be the additive group of all integers and (Q — {0}) be the multiplicative group of
non-zero rational numbers. Define F:2Z—(Q-{0}) by flz) =3 z¢ 2. :

Show that £ is homomorphism but not isomorphism.

4. Show that the mepping f : M - R® defined by f ( @ =ad - bcis a homomorph'usm of the

b
c d
- multiplicative group M into the multiplicative group R*
isomorphism ? Justify your answer.

of all non-zero real numbers. Is f an

5. Ifbfz{ Z Z}:a,bél}, show that f * M — Z defined b,y‘f(lz 3}) =a-~-bis a

homomorphism.

xS

Let G = (R, +) and (' = {zeC:lzgl=1}and f: G — &’ defined by f(z) = 2™ for aj| zeG.
Show that f is a homomorphism and ker f=2. ’ "

7. Let G = (Z,-+; and G’ = (Z,+) and f G — G defined by flz) - [2]. Show that f is &
liomomorphism and ker f={0}. .

8. Show that the wapping f : (Z, Ja (R, .) defined by f(z) = %2 for allx € Zis a monomorphism
but' not isomorphism.

© .

01
l a la] . . . .
f({o1])=cfor.all[‘OAIJ_eAxsa.nlgomc‘ntphmm. | '
(b) Let G = (R*,.) and G’ = GL(2,R). Defined a function J:G — G by a € R*. Show that f
is homomorphism and ker f = {1}. : _

? A .
(8) Let A = {[ 1 aJ ta€ R}, Show that the mapping f : (4,.) -+ (R,+) defined by
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(c) If G is a group of real non-singular, n-square matrices under multiplication show that the
determinant function is & homomorphism of G into G, where G’ is the group of non-zero
real numbera under multiplication.

10. If R is the additive group of real numbers and R* is the multiplicative group of positive real
numbers, prove that the mapping f : K — R* defined by f(z) = €* for all z-€ R is an
. isomorphism of R onto R*.

11. Let Gy and G2 be two groups. Show that the function f: Gy x Gg — Gy deﬁned by f(a,b) =a
: fora€G,and be G, iz a homomorplusm Is it isomorphism? ‘

12. Let (Z,+) be & group. Prove that the function f:Z x Z — 2, defined by f(a,b) =a+bisa
homomorphism. Is it 1somorphjsm? :

18. Show that the functxon f:G—=G deﬁned by f(a) = a~} for all’ 6 € G isa homomorphism if G
is a commutative group. :

14, £:(C= {0}, — (C— {0},.) defined by £(z) = 5.
(i) Show that f is a homomorphism (11) firid the kernel of f

15. Let C* = C—~{0}, where Cis a set of complex numbem‘a Show that the function f : (C*,.) — (C*,.)
' is » homomorphism and ker f = {1,w,w?}.

16. Let G = (S,.) where §'= {1, 1,-—1 —i} and let f: Gu—eredeﬁned by f(a) @ forella€G.
~ Show that f is an isomorphism and gutomorphism. o _

17"Let I (€, +) = (C, +), be defined by f(z) = 7%, the conjugépe of z.. Then prove that f is
aut.omorphxsm

18. Let G be a group and a be a fixed element of G’ Define & mapping ¢> G—-G by ¢(z) = ¢~ lza.
Prove that ¢ is an automorphxsm

19. Let H be the set of all complex numbers whose modulus 181, Then (H,) is8a gtoup Deﬁne
a'mapping f: (H,.) — (H,.) by £(2) = 23,2 € H Prove that f is an epxmorphxsm but not a

- monomorphism. Find kemel of f. A , A
20. Lt G=(R*.)aud f: G — G, defined by rﬁ(:c) é for all z'€ R*. Show that f is homomorphism
and ker f = {1} '
2. Lt S={zeC: 22 =1} and. G=(5,.), ¢ = (Z4,+) Deﬁneamappmgf G-—-rG’suchthat.
G and G’ are isomorphxc 4 .
22. (a) Let § = {1,—-1} and G = (S, .). Define s mapping f : Ss — G, Ss.is the éymmetxic group,
BN by . . - . .
_ [ "1, if pis an even permutation
flo) =4 -1, itpis an odd permutation

. for all p € §3. Show that f is-an f an epxm.orphmm but not monomorphism Algo, find its
kexrnel. _ A
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(b) Let G = (R*,.) and. G’ = {1, -1}, Define. a function. f : G — G’ by .
’ ifa>0
. (a)”{-1, ifa<0.
Show that fis homomorphiam and find its !eemel

23. Show tho.t the following mappings are homomorphism. Determme ‘the kernel in eax:h tase,

(8) F:{Z,+) — (Z.-+) where f(n) = =-nforallneZ

{b) f:(R.+) — (C*,.) where f(z) = cosz +{sinz forall z € R
(¢} f:(R..) = (R, +) where f(z) = log, z for all z € R*

(d) f:(Z,+)— (32Z, +) where f(z) = -~3:: for all x € Z

24.. Show. &hat the following nmppmgs f:G > G arenot hoqxomorphmm
() G=(R,+)and f(z) =2-+3, z€R
(b) G=(R*.)and f(z) = 23, z € R*,

25, Let (G, 0) be a group-and a be a fixed element of G’ Pxovv that the rrappmg fa : G - G by
- fu(z) = a0z, z € G is abijective mappmg but ot . a homomorphxsm

| 26. (a) Show that (S, x12) where § = {1,5,7,11} is .xsomorﬁhn_c to Klein-four group.

o 10} f0-1][-1 0] [ 01
(b) Showthatthesetofmatrices-{[o 1] {1 0} [O __1] {___1 O}}isisomorphxc

to {¢,a,6?,a} where a® = e by properly defined mapping and group compasition.

(c) Show that every cyclic group of order n is isomorpbic to the group (Z,,, + n) where Z,, is the
set of eqmvalence classes for the congruence modulo n over the set of integers.

27.-Show that all g groups of arder two are isomorphic.
28. Show that (R",.) is not; isomorphic to (R, +)
16.11 Suggested Further Readings
. M. Artin, Algebra, PHI, 1991. .
. 'J.B. Fraleigh, A First Course in Abstract Algebra , Narosa, New: Delhi, 1982,

1
2

3. JA. Gallian, Contemporary Abstmct -Algebra, Naroea, New Delbx 1999,
4

. J.P. Tremblay and R, Manohar, Discrete Mathematscal .S'tmcturM with A pphmtmm to (‘amputar
+ Science. McGraw-Hill Boock Company, 1975:

5. B. Kolman, R.C. Busby and S C.. Roaa Dzscretc Mazhematzml Structures, 4ed Peauson Educa-
tion, 2000. . _ :

6. MK. Sen, S. Ghosh and P Mukhopadhy&y, Topics in Abstract Algebra, 2ed, University Press.
- 2ed, 2006. :
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7. D.8. Malik, J.M. Mordeson and M.K.Sen; Fundamental of Abstract Algebra, The McGraw-Hill
- Comtpanies, Inc., 1997, ' '
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17.1 Introduction

17.2 Objectives
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17.5 Integral Domain
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17.9 Homomorphism of Rings
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17.12 Module Summary '

17.13 Self

Assessment Questions
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17.1

Introduction

The three important algebraic structures, viz., ring, integral domain and “eld are also learnt by the
students in under graduate course. But, for further study the de“nitions of such algebraic structures

and their
here.

variations are given here, In this module the ideal and ring homomorphism are introduced
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17.2 Objectives
After going through this unit you will be,.able to learu about -
» What is ring honiomorphism?
.o What is ideal?- '
@ Quotient ring or facnor ring
| o Euclidean domain/ Euchdea.n rmg
® Grenbest common dwxsor :
v Umque factorization theorem
e Polynomial rings

" 17.3 Keywords

Homomorphism of ring, isomorphism,’ kemel and image, ideal ‘priucxple ideai maxima.l ldeal quo-
tient ring, prime ideal, Buclidean domain/ ring, essociates, prime element, rela.twely prime, uniqm.-
factorization theorem, polynomial rings , Py . '

17 4 Ring

' A non-empty set R along with two bmary composztions # and . nsually called a;ddition and multiph»
cation is said to be a ring if the following axioms are satisfied. ,
A. Under addition composition
(i) Closure: a+b € R, foralla,be R
{1i) Associative: (a+b)+c-—a+(b+c) for all a,b,c€ R o
(iii) Jdentity: a + 0 = 0 + a = a, for all @ € R, 0 is the additive 1dentxty or zero element
(iv) Inverse: a+ (—a) =(—a)+a="0,foralla€ R, —ais the addxtxve xnverse ofe
(v) Commutative: a+b=b+a, foralla,be R. -

B. Under mulﬁpﬁcative composition
~ (vi) Closure: ab€ R, forallg.be R
(vii) Associative: (a.b).c = a.(b.c), for all 6, b,c € R

C. Under addition and multiplicativa compositionﬂ

(viii) Distributive: a.(b+ ¢) = a.b+ a.c and (b + ¢).a = ba+c.a, for all a,b,c € R
 Alternatively, a ring can be defined as follows:

An algebraic (R. +,.) is said to be a rmg if

(1) (R,+) is an abelian group,

() (R, .) is » semi-group,

(1i1) both left a&d right distributive laws hold in R

- Note 17.1 It ma,y be rememberad that 0 € R s the symbol to represent additive identity, it ia not
necessarily the number zero. _

Directorate of Distance Education 79



Module 17 : Ring, Integral Domain and Fieid................. et

Illustrations

1. RQ,Z all are rings.

2. Set of even integers.

3. Set of complex numbers C.
4. Set of all n x n matrices.

It may be noted that the identit)", inverse and conimutg.tive axioms under multiplication are not
included in the definition of ring, If a ring satisfies one or more of these axioms then different types of
rings can b defined. Such rings are defined below. S - ‘

Definition 17.1 (Commutative ring) If a ring éatz'sﬁes commutative aziom under multiplication is
called o commutative ring. 3 : : Lo , S '
If the multiplication 4s not commutative, then the ring is said to be non-commautative.

For examples, (2, +,.) is a commutative ring But,' (M, +,.), where M is the sct of all n X n.matrices,
is non-commutative ring. ' ’ : :

Definition 17.2 (Ring with unity) Jf o ring contains a multiplicative identity then it is called o
ring with unity. The multiplicative idcntz‘t_yn 1s. generally denoted by t'hc ,symbol 1.

_If R is aying with unity then a € R is called invertible, if there exists b€ Rouch that ab=ba=1,
The element b is said to be the multiplicative inverse of a and g is calleéd the unity in R.
For example, (Z,+,.) is a ring with unity but, the set of even integers is a ring without unity.

. i o
Definition 17.3 (Zero ring or trivial ring) It can be shown that the singleton {0} s a ring and
this ring 15 Rnown as zero-ring or trivial ring. -~ LA ; :

Thus a ring containing two or more elements is ¢ non-trivial rifg.

Definition 17.4 (Divisor of zero) Let a,b be any two elements of a ring and ab = Oltho.ugh e sﬁ
0,b5 0-then a and b are called divisor of zero, T T ' .

10
0o
Therefore, 4 and B are divisor of zero.

J and B = { 29 ] ‘Then AB = 0 although A # 0 and B # 0.

“ For example, let A -:[

Definition 17.8 (Ring with or without zero divisoré) Let (R,+,.) be a ring and a,b € R. If
a.b=0buta#0,b3 0 then R is said to be ring with zero divisors, . ‘ : A
ffab=0impliecsa=0orb=0 for alla,b€ R, then R is called a ring without zero divisgrs. .

For example, (Z, +,.) is a ring without zero divisors, but, (M, +,.), where M is a set of all n x n
matrices, is » ring with zero divisors. . | o . SR

Definition 17.6 (Division ring or skew field) 4 ring (R, +,.) with unity containing at least two
-elements-is called o skew-field or division ring if every non-iero lement of R has a multiplicative

nverse.

For example, (Q,+,.) is a division ring, but, (Z,' +,.)i8 not a divlsioxi ring_;
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Simple prypérties

1. The unit element of a ring with unity is unique.

2. If R is a non-trivial ring with unity 1, then 1 # 0. '

3. If o i3 & unit in a ring, then its multiplicative inverse is unique.

4. In a non-trivial ring with unity, the zero has no multiplicative inverse.

v Deﬁnition 17.7 (Idempotent) An element a.in a ring R'is called idempotent tf a2 =a.
In & non-trivial ring the obvious 1dempotent elements are 0 and 1. '

Definition 17.8. (Boolean rmg) A ring R’ is called a Boolean nng :f cvery element af R i :dem-
potent, t.e, a2 =a for all a € R .

Definition’ 17.9 (Nilpotent) An element aina nng R is said to be ndpotent :f a" = 0 for some
positive integer n. The smallest positwe integer -which sotisfy the condition a” = 0 18 called the degree

- of nilpotency of the element a.
Example 17.1 Find the nilpotens nlements of the riﬁg Zs.

Solution. The elements of Zg are [0}, Il] 121, {3}, [4}, i5)1 [6}, (7).
‘Here [2° = (0] and [4]2 = [0]. 'I‘hus, [2] and [4] are. the. mlpotent élements of- degree 3 and 2
‘respectively. ' -

Example 17.2 Show that sum of two m\potent elements of 8 ring is uﬂpotent

Solution. et a, b be two nﬂpotent elements of the ring R and their degree of mlpotency be m and n.

Thena'” Oandb" 0..

Now, ’ _
(a+p)ym+n = g gmn Cia™+n1p +m+ﬂ Cgﬂ""‘"""bﬂ +m+ﬂ Cza"’""""sba '

_ L. PN Cnm ..,,,b"‘*"
= a”‘{a" +m4+n Clam-ih +”‘"‘” (3'2&”"%2 e C’sa""3b3
oo TR bﬂ} S .
+{ mng, Rl TR 1
= 04+0= 0 e
Hence o -+ b is nilpotent element w:th degree of mlpotency ism + n, sum of ‘the xndwxdua.l degree of
nilpotency. : .

Bxample 17.3 The set {[0), [1] 2h....[m ~ 1]} of residue. El‘as‘ses modulo. mise commutative ring.

Deﬁnmon 17.10 (Characteristic of a ring) Let (R, +,.) be a ring. For any a € R, there exists o
positive integer n such that na = 0, then the smallest value of n -is called the chamctemtzc of R.
If there exists no such mteqer, then R is of chamctenstzc zero or mﬁmte ~

For example, the characteristic of the ring. (Z,+,. ) is zero.- In this ﬂng the Order of each element of
(Z,+) is zero except-the identity element. .

Example 17.4 Find the characteristic of the ring (Zs, +)e
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Solution. "The set Z; is {[0], (1], (2], {3], {4], [5]}.
Here [0] is the zero element of Zg. ' L -
Now, 1(0] = 0], 61] = [0],3(2] = [0}, 2(3] = [0}, 3[s} = [0} 6(5] =T0].

. Hence the chafacteristic of Zg is 6. o
In fact, the chardcteristic of the ring (Z,, +,.) is n.

Example 17.5 Find all idempotent elements of the ring Zs.

- Solution. The elements of Zg are [0, [1), [2], (3J; 14}, {a1.
~ Now, [0]0] = [0], 1.e., [0]2 = [0], [0} is idempotent.
(Uit = 1) 1., [1)f = [1), (1] is idempotent, - - .
(2][2] = [4] # [2], [3](3] = [3], i.e., [3]2 = [3], [3] is idempotent. -
(4](4] = [4),1ie., [4)2 = [4], [4] is idempotent. - -
Blis] = (1) # 5], T
Hence the idempotent elements of Zg-axe [0], [1],(3] and. [4].
' Like_aub_gr.oup of & group one can defige tl;e subring of a-rfng?R.

Definition 17.11 (Subring) Let (&, +, .) be a ring and let' S be a non-empty subset of R. If (S, +,.)
3 a ring then S’ 8 called subring of R, - ; ) : ; B

Hlustrations

1. (Z,+,.) is a subring of (Q, +,.). ,
2. (Q. +,.) is a subring of (R, +, .); which is also subring of (C,+,.). .
3. Every nog-zero ring has two trivial subrings, the ring itself and the zero-ring.

Theorem 17.1 LetRbe o riﬁg andS be a non-empty subset of R. A f;@eés,af'g/ and sufficient condition
that S is a subring of R is o S - -

(i) ﬁ -be S and (i) ab e S fovz all a,‘b’ €s. } o (17.1)
Definition 17.12 (Centre of a ring) Let R b'e‘a ring. Deﬁne : '
_ C(R)={ae€R:za=az forallz e R}.. ; o (17.2)
C(R) is called the cenire of R. A - .
17.5 Integral Domain B |
Definition 17.13 (Integral domain)_‘ A non-trivial ring R with unity.is said to be an mtegml Maiﬂ
if it is commutative and contains no divisor of zero. -
From thi; definition it follows that an integral domz'ain D must haw}e at least two elexﬁents Oand 1.
Alternatively, a set D is called an integral domain if the foﬂowix_xg axioms hold,

A. Under additive composition ; ‘
(1) Closure: a+b ¢ D, for all a,b € D
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(i) Associative: a + (b+¢) = (a +b) +¢, forall a,b,c€ D .
(iit) Identity: a +0 = 0+a =aq,forallae D

(iv) Inverse: 6 + (~a) = 0 = (~a) +4a, for'alla € D

) Commutative: e+ b= b+a, for all @, b€ D.

B. Under multiplicative composition

(vi) Closure: ab€ D, for all a,b€ D

(vil) Associative: a.(b.c) = (a.b).c, for all ¢, b, c 6 D
(vii) Identity: a.1 =l.a=a,foralla€eD

(ix) Commutstive: a.b = b.a. for all a,be D

{x) Without zero-divisor: ab==0==>a—¢00rbw0

C. Distributive laws
(xi) 6.(b+ ¢) =a.b+a.c and (a+ b)c-ac+bcforalla,bce -D.

The rings (Z, +,.). (Q, +,.), (R, +,.) and (C,+,.), all are intégral domains The ringofeven integers
is not an integral domain as it has no, xdenticy element. (Zs,+,.) is an integral domain whﬂe (Za, +..)
- is not an integral domain as 3], [4] € Z¢ and [3][4] = [0], with zero-divisor. ‘
In the following theorem a sufficient oondmon is given for which Z,, becomes an mtegml domain

Theorem 17.2 The .chamctemtzc of an ‘integral domain is eathcr 2610 or jmme.

Proof. Let R be an integral domain and its characteristic be ri. If n-= 0 then t.here is nothing to do.
Suppose n# 0. Then na =0 for alla € R. Also, n1 =0since 1 5 R.

Now, suppose n is not prime. Then n = ‘quorsomeintegersp qwhem 1 <p<nand I<g<n.
Therefore, nl = 0 = pgql = 0 = (pl)(ql) = 0. This implies either pl = 0 or gl = 0 [since Ris
without zerdedivisor] '

None of these are true, because if pl=0anda € R then pa = p(la) = (pl)a =0 = p(< n) is the
characteristic of R which contradxcbs that n i3 the chamcteristnc of R. Thus n is prime. a

17.6 Field

A commutative ring with unity satisfies all five axioms for an abelian group exoept multxphcaﬂve
inverse. If it satisfies this axiom for every non-zero element then thm ring beoomeu another importa.nt

algebraic structure called field.

Definition 17.14 (Field) A commutatwe nng with unity, wntammg at least two elements, is called ‘
o ﬁeld if every non-zero element has inverse.

That is, o set F contmmng at least. two elements, is o ﬁeld if the £ollowlng aodoms hold for -all.
‘a,b,cEF. : .

A. Under additive compositidn

(i) Closure: a-+be F :

(if) Assoclative: a+ (b+c)=(a+b)+¢

(iii) Identity: a +0=0+a=a,0€F

(iv) Inverse: a+ (—@) =0 = (—d)+a, —a € F
{v) Commutative: a + b= b+ a. '
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B. Under multiplicative composition -
(vi) Closure: abe FF .

(vii) Associative: a.(be) = (a.b)e .
(vill) Identity: 6.1 = l.a = q, for all 1 € F

(ix) Inverse: @.6™! =g~la = 1,1 ¢ F where a £ 0
(x) Commutative: a.b = b.g '

C. Distributive laws - _ : .
(xi) a.(b + c) = a.b + a.c and (at+b)c=ac+beforallgbece F. . a ‘
- The rings (R, +,.), (Q, +,.), (C, +,.) are fields. The'ring (Z, +,.) is not a field as'it has no inverse. -
It can be shown that the multiplicative inverse of & non-zero element in a fleld is unique.
From the definitions of field and integral domain we see that there is only one difference between
them. The integral domain is without zero-divisor and i fleld every non-zero element has hiverse.

Theorem 17.3 The characteristic of o field is cither 0o & Prime viimber. R

Let S be a non-empty subset of the field (£, +:.). B (S, +,.).1s.a field the it is said to be subfield
. of F. The get of rational numbers Q is & subfleld of the field of réal numbers R, ' :
Theorem 17.4 A subset S af a field (F, +,.) -having at least two eléments is a sgcbﬁé(d if
(i)a~b€6'foralla,be$',and ‘ oo T
(1) ab™ € S for all a € S,b( 0) € 8.

177  Ideal
A subring satisfles some special algebraic structure called ideal, which is defined, below'.b

Definition 17.15 (Left ideal) A non:empty subset S of a ring (R, +, .) is said to be a left tdeal of
Rif(S,+) isa subring ofR ar'z:d'r.a'e_;g f_or alre R and‘fqr'hll‘ a¢€ES. ' . '
Definition 17.16 (Right ideal) A non-empty subset S of a ring (R, +,.) is said to be a right ideal
of Rif(S,+)isa subring of R andar € S forallr € R and forallae 8. : o :

If S is a left ideal a8 well ag right ideal of R then S is called a two-sided ideal or simply an ideal
of R. That is, if S is an idea] of R, (S,+)isa subgroup of R and r.a € S,a.r € S for all r € R and for
allae s, ' ' ' '

From definition it follows that for a cg)mmutative ring left ideal Is an right ideal.

Every ring has two ideals. One the singleton {0} known as zero-ideal aud other is the ring itself
called unit ideal. These two ideals are called improper ideals. A ring without no proper ideal is said
to be a simple ring. R , : _ . - ‘

For example, S = {kz: 2 ¢ Z, for any fixed k} is an ideal of the ring (Z,+,.).

Theorem 17.5 Bvery ideal S of a ring R is o subring of R.
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Proof. -Sitice (5,+) is a subgroup, therefore, a — b € S for all-a,b € 5. Aléo; r.a € 8,a.r &9 for all
reéRanda€ S. Since SCR,ra€ SarecSforallre S andacS. Hence S is a subring of R. -0

. But, the converse of this theorem is not true. For example, (Z, +,.) is & subring of (Q,+ .ybut it is
not an ideal.

Theorem 17’.6 Intersection of two ideals of 6 ring 3 an ideal' of the rz"ng{

Proof. Let § and T be two ideals of the ring (R, +,.). Therefore, (S +) and (T +) are subgroups of
R. Hence SN T is slso a subgroup of R.w.r.t. addition. -

~Leta€ SNT. Thatis,a € Sanda€T. SinceSisanideal areSandrae.S’fotalerRandx'
forallees. . .
. Again, T is an ideal, Thua,raeTa.nda.reSforallrERsndaeT

_Therefore, ar € SNT and raec SNT foralilr e Rand a6.S. HenceSnTisanideal

a
This result is valid for.arbitrary number of ideals (left idea.ls and aleo for nghx ideals), .
But, the union of ideals may not be an ideal. For example, ZZ a,nd 5Z are idea.ls of Z but 2Z U 52

is.not an xdeal of Z.
' 'Thaarem 17.7 A ﬁetd has no proper tdeals

Proof. Let F be a filed and $ be a non-zero u;ieal of it.
Ietae€ S,a#0. Thena“ieF»aa”‘ESsimeisanideal

= 1€ S. (1 being the identity element).
Thusforalle e F,\1€ S=lacS=>aeS. Thatis, a € F»aeSandheneeFQS. o .
Again, bv definition § € F. Thus 8§ = F. Hence F has only two ideals {0} and F itself. . . ]

Example 17.8 Show that S={kr:2¢€¢Z,kisa ﬁxed integer} .is an ideal of Z.

Solution. The set S is {..., -3k, —2k, ~k,0, k, 2k, 3k, ...}.

To prove (S, +) is @ group ' ’

Let km,kn€ S; m,n € 2.
Then km +kn = k(m + n) € Sasm+n€5 Thetefore, S is closed.:
Obviously. (km + kn) + kp = km + (kn +kp) for all km, lcn kp € S

Associative law holds.
Now, 0 € & and 0+km km = km+0forallkme S o xsthe identity element
Since km + (~km) =0 = (-~ km) +km, -km € S is the inverse of km e S. That is. inverse exxsta

for all elements of S.

Herce § is a group. = ' ‘
Let r € Z and km € S. Then r.km = k(rm)eSsinwreZmeZsOMeZ

Similarly, (km).r = k(mr) € S.
That is, for all r € Z,km € S, r(lcm)eSand (km)reS

Hence S is an idesl of Z.
The following result is the generalization of this result.

Exémﬁle 17.7 Let R be a ring. Th'en-n’R'-.-j {nz:z € R}h,neN,is an ideal of R.

Since Z is a ring, therefore, 22,32, 42, . etc. sre ideal of Z.
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Example 178 Show that the set of matrices § = { (: 0 ) whe ‘n} ot
right ideal of 2 x 2 real matrices. \ » S | -

To prove (S, +) Ys & group.

=(20) g2 0), [a1+a O ‘
8., c A 4 : .
. -M%trix addition is associative.
.('0 g)e § is the additive identity of §.

| ( o ) € § being the inverse of A & S.

Solution. Let M;(R) be the set of all 2 x 2 real matrices.

-b 0
Thus (S, +) is & group.

Let X = (”1 v ) € My(R). Then

Z2 ¥ . . ) . .
A a3 0)(3:1 #Yi =("¢112?1_ awlﬁ)' » .!
»X?v(b, 0) (2 30 )= (oaor bn) &5 torali A€ 8 and X € My (R),
AN a1 0 [ a= +bhy 0
but,XA-(xz yz)( b 0 /) \ aizme+biy .O)AG'AS
foraHAeSandXeMg(R). o

Thus S is & left ideal but not right ideal.

Theorem f7.8 If R is a commutative ring the set.Ra = {za :z € R) of_éll mulliplies of any fired
8 € R i3 an ideal of R. o : ‘ - ‘ :

Proof. We first prove that Ra is a subgroup of R under addition. Let z,y € R.
. Therefare, by definition za, ya € Ra. Now :
Za-ye=(z-y)a€ Ra [sincez-yeR] -
“Therefore, Ra is a subgroup of R under addition..
~ Next we shall prove that for every za € Ra and z € R, both (za)z snd #(za) are in Ra.
For za € Ra and 2 € R. Now, ' ; : -
%(%a) = (2z)a € Ra [since 2z € R}
and (za)s = x(az) [by associative] .
= z(za) [by commutative in R]
= (¢z)a-€ Ra [associative and zz € R ' ,
Hence Raisanideal of . = o o o
This ideal is known as principal ideal. The formal definition.of principal ideal is given below.

fD;eﬁﬂthon 17.17 The ideal Ra = {za:z € R} ‘which consists of all the multiplies »of same fixed a in
R is colled pringipal ideal. - ,

‘Thearem:1%.8 A commutative ring with unity has no proper ideals iff it is-a:filed.
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Proof.. Let1 R. be & commutative ring with un)ty Leo us asaume tha.t Risa ﬁled Then for any element
‘a€ R,a'e R
Let H be an ideal of R. Let us. assume that ac H Since é-¢ Hand d!eR Therefore,
aa~! =1¢€ H [since H is an ideal]
Now, considering any element z € R, we. have. -
zleH[slnce1& H]
SrcHforallzeR
-=>H=R,
Hence. R has no proper ideal. . : A
Conversely, let R has no proper ideal. If R i8 not a feld then th.ere mcists at: least one element a

which has no multiplicative inverse in R, Let us consider the, principal idesl Re.={za:2 € R}. Now

since a has no inverse, the product of a with any element of R does not give 1. Therefom in. thzs case

1€ Rbutl¢ Ra. .
Therefore Ra is the proper ideal. Oontradictxon pwves tha.t‘ R i a ﬂeld k D

17.8. Quatient Ring

let Hbeanx&ealofanngR Let R/H denotesthefamﬂyofcoéetaofi]in R)ie R/H={H+a:
a & R}. Let H 4 a, H + b be two arbitrary elemanw of RfH. Define the operatiows of addit.ion and’
.multxplxcation of R/H as follows: -

(Hta)+(H4B) = Hala+b),
(H+a9.(H+b) = H4ab -

[n the faliowmg we prave tha.t R’H is a ring. -

Theorem 17.10 Given an zdeal H af a Ting R tke addstwe cosct H +aof H form the quatzent rmg
RIH under the definition. . o

(H+a)+(H+b) = H+(a+b) (17.3)
(H+a)(H+b) = Htab - (174)

for alla.be. R.

Proaf. Sinceﬂ+(a+b) a.ndH-!-abarea.lsoreexdue classes omeR, theu:efore R/H & closéd w1th,
respect to:addition and multiplication of residue classes., Firsb Qﬁ allwe shall ahow thing. both uddition -
and -muitiplication in R/H are well defined. For this. ‘we are to show that if H .+ 4 =H + o' and’
H+b==H+b'then(H+a)+(H+b) (H+a’)+(H+b’)m&((ﬂ+a’}(H+b) (H+a’)(H+b’)
Wehave H+o=H+a' >a e H+aand H+b=H +b’==>b'e.H+b
“Therefore, kherewustsm,yeﬂsuchchata' o 4a, b= g+b ‘
Now,:d’ +¥ = (z+a) +{y+b) = (a+b)+(m+y)
Therefore; (o' +¥) ~ (a +d) =z+ye H
ThusH+(a’+b’)~H+(a+b) C
2> (H+a)+ (H+V)=(H+a)+ (H+b).
Thus addition in R/H is well defined. Simil&?ly, we,can prmthm mnhiphcation is also well defined.
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Associativity of addition in R/H -

We hava(H+a)+((H+b)+(H 4+c)]

={H+a)+[H+@b+c)]= H (@ 4.(b+c)]
=H+{(a+b)+c] = [H+(a+b)}+(H+c)
{(H+a)+(H+b)j+(H+c)

Commautativity of addition in R/H . ,
(Hta)+(H+d)=H+(a+b)=H+ (b+a) = (H +b) + (H +.0).

Exstence of additive identity

Since (H +a) + (H+0) H+(a+0) =.-H+a andalso (H 4+ 0)+ (H+a) = H+(0+a) = H +a.
Henoe H+0=H is the addimve identity of R/H. -

Eristence of additive inverse -

let H+ae R/H. Then H+(-—a) € R/H.
Now, [H + (~a)] + (H + a) = H+{(-—a)+a] H+0==H,
Therefore, H + (—a) or H — a is the additive inverse of H + a

Associativity of multsplication

(H +6)[(H + b)(H +¢)] = (H + a)[H + bc) = H + [a(bc)] H+~ [(ab)c]
= (H + ab)(H +¢) = [(H + a)(H + b)I(H +c) '

Distributivity property : ’

(H +a)[(H+b)+ (H +c)] = (H + a)[H + b+c)] = H + [a(b*+ ¢)] .

={H +ab) + (H + ac) = (H+a)(H+b)+(H+a)(H+c) '
Qimilarly, it can be shown that

UH+B) + (H+)(H +a) =(H +b)(H~$a}+ (H+c)(H +a)

Hence R/H is a ring with respect to the two compositions. S

Definition 17.18 Let R be o ring and H be.an ideal of R. Then the ring R/H {H+a:a¢eR}
is called the guotient ring or factor ring or ¢ difference ring or a m:due class .ring, where
addition (+) and multiplication (.) are defined as

(H+a)+(H+b)=H+(a+0b) and (H+a)(H+a) H +ab for allebe R.

Example 17.9 Let us consider the ring Z. Then 3Z = {3k : k € 2} is an ideal of Z Then
Z/3Z = {k+3Z: k € Z} and it is a ring, where + and . are defined below. -
(m +32Z) + (n + 8Z) = (m +n) +3Z and (m + 3Z)(n + 3Z) = mn + 3zZ.

This-is the quotient ring of Z by the ideal 32 Sinoe Z is a commutative ring with umty. Z/3Z is
- also a commutative ring with umty I .

17.9 Homomorphism of Rings . -

kae group homomorphmm, & homomorphism can also be deﬁned between two nngs

Deﬁnition 17.18 'Let R and R' be two nn.gs A mappmg F:R— R'is callai a homomorphum of

R snto R/, zf
fla+b) = f(a) + f(b) ﬂﬂd f(ab) f(a)f(b)
for alla,be R,
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An injective (surjective) homou;orphiém is called.monomo;fphin_n .(re:spéctivgly epimorpﬁlsm).
A bijective homomorphism is ealled an isomorphism and.we write R = R’ If R = R/ theq the homo-
morphism js culled an endomorphism and a bijective endomorphism is called an autoniprphism.

Example 17.10 Define a mapping f : Z — Zs by f(a) = [a], where.[a] denote the equivalence class
of & modulo n; n, € N. Of course, (Z, +,.), (Zn, +,.) both are rings. - S
Then f(a+b) = [a+b] = [a}+[5] = f(a) + f(b) and f(ab) = [ab] = {al[b] = F(a)f(b) for sll a,b € R.
Hence f is & homomorphism of the ring Z onto the ring Zy,. _ A '

Example 17.11 Consider the ring (Z;+;.). Define'f : Z — Z by f(n) = 2n. Let m,n € Z. Then
f(m+n) =2(m+n) =2m + 2n = f(m) + f(n). ' g

" But, f(mn) = 2mn # fom)f(n). S

“This shows that f is a group homomorphism but not a ring homomorphism.

Example 1712 Let M = {[g g] :_aeR} where R s 8 fing, .

. . a 0 _ a 0] .,
l?eﬁnef.M-—»Rbyf[O O}eafora}l{o.,g]eM.
. ._[a 0 _[d 0 v an_jad O}
LetA-—[OO'GM,B-— 00 eM.;A.B-— 0 '04.

Then f(A+ B) =a + b= f(A) + f(B) and f(AB) = ab = f(A)f(B). -
Hence f is homomorphism. ‘ : '
Also, f{A) = f(B) only if @ = b. Thus f is one-one.

Now, for-any a € R, f~a) = [ g‘ g } &M. Therefore, f 15 bnto.
Hence f i an isomorphism. : o

Theorem 17.11 Let B and R' be two rings and f : R — R''be a homomorphism of R into R'. Then
(i) 1(0) = 0/ where 0 € R and ¢/ € R be the zero elements . ' E ‘

(i) f(—a).=~fla) - '

(i) f(a —b) = f(a) - f(b)

for alla,be R.

Proof. (1) Let a € R, then f{a) € R". Now, .
£(0) = £(0+0) ' |
= f(0) +0 = £(0) + £(0) [since f is homomorphism]
=0=f0). . . , . o
(ii) Let a be any element of R, then —a € R. Also, f(0) =0'
Thersfore, f(a —~ a) = f(0), | |
=> f(a) + f(—a) = f(0) [since f is homomorphism}
= f(a) + f(~a) = 0. - S :
Therefore, f(—a) is the additive inverse of f(a) in the ring. Hence f(—a) = —f(a). -
(il Since f is homomorphism, » R :
f(a=b) = f(a+ (b)) = f(a) + F(~b) = f(a) — £(b) [by (if)}. |
Example 17.18 Let R be a ring and let (S,+,.) be an algebraic system. with addition (+) and
multiplication (). Let f : R — S be an epimorphism for + and .. Then show that S is'a ring.
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Solution. lesa.bc € § and'z.y,2 € R. Assume that.a = f(@), b= fly),c = f(z).
Since R is a ring, TyeR=>z+ye R , S '
Now, @ + b= f(z) + f(y) = f(z +y) & § [sirice f ‘is homomprphism].

Therefore. closure property holds, - '

(i)

o Vey+swl+5). , -

fz+y)+:f(z) " [since f is homomorphism]

flz+y+zy C o

@)+ fly+z

f@+ )+ 1)

e+ (b+e)

{a-+b)+c

e ooy

Hence associative property holds.

. (m) Let 0 be the additive identity element of R. Then
[(z) = f(z'+0) = f(z) + £(0). ‘
This implies, f(0) is the additive identity element of S.

(ivyLetze R=>-zxe R ' ) * o '
Now, (0} = f(z ~ z) = f(z)+ f(~&). Thus J{~=) is the édditive inverse of f(z).
(v - I S
' flz+y)  [sitice £ iy homomorphiism)
Sly+z) fincein Bz -+ f= y g
: Fy) + f(z) =b+a. '

Therefore, a. b are commutative under addition.

Hence (5, +) is a commutative group. = -

(V) Let %,y € R=> z.y € R, Since f is homomorphism, -~
- ab=fz)fy) = flzy) eS. S

.-Hence S Is closed under multiplication. Co
- (vii).(ab).c = [#(2).f ()] £(2) = f(2.9).f(2) = f(z.y.2)
e =@ S(y2) = [ ). f) =a.be)

Hence S satisfles associative property under nmltiplicavion. .

(vill) | : '

a+b=f(z)+ f(y)

Fon

f(=).[f Y+ J(2)] .
F@) S+
Fleiy+2)

flwy+z2)
Slay) + flzz)

F(@).fw) + £(2).F(2)

adbtac . ‘
That is, left distributive property holds, Similarly, we can prove right distributive law.
Hence (8, +,.) is the ririg under addition (+)"and multiplication (.). - :

Definition 17.20 (Kernel) Let R and R’ be two rings and f + R — R!.be 6 Komomorphism of H into
R'.. Then.the kernel of f is denated by ker f and is defined as . _

kerf ={z € B: f(z) = 0,0" is the eoro.cloment.of ).

a.(b+c) -

1O I I B
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Example 17.14 If f is a homomorphism of R into R’ with kernel ker f, then
(1) ker f is the subgroup of R under addition, - .
(i) ife € ker fand r € R, thenbotharand ra.areinkerf

Solution. (i) The ring R and R’ are both oommutative group under addition (+) Thus ker f isa
normal subgroup df R. Hence obviously, ker f is a subgroup’ of R under addition. -

(li) Frac ker f,re R=>ar € R and f(a) =0, 0 iz the addltxve 1dentity element of ',

Since f is homomorphism,
Jlar) = f(a)f(r) =0 f(r) =0 = ar € ker f.

Similarly, f(ra) = ¢/ = ra € ker f.

Hence ra,ar € ker f.

Theorem 17.12 Let R and R’ be two ngs and f * R~ R’ be a homomorphism.. Theﬂ kerf is an
ideal of R.

Proof. By definition ker f = {z € R: f(z) =/, 0/ € R'}.
Since f(0) = €', 0 is the zero element of R. Thus O € ker f. Henoe ker f i8 non—empty Leta,b € ker J.
Then, f(a) = 0’ and f(b) (Y. Since a € R,~b € R,
Now, f(a—8) = f(a + (=) = (@) + f(=0) . i homomOrphlel
= f(a) — f(b) =0~ 0 =0
Therefore, a ~ b € ker f.
Again, let » be any element of R. Then for snya €R,
flar) = f(a)f(r) = O'f(r) = O and similarly, f(re) = f (")f (a) f (r)O’ 0’
Therefore, ar € ker f and ra € ker f. ‘ , R T
I{encekerjlsanidealofR ' _ D

Theorem 17.18 Let R be a ring and .S‘ be an ideal ofR and f R - R/S deﬁned by f(a) S+a

Joralla € R.
Then f is a homomomhwm of R onto R/ S.

fHereR/S {§+a: aeR}andf(a) S+a
Let a,b € R. Then f(a+d) =S+ (a+b) = (S+a)+($'+b) f(a)+f(b) a.ndf(ab)=.5'+ab==
(S + a)(S +b) = f(a)f(d) for sl a, b€ R.
Therefore, f is a-homomarphism of R onto R/S
bealleRS-l-xeR/Sandf(:c) S+z ThusthemappingfisontoR/S )

Theorem 17.14 Let f: R —Sand f':R— S' be two cpemorphsam ofrmg with the yame ‘domain
R and kernel H. Then show that the mappmg from Sto §' is womorphwm .

Pmof Smoe f and f/ are -epimorphism from R to S snd S’ reapectively Then for z€S and a:’ €8
we must find a € R such that f(a)—-:'cand j’(a)-:r. .
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. We conzider a coset (a + H) in R/H. Clearly,
fla + H) = f(a) + f(H) [since f is epimorphism]
= f(a) +0 [since h € H is kernel and f(H) = 0, the zaro eleiment.of S
= fla)=z € §. '
Thus f(a+ H) = z. o - ‘ ' '
Stmdlacly, f'(a+ H) = 2’. Let us defined the mapping g: S — §' such-that g(z) = 2/ iff f~!(z) and
F=Y(=").corpespond to the:same additive coset of H.. o o :
Since :f is the homomorphism therefore for y = f(b) and o = J(b) we have .
flla+ H)+ b+ H)) = So+H)+ b+ H) =2 +y. _ '
Similarly, f'{(a + H) + (b+ H)} =f'(a +H)+ o+ H)=o' +y
Therefora gz +y) = 2’ +/ = g(z) + g(y). o E
Also, fla + H)(b+ H)) = f(a + H)f(b+ H) = zy [since f is. homomarphism] - . .
=.f(eb+ H) = zy. oy
Similatly, f'{(a + H)(b+ H)] = 2’y o S
Thercfore, /Y (zy) = ab+ H = f"\('y') aid glay) = 2y = g(x)gly). .
- Hence g is homomorphism from ring S to . Also g is onto since f and f/ are onto.
- Assumig.g(x) = g(y) - o
S>9(@) ~-gly)=0es. ‘ o
ogz~y)=0ecs [since g is & morphism]
= f" Nz ~y) = f-40) = H. ; A
- Thatelons, f(H) =z ~ y since f{H) = 0 for kernel,
This-implies ¢ = y. Hence g.is one-one.
Therefore ¢ 1s an isomorphism from ring § to &

D.eﬁnmon 17.21 (Homomorphic image) A group G’ 4s ‘éalle&‘d, ,I‘wmamorrhic impée Qf.-a"‘grlbup G

{f there exats an epimorphism f fromithe group G onto the. grotip G

Example 17.15 Let f be a'hqmoinbwphism; mapping of a ring' R intoa. ring S." Let S be the
homomorphic image of R in S. Then S' 1s & subring of §. ' ' o

‘Botutlon: Sinca 5° s the mage of R in.§ under the nispplag F Theealocs, f(R) = 'G5
Let.d, € S'. Since §' = f(R), then there exists elementsa;b.¢ i sueh that: fa)=a'\ 1(8) ="V,
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Now, &' ~ b = f(a) — £(b) = f(a —b) € § [since / is homomorphism snd @ —b € R]
Further, o't/ = f(a)f(8) = f(ab) € & [since ab € R] .
Thusa,\¥ € 5’ =0’ ~ V' € S’ and o'W € &.°

Hence 8’ is.a subring of S.
Theorem 17.15 ‘Buery homomorfhic image of a ring R is iaom'ar;}hic“to some quotient ring of R.-

Example 17.16 Consider the ring Z and Zy. Let f : Z — Zs be defined by f(r) = [r],r € Z. Show
.that f is & homomorphism and find ker f. ‘

Solution. Let m,n € Z. Then f(m +n) = {;n +n].= [m] ;i-.{n] = f(m) + f(n) and f(mn) = [mn] =
[mlln] = f(m) f(n). ‘ |
- Hence f is a homomorphism.

Now,

keef = {neZ: f(n)= (0]}

{neZ: =0}
{n€Z:n=0 (moed 5))
{n € Z: n = 5k where k € 2}
57, , SRS

o

Example 17.17 Prove that every homomb:plﬁc image of & commtative rtin'g;i_a. commutatlve.'

Solution. Let R and R’ be two rings and there is a homomo;‘plﬁé"mapping f v R - R. R is the
homomorphic image of R. ' S : :
Let o',V & R'. Then there exists some @, b € R such that f(a) = o', f(b) =b.
et . =. fla)f(b) = f(ab) = f(ba) [ since R is commutative]

= [f(b)f(a) = ba'.

. Hence R’ is commutative,

Example 17.18, If the ring R consists of all multiples of 2 and R’ consists of all multiples of 3, show
that R is not isomorphic to R'. ' :

Solution. Here R={2k: k € Z} = 2Z and R’ = {3k : k € Z} = 3Z. : "

Suppose there be a ring isomorphism f: R - Rlie, f:22 — 3Z. Thus f is a group isomorphism
of (2Z, +) ounto (3Z,+). Both (2Z,+) and (32, +) are cyclic groups. 2, -2 are the generators of 2Z
and 8, —3 are the generators of 3Z. Hence f(2) must be a generator of 8Z. Suppose f(2) = 3. Then
f(4)=f(2+2) = f(2) + f(2) =343 =6. Again, f(4) = f(2.2) = £(2).f(2) = 3.3 =9. :

Thus, f(4) =6 # 9 = f(4). L o .

Again, if we take f(2) = -3 then f(4) = F2) + f(2) = =3~ 3 = —6 and f(4). = F(2)f(2) =
(~8)(—3) = 9. This case is also not possible. - L '

Hence there does not exist any ring isomarphism f : 2Z ~» 3Z.

Definition 17.23 (Prime ideal) An ideal H(# R) in a commutative ring R is a prime idealifab € H
implies either a € H orbe H for alla,be R. : o o .
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Theorem 17.18 I[fRisa camu#at:w mg wuth unity-and H iés an ideal ofR then R/H 45 an integral
domain {f H is prime. :

‘Proof. Let R be.a commutative ring with unlty andHisanideal of R. Then R/H = {H+a G € R}.
Let H +a,H + b be any two elements ofR/H Then-a,b e R'we hsve (H + a), (H + b) be any two
elemerits of R/H.
Then a,b € R we have
(H+a)(ﬂ+b) H+ab=H +ba=(H+b)(H+a).
Therefore, R/H iz a commutative ring.
Now, let H be & prime ideal of R. Then we are bo prove that R/H 13 an integral domain For this
we have to show that R/H is without zero divisors.
~ The zero element of the ring R/H is the residue class H itself.* Let H+ a,H +b€R/H then
(H+a)H+b)=H
= H + ab = H [the zero element of R/H]
=abe H.
This implies, either a € H or b € H for deﬁnition of prime ideal
Implies either H + a or H + b is zero element of R/H.
. Since R/H is a commutative ring without zero divisors, therefore R/H is an 1ntegra1 domain.
Conversely, let R/H be an int.egral domain. Then we are to prove that H is prime ideal of R.
Let a,b € R such that ab € H. Now
abeH»H-&-abeH»(H-%-a)(H-o-b) "
= either (H + a) or (H + b) is zero
=> either (H +a) = H or (H +b) = H is:2ér0
=>eltheragHorbe H
=-H is a primal ideal. .
This oompletes the proof of the theorem. ‘ a

If R is & ring with unity then R/H is also a ring with unity. The residue class H'+ 1 is-the unity
element of R/H. Therefore, if we define an integral damain as & commutative ring with- unity and
without zero-divisors, ‘even then the abave theorem will be: true.- Butr, in"that case ‘R must be a
" commutative ring with unity. ,

Definition 17.33 (Maximal ideal) The masimal ideal of ring R is an ideal H(# R) such that
there is no proper ideal H' ofR pmperly containing H, i.e. H C H' = éither H = H' or R = H',

Example 17.19 In the ring of integer Z, the ideal Z6 i not maximal since it is properly contained
in the ideal Z3, which in turn is properly contained in Z, on the other hand Z5 isa maxlmal ideal since
the only ideal properly containing Z5 is Z itself. :

In other ward an ideal H of a ring R is sald to be miaximal idea] if. thare exists no ideal, properly

contained in R which itself properly contains H e IKitis impossible to find an ideal whxch lies
bebweenHa.ndthefullringR : ,

Theorem 17.17 If R be tac commutative ring unth umty and H is an ideal then R/H is tl;c ﬁdd iﬁ'
H is mazimal,
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Proof. First we assume that H is a maximal ideal in R and consider any nonzero.element H+a € R/H
wherea ¢ H. : ; , L S R ‘
Consider & set § = {h+aozx:h € Hz € R}, Toprove S is an ideal. Let hy + az; € S and
ha +az3 € § for 1,22 € Rand hi,hp e H. . © ' '
Now, (b +6z1) ~ (ha + az2) = (b1 — hg) + a(zi —z3).
[since Ay, hy € H = by — ko eHand @1~ 22 € R}
Therefore, S is a subgroup. o
Now, (k1 + azy)z2 = hy2g +az1z3 € S
[since ;22 € Rand hyzg € H as H is an ideal] -
~ Similarly, zg(ky + az;) €-S. Hence § is an. ideal.
. Since a ¢ H s0 H is the prime subset of §.
i.e.HcS=>S=R{sinoeHisma:dms’.lideal] : :
Therefore, it follows that 1 =k +az forsome he Hand z € B (1 is the identity element in R)
= H+l=H+h+az ‘
= H+1=H+az[sincehc H=>H+h=H]
- = H+1=(H +a)(H + z) [by definition of R/H)] .
* This shows that the existence of an inverse element for any nonzero element H'--a of the commutative
ring R/H. So R/H is the fleld. . _ . ' , - .
‘Conversely, we assume that R/H is a field. Let M be an ideal which properly contain H (i.e.
H C M). So that there is an element a € R such that a € MbutagH.. -
Now as R/H is field. The equation (H + a)(H +z) = H + & is solyable for any b € R.
Hence H+az=H+b=>ar—-beH=>az—be M (since H Cc M) . ' -
But since M is an ideal and @ € M, ax M forallz € R.
Therefore, oz — (az — b) € M [since az € M and az — b € M
=*beMfodallbe R .
=S RCMbut MCR
= R= M. ) : :
Hence H is the maximal ideal of R. 4

Ceorollary 17.1 In a commutative ring R with unity-every mazimal ideal _qf R is a prime ideal.

Proof. R is a commutative ring with unity. Let S be g maximal ideal of R. Then R is a field.

Now, every field is an integral domain. “Therefore, the commutative ring with unity and § is an ideal
of R, then R/S is an integral domain iff S is prime. - ’

So S.is & prime ideal of R. This completes the proof. - O

But, it may be noted that the converse of the above result is'not true, i.e. every prime.ideal is not
necessarily a maximal ideal. S I o e A
Theorem 17.18 (Fundamental theorem on homomorphism of rings) Let f : R.— S be the
homomorphism of a ring R into.the ring § and let H be the kernel of homomorphism f, then f(R) is
homomorphic with the. quotient ring of R modulo H, i.e. f(R) =~ R/H. :

Proof. Let us consider a mapping ¢ : R/H — S defined by ¢(H +z) = f(z) for all z € R. First we shall

show that the mapping ¢ is well defined, 1.0, if ,b € R and H +a = '+ b then $(H +a) = ¢(H +b).
Now, (H +a) = (H +b) ‘ ' . : ‘ '

=a-be H
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= f(a -~ b) = U/ [zero element of S]
= f(a) - f(b) = 0O

= fla) = f(b)

= ¢(H +a) = ¢(H + b)

Therefore, ¢ is well defined.

¢ i3 one-one: ,
We have ¢(H + a) = ¢(H + b)
= f(a) = £(b)
= fla) = f(b) =@/

= f(a) + f(~b) = ¢/

= fla-b)=0

=»a-beH
>H+a=H+b

Thus ¢ is one-one.

disonto S:
LetyeSthenyn:f(a) forae Rbecauaefwontos Now,H+aeR/Handwehaw¢(I!+a)
fla) = |
'l‘herefore, ¢ is onto S
Finally,
OUH +a) + (H + b)} = ¢[H + (a+ b))] ‘
' = fla+d) = f(a) + f(b) = ¢(6+H)+¢(b+H)
Also, $[(H + a)(H +b)] = 6(H + ab) = f(ab) = f(a)f(b) = ¢(H +a)¢(H +b).
Thus ¢ is an isomorphism of R/H onto‘S - : .
Hence R{H =~ R/H. ' ‘ : (")

17.10 'Euclidian Dom'ains/Eudlidian Riri‘gs

" An integral domain R is said to be an Buclidian domain if to évery nonzero element a € R, we cani
© assign & non-negative integer d(a) such that
* (1) for all a,b € R, both nonzero, d(ab) > d(a); :
(if) for any ¢.b € R and b 5 0 there exists, 0” € 'R stich lshar. o = qb+r where either » = 0 or
d(r) < d(b).

d(a) is called the valua.txon C ‘

The set of integers Z is.a Euclidizm domain wlth valuation d(a} ]al

Definition 17.24 (Principal ideal r!ng) An mtegml domain’' B with- umtu s o prmctpal ideal ring
(o damam) if every ideal ofR is pnnczpal, ie. oj the form Ra for some a € R.

' Divis!bllity in an integral domain

Ifayﬁ()a.ndbaremacommutatwerlngRthenaissaidtobedeebifthereexistsceRsuchthat
b = ac. Symbolically,- a/bmeansadiv!desband a‘tbmeamadoeanot dxmblebyb o

. 'I‘heorem 17.19 If Risa commutatwe rmy then ‘
(i) afb and b/c = a/c, the relation of divissbility in R is o transitive relation; .
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(i) a/b and afc = a/(b+¢);
(iii) o/b > afbz for all z € R.

Proof. (i) a/b = b= ap for aomepGRnndb/c:)can (a‘p)qza(pq).for some g € R. -
This implies, a/c [since pq € R s .
(il) a/b = b= ap for some p € R and a/c => ¢ = ag for gome ¢ € R.
Now.b+c—~ap+aq-—a(p+q)=>a/(b+c)smcep+qeR
(i) a/b=>b=ap forsomepe R.

Now,b=ap= bz = (ap)z forallz € R -

=>bz~a(;n)=¢a/bxsincepa:eR S ' i ]

Lemma 17.1 In any Euclidian domain D for nonzem ryeD, d(zy) = d(z) ify is znverttble whereas
d(zy) > d(z) #f ¥ is not.

Proof. 'For any nonzero ., y € D we have d(zy) > d(z), §))
Now, if y is invertible, then d(z) = d(zyy™') 2 d(a:y) (i)
From (i) and (ii), d(z) = d(zy). ' : ' ' '
Moreover, if sy/z =>ays=cfor 2€ D"

= yz = 1 [by left cancellation law] '

= g is invertible, i.e. 2 is multiplicative-inverse;

If zy/z then z = (zy)q -+ r either 7 = 0 or d(r) < d(zy).
. Therefore, r =z — (xy)g = z(1 — yq).
Now, d(r) = djz(1 — yq)] > d(=z). : :
Since r $# 0, therefore d(z) < d(r) < d(zy) => d(zy) > d(z). 0

Theorem 17 20 In any Buclidian domain every ideal is pmctpa!

Proof. Let R be an Euclidian ring and S be an arbxtrary, i.e. the ideal of R generated by 0. Therefore,
S is a principal ideal. So let us suppose that S is not a pull ideal. Then there exists an element in
& not equal to zero. Let b be any nonzero element in S such that d(b) is maximal, i.e. ‘there exists
no elemeny ¢ in S such that d{c) < d(b) We shall show that § = Rb, ie S is nothirig but the ideal
generated by b.

Let a be any element of 3. Then by definition of Euchdean ring there exists elements q and rin R
such that a = gb + r where either » = 0 or d(r) < d(b). Now,qe R, bGS»qbeSbecauaeSlsan
ideal.

Further ¢ € S,gb € § => ¢ — qb-—reS ThusreSandwehaveextherr-Obrd(r)<d(b)

If  # O then d(r) < d(b) which contradicts our assumption that no element in S has value smaller
than d(b). Therefore, we must have r =0 then a = gb. Thus every element a' € § is of the generating
element b. Thus a € § =+ ¢ € Rb.

Therefore, S C Rb.

Agmn,xfxbxsanyelement obe Thenz € R Now,ze R,be S=>azbe S. Therefore, RhCS.

Hence § = Rb.

Thus every ideal S in R is a principal ideal, thereﬁore R is a px‘inclpal ideal ring - Q.

Definition 17.25 (Greatest common divisor (gcd)) Let R be a ring and a,b€'R. mend €ERis
said o be greatest common divisor of a and b if ”
(3) d/a and d/b;

and (i) whenever c/a and ¢c/b then c/d, this is denotcd by d = ged(a, b)
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Theorem 17.21 Let D be-an Euclidian domain. Then any two elements a and b in D have.a greatest
common divisor d, moreover d.= Aa + ub for some A, p€ D. - : '

Proof. We consider the set H = {ra +ab: 1,6 € D}. We claim that H is an ideal of D. . _
Let 2,y € H.t.hen z=ria+sbandy=rya+smbandsor—y = (ri —ra)a + (si —a2)b € H, since
ry—-rq.8~a8 €D, ' : ' .
uz = u(r1a + 81b) = (ury)a + (us1)b € H for u-€ D and ury, us; € D.
Therefore H is an ideal of D, . co ‘ ' . -
‘Every ideal in Euclidian domain is principal it follows that H = Hd for some d.€ D. Then d/(ra-+sb)
forallns e D. ‘ o ' o
When r = 0,8 = 1 we-have d/b and when r = 1, = 0 then d/a. Therefore, d is common divisor of
e and . : o
- Now, let.c be any other divisor of @ and b, Therefare, ¢/a and c/b = ¢/ra and ¢/sb = c/(ra+ab),r, s €
Thusc € H. Now, ¢ = g(ra-+sb) = (gr)a+(qs)b € H. Hence'd is the ged of a and b. By congtruction
. we can coriclude that there exists 4 and A € D such that d = \d + ub.

Definition 17.26 (Unit) An element a-€ R of a ring is called unit if there exists b € R such that

Definition 17.27 (Associates) Let R be a commutative ﬁng un‘_th.unit-'élement. Twoe elements
(nonzero) @ and b in R are sard to be associates.if b = ua for somé unit u € R.

The only units of the integral domain of integers are 1 and ~1. Therefore, if a is any nonzero integer
then it has éxactly two associates namely 1.a and (—1)q, i.e. ¢ and —a. Thus the two associates of 2
are 2 and -2, . ,

In any commutative ring with unity the associates of 0-is only O.

Definition 17.28 (Prime eiement) Inan EBuclidian domain D a non unit p is sqz‘d'to be u prime
clement of D if whenever p = ab where a,b € D then one of a, b'is unit in R, .

Theorem 17.22 For an Buclidian domain D, d(1) is minimal among all d(a) foraonzero a € D, and
a € D is a unit {f d(a) = d(1). ‘

Proof. Let a be a unit'in D. |
By definition of Euclidian ring d(1.a) > d(1). = d(6) > d(1). (1)

Since 6 is unit in D, therefore 6! exists and 1 = aa~1.
= d(1) = d(aa™?). ~ _
But. d(aa~') > d(a). Therefore, d(1) > d(a). - ()

From (j) and (ii) we canclude that d(a) = d(1).

Conversely, let d(a) = d(1), then to prove that a is a unit in D. If o is not a unit in D then we have
by previous theorem d(a) > d(1).

‘Thus we get & contradiction. Hence a must be & unit. ‘ a

‘Theorem 17.23 Let R be a Eﬂclid:'qn ring. Then every nonzero glement in R is. either ¢ unit in R
or can-be written as a product of & finite numbers of prime.elements S - of R. . '

98 Directorate of Distance Education



Module 17 : Ring, Integral Domain and Field

............................................................................................

Proof. Let a be a nonzero element of R. 'We are to prove that either  is a unit in R or it can be written
as a product of finite number of prime elements of R. We shall prove that the result by inductxon on
d(a), i.e. by induction on the d-value of a.

Let us first start the induction. We have g = 1.a therefore d(a) > d(1). Thus 1 s an element in R
which has the minimal-d-value: If d{a)=d(1) then o is 8 unit'in R. Thus the result of the theorem is
true if d(s) = d(1) and so we have started the induction.

Now, as our induction hypothesis d(z) < d(a). Then we shall show that the theorem is trug for a
also. If a is a prims element of R, the theorem is obviously true so suppose that a is not prime. Then
‘we can write @ = bc where neither b nor ¢ is & unit in B. Since both band ¢ are not units in R, therefore
d(bc) > d(b) and d(bc) > d(c) but d(a) = d(be).

Therefore, we have d(b) < d(a) and d(c) < d(a). So by our induction hypothesis each of b a.nd ¢ are
written a8 a product of a finite numbers of prime element of R.

Let b= pypa++«pn, € = 13 * * Gray Where the p’s and ¢'s are prime elements- of R Then g = bc =
P1P3* * Pai€a - - Gm- Thus we have written a as a'product of a finite number of prime elements of R.
This completes the induction and'so the theorem has.been proved , : - a

Definition 17.29 (Relatively prime) In any Euclzdzan domam D aml a, be D are said to be rcla-
tively prime zf their greatest common divisor is unit in D,

Example 17.20 Any associates of ged in D is ged.

Solution. Let d be a ged of @ and b, then it implies

(i) d/a and d/b, and (if) whenever ¢ such that c/a and ¢/b then c/d.
Let associates of d be d', then d’ = = ud for some unit v in D. To prove d' ls ged, L d’ satxshes (i)

and (i), ! . ,

To prove (i): ‘ '

Since d = ged(a, b), i.e. ged of a and b, i.e. d/a and d/b.

='a=cd for some c€ D _

=> ua = ucd

= ¢ = (ulc)(ud) [since D is commutatme]

= o = cud

= ud/a.

To prove (ii):

¢/a and ¢/b = ¢/d [By second condxtmn of gcd]

= d = rc [for some r € D) - .

= ud = y(rc) = (ur)e=r'c

=> cfud = ¢/d’.
Hence any associates of ged is gcd ina commutative ung D

Lemma 17.2 Let D be an Buclidian domain, suppose that Jor a,b,c € D,afbc but gcd(a, b) =1 then
a/c . :

Proof. We knaw that ged d of g, b is related by ).a + pud = d == gcd(a, b).

Thus by our assumption Aa + b = 1. v (i)
Multiplying both members of (i) by ¢ we get _ o . '
¢ = Mac + pbe o ‘ . (1)
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But, a/bc 80 there exists an element ¢ € D euch that bc = ga: Substituting this value of be in (i)
we get ‘ : : , .

¢ = Aac + pga = (Ac + ug)a, | :

which shows that a is & divisor of c, that is, a/c. . ’ O

Lemma 17.3 If p is a prime element in the Buclidian ring R and p/ab where a,b € R then p divides
at least one of the a and b. Co : ' :

Proof. If p/a then we are noting to prove. Suppose pte. o .
Since p is prime and p } a, therefore p and & are relatively prime, i.e. the ged of p and a is 1. Hence
p/b. ‘ - S O

Theorem 17.24 (Unique factorisation theorem) Let R be a Buclidian ring and a be a nonzero
unit element in R. Suppose that a = pypg.+-. Pm ='q102 - Qn, where the p’s and ¢’s are prime elements
of R. Thenm =n and each p's is an associate of some g and' each 's is an associate of some p’s.

Proof. Given p1ps -+« pm = g102 - - - gn. Now p: i8 a divisor of p1p3 - - - pm. - Therefore, p1 ls also a divisor
of g1g2 - gn. Thus p; must divide at least onée of @192 -+ qn. Since R 18 a commutative ring therefore
without loss of generality we may suppose that p; divides 0. - _
" But p; and g1 be associates and we have ¢; = up;, where u is a unit. Cancelling p; # 0 from both
gides we got : '
sz"'pm=u<12“'Qm . . . ‘ (i)
Now, we can repeat the above argument on the relation (i) with ps. If n > m then. after m steps
the left hand side becomes 1 and the rightihad side reduces to-a product of some units in R. But the
¢’s are prime elements of R and so they are not units in R. So the product of some unity in R and
contain numibers of ¢'s cannot be equal to 1. Therefore, n cannot greater than m. Thus n < m,
Similarly, interchanging the roles'of p's and g's we get m < n. -

 Hence m =n, : ' | .
Also, in the above process we have show that every p is an associate of some ¢ and conversely every
¢ is an assaciate of some p. Hence the theorem. o . S

17.11 Polynomial Rjngs "

Let F[z] be the set of all polynomials over the filed F. The polynomial f (z) = ao+a12+a22?++ -+anz”
is & member of the set F|z] if its: coefficients ag,ay,...,ay are the members of the fleld F. If the
coefficients ag, ay, ..., 4, are réal numbers then the set of polynomials are called real polynomials and
we denote this set of polynomials by R[z], The degree of a polynomial f(z) is denoted by deg(f) and
it is a positive integer. ' o .

Example 17.21 Let R be the set of all real numbers. Let R[z] be the set of all polynomials with
real coefficients in the indeterminate . Prove that (R[z},+,.)is a commutative ring. with unity under
usual addition and multiplication of polynomials. [This ring is known &8 the polynomial ring over
R] ) N .

Solution. Let f(z) = ao+ a1z + 632+« + @uz" and}g(:z:)'--- bo + 51z + bgx? + -« + bya™ be two
polynomials of R[z]. , o '
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Then f(z) + g9(z) = (ao + bo) + (ay + br)z + (az + ba)a® + - - + + (ap + bp)a? (i)
where p = max{m,n} andtakingak':sOforanyk>nandb;,-0fork>m
and f(2).9(2) = co + c1Z + c37% + + + + F+ CanT TP : : (1)
where . '
G = Z a4y
ig=0

i+jmle

foreach k=0,1,2,...,m +n.
It is obvious, that f(z) + 9(=) € R[z] and f(z) g(z) € R[z} as both are real polynomials.
Againitiseasytoobse.rvedt at ‘
() + 9(z) + h(z) = f(@) + (@) + h(a)) and (f().9(a))-ba) = F(2)(9(a).h(x)) bold for al
f(z), 9(z), Mz) € Rla].
That is, associative property holds under addition and. multiplicatidn compositionb
0=0+0z+0x%+ . +o0.2" € Rlz] is theadditiwidentityelement
p -—)f(x})Z[e} Rz] is the additive inverse of f(z) € Rlz] as ~f(z) + f(z) = 0 = f(z) + (~f(z)) for all
z) €
Obviously, f(z) + g(m) g(z) + f (z) for all f(z),g(z) € R(a:].
Also, it i8 easy to verify that
f()ls(z) + h(z)] = f(2).9(z) + f(z). h(z) and (@) + 9@)h(@) = f(z)hz) + a(x) h(z) for all
f(z) 9(x), h(z) € Rlz].
Heuce Rz} is a ring.
- From (ii) it is easy to obtained that
f(z)-9(x) = g(z)-f(x) for all f(2),9(z) € Rlz]-
Thus R[z| is a commutative rmg w
Again, 1 &1+ 0.2+ 0.22 + ... + 0.2" € R|z] be the 1dentity element, a8 1.f(z) = f(d:).l = f(z).
That is, 1 is the identity element _
Hence Rfz] is & commutative ring with uniw

Lemma 17.4 If f(z) ond g(:c) are two nonzero polxmomsals of Flz] over the field F then. deg(fg)
deg(f) + deg(g).

Proof. Suppose f(z) = 69+ 012 + 0222 + -+ + amz™ 8nd g(2) = by + byz + 323 + -+ + by ™ Where
Om #.0 and by % 0. T
Then deg(f) = m and deg(g) = n. By definition f(z)g(z) = eo -+ e12 + c22? + - 4 pz¥ where
= abp + ai=1b1 + -+ 4 agby. '
Also Cmdn = = Gmby 9’:0 Moreover, ¢; == 0 for i > m +n.
Sincs ¢; is the sum of terms of the form ¢; = Za,b,..j

Smceza,ﬂ-(z—a)>m+nsoe:ther:>mors-—,7>nbutomeo£ajorbw3mzato _
Therefore, o_,bg..ja(),le ¢ = 0 for § > m 4 n. Thus the higliest nonzero coefficient of f(z)g(z) iv

Crine

Honbe deg(fg) = deg(f) +deg(g). , , | 0
Corollary 17.3 If f (z) and g(z) are nonzem elements oj Flz] then deg(f) < deg(f9).
Proof, Since deg(fg) = deg() +deg(g) and deg(g) 2 0, therefore deg(fg) 2 dea({) o
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17.11.1 Reducible and irreducible polynomials

The polynomial f(z) of F[z]} is said to be reducible (over F) if f(x) = a(z)b(z) for some non-constants
polynomials a(z), b(z) € Flz]. Otherwisesf(z) is-said to be irreducible. T : .
Irreducibility depends on the field F'. For example, 22 + 1 is irreducible over the real field R wheress
it is reducible over the complex field C, because 2 + 1 = (x + 1) (z - 1). : _
The polynotnial 2?2 — 2 is irreducible over the field of rational numbers while it is reducible over the
field of real numbers, since 2% — 2 = (z + v2)(z - V2). ' '

Theorem 17.25 (Division algorithm) Let f(z)’ and g(x) # 0 be any two polynomials of Flz] over
the field F, Then there exists unique two polynomials q(z) and r(z) in F(z] such that f(z) = q(z)g(z)+
r{z) where ither r(z) = 0 or deg(r) < deg(g). ' o L

Proof. Let us consider f(z) = ap + a1z + a2z® + - ‘4 ainz™ and g(&) = bo+ byz + bya? + -+ - + by2™,
where ap, # 0 and b, # 0. Here deg(f) = m and deg(g) = n. If we consider m < n or f(z) = 0
then the theorem is obviously true, because f(z) can be written as f(z) = 0.9(z) +r(z). In this case
¢(x) = 0,7(z) = f(z). So we have either r(z) = 0 or deg(r) < deg(g): ‘ '

Let us assume that m > n. In this case we shall proof this theorem by iriduction on'm. If m = 0
then n = 0, Therefore f(z) and g(z) are both nonzero constant polynomials.
 We have f(z) = ao, ap # 0 and g(z) = by, by # 0. We have f(z) = ag = ao(by'b0) = (agby?)bo + 0 =
(aob5 )g(z) + 0. | | ) . | |

Therefore, f(z) = g(z)g(z) +7r(z), where ¢(z) = agby ! and r(z) = 0. Thus the theorem is true when
m =0, . . . .
. Let us'assume that this theorem is true fhen f() is a polynomial of degree less than m. We are to
prove this theorem when f(z) is & polynomial of degree m. o

Let fi(z)'= f(z) — (amb;!)z™"g(x) obviously deg(fi) < m. B

Therefore, there exists polynomials s(z) and r(z) such that fi(z) = 8(z)g(x) + r(z) where either
r(z) = 0 or deg(r) < deg(g). Substituting f(z) in (i) we get § ' ,
s(z)g(z) + r(z) = f(z) — (amby)e™ "g(z) '
or, /(z) =(5(2) + (amb )™ Mlg(z) + 7(&)

= q(x)g(z) + r(z), L | - B

where g(z) = (s(z) + amb;1)z™ ™ and either r(z) = 0 or deg(r) < deg(g). "This proves the existence
of polynomial ¢(z) and r(z). Now, we are to show that g(z) and r(z) are unique. o

Let us assume that f(z) = qi(x)g(z) + ri(z) = ga(z)g(z) + ra(z). '

Then q1(z)g(x) + r1(2) = ga(z)9(2) + r2(z).or [o1(z) — ga(z))g(z) = ro(z) — r1(). (i)

If g1(z).— ga(x) # 0 then [ga(z) = ga(2))g(2) # 0, since g(z) # 0. Also the degree of 91(z) ~ ga(z) is
at least n and r3(z) — r1(2) 1s either zero or its degree is less than n. - o

Hence the equation (i) holds only when q1(z) ~ g2(z) = 0 and ry(z) — rz2(z) =0, Le. q1(z) = qa(z)
and r1(z) = ro(z). Thus polynomials ¢(z) and r(xz) are unique. : - O

17.12 Module Summary

The ring, integral domain and field and their variants are defined in this modulo as recapitulation.
The ideal and different types of ideal are defined and presented a lot of properties on them. The
quotient ring and its properties are also given here. Like group homomorphism, ring homomorphism
is also defined and studied thoroughly. The fundamental theorem on homomorphism of rlngg is stated
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and proved The concept of Euclidian domain is g:ven. The prire and relatively prime elements are
mtroduoed The unique factorization theorem i8 also stated and proved .in this module.

17.13 Self Assessment Questxons

1.

9.
10.
11.

12.

13.

4.
‘18,

16,

Prove that the set R{m] of all polynonua.ls over an arbitrary ring R is a ring w.r.t. addition and
multiplication of polynomials.

. Ifaisan xdempotent element of a ring R, then prove that for any b €. R. ha product (1 — a)ba

is nilpotent.

. Find all idempotent elements of the ring Z13.
. 1f R is an integral do'main; then show that the polynomial ring R|z] over R is an integral domain.

. Show. that &= {Sn:n € Z} is an ideal of Z.

. R is the set of matrices of all 2 X 2 over Z. Prove that §-= {[ gg] rabe Z} is neither a
right nor a left ideal in R. |
Show that (Z, +,.) is a subring of (Q, +,.) but not an ideal.

Consider the polynomial ring Rz} over a commutative ring R with identity. Let. P be the. set of
all polynomials whose constant term.? ‘are zero, i.e.,

- Py={mz +asz®+-- +an:c a.eR,neN}
Show that Fo is an ideal of R(z].. 4
Show that theset S = {a+b\/§ a-b is an even integer} i is an ideal in the ring {a+bv3: q, b€ Z).

‘Show that the set I = {(a,0) : @ € Z} is an ideal in the xing R=Z x A

Show thas 9Z is an ideal of the 1ing Z.

Prove that the set I = {[ g' 3] :bde z} is not an ideal of Ma(Z).

Let I =‘{ [ a b ] € Mg(Z) +a, b, c,d are even integers } Show that I'is an ideal of‘M;(_Z).

d
Show' that Z/5Z is a quotient ring. _
Define f : C — C by f(z) Z, where C is the set of complex numbers. Show that [ is an

iwmorphism on C. 4
Let f:Z — Zg be defined by f (n) [n} for all n € Z. Show that fisa homomorphxsm and find

- ker f,

17.

Consider two rings Z; = {a+bf a,beZ} and Z; = {a+b\/- a,beZ}. Define f: 2y — Z
by f(a+bv2) = a+bV3. Show that f is & group homomorphism but not-a ring homomorphism.
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0’

'18. Show that the mapping f : Z — Mg(Z) defined by f(r) = [ r-0 } is a homomorphism of rings.

19.

20.

- 21

22,

Is the mapping an isomorphism? FRind its kernel.

Show that the mapping f : 2; — Ma(R) defined by f(a+bv3) = { Z % ], where 2; = {a+bv/3 :
e, be Z}, is 8 homomorphism of rings. Find ker f.

Show that the mapping f : C — My(R) defined by fla+1ib) = [ -b b ] is a homomorphism of
rmgs Findkerf. Is f a monomorphism?

Show that the mapping f : Z [x] — Z defined by f (ao+a1z+ *+8n2"™) = ap is 8 homomorphism

&om the ring Z{z] (the set of polynomial with integer coeﬁdents) onto the ring Z Is fan

Let Z° be the set of all even integers. Let us define multiplication in Z¢ ¢» be denoted by = and
defined as ‘

a*b:‘-él: for alla,be Z.

Prove that Z is isomorphic to Ze.
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The learners are acquainted with the set theory and equivalence relation. Here the de“nition of partial
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lattice is also of dierent types. All of these are de“ned and studxed their properties.
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18.2 Objectives
' ..After Qoipg through this unit you wzill‘bg able toleam about - |
o What is partial order set'.?l | i I
- 0"Hbaae dlagram of poset
° Bouﬁda and least element, gi;egtest element of poset
* What is la.tti;:e?'
* Types of lattice

18.3 K'eywdrds

Poset,. Hasse diagram, lattice, sublattices, bounded ‘lattice, ‘isomorphic Inttice, distributivé lastice,
complemented lattice. :

18.4 Partial Order Set

‘A velation. R defined on a set S is called a partial order or partial ordering relation if and only if
R satisfies the following conditions: ‘ ’
(i) R is reflexive, i.e., aRb for all g € §. | ,
(il) R is aptisymmetric, i.e., if afib and bRa iff a = b for all a,bes.

(iii) R is transitive, i.e., aRb, bRe implies aRe for all a,b,c € §. . . 4

. The set § on which a partial order relation R is defined is called a partial ordered set or simply a
poset and it is denoted by (S, R) or. (S, =), where < denote some relation R associated to the poset. .

Illustra'tlon

1. Let N be the set of natural numbers and ‘<’ be the or,diné,ry ‘less than or equal cq’rgl'a'tion defined
.onN. Now,z<zforallz€N, ifz < y and ySzthenz=yand ifr <y,p <2 then's < 2 for all
z,y.2 € N. Hence (N, <) is a.poset,. ’

2. Let N be thé set of natural numbers and ‘/" be the divisibility zelation, i.e., z/y means ¢ divides
y. Here also, z/z for all z € N, it z/y and y/z then z = y. Agaln, if z/y, y/z then z/z for. every
%,Y,2°€ N. Hence (N, /) is a poset. '

3. If Z is a set of integers and ‘/* be the divisibility relation, then (Z, /)is not a poset. As 3/(~3)
and (-3)/3 but -3 # 3. But, (Z,<) is a poset. _ :

Example 18.1 Show that the relation C (ét;bset) defined on the power set,P(S) of the set § is a
partial order relation. - v '
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(if) Antisymmetric. If 81 C S, and S; C S; then only possibility is S3 = S;. Hence C is antisym-
metric,

(i) Trapsitive. If $; C S and .52 C S3 then obv1ously S C S3. Hence C is transitive,

Therefore, (P(S), C) is a poset.

Example 18.2 Let A = {1,4,9, 16, 36}. Show that the divisibility relation / is partial order on 4.

Solution. (i) Reflexive. For all @ € A,a/aq, ie., / is reflexive.
(1) Antisymmetric. Let a,b € A. If a/b and b/a then a must be equal to b, i.e., / i is a,ntisymmetric
(i) Transitive. Let a,b,c € A and a/b and b/c, 1mphes a/c. That is, / is tra.nsntive
Therefore, (A, /) is a poset.

Definition 18.1 (Comparable elements) Lel (A, <) be a poset. Then the elements a,b € A are
said to be comparable ifa < b or b < a.
If two elements a and b are not compamble then they are called non- compambte elementa

- Definition 18.2 (Linear order set or totally ordered set) If every pair of elements of o poset A
» is comparable then A is said to be linearly order set or. totally ordered set. The parc:al order
relation is called a linear order relation or totally order relation.

The relation ‘<’ over the set Z* is & partial‘as well as linear ordered relation. But, the relation
‘divides’ is not linear order relation over Z* as 3,5 € Z* are not comparable.
Also, the poset (P(8), C) is not togally ordered set as {a} and {b} are not comparable.

Definition 18.3 (Predecessor and successor) Let (S, <) be a poset. Ifa < b where a,b € § then
‘a pmcedcs b' and b succeeds a’. Ifa < b but a # b then we say ‘a strictly precedes b’ and b sirictly
succeeds a’, and tt 18 denoted by a<b.

An element a is called an ‘immediate predecessor of b’ or b is an immediate successor of a’ifa < b
and there is no any element ¢ € § such that a < ¢ < b. That is, if a < b and there is no element of S
which lies between o and b w.r.t. the relation <. Sometimes it is written as a << b.

For example, in the poset (4, /), where A = {2,4,9,16,36}, 2/2 and 2/16 but, 2 is not immediate
predecessor of 16. Since 9/36 and there is no element ¢ between 9 'and 36 such that 9/c. So, 9 is

immediate predecessor of 36.

18.5 = Hasse Diagram of a Poset

The diagrammatic representation of a partial order relation asgociated to as set is called Hasse dia-~
gram. Using the following steps one can draw the Ha.sse diagram’of a poset (A ).

Step 1. Draw a point for each element of the set A.
Step 2. Find the immediate successor(s) of each element of A. If b € A is an immediate successor of
the element a € A then place b ‘higher than’ ¢ and dtaw a line connecting a and b. (Ip this case, we
say that the element b covers a).

The diagram obtained by these steps is called Hasse diagram.
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{a,6} {a,8}
{al {0} {a) Do}
% ¢
(2) - (b)

Figure 18.1: Hasse diagram of the poset (P(S), C), where S = {a, b}.

Example 18.3 Let 4 = {q, b} and its power set P(A) = {¢, {a}, {b}, {a,b}}.
Draw the points for all elements of P(A) (see Fig. 18.1(a)). = . :
The immediate successor of ¢ are {a}, {b} and that of {a}, {b} is {a,b}. Then draw a line segment for

each pair (¢, {a}), (g, {6}), ({a}, {a,b}) and ({b}, {a, b}). The Hasse diagram is shown in Fig. 18.1(b).

Example 18.4 Let A = {a,b,c} be aset and (P(A), <) be the poset on A. Draw the Hasse diagram
of the poset (P(4), C). o '

Solution. Here P(A4) = {¢, {a}, {b},{c}, {a, b}, {a.c}, {b, ¢}, {a, b, c}}. ’ .
Step 1. Draw the points corresponding to all elements of the set P(A) (see Fig. 18.2(a)).

{a,b,c} {a.b, c} '

{0'1 c Y |
{a,bpr '%b, c} {ab %b, cf
{a}  <pplc} {a} {c}

¢ i K
(2) - (v)
Figure 18.2: Hasse diagram of the poset (P(A), C), where A = {a,5,¢}.

Step 2. The immediate successor list is given in the following table.

Elements of A Immediate successor
é {a}, {b}, {c}
{a} {a, b}, {a,c}
o . | {ab}{be}
{c} {a,c}; {b,c} -
{a, b}, {a,c}, {b,c} {a,b,c}

Draw a line segment between an element of A and its immeidiate successor. Hence the Hasse disgram
of (P(A),C) is shown in Fig. 18.2(b). '

18.6 Elements of Posets |
Definition 18.4. (Maximal and minlm,ale;lements) Let (A, <) be a poset. An element o €A

called 6 mazimal element of A if there is no element b ¢ A ¥uch that o < b,
Similarly, an element a is called a minimal eleinent of A if there is no element b e A such that

b<ga.
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Note 18.1 In a poset there may be more than one maximal and minimal élemeut;s.

Example 18.8 Let D = {2,3,4,6, 8,._24,‘48} be a poset under divisibility. Its Hasse diagram is shown
in Fig. 18.3. :

- 148
24
6
.
‘ Figure 18.3: Hasse diagram of (D, /)
Its minimal elements are 2 and 3 and maximal element is 48,

Example 18.6 Let A = {2 3,86, 12, 24 36} and the relation / be such that z/y, if z-divides y. Draw
. the Hasse diagram of (A4, /).

Also, ﬁnd the maximal and minimal elements.

Solution. Step 1. Draw a point for eacb element of A (see Fig. 18. 4(a)).
24 36 24 36

Ne
a.

(a) )
Figure 18.4: Hasse diagram of (4, /)

Step 2. The immediate gﬁccessor list is given below.

" Elements of A | Immediate successor
2 6
3. 18
6 12 .
12 24, 36 (because 12/24/36 is not true) -

- Join each member of A to its immediate successor by a line sedgment, shown in Fig. 18;4(b).
The maximal elements are 24, 36 and minimal elements are 2, 3.

Theorem 18.1 Prove that every finite non-empty poset (A ). has at least one mazimal and one
minimal element in A.

Proof. Let A = {a1,a2,...,an} be u finite poset under < containing n elements. If ¢y is not maximal
element, then by definition there i is another element as € A such that a; < az. Again, if a2 is not. ‘
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& maximal element, then there is another element a3 € A such that ag < ag. Since, A is finite, this

process will terminate after a finite number of times. Hence, we obtain a finite sequence of elements of

A in the following order: a; < ag <ag 3 <apg » '
Therefore, there is no x such that o, < z for any z € A. Hence an is a maximal element of (4, x).
Similarly, one can prove that (A4, <) has at least one minimal element. 0

Definition 18.5 (Greatest and least element) An element 9 € A i3 called a greatest (maxi-

- mum) element of A if for clla € A, a 5 g. :
Similarly, | € A is called a least (minimum) element of A tffforallac A, l <a.

Note 18.2 The greatest element of a poset is denoted by 1 and is called the unit element and the least
“element of a poset is denoted by 0 and is called the zero element. :

In the poset. (P(S), C), & is the least element and § is the greatest element. -
Also, in the poset (D, <) of Example 18.5 has greatest element 48 but, it has no least element.

Theorem 18.2 ‘A poset has at most one greatest element and at most one least e(en:z'ent;

Proof. Let (A, <) be a poset. If possible:let, 9,92 €A be two greatest elements of A. :
Since g is a greatest element of A, g2 < g1, g2 € A. Also. g2 is a greatest element of A, g; < 92,

g1 € A, .
Hence g1 = g2. Thus A has only one greatest element.
‘The proof is similar for the case of leas‘t element, a

It may be noted that a greatest element is ‘bigger’ in the sense of =, than every other element in
the set while & maximal element is the element which is not less than any other elenient,. .
In the poset ({{a}. {b}, {c}, {a,c}}, C), there is neither a greatest nor a least elements, while each of

{a}, {b} and {c} is minimal and both {b} and {a,c} are maximal.

Example 18.7 Determine the maximum (greatest), minimum (least), maximal and minimal elements
in the posets whose Hasse diagrams are shown in Fig. 18.5. ' '

d - e d d
o
S .t
fwt et e
Figure 18.5:
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[ Figure 18.5 | maximim | minimum | maximal | minimal
(a) - none _none- | . d,e ab |
(b) d -none | . d “a,b
(c) d a d a
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Definition 18.6 (Upper and lower bounds) Let A be a subset of a poset (S, <), An elementa € S
is called an upper bound of A if z < a for every z € A.
Similarly, an element b€ S s callqd o lower bound of A if b < « for every z. € A.

Example 18.8 Consider the poset (8, <), where S ={2,3,4,5,6,7} and A = {4,5}.
The upper bounds of A are §, 6, 7 because every element of A is < 5, 6, 7 and lower bounds of A
are 2, 3, 4, because 2, 3, 4 are < every element of A.

Exar{nple 18.9 Consider the poset S = {1 2 3,4,5,6,7} be ordered as shown in Fig. 18.6. Let
A= {3,4,5}.

Figure 1.8.6: '

The upper bound of A is 6 as every ‘element is < 6. :
The lower bound of A are 1, 2 and 3 because all of these are = every element of A, 7 is not a lower
boundof Aas7 £ 3and 7 £ 4.

Note 18.3 (a) From the above exa.mple it xs observed that a poset may have more than one upper
bound or lower bound
{b) A lower or upper bound may or may not be!ong to a subset of poset itself.

Definition 18.7 (Supremum and infinmum) Let A be a subset of a poset (S,<). An clement

g €8 is called o least upper bound ( lud) of A or supremum (sup) of A if g i3 an upper bound of

Aandg=<g for every upper bound g’ of A.

~ An element | € S is called o greatest lower bound (glb) or infinum (inf) of Aiflisa lower
bound of A and I <! for every lower bound I' of A.

Note 18.4 The greatest element is a.lway& the supremum but the converse is not true.. That is,
a =sup(4) is the greatest element iff a € A. .
Similarly, least element is always the mﬁmum but converse is not true.

Example 18.10 Let S = {a,b,c} be a set and the poset (P(S),C). Also, let A = {{a} {c}} be a
subset of P(S).
Here sup(A4) = {a, ¢}, inf(4) = &, sup(S) = §, inf(S) =

Example 18,11 Consider the poset (S, -s) whose Hasse diagram is shown in Fxg 18.7. Let A=

{a,b,c}.
The glb of A is ¢ and lub is f

Example 18.12 Let (4,/), where A = {2,3,4, 6} bea poset and B = {4,6}. The sup(B) and inf(B)
do not exist, also sup(A) and inf(A) do not exist. v
Here 2 is not inf(A) as ‘2 does not divide 3’ and.6 is not sup(A) as ‘4 does not divide 6’.
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Figure .18;;7':

Note 18.5 From these examples, it is observed that sup/inf of a poset may not exist. It is unique if
exxst

Let Dy, be the set of all posxtwe divisors of a positive integern. For example, Dyg = {1,2,5, 10} Dy =
{1,2,4,5,8, 10.20, 40}.

Example 18.13 Let Dsp ba the set of all positive: divxsors of 50. Show that Dpgg'is & poset w.r.t. the
relation « where a « b means a divides b. Draw the Hasse diagram of (Dsg, <). Find maxxmal and
mimmal elements of Dsy. Find lub and glb of A = {5,10,25},

Solution The set Dyp = {1,2,5,10,25, 50} For every element a € Dsq, a/a 80 < i reﬂexwe
If a/b and b/a then only possibility is a = bforalla,be Dsg, ise., < is antzsynunetric
If a/b and b/e then obviously a/c for all a, bce Dso Therefore, < is transitive. '
Hence (Dsg, <) i8 8 poset.
The immediate successor list of Dgg 18 given below

Elements of Dao Immedm.tc successor
1. 2,5 ¢ ¢
2 CLola
5 | - 10,25 °
10 .. 50,
Hasse diagram of (Dso, <) is shown in Fig. 18.8.
50.
10 p 25
2 5
1

Figure 18.8: Hasse diagraim of (Dyo, <)-

The minimal and maximal elements are 1 and 50. ;

From Hasse diegram, it is seen that 1 < 5,10, 25; 5 = 10, 25. Also, 5 < 10,25 and 10 < 50,25 < 50.

Therefore, lower bounds of A are 1, 5 and the upper.bound of A is only 50 (25 is mot an pper bound
of A as ‘10 does not divide 25°).

HeneelubofAisSandglbofAisso
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Example 18.14 Show that (N x N, <) where (a, b) < (c,d)ifa < e and b > d, N is the set of natural
numbem, is a poset.

Solution. Let (e,b) € N X N Obvxously, (a, b) < (a,b) since a <gendb >b hold as equa.hty So =%
is reflexdve.
Let {a.b) < (c,d) and (c,d) < (a,b): Thena < ¢,b> dandc< a,d > b Tbese relations valxd only
"when a = ¢ and b = d, i.e., when (g, b) = (c,d). Hence « is antisymmetric.
Let (a,d) < (c,d) and (c,d) =.(e, f). Therefore, a<cb>dandc < e,d > f Them »‘Woiy A
a.nd b2 f.
Therefore, (a, b) 4 (¢, d), (c;d) < (e, 5 Ra(a, b) < (e, f), ieq = is transitive, Hence (N x N, -s) is a
poset,

Example 18.15 Let A ="a,b,c,d}. Find the relation R whose Hasse diagram is shown in,Fig. 18.9,

| ‘. bNd |
‘e ¢
-Figure 18.9:

Solution, Since the Hasse dxagram Is a pxctoria.l representation of the poset (4, R) R is reﬂexlve,
' antxsym*netn ic and transitive.
Since R is reflexive, (c, a), (b,b), (¢, ¢), (d, d) all are members of R.
From Hasse diagram, it is seen that (c,d) € R, (d,a) € R, (a,b) € R. Since (e d) € Rand (d,e) € R
.implies (c,a) € R (transitive).
Also, (d,a) € R and (a,b) € R xmplies (d,b) € R.
Hence R = {(2,a), (b, d), (c, e), (d, d) (¢, @), (d,a); (a,b) (c,a) (d,)}.

Example 18.16 Let A = Z x Z, Z is the set of integers. Let @ = (a1,az) and b = (by,b3) be two
elements of A. Define a < b iff a; < by and a3 + a3 < by + b, Prove that = is a partial order on 4. In
this partial order a total order? J ustlfy your answer,

Solution. Obviously, a < a ay < ay and a; + ag < a1 + ag. Therefore, x is reflexive. Let a < b and
b <a Thusa; < bj,a; +ag < by +byand by € ¢ and by +by S a3 +ag Theserelacions imply that

=b; and a3 = &, Thus a = b. Hence < is antisymmetric.
Lota band bxc. Thena;<b1,a1+a2<b1+b2,b1<cxand61+bz<c1+cz
Therefore, 61 < by < ¢; andal+ag<bl+b2501+cz
This a < b and b < ¢ implies a < ¢, ,ie < is transitive.

Hence (4, <) is a poset.
But, this is not a total order, becsmsexfa-—(l 3) eAandb (5 3) then1 < 5but,1+3£5-38,

i.e., a < b does not hold for any elemeut.s a,be A
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18.7 Lattices

Let (L, %) be a poset and @, € L. Then lub of the subset {a, b} iz denoted by a V b and is called the
Joinofaand b, ie..aVb= sup{a,. b}? | L
The glb of the subset {a, b} is denoted by aAband is called the meet of @ and b, i.e., aAb = inif{a, b}.

Definition 18.8 (Lattice) A non-empty set L with two binary operations A and V is called o lattice
if the following axioms hold, ’ ' '
1. Closure property. For alla,be L
{e)anbe L (b)evbe L
2. Commutative property. For alla,be L.
{e)aAb=bAa (b)avb=bva
8. Associative law. For all a,b,c € L ‘
() (aAb)Ac=aA(bAc) (b) (avb)ve=av(bvec)
4. Absorption law. For alla,be L '
{a)an(aVd)=aq (b)bVv(anb)=a. .
A lattice L with two binary operations A and V is denoted by (L, A, V)..

Lattice as a poset.

A lattice is a poset (L. <) in which every 2-element subset {a, b} has a lub and glb. That is. the poset

(L, %) is a lattice if for every a,b € L, lub(a, b) and glb(a, b) exist in L.

Example 18.17 Let N be the set of patural nimbers and < is the ‘less than or equal to’ relation.
Then (N, <) is & lattice in which the operation A and v are defiried as :
aAb=inf{a, b} = min{a,b} and a V b = sup{a, b} = max{a,b}. .
Since min{a, b} and max{a, b} exist for all 4,4 € N and they belong to N, so (N, <) is a lattice.

Example 18.18 Let D, be the set of all positive divisors of the positive integer n. Then (Dy,/) is
a lattice, where join (V) and meet (A) operations.are defined as

&V b=sup{a, b} = lem of @ and b, and

anb=inf{a,b} = gcd of g and b.
. For example, let Dyy = {4, 2,5, 10}. The poset (Dyg, /) is a lattice, since every pair of elements has
inf and sup.

‘Example 18.19 Let A = {2,3,4,6}. Then (4,/) is a poset but not a lattice as sup(4, 6} does not
exist in A.

_Examxﬂe 18.20 Let P(S) be the power set of S. Define A AB=ANBand AVDB = AU B, forall
A, B € P(S). Then show that (P(S),C) is a lattice. ‘ '

Solution. Let 4, B,C ¢ P(S). o : .
(i) Xf A, B € P(S) then obviously, AU B ¢ P(S) and AN B € P(S). That is, P(S) is closed under U
and N, o o ' :

(i) For any A.B € P(S), ANDB = BN A and AuB = BUA. . Therefore, commutative property
holds. - :
(iif) Set union and intersection follows associative laws, Thus assaciative law holds.
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(iv) To prove AN (AUB) = A, let z€ AN(AUB).
Thenz € Aandz € (AUB)
. ©z€Aand (:z:erra:@B)
, @ zeA
This AN (AU B) = A.
Similarly, it can be shown that AU (AN B) = A.
Therefore, absorption law holds.
Hence (P(S),N.U) is a lattice. -

The lower and upper bounds of lattice

Ifa-<avbandbesa/\bthenavbwtheupperboun&oftheelementsa,beL Also,ifa<cand
b= cthenaVb e Also, aVb=1lub{a,b} =sup{a,b} foralla,be L. ’

- Again, if e Ab = a and a/\b4bthena/\bisthelowerbound oftheelementsa.beL Also, ifc < a
and ¢ < b then ¢ < a A b then a A b = glb{a, b} = inf{a, b} for all a,be L.

Some times the lattice (L, =) with join (V) and meet (A) operators is denoted by (L, A, v)

18.8 - Duality

The dual of any statement in a lattice (L,A, V) is defined to be the statement tha.t is obtamed by
replacing A by V and V by A
For example, the dual of a v (bve)=(avbd)vecisan(bAc)=(aA b Aec.

Principle of duality

Any property of a lattice yields another property by replacing -
(i) the relation = with ¥,
(i1) the join operation (V) with meet operatxon (A) and vice verss.

~ The lattices (L, <) and (L, %) are the dual of each other. Thaf. is, if < is & partxal order on L then
also % is a partial order on L, becsluse, lu‘b{a, b} in (L, «) is ‘equal to the glb{a,b} in (L, >,=) for all
6,be L.

Theorexs. 18.3 (Idempotent law) Let (L A, V) be o lattice and a € L. Then
(a)arha=a (b) aVa=a.

Proof. (8) aha=an(aV(aAb)) ~ [by absorption property]

=aA(aVc) [assuming ¢ = a A b} .
=a . ‘ [by absorption property)
(b)ava=aV{(aA(aVb)) [by absorption property|
=aV{aAc) [where c=a V §]
=a ' {by absorption property} ‘ » : O

-Theorem 18.4 In a lattice (L, A, V), a“/\ db=aiffaVv b=b.
Proof. Let a Ab=a.
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Now, by absorption law,
b=bV(bra)=bV(aAb)  [by commutative)
=bVa (by assumption @ A b= a]
=eVbh [by commutative proierty]
Conversely, let a Vb= b. o
- Again, by absorption property a = e A (a v b) =avb. ' m]

Theorem 18.5 L:i (L, <) be a lattice then for every element a, (z‘ e L,
(s)avb=biffaxb ' ’
(b)aAb==g iffa xb.

Proof. (a) Let a < b. We known that b < b. Then by definition of least upper bound. avb % b. Again,
since a V b is an upper bound.of a and b, therefore, b .0,V b, Hence a v b=0b '
Conversely, vssume a V b = b. Since o 5.6 Vb=0b, therefore, a x¢ b. ’

(b) Proof is similar to (a). ’ O
Example 18.21 Prove that in & lattice (L, <) for any a,b € L,
faxbgcRaavb=bAcand (aAb)V(bAc)=b=(aVb)A(aVc).

Solution. From Theorem 18.5, we have
aAb=gandaVb=biffagb .
Herea g b % ¢, therefore, aVb=band bAc=b.
Henceavbasb=bAc . o ) , .
Second part, (aAB)V (bAc) =aVb= b [raAb=goand bAc=b)
Again, (aVb)A(aVe)=bAc=b = [ravb=bandaVec=

Theorem 18.6 Let (L, <) be a latticé and.a,b,¢ € L. Then f0.%.b and ¢ = ¢ then.
(a)axbve ond (b)a g bAc.

Proof. (a) By the definitlon of jo}nj»éﬁé;‘aﬁpgéb Ac #;ﬁﬁp{fz; ¢} T
- Therefore, b bVe Lo, agband b < b V.c. Hence by iransjtive prapeérty a .bVe,

(b) Again, since 6 « b and o % ¢, therefore, o is a lover ﬁouhd of b and ¢. f'ﬂiiis.fii!d;b'\:q. o]
Corollary 18.1 Let (L, «) bo 8 lattice and (L, ) be its dual. ffaxbandaye then

(arbicand (b)asbVeé for slla,bce L.

Theorem 18.7 Let (L, <) be a lattics. Then 4
(a)ifbgcthen (JaAb<anc and (i) aVbgave -

() ifagbandcd then (i) ave < bV.d ahd (i) e Aé < bAd
Joralla,bede L. '

Proof. (a) (i) From Theorem 18.6(b), we know that aAb = aiff a ¢ b. Thetelore, t6 prove 6Ab € aA¢,
. Wehave to prove (a AbJA(aAc) = andi S .
Now, @A) AlaAc)= ([@Aa)A(bAEY [by sssoclative property]
o =aAbAc) ' [iaAdwmg; ketpotent law].
=4Ab - frbAe=mb]
Heuga s Ab sahe
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(if) Similarly, (aV b) v (av c)=(ava)Vve . [y a.ssocia.tive property]
: -—av(ch)a—.aVc [rdVe=b .

Therefore, a V b < a V ¢ [by Theorem 18.5(a))

(b) (1) Let a s band ¢ < d. Thenbydeﬁmtionofjoinoperationb:#bvdanddasbvd

Now, by transitivity,
axgbandbxdvdwehaveaxbdbvd
andcgdandd=<gbdbvd, cgbvd

These relations show that bV d is an upper bound of g and c. Also, a V¢ is the lub of g and ¢. Hence
avegbvd. _

(i) Proof is similar to (i). ' 0

Theorem 18.8 (Distnbutive inequalities) For any lattice (L, =)
(a)an(dve)=(anb)vianc)

(b)avbac)<(avb)A(aAnc)

for anya,b,c€ L. '

Proof. {a) For any a,b,c € L
aAbgaandaAbb=gbVve
These two relations indicate that aAbis a lower bound ofaand bve. ThusaAb-sa/\(va) i)
assaA(bVc)istheglbofaand bve.
Again,eAcgaandanc<cgbVe. . - .
Thus, sAc<aA(BVe). ~ (i)
From (i) and (ii), it follow that a A (bV c) is an upper bound of a/\b and a Ac Since (aAb)Vv(are)
is the lub, therefore (a Ab) V (aAc).< & A (BVe).
(b) This result is the dual of the result of (a). : ‘ a

Note 18.6 The distributive laws are not hold in lattices.

Theorem 18.9 (Modular inequality) In a lattice (L, <) .
agceaaVbac)<(avd)Aace
for anya,b,c€ L.

Proof. We know that aVec=ciffa <c.
From Theorem 18.8(b), we have '
, ‘av(b/\c)g(avb)/\(aVc) (avb)ae - o
Thusav('b/\c)x%(avb)/\cxﬂadc S 0

Theorem 18. 10 Every linearly ordered set isc lattxce

Proof. Let (L, %) be a lattice. Since L is hnearly ordered set then eithera s borb g aforanyabe L.
Let a < b. Then a < b and b < b. Therefore, b is an upper buand of {a, b} Let = be snother upper
‘bound of {a,b}. Then @ <.z and b < . This shows-that b < z..
Thus b-is lub of {a, b}, i.e., a V b = sup{a, b} = b.
Similarly, it can be shown that aAbd= = inf{a,b} = a. :
That is, every 2-element subset {a, b} has supremum a.nd inﬁmum Hence L is a lattice. O

Theorem 18.11 The dual of a lattice is o lattice,
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Proof. Let (L, x) be a lattice and its- dual be (L, ¥).
Now, we prove that (L, ») is a poset. e . .
- Ifa,b € L, then sup{a, b} exists in x as (L, %) is a lattice. Let a Vv b = sup{a, b} in (L, <). Then
6 < (avb)and b= (avb). These ralaﬁﬁms-imply that-avb > a and a Vb > b. That i8, a Vb is a lower
bound of {a,b} in (Z, ). - . : - L
To prove a v b is the glb of {a, b} in (L, ¥), let ¢ be a lower bound of {a,b} in (L,%»). Thenc > a
and ¢ = b. - o '
Now,a g cand b < ¢ C -
=> ¢ is an upper bound of {a, }} in (L, <) .
=(aVvb) <csinceavb= sup{a,b} in (L, %)
=cx(aVvd): . .
= aVbis the glb of {a,b} in (L,3).
Similarly, it can be shown that a A b is the lub in (L, ).

T

Hence (L, ») is a lattice. , . a
»Exémple 18.22 Detexmiﬁe whether the posets shovﬁn in Fig. 18.10 are lé,ttices or not.
d 5 & 7
e ¢
f b
Yo
(a)
d 7
b J
¢ 4
(d) . (&)

Figure 18.10:

Solution, The posets shown in Fig, 18.10 (c); (d) and (e) are lattices. o _

The posets shown in Fig. 18.10(a) is not a lattice since the pair (c,e) has three lower bounds fb
and a but, inf{c, &} does not exist. Also, sup{f,b} does not exist, - S

Again, the poset shown in Fig. 18.10(b) is not a lattice, since 5 and 6 have no upper bound and

hence sup{5, 6} does not exist. Also, inf{1:2} does not exist. -

18.9 Types of Lattices
18.9.1 Sublattices - .
Lot L; be & non-empty subset of ablétti'ce L Then L, is called a sublattiée of L if L, itself is a lattice

w.r.t. the operations of L, i.e., if a V b € LyandaAbe Ly for all-a,b.€ L.
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. Example 18.23 It is known that N is a lattice under the operations-of divisibility. Let D, be the
set of all positive divisor of a positive integer n. Since D, C N and every pair of elements a,b € Dy
has a glb and & lub, therefore, (Dn, /) is a lattice and it is a sublattice of (N, /).-

Example 18.24 Consider the lattice ' = {1,2,3,4,5} whose Hasse diagram is shown in Fig. 18.11.
Determine sll sublattices containing three or more elements. ‘

e

a

Figure 18.11: Diamond 1at,fr,ice.

Solution. All the. suhhtt;ices containing three or more elements are.

{a,be}, {a,c,e}, {a,d, €}, {a,b,¢,¢e},{a,c,d, e}, {a,b,d, e} and {a,b,c;d, e} as every pair of elements of
these sets have glb and lub. '

Example 18.25 Consider the lattice L = {a;, a2, ag,a{, as, ag, a7} whose Hasse diagram is shown in '
Fig. 18.12. Let Sy = {us,a5,07) and Sy = {{a1,02,03;05,a8,07}.

Ay _Q), -

az . as _ ‘ a3 a3
as v 173 Gg\/% as Qs
a7 ay . ar
L 1 : 52
Figure 18.12:

S is not a sublattice since sup{as, bg} does not exist.
Also, S; is not a sublattice as sup{as, ag} does not exist.

Theorem 18.12 Intergection of two s@blgtﬁpes isa sublattice. 4

Proof. Let S and T be two sublattices of a lattice (L, A, v). Let a,b € SNT. Then a,b € S and
a,b T, Since § 1s a sublattice, therefore, dAb € § and a Vb€ S. Similarly, anbeT andaVbeT.
Thus, aAbeSNT andavbe SNT. I , : ‘
Hence S N T is a sublattice of L. : ‘ o 4 O
But, vhe union of two sublattices is not necessarily a sublattice; For example, Dag = {1,2,3,4,6,8,12,24
is a lattice where a A b = ged of a,b and a V b = lem of a,b. The subset S = {1,8} and T = (1,4} are
sublattices, but, § UT = {1, 3,4} is not & sublattice, since 3,4 e SUT but 3v 4 =12 gSuT.

©18.9.2 Bounded lattices . _
A lattice L is said to be bounded if it has both a least element (lower bound) 0 end a greatest element -
(apper bound) 1. : o e o
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Example 18.26 (a) The lattice (P(S), €) is bounded since it has lower- bound é and- upper bound
S.

(b) The lattice (N, <) is not bounded since it has a 'least element. 1-but the upper bound does not
exist.

(c)Let L = {a; ag,aa, .»8n}, whére 6) < 6y < a3 <+ < an, i.e, = is a partial.order, ie., L is a
chain. The chain is a bounded lattice." '

" Theorem 18.13 Every finite lattice L = {a1,02,...,an} is bounded.
Proof, For this lattice the greatest element is
agvVaavagV---Va,

and the least element is
agAagAagAh-- A 8n.

Since the greatest and t.he least elements exist for every ﬁnihe lattice, hence is bounded.

Example 18. 27 If (L =) is a lattice with least element 0 and greatest element 1. Then for a,ny a G L
show that

(8) Yavi=1, (1i)a/\0=0 _

(b)) aAl=a, (i) av0=a.

Solution. (a) (i) Let a € L. Since 1 i the greatest element of L,avlx1, Also. avl iy the supremum
ofaand 1. Thus ! < a V1. Hence aVl‘-—l

(ii) Dugl of (i).

(b) (i) Since a A1 is the glb of {a,1},aAl < a.

Again,aaanda=<1,s0a=<aVl. Thusa/\1=a

(ii} Dual-of (i).

18.9.3 | Isomorphic lattices

Two lattices L, and L, are said to be isomorphic if there iz a. bijection from Ly to Lz, le., f 1 Ly — Ly
such that f(a Ad) = f(a) A f(b) and f(aVd) = J(a).y f(b) for every. clements a,b € L.
Since f is one-to-one and onto, the number of elements of L1 and L must be equal.

Example 18.28 Show. that t.heiattioe Dy ={1,2, 3 4,6,8, 12 24} 1 under divisibility relainon and the
lattice (P(S), ) where S ='{a, b, c} are iaomorphic

Solution. We define a ma.ppmg f: Dag.— P(S) as follows

S =0 f@={ak . fO={) - f@={c}
F6) = atd, 1@ = ek, 7D mlarel, 78 = {arbl

Obviously, f is one-to-one and onto.
Also, for all a,b € Doy
f(aAb) = f(a) A f(b) and I(a vb) = f(a) v f(b).
Thus, f is.an isomorphism and hence the lattice (Dgq, /) is isomorphic to the lattice (P(S), Q)

120 Directorate of Distance Educaﬁon



Mbdule 18 : Possets and Lattices

.............................................................................................................

‘Example 18,29 Let (D)3, /) and (N, <) be two lattices, where Dy3 = {1,2,3,4,6,12}, N is the set
of natural numbers, / is the divisibility relation and < is the usual ‘less than or equal to’ relation on
N. ' B

" These two lattices are not isomorphic as they have different numbers of elements.

Theorem 18.14 If Ly and Ly are two womorphzc lattices and f : Ly — Ly then a bRaf(a) < f(b)
Jor alla,be L.

Proof. Let a,be L; and a < b. Thena=aAb.
Therefore, f(a) = f(anb) = f (a) A f(b)Raf(a) < £(b).

18.9.4 Distributive lattice

A lattice L is said to be d!stributive if for any elements 6,b,¢c € L the followmg distributive laws
hold,
(a) a./\(bv c)=(aAb)V(aAc),
b)av{pac)=(aVvd) A(aVe)
If the lattice L does not satisfies the above propertxes, it is,called a- non-distrxbutive lattice

Example 18.30 (a) Every chain is & distributive lattice:
(b) The lattice (P(S),C) is a distributive lattice under thé operations of intersection and union,
- since for any sets A, B, C € P(S),
AN(BUC) = (AnB)u (ANC) and AU(BNC) = (AuB)n(AuC) hold.

Example 18.31 Show that the lattice shown in Fig. 18.13 is not distributive.

.Figure 18.13: Non-distributive lattice

Solution. From the Hasse diagram.cA(aVd)=cAl=a
but, (cl\a)v(c/\b) . OVb=b '

That i, cA(aV b) # (cAa) V(cAb).

Hence the lattice is not distributive.

Example 18 32 In a distributive lattice (L,A,V),aAb=aAcandaVb=aVc Rab=c

Solution. Smce every lattice satisfies commutative property, we have bAa=cAaand b Va=cVa.
Now, b=bA(aVb) [by absorption law]
=bA(aVec) . |sinceaVb=1aVvd
=(bAe)V(bAC) [by distributive]
=(cAa)V(bAc) frbAa=cAdg

(cAa)V(cAb) [by commutative]
=cA(aVd) [by distributive}
=cA(aVc) _ o
=c . [by absorption law]

Hence b=c -
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18.8.5 Complemented lattices ,

Let L be a lattice whose greatest and least elements are respectively 1 and 0. An element o’ € L is
called a complement of a if - .
() ava' =1and (i) aAa =0,
From definition it follows that a is also the complement of a’. An'element may have more than one
complement. '
It may be noted that ¢’ =1 and 1’ = 0.

. Definition 18.9 (Complemented lattice) A lattice L is called d complémented lattice if L is boundéd
and every element in L has a complement. '

Example 18.33 Every chain with more than two elements is nat a qompleme_pted lattice.

Example 18.34 Let S .=, {a,b,c}. Then (P(S),,g) ié a lé,ttipe, where
P(S) = {¢, {a}» (b}’ {c}» {a, b}n {a' c}, {b, ch, {a, b, c}}.
The complement of each element is Iigted b'elow.

Element of P(S) | Complement

{a} ' , {b,c} -

{b} o {a,c}

. {¢} ) {a, b}
{a,b} - - {e}
{b.c} | A{a}
{Cr a} 1 . {b}
{a,b,¢c} ¢

This table shows that each element of P(S5) has a complement in P(S). Hence (P(S),C) is a

completed lattice. ) .
Here the complement of each element is unique.

Example 18.35 Let Dy = {1,2,4,5,10,20}. Then the lattice (P, /); where'/ stands for divisibility.
is complemented. Here 1 is the least element and 20 is the greatest element as 1 /= and ;:/20 ‘for all

z € Dy, . :
The Hasse diagram of this lattice is shown Fig. 18.14.

Figure 18.14: Complemented lattice
Thus the complement of 1, 2, 4, 5, 10, 20 aré respectively 20, 10, 5, 4, 2,

Example 18.38 Consider the lattice L = {1,2,3.4, 6,12} ordered by divisibility (/). Find the lower
and upper bounds of L. Is L a complemented lattice? : L T
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Solution. Since 1/z and z/12 for all # € L, 1 is the lower bound and 12 is the upper bound of L.
The complement of 1, 2, 3,4 6, 12 are respectively 12, 6,4, 3,2, 1 and all of them belong to L. Hence °
L i & complemented lattice.

Example 18.37 Show that the lattice shown in Fig. 18.15 is not. complemented.

Figure 18.15: Non-complemented lattice

Solution. The complement of & is d, sinceavd = 1 and a Ad= 0.. The complement of ¢ does not
exist. Hence the lattice of Fig. 18 15 is not complemented.’

Example 18.38 Show that the Jattice shown in Fig. 18.16 is‘complemented.

ac

Figure 18.16: Complemented lattice

Solution. Let L = {0,a,b,¢,1} be the lattice shown in Fig. 18.16. It is bounded since 0 and 1 are
the least and greatest elements. . » ‘
From Hasses. diagram we see that
'aAbsO,aVb==l,aAc-"O,aVc~1 bAc-O,ch-l :
Thus complement of o are b and ¢ that of b are a and ¢; and of c are a and b. That is, every element
has complement arid hence thm lattice is a complemented 1attxce

It may be noted that the complement of the elements are not umque
Theorem 18.15 0 and 1 are complement to each other. -

Proof. To prove 1 is the only complement of 0. ~ , _
If possible, let ¢ (7# 1) be the complement of 0 and ¢ belongs to the lattice L.

. Then by definition of complement 0A¢c=0and0veé=1. '
But, by the property of bounded lattice, OV e=¢ whlch is & contradictton for c ;E 1.

‘Heace 1 is the only complement of 0.

Similarly, it can be prove that 0 is the only’ complemsnt of 1. a

Theorem 18.16 The complement (J czzata) of clementa of a bounded diombutwe lattice L s umque
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Proof. If possible, let a; and @y be two complements of an element- @ € L. Then by definition of
complement, aVa; = 1,a A gy = Oa.nd aVag=1laAa; =0

Now,a:zagv()-alv(a/\ag) )[ aAag = 0]
=(a1Va)A (a1 Vay) {by distributive property]
=1A(ayVay) fraiva=1]. ‘
=a; Vas.
Again, a2=a3V0=a3V(aAa) [-a'Aay =0]
= (a2 Va)A(az Vay) [by distributive property]
=1A(02Vay) [vegva=1]
=ayVay=aVay
Therefore, a; = a;. Hence the complement is umque a

Theorem 18.17 (De Morgan’s law) LetL bea camplemented distributive lattice. Then
(a) (@avbd) =d AV
(b) (aAbY =a'V¥, for alla,b e L.

Proof. (a) To prove (a), we have to show that
(@AV)V(aVvd)=1and (a' Ab’)A(aVb)——O
Now, (a’ A b’) V(avd)={a'V(aVb)} A{l'V(avb)} [by distributive property]

={(a'Va)vO}A{¥¥Vb)Va) _ [by associative property]
=(1vbA(lva) ' ~ [by definition of complement]
=1Al1=1.
Also, (o' AW) A (aVb) = {(a’' A¥) A a} A{(d’ AV)A b} [by distributive property)
= {(a’Aa) AB} A {0’ A (V' AB)} - [by associative property)
(0 Ab)A (@' AD) " [by definition of complement)|
= 0 AQ=0.

Hence by definition of complement o’ A b’ iy the complement ofavb,ie. (aVvbd) =da AV,
{b) Dual of (a).

Theorem 18.18 The dual of a distributive lattice is o distributive lattice.

Proof. Let (L,A,V) be a distributive lathce We have to prove that (L A, V) is also & distributive
lattice, where A =V and V = A,
Let a,b,c € L. Since (L, A, v) is a dxstnbutxve lattxce, therefore,
aV(bAc) = (aVbd)A(aVe)
and aA(bve) = (aAb)’v (anc).
Replacing v by A and A by V, we obtain -
aA(bVc) = (a A b)v(a Ac)
and aV(bA c) = (aVb) A (ake).
Thus (L, A, V) satisfies distributive laws. Hence the complemented lattice (L AV)is distributxve 0

Theorem 18.19 Euery sublattzce of a distributive lattice is dt,stnbutwc.

Proof. Let Ly be a sublattice of a distributive lattice L. Let a, b, c. eL;v,v then g, bce L.
Since L is distributive, a A (bV c) = (a Ab) V (g A ¢) € L.
Again, since L, is a sublattice, so lt is closed w.rb A and V. Therefore, a/\(ch) (a/\b)v(a/\c) € L.
Henoe Ly is distributive. - : - : . . , O
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Module 18 : Possets and Lattices

18.10 Module Summary

The partial order set (poset) is defingd and illustrated by several exaxnples Some properties of it
are also presented. In the next part of this modulo, the lattice is defined and given some examples.
Different types of lattices, viz., sublattices, bounded lattice, mmorp}uc lattice, distributive lattice and
complemented lattice are also defined and studxed their propertxes A long exercise is provided at the
end of this modulo, T

18.11 Sel-f Assessment Questions -

1.

Define poset. Show that (Z, /) is not & poset, where Z is the set of all mtegers and a/b means b
is divisible by a

. Let A = {2,3,5,30,60, 120,180,360}, Show that (4,/), / means divide, is a poset. Find thel

xmmednate successors of all elements of A and draw th‘e Hasse diagram.

. Show that (P(S), C), where § is any finite set, is a pqset .
. Show that the set A= {4,9, 16,36} is a poset under dxvisxbxlity relatlon
. Let A={n e N:1< n < 50}. Define arelation Ron Aby aRb iff 5 divides a—-b for a.ll a,,b €A

Examine whether (4, R) is a poset.

Show that (Dyoo, <), where @ = b means a divides b, is & poset. Draw the Hasse diagram
of it. Find the maximal and minimal elements of (Dwo,4) Also, find glb and lub of A =
{5,10,20,25} C Dion. . |

. Draw the Hasse diagram of D4o and find its maxxmal and rmmmal elements
. Let § = {1,2,3,4,6,9, 12 18,36}. Find the mﬁmum and supremum of the sets {6 18} and

- {4,6,9} in the poset (S, /). Also, find maximal and mimmal elements of S.

10.

- 1L
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. Draw the Hasse diagrams of

(a) ({1,2,3,4,5}. <)

(b) ({{a}, {a, 8}, {a, b, c}, {a, b, ¢, d}, {a, ¢}, {edihc)

(¢) (P({a)b,c}), )
(d) ({a, ab, abe, b, bed, be, abed}, <) where = is the dictionary order.

Find the lub and glb of A'= {b,¢,d)} if they exist, of the poset whose Hasse diagram is shown
below. ‘ . :

Find. the maximum and minimum elements of the followmg posets
(a) (P({a,bic}), €)

(b) ({{a}, (b} {c}, {a,c}}, C)

(c) ({1,2,3,4,5,6},>).
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12. Let A= {1,2,4,6,8} and for a,b € A, dehnea#bxffb/aisanmteger

13,
14.
15,

16.

(a) Prove that < defines a partial order on A,

(b) Draw the Hasse diagram for 4

(c) List all minimum, minimal; aximum and maximal elements
(d) Is (4, &) totally ordered? Explnin B

Prove that in 5 totaHy ordered set, any m&mma.l element :s & maximum.
Prove that any finite non~empty poset musb contam maxlmal and minimal eleménts.

(a) Prove that a poset has at most one ma.xxmum element.
(b) Prove that a poset has at most one minimum element

Consider the partial ordered set S = {a, b,c, d,e, f,9, b} under the relation whose Hasse diagram
shown below. ' '

Consider the subsets S = {a, b}, ,32 = {¢,d, e} of A. Find

~ (a) all the lower and upper bounds of Sy and S2

17.
18.

16.
- 20.
21.
22,
23.
24,

25.

126

(b) 8up(51), inf(S1), sup(S;), inf(Ss).

Provg that the poset A= {2,3,6, 12, 24 36,72} under the relation ‘Adivi(.ies’ is a lattice.

Prove that the set {¢,{a}, {a, c} {c}, {a,b,c}} is a lattice w.i.t, the operations N and U. Is it
complemeuted ? ' ‘ '

Prove that the set D,, of all divisors of n is a lattice w.r.t; _the operatxous Ay v where A and V
stand for hef and lem respectively.

Let L = {a1.09.a3,...,2,}, where a; < ag ¢ -+ < an, < is a partial order, i.e., L is a chain.
Prove that L is a distr 1but1ve lattxce

Let (L, %) be a lattice, Let a,b€ L and a,b] = {z: = €L and o < 7 < b}, Pwve that [¢,b] is a
sublattice of L. ,

Let Z* be the set of all positive integers. A and V are definedas g A b = hcf ofcand b avb=
lcm of @ and 4. Prove that (Z*,A,V)isa lattxce '

Show that in a bounded dxstrxbutxve lattice, the elements which have complements form a sub-
lattice. ' ’ ‘

Prove that the non-empty interaection of two sub}acticee is a eublattaoe of the gwen lattxce

If L is a lattice and a,b € L. then show that the subset {a,b} of L is sublawce iﬁ' a and b are
compearable. : 4 '
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26,
- 27,

30,
31.

33.
34.

36.

...................................................................................................
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If a bounded lattice has two or more elements then show that 0 # 1.

Let L be a lattice. If a < b < ¢, a, b, cELthen prove that.
(8)avd=bAc = (b) a/\b)V’(b/\(‘) (a.Vb)A(aVo)n-b

.Ifa<bund cxdin a lattice L, thenprove thata/\c«b/\d
29.

Let L be a beunded lattxce If a,b € L and a" be the complement of a, then show that
(a.) eA{a'Ab)=aVband (b) aA(a Vb)=aAb.

If L is a distributed lattice and aAb.-.a/\candavbr-achoranyaeLthen b==c

Prove that in & distributive lattice L,

4(aAb)\/(bAc)v(cAa) {(avi)A(bVe)A(cVa) foranya,b ceL.

In a luttice (L, §), show that aV (bA ¢) = (aV b) A c whenever-a < c.
Prove that every sublattice of a distributive lattice is a distributive lattice..

Consider the lattice shown in Fig. 18.17.
(8) Show that L is not distributive and not/complemented,
(b) Find the complements of ¢, d and e.

Figure 18.17:

Conszdcr the lattxcc L = {0,1,2,3,6,9,18} under divisibility relation. What is the great,est
element of 1.7 Is L complemented?

Consider the lastice L = (P(5), C) where § = {1 2 3}.. Determine whether or not each of the
following is a sublattice of L.

| A {#{1,2},{2,3}, {1,2, 3}}, B = {$,{1},{1,2), {1 23}}

= {¢, {3}, {1,8}.{1,2,3}}, D = {{1}, {3}, {1.3},{1,2,3}},
E"“ {¢1{3}1{172}){172)3}}' »

37. Show that a lattice with three or fewer elements is a chain.

18.12 Suggested Further Readings

1. M. Artin, Algebra, PHI, 1991. |
2. J.B. Fraleigh, A First Course in Abstract Algebra , Narosa, New Delhi, 1982,

3. JLA. Gallian, Contemporary Abstract 'Algeb;u,‘Nm'osa, New Delhi, 1999.
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4 JP. Trembiay and R. Manehar, Discrete Muthgmnt:w! Structures with Appheations to Computer
Science, McGraw-Hill Book Company. 1975,

3. B. Kolman, R.C. Busby and 8. C. 'ﬁnss, -Digcrete Mathematwal Structures, ded, Pesrson Educa-
tion. 2000,

6. M.K. Sen, S. Ghosh and P. Mukhopadhyay, Topics in Abstmct Algebra, 2¢d, University Press.
2ed, 2006.

7. D.S. Malik, J.M. Mordeson and M.K. Sen, thdam}mtgl. of Abstract. Algebra., The McGraw-Hill
C‘ompamm. Inc., 1997, ' -
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19, Metric Space

19.1 Introduction: .
Mathematicians observed that problems from different fields often enjoy related features and properties.

This fact was used for an effective unifying approach towards such problems. This unification avoids unessential
details and only concentrates on the essential facts. In this respect the abstract method is the simplest and most
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economical method for treating mathematical systems. It is found that the abstract method is quite versatile in its
application to concrete situations. It helps to free. the problem from isolation and creates relations and transitions
between fields which have at first no contact with one another.

Inthe abstract approach, one usually starts from a set of elements satisfying certain axioms. The nature of the
elements is left unspecified. This is done on purpose. The theory then consists of logical consequences which result

 from the axioms and are derived as theorems once and for all. This means that in this axiomatic fashion one obtains
a mathematical structure whose theory is developed in an abstract way. Those general theorems can then later be
applied to various special sets satisfying those axioms.

Inalgebra this approach is used in connection with fields, rings and groups. In functional analysis we use it in
connection with abstract spaces. Different such abstract spaces will be a set of (unspecified) elements satisfying
different sets of axioms. Examples of such abstract spaces are metric space, normed linear space, inner product
space, Banach space, Hilbert space etc. In this chapter we consider metric space. This space is fundamental in
functional analysis because it playes a role similar to that of the real line R in calculus. In fact, it generalizes R and has
been created in order to provide a basis for a unified treatment of important problerhs from various branches of
analysis. '

A metric space is a set X' with a metric on it. The metric associates with any pair of elements of X, This metric
is called a “distance”. The distance functionis defined axiomatically. The axioms are suggested by simple and most
fundamental properties of the familiar distance function between points on the real line R and on the complex plane
C. The concept of metric space was formulated by M. Frechet in 1906.

19.2 Objective , .
Analysis is mainly concerned with processes pertaining to limits. The definitions of covergence, continuity,
differentiability and integrability are given in terms of limits. The concept of limit viz. x—>c. means x approaches to
o i.e. distance between x and o approaches to zero. This means whole analysis stands on the notion of distance.
This notion of distance is extended to the elemenits of abstract set in the metric space. A metric space is nothing
more than a non-empty set equipped with a concept of distance. We replace the set of real numbers R by an
abstract set.X containing elements of unspecified nature and introduce on X an “distance ﬁxnction”‘ This distance
- function is chosen to satisfy a few of the most fundamental properties of the distance function in R andin C. In fact,
the choice and formulation of these axioms always needs experience, familiarily with practical problems and a clear
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idea of the goal to be reached. The axioms of distance function is an outcome of the long experience of many years.
There are four axioms iniit.
The purpose of this module is to develop in a systematic manner the main elementary facts about metric

spaces.

19.3 Definition .

Let X be any non empty set of elementsx, , z,... and X xX be the Cartesian product of X with itself. A metric

_onXisamapping d: X xX —R which satisfies the following axioms forall x, y, z €X

)  d(x,y)20(non-negativity)

)y d(x,y)=0ifand only if x =y (identity)

i) d(x,y)=d(,x)(symmetry)

iv) d(x,y)<d(x,z)+d(z,) (triangle inequality)

The pair (X, d) is called a metric space, the real number d (x, y) is called the distance between the elements
x and y. The elements x, y, z, ... are sometimes called points.b ‘

For a given non-empty set X we can define an infinite number of functions satisfying the above axioms. Thus
for a given X it is possible to define an infinite number of metric spaces corresponding to these infinite number of

dd
dlstance functions. For examples, given a metric space (X, d) we may replace dby = 273 ... and obtain metric

: 1
spaces (X’.l‘c—d) fork=2,3,4,..

19.4 Examples
Example 19.4.1. Let R be the set of real numbers and d be a mapping d:X xX—R def'med as

d(x,y)=|x~ y|. Then (R, d) is a metric space known as usual metric space.

Example 19.4.2. Discrete metric space or Trivial metric space. Let X be anon empty setand define a

mapping X xX—R as follows
Owhenx=y
d(x,y
(%)= {lwhenx #Yy
forallx,y eX.

Then (X, d) is ametric space known as discrete metric space
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Solution : We have d (x, y)2 0 and d (x, ) iff x==v
Ifx=ythend(x,y)=0=d (,x).
Ifx#ythend (x,y) =1 =d (3, x).
<. Forallx,y € X we have d (x, y) = d@, x)
To prove triangle inequality letx, y, z € X,
Ifx=y,thend (x,)=0.Also d (x,z) 2 0 andd(z,y)20.
Henced (x,y)<d(x,z) +d (z, y). '
Ifx#y, theneitherx#y#z#xorx#y=zory#x= z.
Whenx#y#z#xthend (x, )= 1<1+1 =d (x,2) + d (z, y).
Whenx¢yk=zthend(x,y)= 1=1+0 =d (x,z) +d(z,).
Wheny#x =zthend(x,))=1=0+1 =d(x,2)+d(z,y).
Thusd(x,»)<d(x,2)+d(z,y) v x,y,z€ X,
Hence (X,d)isa met:‘ic space.

Example 19.4.3. Usual metric space in R%.
Letdbe a mapping d : R* xR*~»R defined by

d(x,y)= \/(xl "'J’1)2 +(x, "')’2)2 where x=(x,x,)€ R’and y = (v.3,) € R, then (Rz,d)isamctzic
space, known as usual metric space |
Here d (x, y) = PQ.

2
Q(J’n’yz)
A
|
|
|
| N
: [
P(x,x,)/
T~ #
ljf: |
’ | L. .
5 : . Fmnd
& Y >
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Example 19.4.4.
Let d'be 2 mapping d : R xR—>R defined by d (x, )= |x - » |+ |x, = y,| where x = (.x,,x2 )€ R*and

y= (yl,yz)e R? then (Rz,d) is a metric space

2
o(n,)
/1 A
Here | // }
(¥
d(x,y) = PM+MQ // : =>4
xl . / |
>72 S
é:‘h-xl':;!M
| |
; ; c .

Example 19.4. S
Let d be a mapping d : R* xR*— R defined by d(x, y) max {!x[ y, |x2 yzl} where x = (x,,xz)e R
and y= (y[,y2)e R?, then (Rz,d) is a metric space.
Solution: Obviously, d (x, )20
d(x,y)=0&x=y
and d(x,y)=d(y,x).
To prove triangle inequality
Let o= d{x,z)= max{]x‘ ~z|,|x, --z,{}
B=d(zy)= max{'z, “ny_‘Zz "J’2‘}'
Now d(x,y)=max {Ix, — 3o - yz‘}
< max{[x, —z|+|z - nllx - zz|+lz2 -}
<max{a+ﬂ a+fB}
=a+pf
=d(xy)+d(z))
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ie. d(x,y)<d(xz)+ d(z,y)
Thus (Rz,d) is a metric space.

2
Here | S 1 20n3)
d(x,y)=PMas PM>QM. | . v !
P(x,,xz) :
M
0 >1

19.4.6 Some Important Inequalities
)  Cauchy-Schwarz inequality : If Uyylyyenss u, and Vi»Vy5..., V, @re two sets of real numbers, then

($en) <(8))

i) Ifa,barereal numbers, then

latd| _ la| . o
1+]a+b{ 1+|a| 1+[]

i) Minkowski s Inequality : Let i, i3,0,4, 2 0 and v,,v,_,.,.,v 20 betwosetsofnon-neaativereals '

and p 21 then
(3] (g0

. Y
¥ +v,)
iv)  Holder’s inequality : Let Usthy,.inth, 20, v,v,,...,v, 20 be two sets of non-negative reals and

i=1

P>-1,"1'+-1~=1, then
P q :
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S0 (S0

i=1 1=} =}

Let 4,y 5... and V;, V..., ¥, ... be two sets of real or complex numbers such that

E]u |” < +e0 and Z[v |F < oo where p>1

f=1 fwml
C ollection of such sets isdenoted by the sym bollp.
v)  Minkowski’s inequality :

. Ifx=(u,-,u2,...,u,,,...)elp and y= (v,,v2,...,v,,,...)elp where p>1 then

(St <(gor  o(50)

1 1
vi)  Holder’s inequality : If x={u,} €, and y={v,} € £, where ;+; =1, p>1, then

o -

1

(Shol)<(Shr} (E0r)

19.4.7 Further Examples of Metric Spaces
Using above inequalities the triangle inequality axiom can be easily established for the following metric spaces.
Example 19.4.7.1 Three-dimensional Euclidean Space R*. This metric space consists of the set R® of all

ordered triples of real numbers x = (x,,%,,;), 5 = (3, %2, ;) etc. and the Euclidean metric is defined by

2 2 2
d(x,y) =\/(x1 ".Vx) +(x2 _J’2) +(x3 -y3)
Example 19.4.7.2. n-dimensional Euclidean Space R".
This metric space consists of the set R" of all ordered n-tuples of real numbers

x= (x,,xz,...,x”), ¥=(Y1s Vs Y, ete. and the Euclidean metric is defined by

d(x,3)=\(5=5) + (5 =3) +ot (5=
Example 19.4.7.3. n-dxmensxonal unitary space C* or complex Euclidean n-space. n-dimensional umtary

‘space C". | ,
This s the space of all ordered n-tuples of complex numbers x = (X,, X+, %, )» ¥ = (1> Y2500 ¥, ) €tc. with

metric defined by
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Functional Analysis

d(59) =\l = 5+l = o+, =,
For =1 we get the metric space of complex plane C with the usual metric defined by

d(x,y)=|x- y|. Herex, y are complex numbers,
Examplg 194.74 -

The set R of all ordered n-tuples of real numbers x = (%, % y0es X, )y =V Vyser ¥, ) ete. forms a metric
- space with metric defined by

1

»
X; -y,’p) ‘where p21

n

d(x,y)=(z

J=1

For p=2 we get the n-dimensional Euclidean space R”

For p=1 we get a metric space for R” with the metric as
d(x,y)= Zixj ‘"3’/‘
Jz
Example 19.4.7.5,

The set C” of all ordered n-tuples of complex numbes x = (x,, x,...., %, )y =(%, Y3500 ,) etc. forms a
metric space with metric defined by

o 1
d(x,y):(ilxj *y,IpJp where p>1,
=

Here all x,and yj are COmplex numbers and p is real number.
Example 19.4.7.6 Sequence Space s.

This space consists of the set of all (bounded or unbounded) sequences of real a complex numbers and the
metric dis defined by

d(x,)')";%[%]

where x={xj} andly=={y,}. »
Example 19.4.7.7 Real or Complex space.
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Let p>1 be a fixed real number and / be the set of all real or complex sequences x = {x ,}, such that

I +|%,|" +...+|x,|” +... converges. Then

1 :
d(x,y)= (i]x =Y, lp ]p isa metric and (/°,d) is a real or complex I” space according as the
J=l

sequences forming thé set /? isreal or complex respectively.

Example 19.4.7.8 Functidn Space C[a, b].

Let C [a, b] be the set of all continuous functions x =x (), y =y (¢), etc. defined on the closed interval
[a, 5] |

Then 4(x,y)= max |x(¢)- »(t) is a metric and (C[a,b],d) forms a metric space known as function

space. A
x|
A
/| AVALUW,
\\/2(5’ _—
o a b >t

Example 19.4.7.9 Convergent Sequence Space ¢.

Letcbe the set of all convergent sequences X = {x 7 } = { Y, } . et¢. Then

d(x,y)= sx;p‘x ;=Y ,‘ is ametric and (¢, d) is known as convergent sequence space.
Example 19.4.7.10. Null Sequence Space Cy

Let ¢, be the set of all null sequences x = {x ,}, y= {y ,}. etc.

Then d(x,y)= suplx - ,l is a metric and the metric space (c,,d ) is known as the null sequence space
y :
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19.5 Open set, closed set and their properties

19.5.1 Definition : Open Sphere or Opén Ball

Let (X, d) be a metric space and ‘a’ be any point of it.

Then for any real number >0, the set
B.(a) :{x € X:d(x,a)< r}

is called an open sphere or an open ball with centre ‘a’ and radius r.

The notations B (a, r), S(a), S (a,r) are also used to denote B (a).

19.5.2. Definition : Closed Sphere a Closed Ball | |

Let (X, d) be a metric space and ‘a’fbe any point of X. Then for any real number >0, the set
B(a)={xe X:d(xa)s r}

is called a closed sphere or a closed ball with centre ‘a’ and radius 7.

Ez(amples : For the usual metric space (R, d), the open interval Jar, atr| and the closed interval [a-r, a+7]

are respectively open ball and closed ball with centre ‘e’ and radius 7.
For the function space Cla, b], the open ball with centre o(f) and radius >0 is given by the set of all

continuous function x(f) defined on the closed interval [a, 4] satisfying the condition -
a(t)-r<x(t)<a(t)+r

ie. B (a):{x(t)eC[a,b]:Egz)lflx(t)-—a(t)l<r}.

(t)+r
a(t)

N,

alt)-r

N

Open Set B,(a) in Cl[a,b] -
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For trivial metric space (X, d)
B(a)={a} forallrin (0, 1]

and B(a)=Xforall 7>1
19.5.3 Definition. Neighbourhood of a point :

Let (X, d) be a metric space. Aset N C X iscalledanbdofa pomt aeXifthere exists some r>0 such that
B(a)c N. '
19.5.4 Definition. Open Set.

Let (X, d) be a metric space. Aset G c X issaid to beanopensetif foreach x€ G, ﬂ}ére exists >0 such
that B, (x)c G. |
19.5.5. Theorem. Each Open sphere is an open set but the converse is not true.

Proof. Let (X, d) be any metric space and B,(a) be any open sphere in X. Let x € B ' (a). Then d(x,a)<r.

Hence r—d(x, a)>0. Let r, = r — d(x,a). We now show that B, (x) < B, (a). To show this let y € B, (x). Then

d(y,x)<n.
Therefore, d (y,’a)’ <d(y,x)+d(x,a)
<r+d(x,a)
=r

.y€B,(a). Thus B, (x)C B, (a) showing that each point of B,(a) is the centre of an open sphere
contained init. Hence B,(a) is an openset. '
The converse is not true. For example in the usual metric space (R, d) the set ]2, 4[U ]8, 12[isan open set

but not an open sphere.
19.5.6. Theorem: A subset G ofa metnc space (X, d) is open if and only if it is a union of open spheres
Proof. Let G be an open set of (X, d) and x be any point of G. Since Gis an open set there exists an open

ball B, (x)C G.Hence G= U B, (x). -
* xG *

Conversely, let G be the union of a collection F of open spheres. If F'is empty, then G is also empty and
hence it is open. If F'is non empty then G is also non-empty. Let x be any point of G. Since Gis the union of open
spheres there exists an open sphere, say B, (a) suchthat x € B, (a). Wenote that B, (a) C G, as Gis the union

of open spheres. Since each open sphere is an opeh setand x € B, (a) there exists an open sphere B, (x) such
that B, (x)C B, (a). Hence B, (x)< G showing that G is an open set.
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19.5.7. Theorem. Let (X, d) be a metric space. Then
) ¢ and Xare open sets.
i)  theunionofany number of open sets in X'is open
i)  the intersection ofa finite number of open sets in Xis open.

()  Toprovethat ¢ is open, we have to show that each point in ¢ is the centre of an open sphere contained
in ¢. Since there is no point in ¢, this requirement is automatically satisfied. Hence ¢ is an open set.
Let x e X. Now from the definition of open sphere, every open sphere B, (x) is contained in Y.
Hence X isanopenset.

() Let {G,:1e 1} beanyarbitrary collection of open sets in a metric space (X, d) and G = ALEJI G, Let

x be an arbitrary point of G. Then for at least one index A wehave x€ G 4 Since G, isopen, there

exists >0 such that B, (x)C G,, andhence B, (x) < G. Thus G isan open set.
(i) Let {G,. Hi=12,.., n} be a finite collection of open sets in Xand G = n G. IfGis empty then it is
i i=1

open. Let G be non-empty and x be any arbitrary pointof G. Then x € G, foreachi=1,2, ..., n. But |

each G isopen. Hence for each i there exists 7, > 0 such that B, (x)c G, Let r =min{r,1,...,r, }.

Then foreachi, B, (x) c: G,. Hence B, (x)c ﬂ G, ie. B.(x)c G. This Gisopen.”

=]
19.5.8. Definition. Closed Set,
~ Asubset Fofametric space (X, d) is said to be closed if tis complement in X'is openi.e. if X~Fis oper:.
19.5.9. Theorem. Let (X, d) be a metric space. Then

B )] 'd) and Xare closed sets

i)  theintersection ofany number of ¢losed sets in X's closed.

i) the union of a finite number of closed sets in Xis closed.

Proof. Left as an exercise for the reader.
19.5.10, Topological Space. |

Let Xbe any nohempty set. Atopology on Xisacollection 3 of subsets of X which satisfies the following
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axioms:
) ¢ Xe S v
‘i)  anyunionof members of S is a member of 3
i) theintersection of finite number of members of S i isamember of s
The set X together with a topology 3 is called a topolo gical space and is written as (X, 3).
The members of the topology 3 are called opensets of the topological space (X,9).
The complement of the members of the topology 3 with respect to X are called closed sets of the topologcal
space (X,3). -
19.5.11. Examples. :
Discrete Topology : If X'is any non empty setand 3 consists of all subsets of X then 3 isa topology of

Xand this is called the discrete topology.

Indiscrete Topology : If X'is any non empty setand 3 = {#. X}, then 3 isatopology for X and this is
called the indiscrete topology. .

From Theorem 19.5.7 it follows ihat every metric space is a topological space with the corresponding
topology as the collection of all open sets of the metri‘cvspace. ' ;

LetX={a, b,c),then S = {¢, X, {a};{b},{a,b}} is atoi)ology. |

LetX={,b,c} then S={g,X,{a}.{8},{c}{a,8},{b.c}.{c.a}} isatopology.

LetX={a,b,c} then S={4, X,{a}.{b},{b,c}} isnotatopolgy since {a},{p}€ 3 but {a,b}e3.

Let X=Randlet 3 consists of the null set ¢ and all open intervals only. Then 3 isnotatopology on R since
12,3[, 15,8[€ 8 but their union ]2,3[U]5,8[¢ 3.
19.6 Seperable Metric Space

19.6.1 Definition. Interior of a Set.
Let (X, d) be a metric space. The interior of aset 4 C X is the union of all open sets contained in 4.

-19.6.2. Definition : Nowhere dense and Dense subset.

Aset Ac X is said to be nowhere dense if the closure set 4 of 4 has empty interior.

Aset AC X issaidtobe dense in Xif 4= X.
.e.g. The set of all natural numbers is nowhere dense in R and set of all rational numbers is dense in R.
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19.6.2. Definition. Separable metric space.’

A metric space X'is said to be separable if X has a countable dense subset i.e. if there is a countable subsct
AofXsuchthat 4 = X,

e.g. The metric space (R, d) where dis the usual distance is separable since the set Q of rational numbers i3
countableand 0 = R,

19.6.3. Theorem, The space £” is separable.

Proof. We know that £7 = { {x} Elx lp <oc}

n=1

and d(x,y)= (Elx —y,,!p)% |

n=1
Let D, ={xe ¢”:x={x,} withall x, rational}
and Di = {x € £” : the set of n for which x, # 0 is finite}

Then both D, and D, ate countable. |
Let D = D, U D,. Therefore D is countable subset of ¢7, We show now that D = ¢ i.e. for any given

£>0 andforany x ¢ £ there exists y € D such that d (xy)<e

=l

Let £>0 begiven and x= {x } be any element of e" Smce le ! is convergent there exists positive

integer n, such that

3 <& S e M

Hung 41
We choose y ={y,} of Dsuchthatall , are rational with y, = 0 forall 7> n, and [x, =3 |” < o for
) 0

al k=1,2,....,n, o et @)
1

Now d(x, y)=(nz;]x,, -y, ”)”
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[itx -+ 3 b or']
n=l . nmg+l
<("° ] Y(l)and(2)]
g(f:,,fii
, 2 2
=
ie d(xy)<e

Hence £° is separ_able metric space. ‘
19.6.4. Theorem : The metric space £, ={x= {x.}:sup|x,| < oo} with the metric d (¥, y)= st:p’}x, ~ | is
not separable. _.

 Proof. Let {x'} beany countable setin £,, where
x'= {x,’,} €l..
Let us consider the element x = {x,,} of £# deﬁned as follows.
Foreachk=1,2,3, ...

x, = xk+1if [xf] <1

=0 if |xf|>1
- Foreachk=1,2,3,.... we have Ix,, -;cf]Zl " | o ..........
Now d(x,x") | | |

k

k
xn - x"l,.Q.}

=Ssup {lxn - x,"l,ix, = x:l s""]xm ;x:—liilxk - x,',‘l,lx,,,,,,— x:ﬂ"""
21[by()] |
Thus foreachk=1,2, 3, .... we have d (x, x'v) 21.

’ 'I'hismeansxisnotalimitpointof{xf}”
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Hence closure of {x'} isnot ¢_.

This is true for any countable set {x’} of £_.Hence £_ isnotseparable.

19.6.5. Definition. Hausdorff space.

A metric space (X, d) is said to be Hausdorff if for any pair of distinct points x and y in X, there exist two
disjoint open sets, one containing x and other containing y.'
19.6.6. Theorem. Every metric space is a Hausdorff space.

Proof. Let (X, d) be a metric space and x, y be any two distinct points of Xi.e. x# y and x,y € X.

Since x # y,d(x,y)> 0.

Letd(x,y)=r. Then > 0. Let us consider the open balls B : (x) and B z ).

We show now that B . ) and Bf ») are disjoint.

If possible, let they be not disjoint. Then there exists z € X suchthat z € B,(x) and € B,(»).
3 1

Hence d(x,z) <£— and d(y,z)<-§.

Now d(x,y)Sd(x,z)+d(y,z)<£+‘£—=-;-

1, d(x, 5.
or, d(x y)<2

,
Butd(x,y)=r.r< 7+ Thisisa contradiction

Thus Bf *) and Bf ) are disjoint.

Hence the theorem,
19.7. Illustrative Examples

19.7.1 Show that R” is a metric space'kwith'mctric d (x,y)-‘-m'aXlx, —y,l where x=’(x,,x2,...,x,,) anu

y=(y|vy2’""yn)'

~ Solution, Here d (x,y) = m'axlx, - }ﬁ[

D Aslx -%|20 wehave d(x,y)20.
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) d(x,y)=0¢»mlax|x,-y,|=0. 1
& |x,-y|=0 foralli=1,2,...,n
@ x =y foralli=1,2,..,n
Sx=y
i) d(xy)=maxfs -y
= maxy, x|
=d(y,%)
) d(x,y)=max|x, - y|
Smiax{lx,—z,|+[zt-y,|}
Smiaxlx,—z,.|+m?x]z,—y,|

=d(x,2)+d(z,))
wd(x,y)<d(x,z)+d(z,y)

So R" is ametric space with d (x, y) = m?xflx,f— y,l .
19.7.2. Prove that C|a,b], the set of all continuous real valued functions defined on a closed bounded interval
[a, b] is a metric space with the metric ‘ ‘
b
d(wy)= ()~ y(O)et.
Solution : ‘
)  Wehave |x(f)- y(¢)|2 0 forall ¢ €[a,b]
j:lx(t)—y(t)'dt 20ie. d(x,y)20.
b : §
i) dxy)=0& J; e (t)~ y(¢)|de =0
& |x(t)- y(¢) =0 [as x(9), (1) are continuous in [a, 1]
& x(t)-y(t)=0 forall t€[a,b]

Sx=y

Directorate of Distance Education 145



F t’ lA l 1
uncliona PLYSIS vttt et sttt eee e eee e e

i) d(xp)=[ ()~ y ()

= L”[ y(e)-x(t)dt
- =d@,x)
M d(xy)=[|()- »(t)|de

= [ }x(0)-2(0)+ 2()- y(t) a
sf:[x(t)-z'(t)ldt+f:]z(t)-y(t)|dt

=d(x,z)+d(z,y)
d(x,y) < d(x, z)+ d(z,y)
So, C[a, b] is a metric space with d as metric.
19.7.3. Let (X, d) be a metric space. Show that

d'(x,y)= —-—‘{—(—xi—}:)— forall x,y € X isalsoametricof X,
x,y) . '

Solution. Since (X, d) is a metric space we have fro any x, y, zeX
) dny)zo
i) dxy)=0ex=y
i) d(x,y)=d(p,x)
and V) d(x,y)<d(x,z)+d(z,y)

d(x,y)
Now d’(x,y)=—\5))
ow d'(x.) 1+d(x,y)
Forany x,y,z € X wehave
) Since d(x,5)2 0 from (1) it follows that d'(xy)20

d(x,y) _

1+d(x,y) -

& d(x,y)=0
Sx=y

iy d(xy)=0e
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_4xy) _ dx) _ .

i) - d'('_r’y)-1+d(x,y)*l+d(y,x)_d ()
iv)y Wehave
d'(x,z)+d’(z,y)

_ d(x,z) . d(z,y)
1+d(x,z) 1+d(z,y)

) dzy) | |
_1+d(fx’z)+d(z’y)"*1+.d(2,y)'i}-)d(x,z) [ d(Z,y)Z Oandd(x,z)z(?]_

_d(x,z)+d(z,y)
1+d(x,z)+d(z,)
| _
=1__ o ) . L. sessesssescescen (2)
1+d(x,z)+d(z,y)
Now, d(x,z)+d(z,y)2d(x,y)
o, l+d(x,z)+d(z,y)21+d(x,y)
1 < 1
1+d(x,z)+d(z,y) " 1+d(x,y)
SN SN
1+d(x,z)+d(z,y) 1+d(»y)
Thus from (2), we get |
d'(x,z)+d’(z,y)
1 v
2l-—
- 1+d(x,y)

__d(xy)
1+d(x,y)
| =d’ (x,y) ) )
ie. d'(x,y)sd'(x,2)+d'(z.y)
Hence theresult,
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, d(x,
We note that (.X,d”) is always bounded since @ (x,y)= ﬁ}%‘(‘;}%—)‘ <L

19.7.4. Let X'be anon-empty setand p: X x X — R be defined satisfying
) p(x,y)=0ifandonlyifx=y
ad 1) p(x,y)< p(x,2)+p(y,z) forany x,y,z€ X
Show that (X, p) is a metric space. '
Proof. Putting x =y in (ii) we get
0< p(x’,z)+ p(x,z)
o, 0s52p(x,z)
o, p(x,z)20.
Sincex, z are arbitrary, it follows that p(x,y)20 forall x, yeX.

Putting z=x in (i{) we have

p (%)< p(x,x)+ p(y,)
o, p(x,y)<0+p0(y,x)
o, p(xy)sp(y.x) T e — ¢))
This s true forany x, y € X . So interchanging x and y in (1) we get | |

p(r,x)< p(x,y) _ . ' - [— )

From (1) and (2) p(x,y)= p(y,x).

Hence (X, p) isametric space.

19.8. Summary ; ‘

In real analyéis we have studied limit, continuity, derivative, integration etc. All these are dependent on the
concept of distance |x — y| between two points x and y on the real axis. It is seen that distance |x - y| between
two points x, y € R isnothingbuta function from RxR to R satisfying some axioms. '

Replacing R by any set X and the distance (x - y[ by the distance function 4 : X x_Y — R we have defined
4 metric space (X, d). Various metric spacés and properteis of such metric 'spaces'have'been\'studied in this

module.
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19.9 Self Assessment Questions -

1. Let C be the set of all complex numbers ‘Show that the mapping d:CxC —» R defined by

d(z,2,)=|z - z,| isametricfor C.

i

Let d: Rx R — R be defined by
d(x,y)=min[l,y-x]ifx<y
=0 ifx>y.
Show that dis not a metric. ,
3. LetR’bethesetofall ordered pairs of real numbers and let d : R?x R* — R by defined by

K. .
d((x,,x, ) (7, )) = {(x, =N )2 +(% =, )2} * isametric ‘
4.  Let R"be the set of all ordered n-touples of real numbers and let d : R” X R” — R be defined by

1

d(x,y)= {Z (x,. - y,»)z} where x = (xl,xz,...,x,,) and y= (yl,yz,...,y,,).
i=l
Show that dis a metric. | | | -
5. LetSbethe setof all sequences of reals and let d: S XS — R be defiried by

d(xy)=3 %

w 2" (1 +|x -¥,

)

where x={x,} and y ={y,}. Show that dis a metric.
6.  Let R"be the set of all ordered n-tuples of real numbers and let d:R"XR" — R bedefined by

i=l

d(x,y)={2]xi "yfl} where x = (X, %,,...,%, ) and y = (3, Y5500 30, )-

Show that ¢/ is a metric.

7.  Provethat C|a,b], the set ofall continuous real valued functions defined on the closed interval [a,b] isa

metric space with metric as

d(x,y)=max|x(r)- y(¢)
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8. Let £, denote the set of all bounded sequences. If x = {x,} and y={y,} areanytwo points of £, and
d(x,y)= sup |, = ¥| then show that £_ is a metric space under d.

9. Described open spheres of unit radius about (0, 0) for each of the followmg metnces for R2

i)} d(xy {(xl xz) (1 )}

i) d‘(x,y)=lxl—x2[+'y, -J’z!

i)  d, (x,y)=max{]x,-—le,ly,—yzl}

where x‘=(3c,',x2) and y==u(y,, ¥,) are any two points of RZ.

19.10, Suggested books for further readmg

1."  Functional Analysis with Applications : B, Choudhary and Sudarsan Nanda; Wiley Eastem Limited.
Elements of Functional Analysis : B.K. Lahiri; World Press \
Introductory Functional Analysis with Applications : Erwin Kreyszig; John erly & Sons
Mathematical Analysxs S.C. Mahk, Savita Arora; Wiely Eastem Limited

Functional Analysis : J. N Sharma, A.R. Vasishtha; Krishna Prakashan Mandir-

Elements of Real Analysis : Shanti Narayan, M.D. Raisinghania; S. Chand.

AN G T B

cem () meem
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(Complete and Compact Metric Spaces)

Contents :

20.1 Introduction

20.2 Objective

20.3 Complete metric space

20.4 Completion of metric space

20.5 Continuity and compactness

20.6 IHlustrative Examples

20.7 Summary

20.8 Selfassessment questions

20.9 Suggested books for further reading.

20. Complete and Compact Metric Spaces
19.1 Introduction: |

Completeness, compactness and separability of a metric space are additional properties of ametric space.
A metric space may or may not have any one of these properties. But if ametric space has such properties then the
metric space becomes much nicer and simpler. The set of all real numbeérs R has all of these properties. If a metric
space has such propetties then the ’metric.sp‘ace becomes closer to the properties of real numbers. Completeness
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of the real line R is the main reason why in calculus we use R rather than the rational line Q. Compact property of
ametric space has some relation with uniform continuity. It has connection with the closed and bounded properties
of the space. Separable space hasa close relation with the dense property of the space. These three properties are
also interrelated. In fact every compact metric space is separable and every sequennally compact metric space is
complete,

19.2 Objective
The main objective is to study the important properties of special metric spaces viz. complete metric space
and compact metric space. These two metric spaces are not mdependent to one another. Their interrelations are

studied here.

20.3 Coxoplete Metric Space
20.3.1 Definition, Cauchy Sequence

Let (X, d) be a metric space and let {x } be a sequence in it. The sequence {x } issaidtobea Cauchy
sequence if for every ¢ >0 there exists a positive integer n, such that )

d( ,,,,x,,)<8 forall m,n 2 n,

20.3.2 Definition. Convergent Sequence
Let (X, d) be a metric space and let {x,,} be a sequence in it. The sequence {x,,} is said to be convergent

to an element x in X if for every £>0 there exists a positive integer n, such that

_d(x,,,x)<£ forall #> n,. We write it as },i}gxn =X

20.3.3. Theorem. Every convergent sequence in ametric space is a Cauchy sequences, but the converse is not
truein general. ' v | |

Proof. Let (X; d) be a metric space and. {x,, } be any convergent sequence mX converging to the element x

Let & >0 be any pre assigned positive number, however small. Then there exists #, such that
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d / forall n2 no
For m,n2n, we have
d(x, x)<d( X,,x)+d(x /+/-s
Hence {x,} isaCauchy sequence. =~~~
To show that the converse of this theorern is not true let X'= (1, 2) and the metric dbe d(x,y) =[x~ /.

: 1 " . 1
Then {1 + -;} is a Cauchy sequence. But this sequence does not converge in Xas }1133 (l + ;) =lbutigX.

20.34. Definition. Complete Metric Space.

A metric space (X, d) is said to be complete if every Cauchy sequence in it converges to an element ofit.

20.3.5. Examples of Incomplete Metric Spaces.
The set of all rational numbers Q is an incomplete metric space with the usual metric d (¥, y) = x - y|. This
- is because the sequence {1.4,1.41,1.414,..} isa Cauchy sequence but itisnot convergentin Qas /2 ¢ 0.

If X= (2, 5) then with the usual metric it is not complete as {2 + -l—} is a Cauchy sequence in X butit is not
n . .

convergent in X, since here 2 ¢ X,

20.3.6. Examples of Complete Metric Spaces .
i) The real line R with the usual metric d(x, y) ]x y| isa complete metric space v
i)  Theset Cofall complex numbers is a complete metric space with the usual metric d (x,y)=|x- |-
i) IfX=[2,5]then withthe usual metricitisa complete metric Space.

iv) The set R" of all n-tuples of real numbers is a complete metric space with metric

n

d(x,y)= Z(xj--y},)2 where X= (X;,Xp; . %, ) and ¥ =01 Vs V)

=

v)  The set C" of all n-tuples of c‘omplex numbers is a complete metric space with metric
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n 2 .
d(x’J’)ﬂ/;l’% ‘J’j" where x = (x,,,...,x,) and Y= (Y5 Y15 V)-

20.3.7. Show that any set X with the discrete metric forms a complete metric space.
Solution. Let {x,, } be any Cauchy sequence in the discrete metric space (X; d).
Then d(x,,x,)=0 if x, = x, A

=1ifx, #x,

Since {x, } isa Cauchy sequence forany ¢ > () there exists 7,
st. d(x,,x,) <& forall m,n 2 n,.
Letustake £= J then thers existsps.t.

d(x,,x,)<EVmn2 p
As 57—:—;-<1 wehave x,, =x, Vmn2p

ie.x,=x, Vn2p

e x, =X, 8 n—c0
ie. {x,,} convergesto x, € X,

Hence discrete metric space is complete.

20.3.8. Show that for p>1 the set £° = {x = {X j} : Z,x,r’ < ?é} formsa com‘pl‘éte metric space with metric

'd(x,y)=(§;fx,—y,l';)% : |

Solution. Let {x'} be any Cauchy sequence in £” where x' = {x,:} € 7 foreachi,

Now for each fixed &k we have

Ix{k -x,{’: (0+0+0+l:§i —x{' “"‘;0-0‘+...‘+¢';);f
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=d(x',x') | [ —— )
Since {x’ } is Cauchy sequence we have d (x’ x’ ) —0asi,j—ro
Thus for each fixed & from (1) we get !xk "'"0 as i,j — oo..
This means {x,‘ } is a Cauchy sequence of real numbers for each fixed k. Now we know that the set of real
numbers i 1s complete. Hence for each k there exists real number x, suchthat x, — x, as j —» oo,
Let x={x,,}.Wenowshowthat x € £? and that x' — x as i — o. |

Now for any ¢ we have

1 1

] 3

<K
Letting i — oo, we get

k=l

(lekl") <K [ﬁ'omdeﬁmtxonoff"]

1

Letting ¢ —5 00, We get (2 lx,"’ )p <Kk.

k=1
"This shows that x € £7.

Now we show that x' — x as j — oo i.€. d(x',x)_-i 0 as i— oo,
Since {x’ } is a Cauchy sequence, for gii'en &> 0 there exists an integer 1, such that |
d(x',x')< &, forall i, j 2, | e — @

Therefore, for any t and for i, j 2 n, we get

(ZIxrnI) @lxrxkl) d(x ¥’)<—,tby<2)]

k=1
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Letting j — o« we get

1

(ilx{, ~xk,p); <€ fori> n,

k=l

N

Since ¢ is arbitrary we get as f —» oo

I .
(gfxz —xklp)p’ < -g— < € forall i 2 n,
ie. d(x’,‘x) <€ forallizn,
i€ x' 3 x 85— oo
Hence the Cauchy sequence {x' } isconvergentin £7 i.e. £7 is complete.
20.3.9. Show that C [a, 5] is»complete metric space.
Solution. Let { jj,} be any Cauchy sequence in C[a, 5]
Then d(f,,,f,)—> 0 as m,n—> oo,

Now for each x €[a, 5] we have |
o) smaxlfy ()= £, (6N =dsy) e (1)
As d(f,, f,)— 0 as mn—rooit follows that I (x)- £, (x)— 0 as m, 71— oo for each x€[a,b] ie.

foreach x €[a,b] the sequence { f, (%)} is aCauchy sequence of real numbers. Since the set of real numbers is

complete { £, (x)} is convergent i.e. foreach x € [a,b] there exists f(x) such that lim f, (%)= £ (%) cernrene )
We now show that f(x)eC[a,b] and d(jj,,f) 8s 11— oo,
Since {f, } is Cauchy, for given £  there exists 1, such that
d(fs ;)< % forall mn>n,,

.................. 3)
- Forany x €[a,b] we have from (1) that
1 (0)= 1, ()| < & forall m,n2n, ' seimmsieoinsee @)

Now f, (x) iscontinuous at X, € [a,b] Therefore, there exists § >0 suchthat ff f,,o (xo) < %

whenever x €]x, - 8, %, + 5[ [a,4]
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For x €]x, - 8,x, +8[C [a,b] we have
|7 ()= f (3)| = lim|, ()= £ () oy @)
<tim{|f, (%)~ £, (50)+ £, (50) = Fo (2)+ 1, (3)= 7, (3)
tim{|7; (%)~ 72 (o) #15, ()= £, 12, ()~ £ ]}

{ + / + / } by (4), (5) and (4) respectlvelyasmsvcry large]

l/\

IA

' Thus lf (x)-£( xol < € whenever xke]xo —-5,xo‘+ J[C[a,b].
This shows that £(x) is continuous at x, € [a,5].
This is true for any x, € [a,b]. Hence f €C[a,b].
Now we showthat £, — f as n— oo,

For n2 n, and x & [a,b], we have
|, ()= 1 (x)]
=)~ lim ()] oy @)
el
)~ o}

= lim
m=real” "

=limd (ﬂ,,fm)r

<& [y
* Thisis true forany x € [a,b]
| ax L(x)-f(x)|$%<,e forall n2n,
or, d(f,, f) <& forall n2n,

Thus f, = f as n— oo, : _ :
Hence the Cauchy sequence { i } is convergentin C|[a, b]ie.Cla,d]is. complete

m~poo

< hm{
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20.3.10. Cautor’s Intersection Theorem. ‘

If {F,,} is a sequence of non-empty closed subsets of a metric space (X, d)suchthat F,,, c F, forall

n=l

positive integernand & (F ) —> 0 as 7 — oo, then Xis complete ifand only if ﬂF consists of exactly one point,

where J(F, ( ) is the diameter of F,.

Proof. We first suppose that Xis complete and { I‘;,} isasequence of non-empty closed subsets of X such
that FOF, D F 5. and 8(F,)— 0 as n— oo,

We choose x, € F, foreveryn=1,2,..... Thus we get a sequence {x,,}. We verify that {x,,} isa Cauchy
sequence. |

Now x, € F, and for every positive integer p

eF CF,.

nt+p

So, d(x X )<5(F)-—>0 as 11— oo,

ntp
This shows that { X, } isa Cauchy sequence Because the space X'is complete, the sequence { X, } converges
toapoint x e X, i.c. hmx =x€X. _ 4 L eeseresessesensens )
-Letkbe an arbitrary positive integer and considerthe set F,. Then x,,x,,,,%,,,,...€ F,. Since F, is closed
F, also contams the limit of this sequence Now from (1) the limit of the sequence {x,,+,,} isx. Hence x € F,.

Because k is arbitrary positive integer, x € F, foreachk=1,2,.

Therefore, X € n F,. This shows that the intersection is non-empty. We now prove the unicity of x. If
k= .

possible let there be x” (# x) such that " € NE
k=l

Thenforeachk,xeF and x'€ F,.
So d(x,x')sd(F, )—)OEISk—-)oo‘

Thisimplies that x = x” which is a contradiction since x #x.
Conversely, we supposethat the condmons of the theorem are satisfied. We have to show that Xis complete.

Let {x } be any Cauchy sequence in X, For given &> 0, there exists a positive integer n, such that -
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d(x,,,,x )<6‘ forall m,n > n,.
Let H, ={x,,%,,,- } Then &(H, )< & forall n2n,.
Also we have 8(H, )= §(H,) where A, isclosure of H,.
So, 5( )<8 forall n2n, ie. é‘( )—)O as p— oo,
Also, clearly H,,, c H, for each n and therefore A, c H, foreachn.

So { I—f,,} constitutes a closed, nested sequence of non-empty set in X whose diameters tend to zero. By
hypothesis, there exists aunique x ¢ X suchthat
xe(H,
" Now, foreachn=1,2, ...
x,€cH,cH, and xe H,.
So, d(x,x, )<5( )-—)O as 1 —» oo,
Thus {x,,} is convergent sequence in X, Hence Xis complete.

&

20.3.11. Definition Nowhere Dense.

A set E of ametric space (X, d) is said to be nowhere dense in X if there exists for every sphere S (x, 7)
another sphere S(x;,7 ) such that S(x, n)c S(x,r) and S (x,,7) is free from any point of the set £,

In R, any set of a finite number of elements is nowhere dense in R. Also set of all i mtegers isnowhere dense

inR

20.3.12. Definition, First Category, Second Category..

A set Eof ametric space (X; d) is sa1d to be of the first category if E is the union of a countable family of -
nowhere dense sets. _

If E is not of the first category, then it is said to be of the second cétegory.

The set of all rational numbers is of the first categofy inR. |
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The set of irrational numbers is of the second category in R.

The set of all real numbers is of the second category.

20.3.13. Baire’s Category Theorem.
Every complete metric space is of second category.
Proof. Let (X, d) be a complete metric space. If possible, let X be of the first category. Then X can be

representedas X =|_JE, where each E, is nowhere dense in X.
k=1

Since E, is nowhere dénse, there exists a sphere S (%) that does not contain any pointof E,. Since E, is
nowhere dense, there exists a sphere S(x,,7, ) cS (x.n/ 2) that does not contain any point of E,. Wechooser,
andr,suchthat r, <r, /2. ;

Similarly, because E, is nowhere dense, there exists a sphere S (x3 o ) cS (x2 1/ 2) that does not contain
anypointofEs.AlsowetakethrZ/ZS};/Zz. | |

Proceeding in this way, we construct a sequence of spheres S(x,, , r;,) such that |

i) S(xn";t)CS(xn~l’rn-l/2)

D S(sn)NE =0

i) 7, <r_/2foralln=2,3,..

ie.r,<r. /25r,[2?<..<p/2"".
Asthe sphere S (x,,v, r,/ 2) contains all the subsequent spheres, we have for any positive integer p,
‘d(x”+p,x")<r,,/2 ’ | 1)

Now r, <r /2" Therefore, r, 50 as n—3 o0,

‘Hence from (1) we have d (x,,+ 2 x,,) —0asp— ie. {x;, } isa Cauchy sequence. Since Xis complete,
the sequence {Lx,,} is convergent i.e. there exists x ¢ X such x, — x thatas 7 —» oo,
Letting p — oo we get ﬁ'orh ¢)) |

d(x,x,)<r/2<r,
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Therefore, x € S(x,,r,) foralln=1,2,...
Now S(x T )ﬂ E =¢. Therefore x cannot belong to E, foranyn=1,2, ...
But xeX= kLJIEk Sox must appeax inat least one of the sets E,. Thisisa contradxctxon Hence the

theorem is proved.

-20.4. Completion of Metric Spaces ,
. We know that the set Q of all rational numbers is not complete but the set R of all real ‘numbes s complete
and the closure of Qis Ri.e. § = R. Thus the incomplete set Q can be enlarged to the complete set R and this
completion R of Q is such that Q is dense in R. From this fact a natural question arises.whether an arbitrary

incomplete metric space can be completed in a similar fashion. The answer is in the affirmative.

20 4.1. Deﬁnmon. Dense Set.

| A subset Mof a metric space (X d)is sa1d to be dense mX if closure of MisXie.if jf = X.
Hence if Mis dense in X, then every open ballin X, no matter however small, will contain points of M. In -

other words there is no point x € X which hasa neighboorhood that does not contain points of M.
The set Q of all rational numbers is dense in R. o

20.4.2. Definition. Isometric Mapping and Isometric Spaces.
Let (X, dyand (X’,d”) be metric spaces. Amapping T of Xinto X’ is said to be isometric mapping if 7
preserves distancesi.e.ifforall x,y € X |
d'(Tx,Ty)=d(x.y)
where Tx and Ty are the images of x and y respectxvely

The space X is said to be isometric with the space X~ ifthere exists a bijective isometry of X' onto X’ .The
spaces Xand X’ arethen calledi 1sometnc spaces. Thus isometric spaces are mdlstmgulshable from the viewpoint
of metric, they may differ at most by the nature of their points. ' '
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20.4.3. Completion Theorem.

For an incompiete metric space (X, d) there exists a complete metric space (X”’,d’) which hasa subspace

M that is isometric with Xand is dense in X”. This space X’ isunique except for isometries, i.e. if X” isany

complete metric space having a dense subspace M’ isometric with X, then X" and X” are isometric.

Proof. The theorem is proved in the following four steps
)  Toconstruct (X’,d’)

i)  Toformanisometry Tof X onto Mwhere M = X’
i)  To prove completeness of X’

iv)  Toproveuniqueness of X, except for isometrices.
p q €p

‘Construction of (X”,d")

Let {x,} and {x,} be Cauchy sequences in X, We call {x,} and {x/} equivalentif limd(x,,%,)=0 and

we writeitas {x, }~{x/}.

We divide the set of all Cauchy sequences into classes. All equivalent sequences are put into the same class

Let X’ be the set ofall such classes denoted by X s Yy €fC.

We write {x,} € % to mean that {x,} lsamemberofthe class X.
Let {x,} €% and {,} € 7. We show now that hmd( n!yn) exists.
Wehave d(x,,5,)<d(%,,%,)+d (%, y,)+d (ys3,)

» or’d(xﬂ’yn)—d(xm’ym)sd(xn’xn;)*-'d(ym’yn) :

Interchanging m and n we get, - _

d(%s%,)=d (%,,,) S d(%,,%,)+d (3, )
Thus ld E —d(xm,ym)lsd(xm,x,,)fd(}'m,yn) e 1)
Since {x,} and {y,} are Cauchy the RHS of (1) tends to zero as- m,n— o, So

'd(x,,,y,,)"d(xm,y,,,)|-—+0 as m,n— oo, ‘
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ie. {d (%7, )} is a Cauchy sequence 6f real numbers.
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As R is complete it follows that {d (x,, sVn )} is convergentin Ri.e. '1,1_{2 d (xn s Vn ) exists.

We now set d’(%,7) = limd Xs Vn)- cessssenssnrasssssananes 2
Now we show that the limit in (2) is independent of the particular choice of representatives. ‘

Let {x,}~{x.} and {»,}~ {3} m(1) replacing x, by x/ and y, by ¥,

We have |d (x,,7,)—d (x7, ¥;)| S d (%,,%,)+ d-(.y,,,y,’,)- |

Now as n —soc we have d(x,,x;)— 0 and d(y,,5,)— 0.

Therefore |d (.;C", v, )-d(x), ) |

—0asnp—o

ie. limd(x,,5,)=limd (x,5,)

Using (2) we get hmd( n’yn) d'(%,y)= limd( %> V)

i.e. d’(¥,y) isindependent of the particular choice of the members of the classes ¥ and ¥.
We now prove that d’(¥,y) in(2) isametricon X",

Obvinusly @’ (%, 7) 2 0. | |

Now d'(%7)=0 & limd(x,.5,) = {x}~{n}=*=y

Also d’(%,7) = lilgd(x,,,y,,) = 1imd(y,,,x,,) =d’(y,%)

We have d(x,,7,) S d(¥,>2,)+d(2,:7,)

Therefore },{{gd(xn,}’r) = },lj?,d(xn’zn)*’}}ﬂd(zn’yn)

or, d’(%,y)<d'(%,Z)+d’'(Z.7)

Hence g’ deﬁned by (2) is a metric of X’

@) Construction ofan isometry. ,
Foreach x e X we consider the Cauchy constant sequence {x, X, X, } and denote it by . Let Mbe the

collection of all such classesi.e. M ={%:x €X}. Then M C X ’ and there is a one-to-one correspondence
between x € X and X € M. Since £={x,%,..} & $={y,»,..} w<have from(2) 4’ 3, y)= d(x,y)
So the above correspondence T': X —-M definedby 7x = £ is an isometric mapping and X'and Mvecon.s

isometric spaces. We now show that Mis everywheredensein X’ i.e. M = X",
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Letus considerany ¥ = {x,} of Xx*.

Then d(x,,,,x,,) — 0 as m,n — oo, So for given g > ( there exists N such that
d(%,,%y) < & forall >N

Now {xy,%y,..} =%, and %, € M.

We have d’(%,,¥)=limd(x,,x,) < & <&.

This shows that every a—neighbourhood of the arbitrary ¥ e ¥ contains an element of M. Hence Mis dense

in X",

i

Completeness of ‘X ’
Let {%,} beany Cauchy sequence in X", Since Misdense in X", forevery X, thereisa 2, € M such that
d/ - , 2 <~ .
Fod)<= 3)
Hence by the triangle inequality
d'(2,,2,)<d’(2,.%,)+d'(%,.%,) +d'(%,.3,)

1 i 1
<—”-1-+d (%,.% )+n

m*n

Let €> 0 begiven ‘
Since {f,,} is Cauchy for sufficiently large m, n we have d’ (2,,, y2, ) < €. Hence {_2,, } is Cauchy sequence.

Since T': X — M isisometricand 2, € M, the sequence {z, }, where z, = T"™',, is Cauchy sequence in

Let ¥ € X” bethe class to which {z, } belongs. We show that ¥ is the limitof {%, }. |
By (3), we have
d'(%,%)<d'(%,,5,)+d'(5,,%)

<%+d’(2,,,f) | - . e @)

Since {z,} €% and 2, € M, so that {2::2,5} = 2, the inequality (4) becomes
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d’(%,,x) < Litimd(z,z,) \ ()

v
Since {z,, } is a Cauchy sequence, the right hand side of (5) can be made smaller than any given g> 0 for
sufficiently large n. Hence the arbitrary Cauchy sequence {z, }in X’ has the limit ¥ € X’ So X’ 1s complete.
iv)  Uniquenessof X" except for isometrics. |
Let (X”,d”) beanother complete metric space witha subspace M” densein X” and isometric with X. -
We prove that X ” is isometricto X . - |
Forany ¥',5" € X" we have sequences {35,’,},{57;} in M” suchthat ¥, — ¥ and.y, — y'as n— c.
We can show éasily that | |
d"(%.5)-d"(%.,)

The RHS — 0 as 5 — oo, Therefore d” (%, 7,) = d” (¥, 7') as n—> oo
or, 'l‘i.gld” ('x"’”, y",) - dll (-x-l, 5’-1). .

Since M” is isometric with X and Xis isometric with M, it follows that M is isometric with A7 c x’ and

<d”(¥,%)+d" (7,7,)-

i = X', the distances on X and X’ must be same. Hence X » and X’ are isometric. This proves the

theorem.

20.5. Continuity and Compactness
20.5.1. Definition. Continuous function
Let (X, , d,) and (X, d, ) be metric spaces. A function f : X, = X, is said to be continuous at the point
ae X, ifforeach ¢ 0 there exists & = §(£,a)> 0 suchthat d, (f (=), /(a)) < & whenever d,(x,a)< 6
ie. f (x)e B, (/ (a)) whenever x & B; (a)
ie. f(Bs(a)) < B.(f(a)) |
The function s said to be continuouson X, ifitis continuous at each point of X;.

The functionfis said to be unifornﬁy continuous if for every ¢ () there exists & = & (&> 0) (dependenton

g only) such that
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(£ (%), f (%, )) < &€ whenever dy(x,,x,)< 4.
The following theorem s the characterisation of continuous function in terms of open sets.

20.5.2. Theorem, Let (X,,d,) and (X,,d,) bemetric spaces Then J X, = X, iscontinuousifand only if
F7(G) isopen in X, whenever G is open inX,.
Proof. Let fbe continuous onX, and G be any open set in X,.
Weare to show that £~ (G) is open in X,
Let xe f7(G). Then f(x)e G. Since G is open and f (x) €G there exists some r>0 such that
5 (/%)<
Now by the continuity of £, there exists an open sphere B, (x) such that f(B; (x))c B (f (x))
Since B, (f (x)) < G, it follows that
f(Bs(x))< B,(f(x))cG
Therefore B, (x)c £~ (G). Hence f™! (G) isopen.
Conversely, let 7! (G) be open inX, whenever G be openin.X,.
Let us consider the opén set G= B, (f()) inxX,
Then f7(G) isopenin X,
Now G =B, (f (x)) implies that f(x)e G andso x e f(G).
Since f7'(G) isopenin X, and x € f-! (G), there exists
-Bs(x)c f7(G) iie. f(By(x))cG =B, (/£ (x)).
He¥ fscontinuous at %, Thits true for any x € X,,
So fis cogtmuous onX,.

20.5.3. Definition. Sequentially Compact, Frechet Compact and Compact Metnc Spaces

A metric space (X, d) is said to be sequentlally compact if every sequence in Xhas a convergent subsequence
converging to a point of X,
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A metric space (X, d) is said to be Frechet compact if every infinite subset of X has a limit point in X.
A family A of subsets of X is said to cover Xif the union of all members of 4 is X. |
A cover of X is said to be an open cover if every member of the cover is an open set.
A subfamily of a cover which is also a cover is called a subcover. |
Ametric space (X, d) is said to be combact if each open cover ofX has a finite subcover.
We now state the following theorem. |
20.5.4. Theorem. Let (X, d) be a metric space. Then the following three compactness are equivalent
)  Xissequentially compact.
iy X ié Freéhet compact.

i) Xiscompact.

20.5.5. Theorem. Let (X ,d,) and 4(Y , dz) be metric spacesand f: X — Y be a continuous mapping. Then

fA) is compact in Yif 4 is compact in X. | | |
Proof. Let {G, : A € I} be an open cover of f{4), where /is an index set. Then { fUG,):Ael } isan

open cover of 4. Since A is compact there exist a finite subcover of this cover. |
Let this finite subcoverbe /™ (G,), £ (G,)s-s S (G,)-

i.e. A=L"Jf-l (Gl)

i=1

Now )/ (G)=1" (L"JG,]. Thus A= /- (Uc,)

=l i=1 Pt

Fromthis we have f (4)c L"J G,

i=1
ie. G,,G,,...,G, isafinite subcover of, j(A)
Hence f{4) is compactin Y.
This completes the proof.

The following theorem says that continuous functions deﬁned on a compact metnc space are uniformly

continuous.
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20.5.6. Theorem. Let (X;,d,) and (Xz,d ) bemetncspaces Iff:X,— X, be continuous and X, be compact
then fis uniformly continuous. B
Proof. Let x € X, and fis continuous at x. Then for given ¢ > ( thereexists 8, > 0 such that

a,(f(x),f(»)) < / whenever d, (x, y)<6 | [ )
LetG be the set deﬁned by ' ‘

G, ={ye X, :4d, (x,y)<-;-5,}

Then {G, x€ X, ,} isanopen cover of X . Since X, iscompact,themexistﬁnitenmnberofpoints Xys Xyyens X,

inX| suchthat X, UG&. | — (¥))
k=1
Let & =-1—min{<5x 18%3,..,8, } R €))
2 1 2 Xy . . ‘ eoes

Then § > 0 and does not depend on x.
Nowlet x, y € X, suchthat d, (x,y) <. )
Since xe X, from (2) it follows that xE G,' for at. least one p = 1, 2, ..., n. This shows th}at

g, (x,xp)< %5"" <&, . Hence from (1) we get d (x) f /p * reseensesessanss )
Now, d, (xp, y)sd, (xp,x)-i- d,(x,y)
< %axp +8
<15 +ig,
2 % 2%
= 5_"
or, d, (x,;, y) < é’,‘, . | |
 Therefore, by (1) we have d; (1 (x, ). /() < 9% | —— )

Thus d, (£ (x), f(»))
S/ S ()4 s (£ (5,). 0 0)
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<+ %, by@and ()]
ie. dy(f(x), 7 (7)) < & whenever d, (x,y) <&
Hence fis uniformly continuous. This completes the proof.
The famous Heine—Borcl theorem states that every closed and bounded subset of g» is compact. In the

following theorem it is shown that the converse of Heine-Borel Theorem is true in any metric space.

20.5.7. Theorem. Every compact subset of a metric space is closed and bounded
~ Proof. Let (X d) be a metric space and 4 be any compact subset of X. To prove that 4 is closed we shall
‘show thatAc is open. | ‘ |
Letzbe any element of A°. Then for each x € 4 wenote that x # z. Asevery metnc space is Hausdorff
there exist disjoint open sets /7, and ¥, suchthat xe W, and z€ V..
Now {W, N A:x & A} isanopen cover of 4. Since A is compact, there exists a finite set {x,,%,,...%,} C 4
such that 4C U

=l

n
LetV, = U V. - Then V, is an open set containing z.

=]
 Nowforalli=1,2,..,nwe have w.NV, =¢
Therefore W, NV, = ¢ foralli=1,2,..,n [ v, c:V,l]
Hence (U%Jﬂlfz =¢. So ANV, =¢. This impliesthat ¥, c A4°.
i=1 ;
Henceforany z € A° there existsopenset V, C A“. Thus 4°is an open set i.e. A is closed set.

To prove that 4 is bounded let us consider an element £ of A.

Then 4C UB (&) Sincedi is compact there exists an integer o suchthat AC B, (f)

n=l

This proves that 4 is bounded Hence the theorem.

The next theorem establishes the fact that every compact metnc space is complete.

Directorate of Distance Education ’ 169



F ti IA l .
unctiona NALYSIS ............. et L ettt ettt ah et se s tote s tahrassseessestbsesantassennsrnssasnnnnnsnssssnnnnnssens

-20.5.8. Theorem. A compact metric space is complete

: Proof Let X'be a compact metric space and let {x } be any Cauchy sequence in X.
Then given &> 0, there exists a positve integer n, such that ( Xys X ) <& forall n 2 n,........ 1)
Because X'is compact, there exists a subsequence {x,,‘ } converging to an element & (say) of X..
Ths lim x, =¢. |
So there exists positive integer an (> n, ) such that-

d(x%,§)<'£ ' o | episssvasaisasaone )

Since r, >, wehave d %, ,x, ) <é i @)
From (1), (2) and (3) we have for 11> | | o
d(x,,€)<d(x,,x, )+d( ,,o,x,,“)+d(x,,~,§)
< %’-t- % +&=¢ |
Thus the Cauchy sequence {x, } is convergent. Hence Xis complete.

20.6. Illustrative Examples ,
20.6.1. Example. Let X=10, 1[ and d/(x,y) = |x~ y| forallx,yin X. Show that (X, d) is an incomplete metric

space.

. 1 ,
Solution. Let {x,,} be sequence in X defined by x, = - for all natural number .

1 1
Now d(3.5,) =, -5 < -]
.'.d(xm,x,,)—->0asm,n-—-)oo.

Thus {x,} isa Cauchy sequence in X, -

We now show that {x } cannot converge to anylpoint xeX.

Let x be an arbitrary point of X. Then by the Archxmedean property of real number, there exists natural
numbser 1 such that '
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n<x<n+l
ie, —<xs~—
+1 n
1 -
Ifx= - then ‘—Ll— 1 [ is an open set of X containing x which contains only one member of {x,, } .
qn-1"n+1 : -
1
Ifx# M then 1 [ is an open set of X containing x which does not contain any member of {x }
In+1'n

Hence {x,,} cannot converge to x. Since x is any point of X, it follows that { X, } cannot converge to any

point of X So (X, d) is incomplete metric space.

20.6.2. Example. Let Y be the set of all rational numbers and let d (x, y) =|x — y| for allx,yin X
Then (X, d) is an incomplete metric space.

Solution. Let {x,,} be sequence in X defined by
x, = (1 +}-) foralln=1,2,3,...

n a5 v
Then {x,,}} isa Cauchy sequence in X.

1
We know that in the space of real numbers lim x, =lim (1 + n] e. But e is an irrational number and so is

n—yeo n—yo0

not an element of X.

So the Cauchy sequence {(1 + l) } of X does not converge to any element of X. Hence (X, d) is incomplete.
n ,

20.6.3. Example. Let X be the set of all polynpniials P(t) defnied on {0, 1] with real coefficients and with distance
functionas d (P(t),Q(¢)) = gupllP ()-q(?).
<tS

Then (X, d) is an incomplete metric space.

Solution, Letus consider the sequence of polynomials {0}
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2 n
where R,(l)+l+t+£@+....+-'{£.
If n>m then
d(£, (). 2, (1) = suplP ) 2, (1)
m+l m+2 tn
—sgg 1 +'—'———Lr—n—i2+....+[-;

1 -, ] Fob b
5+

el 2

Forgiven &> 0, the right hand side expression can be made less than & by choosing m sufficiently large. So
{P, (1)} is a Cauchy sequence in X. But this sequence does not converge to any element of X, In fact in C[0, 1] this
Cauchy sequence { P,(t )} converges to the function P (t) = ¢’ of C[0,1]. As ¢' ¢ X it follows that (X, d) is not

<

complete.

20.6.4. The metric space (R, d) where d (x,»)=|x~ y| foranyrealx andy, is not C6xﬁpact.
Solusion. Let us consider the sequence {x,,} where x, = 2n forall natural numbern i.é. the sequence is {2,
4,06,8,..}
| This seq uence of R has no cohi/ergeht subsequence.

Hence (R, d) is not compact.

20.6;5. The subset 4 of ¢ ) consiSting ofall elerﬂc;ﬁis
o (& 2 Y2 |
Cox={y, sgch that L ;[xi! ) =lisnot compact.
Solution. We choose the following seqﬁence of points of 4
% ={1,0,0,0...},x, ={0,1,0,0,..},x, ={0,0,1,0,..},...
Then d(x,,xj.)=~/§ foraﬁyi#j. ‘

So neither the sequence {x, } nor any of its subsequence can converge. Hence 4 is not compact.
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20.7. Summary - A

Among all metric spaces complete metric spaces and compact metric spaces play very 1mportant rolein
functional analysis. These two metric spaces are defined and their properties are studied in this module. The
theorems relating to these spaces are proved and examples are solved to have a clear knowledge about these two

important spaces.

20.8. Self Assessment Question |

1. Showthatthe set Cof complex numbers w1th useal metricisa complete metric space:
2.  Showthatthe set Z ofii mtegers with theusual metnc is acomplete metnc space. |
3.  Prove that the metric space (L’ 2 d ) where £,is the set of all real sequences {x } thh Z x, convergent |

and metric d defined by

n

um)=3;

T

2. (x,,,, -X, ) ] is a complete metric space.

4.  Showthat]2, 5[ with usual metric is an incomplete metric space.

5.  Showthatany closed subset of a complete metric Space is complete.

6.  Show that every Cauchy sequence in a metric space is bounded.

7. Sowthatifa Cauchy sequence in a metric space has a convergent subsequence, then the whole sequence is
convergent. |

8.  Prove thatany function from a discrete metric space into a metric space is continuous.

9. Showthatevery eompact metric space is separable.

10. Showthat every sequentially eompact metric space is compact.

s } is closed and bounded set

11 ' .
11. LetX ={l,5,-§,--.} and d be the usual metric. Show that the set {1,%,-;-

in (X, d) but not compact.
12.  Let Xbethe set of all continuous real valued functions defined on [0, 1] and let

d(x,y)=mx(t)—-y(t){dt forall x,y e X.
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Show that (X, d) is not complete,

13.  Show that the space C of all convergent sequences of real numbers with metric d defined by

d ({x,, b{n} ) = S‘:P'xn =% is complete.

20.9. Suggested books for further reading

1. Functional Analysis with Applications : B. Choudhury and Sudarsan Nanda, Wiley Eastem Limited
Elements of Functional Analysis : B.K. Lahiri; World Press

Introductory F unctional Analysxs thhApphcahons Erwin Kxeysmg, John Wiely & Sons
MathematxcalAnalysxs S.C. Mahk, SavxtaArora, Wiely Eastern anted

Functional Analysis: J.N. Sharma, AR, Vasishtha; Krishna Prakashan Mandir

Elements of Real Analysis : Shanti Narayan, M.D. Raisinghania; S. Chand
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Contents :

21.1 Introduction

21.2 Objectives ,

21.3 Definition of Fixed Point and Examples
21.4 Banach Fixed Point Theorem

21.5 Apphcatlon of Banach Fixed Point Theonem
21.6 Dlustrative Examples

21.7 Summary

21.8 SelfAssessment Questions

21.9 Suggested Books for further readings

21.1. Introduction .
Fixed points have long been used in analysis to solve various kinds of equations. The work of Cauchy on

differential equations is fundamental one to the concept of existence theorem in mathematics. The Banach fixed
point theorem is important as a source of existence and uniqueness theorems in different branches of analysis. This
theorem provides an impressive illustration of the unifying power of finctional analytic methods. It shows the
usefulness of fixed point theorem in analysis. In fact, to establish the existence of solutions of different functional
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equations, Banch fixed point theorem is marvellous one. The given functional equation is put in the form Tx=xand
thus the fixed point of the operator T'becomes the required solution of Tx=x. To get this fixed point the method of
successive approximation is used. It is seen that with any arbitrary point x, as the starting point the iterative
sequence { I, } converges to the fixed point. So the method of successive approximations is used here not only for

 the prove of the existence of the fixed point but also for finding an approximate value of this fixed point. We thus
can estimate the error which shows how many approximations we should take to get the required accuracy. '

21.2. Objectives

Banach fixed point theorem needs a complete metric space X'and a contraction mapping T': X — X. The
solution of the functionél equation Tx =x is found by finding the fixed point of this contraction operator 7. With any
arbitrary point x, of X as starting point the limit of the iterative sequence { T, } becomes ﬂxg fixed point. Also this
fixed point is found to be unique. Hence we can obtain the unique solution of the functional equation Tx=x. In
contraction mapping the distance between images of any two distinct points is less than the distance the original
points. As Banach fixed point theorem uses the contraction mapping it is also called contraction theorem. This
theorem states sufficient conditions for the existence and uniqueness of a fixed point and this fixed point is obtained |
by iterative process. In this module we consider three important fields of applications of this famous theorem,
namely, linear algebraic equations, ordinary diﬁ'erenﬁal equations and integral equations of both kinds Volterra and
Fredholm. Examples are given to illustrate the theorem and the applications of the theorem.

21.3 Definition of fixed point and examples
21.3.1. Definition. Fixed Point
Let X'be a set and 7' be a mapping from X to X. A fixed point of T'isa point £ € X such that Té=fiea

ﬁxed point of 7'is a solution of the functional equanon Ix=x,xe X.
21.3.2. Examples of fixed points

i) Themapping T:R— R deﬁnedby‘7k=x2hasMoﬁxedpointsx=0andx= 1 since 70=0*=0and
T1=12=1. o | .

176 . ‘Directorate of Distance Education



............................... reetestnesesreesesseessasansnersensernsneenennennenss MOAUlE No. 21 : Banach Fixed Point Theory

i) Themapping T'; R — R defnined by Tx=1° has three fixed points x =0, x=1 and x=~1 as T'(0)
=0*=0and 7T(1)=1*=1 and T (-1)= (~1)} ¥1. '
if) Themapping 7: R — R defined by Tx =—x has only one fixed point x =0 as 70=0,
iv)  Themapping T: C = C defined by Tx =—°, where C is the set of all compléx numbers, has three
fixed pointsx =0, jand — as 70 =0, T'(}) =i and T (=) =—i. _ '
v) The mapping 7:R— R defined by Tx = x + sin x has infinitely many fixed points
x=nt,n=0,t1,12,.. ‘ B »
| - vi)  Themapping T": R — R defined by has Tx=x2+2x+1 has no fixed point, whereas thé same function
has two fixed point T': C — C (Cis set of all complex numbers). |
vii) A translation has no fixed point. ‘
vili) A rotation of the plane has a single fixed point. The centre of rotation is the only fixed point here.
) Let7:C[0,1]— C[0,1] defined by
T(f)=af t f(t)dt, isaconstantand f € C[0,1).
Then Thas aunique fixed point.
X) LetT:R*— R defined by

X, 4x,+2x, -5
T =
X, 4x, —4x,+1
1
has a unique fixed point 1l

xi) Themapping T': R — R defined by Tx =-§-+-1- has two fixed points x=+2 and x=—=/2.
' A x

xii) Theprojection T’ [(xl 2 Xy )] = x, of R? onto x,-axis has infinitely many fixed points all lying onx,-axis.

21.4. Banach Fixed Point Theorem
21.4.1. Definition. Contraction mappmg
Let (X, d) be ametric space. The mapping 7': X — X is said to satisfy Lipschitz condition with constant o

if d(Tx,Ty)< ad(x,y)holdsforall x,y € X.
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If the above condition is satisfied when the Lipschitz constant o be such that ( < ¢y < 1 thenthe mapping T’
is called a contraction mapping. |

21.4.2. Theorem. Any contraction mapping is uniformly continuous
Proof. Let (X, d) be a metric space and T':.X — X be a contraction mapping. Then there is-a constant
@ €(0,1) suchthat d(Tx,Ty) < e d(x, y) forall x,y € X.

Let € be any given positive number and § be suchthat 0< 6 < % .

Thenfor d(x,y)< & we have
d(Tx,Ty)Sad(x,y)<ad<e
So, d(Ix,Ty) < & whenever d(x,y) <&
Hence T is uniformly continuous. ;
Note. Since uniformly continuous mapping is always continuous, it follows from above theorem that every
contraction mapping is continuous. '
We now state and prove the famous Banach fixed point theorem. This theorem gives sufficient condition for

the existence and uﬂiqueness of a fixed point for a class of mapping, known as contraction mapping.

21.4.3. Banach Fixed Point Theorem (Contraction Theorem).
Evefy contraction mapping on a complete metric space has a unique fixed point.
Proof. Let (X, d) be a complete metric space and 7': X — X be a contraction mapping. Then thereis a
constant o where 0 < « <1 such that
d(Tx,Ty)Sad(x,y) 1
forall x,y € X. | |
Letx, be an arbitrary point in X. We define the “iterative sequence” {x, } by
x, =Tx,

x, =Tx,
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x, =1x,_,

- Thenwe have
x, =Tx,
x, =T (Tx,)=T"x,
X, = T(szo) =Tx,

%, =T(T™'%,)=T"% | | T — 2)

We now show that the sequence {x,,} is Cauchy.
d(x,%,)=d(Tx,Tx) S @d(x,x)
d(x,x)=d(Tx,Tx,) S ad(x,x) s a’d(x,x)
d(x,,%,) = d (T, ;) S @ d (x,,%,) S ad (%%,

Thusin general for any positive integer kwe have
d(xpxp) S @d(5%) o e 3)
By the triangle inequality we have forn>m
d(x,,x,)< d(xm,xml)+d(xm,,x,,,ﬂ)+....+d(x,,_,,x,,)
<amd(x,x% )+ a'"*‘d(xo,x,)+.,.; +a"d (%, %) [by (3)]
<a"d (xo,x,){l + O Hant a"‘"'”‘}
<amd(x,x ){1+a k@™ b )

Thus d(5,05,) s L) S @
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Since 0 < o <1 wehave o™ _s () as m —» oo, Also as n>m we have n— oo @s m — oo, Thus from (4) it
follows that d (x,,l , x,,) — 0 as m,n — oo, This means the iterative sequence {x,,} is Cauchy.
Since X is complete, the sequence {x, } 1s convergent. So there exists &£ € X such that x, — & as
7> oo,
We now show that this limit & is a fixed point of 7
We have d(£,7¢)<d (£, x,,,)+d(%,,,,TE)
=d(¢,x,,)+d(Tx,,T¢)
<d(¢ %) +ad(x,.{)
Since x, — f‘ as n — oo we have as n— oo
d(£,T€)<0. But d(£,T£)40. Hence d(&,7€)=0
o, I, =¢. i.e. £ isafixed pointof T,
[fpossible, let 77 (# &) be another fixed point of T'i.e. T7 = 7.

Now d(¢,n)=d(T¢,Tn)< ad(&,n) | . cevsesssesseisaen )
As n# £ wehave d(&,77)> 0. Thus from (5) we have | < ¢, This is a contradiction since O<a<l.

Hence ¢ isthe only fixed point of 7'and the theorem is proved.

21.4.4 Estimation for the error of the nth approximation.
In the Banach fixed point theorem the iterative sequence {x,,} with arbitrary x, € X converges to the

unique fixed point £ € X, The prior estimate is

a” -
fi (x,.£)< I—:;d(xo,x, )-
ans the posterior estimate is
(24
d(x,,,f )S r:‘(;d(xn_l,.x'fn).
Proof. We have for n>m
d(x,,x )S_______a. d(x,7)

: I-a
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- Thus for m>n we have

a"d (xy,%,)
d(x,,%,) s ———21 S —
(505 %0 ) S =0 M

Since x, — &£ as m — oo we get from (1) letting m — oo

d(x,,£) <= ‘:_(_x;x‘ | . -
This s the prior error bound and it can be used at the beginning of a calculation for estimating the number of
~ steps necessary to obtain a given accuracy.
Taking n=1in (2) we get
| ad (x0 . %)
-

d(x,,f)s

This is true forany x, € X. Replacing x by x, , we get

ad(x,,x,)
& e e
d(x,,£)s iz

This is the posterior estimate and it can be used at intermediate stages or at the end of calculation.
Note. Banach fixed point theorem gives a sufficient condition for the existence of unique fixed point. So an
operater may have unique fixed point even if the condition of this theorem do not hold. The sufficient conditionsare
(i) the metric space X is complete and (ii) the mapping T'is coht:action. The following examplé showsthata

contraction mapping 7 may have unique fixed point even if X'is not complete.

21.4.5 Example.

Let X =[0,1[. ThenX'is not complete. Let T: X — X bedefined as Tx =§-. Here forany x,y € X we

have lTx - TJ’I = l‘z‘ - %l = -2-[x - y!. Thus T'is a contraction mapping and T has the unique fixed point x =0, But
here Xis not complete.

The following example shows that a mapping T : X -5 X may have unique fixed point when Xis con:plete

but 7'is not contraction.
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21.4.6. Example,

LetT:R—> R defined by

5x+3
7

Here R is complete. But 7'is not contraction as

_|5x+3 5y+3] 5
' ) 5 I [x }’lforanyx,yeR

Tx =

-1y =

So the space is complete and the mapping is not contraction. But here x =—1 is the only fixed point of the
mapping.

Finally, the next example shows that a mapping T': X — X may have unique fixed pomt even when Xisnot
complete and T'is not contraction.

21.4.7. Example,.

Let O be the set of all rational numbers and T:0 — Q bedefined by

3x—-4
2

Here forany x, y € O we have

3x-4 3y-4
}2 B ll"!xy'

Tx =

!Tx Ty!

So Tis not contraction. Also Q is not complete. But here x =4 is the only fixed point of T,

2ll.5. Application of Banach Fixed Point Theorem.
21.,5 1. Theorem Solution of a System ofAlgebralc Linear Equatxons
The system of linear equations
X =a% +apx, +o.+a,x, +b,.

X, =ayX, +apx, +.+a,,x, +b,

Xu =0 +a%, +..4a,,X, +b
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. : n
in nunknows x,,,,...,x, has a unique solution if Zlajki <1 forallj=1,2,..,n.
k=1

Proof. The given system of linear equation can be written in matrix notation as

x=Ax+b e M
o 2
rx, b h O in
" . G, ap 9
2
where x=| [ |, b= 2land 4=
) ) la, a a
x” b” nl n2 nn
- -

Let X be the set of all ordered » - tuples of real numbers:
X=Xy Xy, | Ly = [91 Vasees V] G,
On X we define a metric dby |
d(x,y)=max|x, - y)|
We know that this metric space (X, d) is complete.
OnXwedefine T: ¥ — X by
Te=Ax+b , — @
The system of linear equation (1) thus becomes '
x=Tx ,
Hence the solution of the given system of linear equations is nothing but the fixed point of the operator

- T:X — X defined by (2).

From (2) we see
- -
2“1 AR
k=1
Xy
3y, +b
X2 Ay X +0,
Tx = T . =1 k=l
x” n A
2 a,X; +b,
L k=1 .
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=max|3 a, (¥, ")’k)l

U =i
.
Smjaxg; a, (%, —y,‘)l

= max 3 fa, s, -
= max z e (e, - 3,)
= (m?x g,a n Ud (x, )

=ad(xy) where a=maxYla,|
. k=1

Thus forany x,y e X '

d(Tx,Ty)< ad(x,y) where 0< g <]1.

So T': X — X isacontraction mapping and X'is complete metric space. Hence by Banach fixed point
theorem T"has a unique fixed point £ = [£,&,.....&,] of Xand this fixed point is the unique‘ solution of ihe given
system of algebraic simultaneous equation. ; v

From Banach fixed point theorem we know that this fixed point is the limit of the iterative sequence {x(")}
where x") = 4x"V 4 p p=1,2,3,... withany arbiﬁary pointx® as starting point. ’

The prior error bound and posterior error bound are respectively

d(x‘”),f)sla" d(x(o)’xm)

() & (0 )
and d(x ’f)sl-ad(x X ) |
We now show that the theorem of the existence and uniqueness of the solution of a differential equation can

be obtained using Banach fixed point theorem.
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21.5.2. Picard’s Theorem.

Letf(x,y) and % be continuous ina closed rectangle D ={(x,y):a, S x < ay,b S y< b,} and (%,,3,)

beand interiqr point of D. Then the differential equation
— = /(%) |
has a unique solution y = g (x) which passes through (¥, %, )

Proof. Here f(x,y) and A are continuous in the closed set D and so they are bounded. Hence there exist

dy
constants K and M such that ,
'f'(x,y)lsK | — o B esesessssassens (})
‘Q{%J_’) <M | | I e (2)
for all points (x, y) in D.

Let (x,y,) and (x,,) bein D. It follows from the mean value theorem that

1 ()= F () ==l g—i—(x,yl +6(y,-n))

for some 0 such that ( < @ < 1. Thus using (2) we have the Lipschitz condition
‘f(x,y,)—-f(x,yﬂlSM]y,—yz| .................. 3)
forall (x, ) and (x,,) inD.
The given problem of the differential equation is now converted to an equivalent problem relating to an
integral equation as follows. |
Let y = g (x) be such that

ng = f(x,») where y, = g(xo)-

d S
iix)=f(x,g(x)) - S e e (4)

~or, dg(x)=f (x,‘g(x))dx
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Integrating from x, to x we have
g(x)-g(x)=| 1 (te(t))d

o, g®)=glw)+] sl.e@)a e (5)

We note that differentiation of (5) gives (4) and integration of (4) gives (5). Hence, (4) and (5) are equivalent.
So, solution of the integral equation (5) is the required solution of the given differential equation.

We now choose a positive number ¢ such that Mc < 1 . Letus consider the closed subject F of D determined
by F={(x,y):|x~x|<c and ly—yOIScK}.' |

Let G be the set of all continuous reél functions y= g (x) defined on !x - xol < ¢ suchthat I g(x)-y, ] <cK .'

Then G is a closed subspace of the complete metric space C [xo -C, X, + c] and is therefore itselfa complete

metric spac’e.
Let h(x)= Yt [ r(eg)ar
Then we have
[pe)= sl =|[} £ (1.8 (1)

<[ |f(bg()a
sﬁkw |
=K (x ~ xo)
=cK

ie. |h(x)-y|<cK . h(x)eG.
Let Tg=h. Then T'maps G into itselfand is defined as

Tg=y,+ j f(t.g(r))de | e ©)

. (5) is nothing but Tg=g. So the solution of the given differential equation is the fixed point of 7.
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Now |Tg, ~Tg)|
=bo+[. (e O)dt-3=f f (o2 (t)dt)i
s )76l
<|[7 | () (2 )

<|I7 Mg, ()- & ()] By

<[ s (-

= d(g,,gz)Ml(x—xo)‘
<cMd(g.g,)
Thus |Tg, -Tg2| < ch(g,,gz).

This is true forall x in [x,—c, %+ c}.

FITg, Tg2|<ch(g:gz)

. x-xo
Cor, d(Tg,Tg,)< ch(g;,gz)-
Since 0 < Mc <1,T : G — G defined by (6) is a contraction mapping. As G is complete applying Banach
fixed point theorem 7 has a unique fixed point and this unique fixed point is the unique solution of the given

differential equation. This completes theproofof the theorem.
Now we show that Banach fixed point theorem can establish the existence and uniqueness of the solution of

integral e_quauons.

'21.5.3. Theorem.
The Fredholm integral equation
b
f(s)=x(s)- ,uL k(s,0)x(e)dt

has unique solution if
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D) k(s,?)iscontinuous in both the variables s and t where
a<s<band ast<b

) ]k(s,t)[ <c forall (s,r) €[a,b]x[a,b]

1

i) < 6-a)
iv)  x(f),/(f) are continuous in [a, b]
Proof.
The given integzal equation is

7()=x(s)- p, k(s,1)x(e)a T e )
o, x(s)= f(s)+,ufa k(s,t)x(t)dt ‘
or,  x(s)= Tx(s)' : | e @
where Tx(s)= f(s)+ ,uf (s,8)x(t )dt SRR ()
Thus the solution of the integral equation (1) is the fixed pomt of the operator T:C [a,6] = C]a,b] defined

by (3). |

- Hence the existence and uniqueness of the fixed point of the operator 7' shows the existence and uniquess of

the solution of the given integral equation 1.
- Now d(IxTy)= maxlTx(s) Ty(s)l

= e f(s)+,uf k(s,t)x tdt-f s) ,uf k(s,t)y(t dt’
:,uxﬁ[ab]f Ko 0}l
<l men [ )~ y(e)a

<| 4| max {ue[abllx(u) y(u)l}dt

sefab]va

= f,u”a cd(x,y)dt
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 =lHed(x.y)(6-a)
~.d(Tx,Iy) < ad(x,y) where @ = ]u‘ci(b— a)
Since 0 < || (b~ a) <1, Tisacontraction mapping.
Applying the Banach fixed point theorem we conclude that 7 has a unique fixed point. Hence the given

integral equation has unique solution.

21.5.4. Theorem. The Volterra integral euqation

£ (s)=x(s)- 4, k(s,0)x(e)ar
has aunique solution if _
) (), (t)are continuous on [a, 5]
)  k(s,#)iscontinuous on the triangularregion a <t < 5,a < s<b

Proof. The given Volterra integral equation is

fs)=x(s)- L’k(s,z)x(t)dt [ — 1)
o x(s)=7(s)+ ] k(s.t)x(0)d |
or, x(s)="Tx(s) [ @)
where Tx(s) = f (s)+ [ k(s,t)x(¢)dt - )

From (1), (2) and (3) we see that the solution of the integral equation (1) is the fixed point of the operator
T:C[a,b]— C[a,b] defined by (3).
So the given integral equation (1) has unique solution if the operator Thas unique fixed point.
We now show that Thas unique fixed point.
Let G be the triangular region POR defined by
G={(s.t):a<s<b,ast<s}
Since kis continuous on G and G is closed and bounded, it follows that for some positive constant c.

|k (s.0) < ¢ forall (s,¢) € G.
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t
N
5 0
a - B R
> s
0 a b 4
We take the metric das

d(x,y)=max|x(r)- y (¢)
We have |7x(s)~2y(s){ -
= af ks 16)-af ks 0)d]
=Jul|[l ) {x()-y (0}
<[ Vs, )} 0) - e}
sl e{maxl(u)- (e
=|ul[ cd(x,y)ar
= clud (5,7)-(s~a) |
ie. |Tx(s)-Ty(s)| < c|ud(s~a)d (x, O — @)

Using mathematical induction we now show that for any positive integer »
n n n n (S - a)" .
lT x(s)—T y(s)lSl/ll c -Td(x,y) ...................... ®)

From (4) we see that the result (5) holds forn=1.
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Let the result (5) holds for n=m. Then

[T (s)-T"y(s) < |ud" " (s=a)” ——d(x,y) e 6)

| Clm
Now IT x(s)-T"" y(s)!

= [T (T7x(s))-T (7 3(s)

76V af, k) (T5 )t 16} ], )Ty O)t], By )

=|,,|‘ f:k(s,t){T"’x(t)-T'"y(t)}dtl

<|4 J.:lk (s.e)|T"x(e)- T"y(¢))dt

sulflel"e 2o

= 'ﬂlmﬂ .cm+] d (x y) _1_‘. (S -— a)mﬂ
mT m+1
m+l
‘Tm«r-l TmH S)l < l‘ul"'“ m+l (S - a) d(x,y)

lm+1

Hence the relation (5) holds for n=m -+ 1 if it holds for n = m. But it holds for » = 1. So it holds for
n=1+1=2, As it holds for =2, it holds for n=2+1=3 and then for #=3+1=4 and so on. Thus the relation (5) holds
for any positive integer n.

Since g-—q < b - g itfollows from (5) that for any positive integer n

n n " n (b - a)"
iT -T"y s)lsl,u] ¢ -Td(x,y)

This relation is true for all s and [a, b] and the right hand side is independent of s, so we have

rx(s)- Ty (s) <l e & 'L';)" d(x,)

or, d(T"x, T"y) L d(x,y) ‘ e .......... @)

max

asssh

Directorate of Distance Education _ S 191



F / ] lysi
UNCHLONGLARBLYSIS «...ovivvnvrseenrssiossossonsorsissnsoninsisssssssesssssssoseorsssosssossesesnesssessassessesssssssssestosssmssssssons SR

where ¢, = { ,ul" c" ;@:E-.}m o sseeseesesnesvasensnns (8)
n .

‘Aspandc are fixed numbers, taking » sufficiently large we have from (8) that 0 < o, <1,

Alsoas T':C[a,b]-> C[a,b] we have for any positive integer nthat 7" : C [a,8]—>C [4,8].

Thus for sufficiently large », 7" is a contraction mapping from the complete metric space C [a, b] to itself,

Hence by Banach fixed point theorem 7" has a unique fixed point £(¢) in C[a,b].

e TE=g e ©
Now I"(T§)=T™¢ =T(1"¢)=T¢ [by (9)]

ie T isalsoa fixed point of 7", Since 7” has unique fixed point we have T£ = &,

Now we show that & is the only fixed point of 7.

Ifpossible let 7 (¢ £) be another fixed point of 7'

ThenTn=n. ~T'n=T(Tn)=Tn=7

T’n= T(Tz??) =Tn =1 and so on.

Hence 7"y =7 i.e. (&) is another fixed point of 7%,

This is a contradiction since 7" has unique fixed point. ‘
~Thus 7 has unique ﬁxed point and this fixed point is the umque solution of the given integral equation (1).

Hence the proof of the theorem is complete.

21.6. Iustrative Emmé%es.
21.6.1. Example. Let 7 ..y p defined by Tx =2 (1 ”“) Show that 7'is a contraction mapping and Thas a
unique fixed poﬁt.

Solution, Forany x ¢ g we have 2(1 - %) €R.

So T': R — R. We know that R is a complete metric space with usual metric d (x,y)=|x~y.
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Now forany x,y € R wehave d(Tx,Ty) = |Tx - Ty| ='2(1~-§)—2(1—-—‘§))
e 2ate

ie. d(Tv,Ty)==d(x,y) V x,y€R

win

Thus T'is a contraction mapping. Using Banach fixed point theorem the unique fixed point is given by
10

X =

7
21.6.2. Example. Let T': R — R be defined by Tx = -’é‘-

Using Banach fixed point theorem find the fixed point as a limit of the iterative sequence.

Solution. Forany xe R ‘we have g-e R ~T:R—>R.

. Tis a contraction mapping. Since T': R — R and R is complete, we can apply the Banach fixed point
theorem and obtain the fixed point as the limit of the iterative sequence with any point of R as the starting point.
~ Theiterative sequence {x,} withany x, € R asstarting poi. - given by
ﬁ_ ,

2

X, X,
x, =T, =T(-—§-J=-§g—

X, X,
X, =Tx, :T(‘é%):"z'%‘ and so on.

;x‘szoz

' X,
- Ingeneral X, = —2-;0; and

limx, = lim > =0,
e n—yo0
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Hence 0 ¢ R is the unique fixed point of the operator T. We note that this limit remains same forany x, € R.

21.6.3. Example. Give an example of the operator 7': X — X forwhich d (Tx,Ty) < d(x,y) forall x,y e X

but 7'is not contraction.

2

Ans.LetX=[0, 1[and T: X — X be defined by Tx = "7

Now for any x,y € X wehave
d(Tx,Ty) =,Tx—-Ty|

xZ y2
=

i

-+ 2)6-)
=S+ )]
=5+ 3)d ()

+
Since 0 < x <1 and 0< y <1 it follows that 05%—2<1~

< d (Tx,Ty) < d(x, p). But here there exists no ,0 < <1 such that ¢ (Tx,Ty) < ad (x,y). Thisis

because here <1 and we can always choose x and y such that & < x—;l <l1.

21.6.4. Example. If T'is contraction mapping, show that for any positive integer n, 7" is a contraction mapping.
Solution. Let T: X — X bea contraction mapping,
Then forany x,y € X we have
d(Tx,Ty)< ad(x,y) where 0 < o <1.
Now d(T?x,T%)= d(T(Ix),T(Ty))
<ad(Tx,Ty)
sa’d(x,y)
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Now d (T3x, T y) =d (T (sz),T(T2 y))
<ad(T*x,T)
<a-a’d(x,y)
=a’d(x,y)

ie. d(I?,T})< @ (x,y) andsoon.

In general for any positive integer n we have

d(1;.1))sa"d(x,y)

As 0 <& <1 wehave 0 < " <1. Hence 7" is a contraction mapping.

21.6.5. Example. Using Banach fixed point theorem determine the solution of system of equations
x=2x~5Sy+1-3
y=-4x+3y+3
with the help of iterative sequence with X, = [ 3 } as starting point.

Solution. Here the given system may be written as

S STHY]

x 2 =5 1-3
orX=AX+bwhere X=| [, 4= and b= .
B 4 3 -3

Ind wehave |2|+|--5|=2+-5=-7T<1
and |4]+]3|=-7<1.
. The solution of the given system is the fixed point of the operator T defined by TX =AX+ b, Also this

fixed pointisthe lim itofthe iterative sequence {T"X o} with any X as the starting point.

13
Here X =[ 3}
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[2 =513 [1.3] [26-.15+1.3] [1.41
X ZAX = o -
: ot 4 .3]_.3 3 [.52+.o9+.3 [.91]
| [2 -57[1.417 [1.3] [1.127
X, = +bh= + =
2 =A%, 4 .3]_.91] .3] 1.137
| [.2 -571.1277] [1.3] [.9569
X = = =
TALAE= L s }[1.137]’{.3]- [1.0919}

e

[2 -57[.9569 ] [1.3] [.94543
X,=AX,+b= + 7=
v 4 3 __1.0919} [ .3} [1.01033]

=N

[2 -5 ’.94543‘+F1.3 _[-983921
4 3 ][1.01033] | 3| |.981271

X,=AX4+'b=

2 —.5].9839217 [1.3] [1.0061487
X, =AX . +b= + =
o= A th= 3 J.981271] | .3 | _0.9879497J

and so on.
- |
We see the sequence {X ,,} converges to [J

- . Therequired solutionisx=1,y=1,

21.7 Summary.
This module is devoted to the theorem of the remarkable Polish mathematician S. Banach. The application of
this Banach fixed point theorem are given to solve system of linear al gebraic equation, differential euqation and

integral equation. Examples are given to explain and to understand the theorem and its applications,

21.8. Self Assessment Questions
1. Giveanexample of contraction mapping in an incomplete metric space without having any fixed point.

3x+4
5

2. Inthereal line show that the mapping Tx = has a unique fixed point.
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3.

4,

5.

6.
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Use Banach fixed point theorem to show that the system

x“}—xm}» +-1—z-—1
377377

~mlx+l +lz+2’
YETRNTEYTY

z*lx—i +iz—2'
5¥7377%

has aunique solution.

Give an example to sHOw that the conditions in the Banach fixed point theoremn are sufficient conditions for
having fixed point.

Using Banach fixed point theorem solve the integral equation

¢ = ple=1)=x(s)- yix(t)dt,{y}«:l

Use Banach fixed point theorem to show thatx=0,y=1 is the unique solution of the system
x=5x+4y~4
y=3x+2y~-.8

21.9. Suggested books for further readings

fo—y
.

Introductory Functional Analysis with Applications: Erwin Kreyszig; John Wiley & Sons
Functional Analysis with Applications : B. Choudhary and Sudarsan Nanda; Wiley Eastern Limited
Elements of Functional Analysis : B.K. Lahiri; World Press

" Introduction to Functional Analysis for Scientists and Technologists; B.Z. Vulikh; Pergamon Press

Elements of Real Analysis : Shanti Narayan and M.D). Raisinghania; S. Chand

e O oo
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Module Structure :

22.1 Introduction

22.2 Objective

22.3 Linear Space

-22.4 Normed Linear Space

22.5 Dllustrative Examples

22.6 Summary

22.7 SelfAssessment Questions

22.8 Suggested Books for further reading

22. Normed Linear Space and Banach Space
22.1 Introduction

We are familiar with vectors and vector spaces in two and three dimensions. Two vectors can be added and
a vector can be multiplied by a scalar, But in metric space two elements can not be added. In metric space only we
have the notion of finding distance between any two elements of it. In a general set, if we have the definition of
addition of two eleinents and multiplication of one element by a scalar obeying similar properties of ordinary vector
addition and scalar multiplication then we geta general vector space or a linear space. As the elements of this linear
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--------------------------------------------------------------

- space behaves like usual vectors in two-three diménsions, they are termed also as vectors.

Also a vector has a length. Extending this notion of length of a vector to a linear space we get the normed
linear space. Norm of an element in a linear space is similar to modulus of a vector in a vector space. A linear space
equipped with norm is called a normed linear space. A complete normed linear space is called a Banach space. In
fact a metric can be defined in a normed linear space with the help of the norm. Ina normed linear space we can
define linear operator. The theory of normed linear spaces, Banach spaces and the theory of linear operators

defined on them play very important role in functional analysis.

21.2. Objectives _

In many branches of mathematics vectors and vector spaces play an important role. In this module the vector
space is generalized to linear space. The elements of this linear space may be usual three dimensional vectors or
sequences of numbers or functions or matrices. These elements can be added and multiplied by scalars. Also the’
concept of the length of usual vector is introduced through norm defined on this linear space. The elements of linear
space thus behaves like vectors in three dimension. The definition of linear space involves a set Xand a field F
invdlving two algebraic operations viz addition of two elements of X called vector addition and multiplication of
one element of X by one element of Fcalled scalar multiplication. This linear space equipped with norm s called as

normed linear space and has a vital role in functional analysis.

22.3 Linear Space.

22.3.1. Definition of Linear Space , _
A linear space over a field F'is a set X'with mapping x+y of X X X'into X, called addition, and mapping Ax

of FX Xinto X, called scalar multiplication, such that the following axioms are satisfied forallx, y,zinXand A, 4 ’
in. | o

) Gtntz=x+@+z)

i)y x+y=y+x

i)  thereexists an element 0 € X, called zero element such thatx +0=x

iv) foreach x € X, there exists anelement (-x) € X, called the additive inverse or the negative of x,

suchthatx+ (—x)=0"

Directorate of Distance Education 199



, .
FUNCHONAL ANGIYSIS .....oeeovovveererreresesieteiassssie e serasssss s sesassesse et sse s s s araeseesensaseressnssassasessssssasesasanas

V) Alx+y)=Ax+Ady
Vi)  (A+p)x=Ax+ ux
vi)) - A(ux)=(4u)x and
- viil) 1x=xwhere 1 is the multiplicative identity of the field F.
The élements of Xare called vectors and the elements of F are called the scalars. The linear spa;;e isalso

called vector space.

22.3.2 Examples of Linear Spaces
i)  Forany positive.integer n
R ={( XisEse X, )i %, %300 %, € R}
isa reai vector space with respect to addition and scalar multlphcatlon defined as follows:
xXty= (xvxzv"’xn) (YVyzw"J’n)
= (% + Y1 Xy + Yy Xy + 3, )
and Ax = A(x, %0, %, ) = (A%, A%y, .., A%, )
where A € R. Here the field is (R, +,)
ii) ' For any positive integer n
C'= {(z,,z2,..., z,): zl,z;,...,zn € C}
isa cémplex vector space with respect to addition and scalar multiplication defined as follows
2+ W= (2,250 2, )+ (W Wysos W, )
=(z, + w2y + Wy 2, +W,)
and Az = A(z,,2,,...2,) = (4z,, A2,,..., A2,)
where A e C. Herethefieldis (C, +,) where Cis the set of all complex numbers. 4
i)  Let.Sdenote the set of all sequences {x,, } of real numbers. Then S'is a real linear space under addition and

scalar multiplication defined as

{x}+{»}={x+n}
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and A{x,}={ix}.
Here the field is (R, +,).
iv) Let 8 denote the set of all sequences {z,, } of complex numbers. Then §’ isacomplex linear spaoe under
addition and scalar multiplication defined as
R AR AT ERAS:
and A{z,}={Az,} where 3 isany complex number. Here the associated field is (C, +,-) where Cisthe
- set of all complex numbers.
v)  Let.Xbeany non-empty set and let F(X) denote the set of all real valued functions defined on X, The F(X)
is areal vector space with respect to addition and scalar multiplication defined as
(A+£)x)=A()+ () |
~and (Af)(x)= A f(x) forall xe X,Ae R and f, f,, f, € F(X).
vi)  Let C(S) be the set of all continuous real functions defined on a compact Hausdorff space S. Then C(S) is a
real linear space with respect to addition and scalar multiplication defined as
(fi+£)x)= £ (x)+ £ (x)
and (Af)(x)= A f (x) forall x& S, A€ R and f,f, f, €C(S).
v)  LetA bethe setofall complex functions fanalytic on {zeC:|z|] <1} and continuouson {z€ C: ]z} <1}.
Then A4 isa complex vector space with respect to addmon and scalar multiplication deﬁned as .
(fi+£)2)=A()+£(2)
and (Af)(z)= A f () forall AeC and f,f,f; € 4.
vil) Let C[a, b] be the set of all continuous functions defined on the closed interval [a, 4]. Then Cla,blisa
linear space with addition and scalar multiplication defined as -
(fi+£)x)=£i(x)+ £(%)
and (Af)(x)= A f(x) forall AeR and f, £,/ €Cla,b].

n=}

iX)  Forfixed real number p 21 let ¢ be the setof all sequences {x } such that ZIx l" <o, Then ¢” isa

linear space with respect to addition and scalar multiplication defined as
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b +{nt={x+5]
and /l{x,,} = {ﬂx,,}.
X)  LetP, bethe setofall polynomials of degree < n. Then P is a linear space with respect to addition and

scalar multiplication defined as

Zax +Eb‘€ —Z (a,+5)x'

=0 =0 1=0

x)  LetMbethesetofall matrices of order m x n, Then Mis a linear space with addition and scalar multiplication

la]., 8. “a+a]..

and ﬂ[aij men = [ﬂ'a’.’l ]mxn ’

22.3.3. Definition : Subspace ; _ ‘

Let X be a vector space overa field 7. A subspace of X'is a nonempty subset E of X such that x+yand fx
arein £ wheneverx andyareinE and AePF.

We note that the set {0} consisting of just the zero vector isa vector subspace. Also the vector space Xitself

is a subspace of X. These two subspaces are called trivial subspaces.

22.34. Deﬁxﬁtidn : Lineaf mappiﬁg. | . o _
Let Xand Y be two vector spaces over a field F.Amapping f : X ——> Y iscalled a linear mapping (linear
transformation) if ’
S (At )= 4 £ () + A f ()
forall x,x,e X and 4,4, eF. |
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22.3.5. Examples of linear and non-linear mappings

D

i)

The zero mapping g: X — Y defined by
Ox=0 forall xe X(nghthandesﬂlezerovectoron)lsahnearmappmg Itlsalsocalledtnvzalmappmg
This is because forany 4,4, € F and x,,x, € X
O(Ax,+Ax,)=0= A0+ 4,0=1406(x)+46(x,). -
let/: X - X béthe identity mapping '
Ix=x, '
Then I(Ax +A4%,)=Ax + Ax, = Al(x)+4 I( ).
Thus /is a linear mapping. '
Let T: R — R be amapping defined by
T(x)=x+A where x€ R and A isareal constant.
Then T (Ax, + A4,x,) = Ax, + Ax, )
and A T + 4L, Tx, = 4 (%, + A)+ 4, (x, + A) = &x, +A2x2 (A+A4)A
VT (A + Ay 2 AT + 4, sz
So T'is not a linear mapping.
Let 7: R — R bedefined by Tx = A where 4 is aﬁxed real number.
Then T'(Ax, +A,x,)=A and 4, Txk1 .+/l, Tx, = AA+ LA
T(Ax +A4x,)# A4 Tx + 4 Tx,.

Thus T'is nota linear mapping.

22.3.5. Defnition ;: Linear functional

Let X be areal vector space. A linear functional on Xis a linear mapping 7°: X — R ifforany 4,4, € R

and x,,x, € X wehave

T(Ax, +A4x,)= A Tx + 4, Tx,.

Let X be a complex vector space. A linear functional on Xis a linear mapping 7: X — C. This linear
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functional is called complex linear functional. The linear functional T': X —» R iscalled real linear functional.
Note: Any linearmapping 7: R — R or T: C — C is linear functional.

-22.4. Normed Linear Space
We have seen that linear space is an extension of the ordinary vector space. The elements of linear space
behaves like vectors. One very important concept associated with vector is its 1ength. In fact, an ordinary vector
has lengthand direction i.e. every vector is associated with alength. This notion of length of a vector is introduced
in general linear space through norm. |
Thus normed linear space is a linear space associated with the notion of length of each of its element. The

formal definition is given below.

22.4.1 Definition. Normed linear space

Anorm onareal linear space X is areal function || ||: X — R defined on X such that for any x, ye X and
forall A € R the following properties hold: -

) =0

D Jresd sl

i) lax] =]4] |3

) |x]=0 impliesx=0.

22.4.2. Properties of norm.
) 1;0[; =0. o
Taking 1 =0 in || Ax] =|A| x| we have
o] =1of x|
or, [[0] =0
D fy=xl=l-
Taking 4 = ~1 in [|Ax||=]A| ||x]| we get
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[0 =11 or, -] = |
Hence [y =] = |(-1)(x - »)| = |-l =l =[x -
i) el -l <l -5
We have [lx]|=|(x - »)+ |
S _

or, x|~ Iy < |- ¥ i )
Again 7] =[(y-x)+ ]

syl

=[x=yl+|]

o -l <5l S
From (1) and (2) we have

Il <=5l
22.4.3. Examples of Normed Linear Spaces
)  Then-dimensional Euclidean space R" of all ordered n-tuples of real numbers x = (x,, Xyyens x,,) isa

nls with the norm defined by

(3 )

=]
i)  Thespace " of all ordered n-tuples of complex numbers x = (xl s Xyyeees x,,) is amls with the norm

definedby
=(3pr )

i) Forreal p2>1 the space gr ofall real sequence x = {x ,} such that E!x jlp is convergent is a nls
_ =

with the norm
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) ThespaceCofall convérgent squences ¥ = {x /} is a nls with norm
= suplx;|
v)  Thespace C, ofall null sequences x = {x ,} is a nls with the norm
I = svp fx,I
vi)  The space B of all bounded sequences is a nis with the norm
= sups|

vii)  The space C[a, b] of all continuous functions x =x(f) defined on the closed interval [a, b] is anls with

the norm
I} = max (0},

22.4.4. Theorem. Ever)"ﬁ ;zls iS a t;1etric spéwe.
Proof. Let Xbeanlsand d: X X X — R be amapping defined by.
d(x.y)=x-y]|
Theni)  d(x,y)20.
) dxy)=0=>|x-y|=0=2x-y=0=x=y
and x=y=x-y=0=>|x-y|=0=d(x,y)=0
i) d(xy)=x-yl=ly-2=d(yx) -
V) d(xny)=]x-y]
=[(x~2)+(z-»)|
<lpe=2 +lz-s]
=d(x,z) +d(z)

Hence dis ametric and (X, d) is a metric space.
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N ote : For the nls X we have thus ||x— | = d (x, y). Putting y = 0 we get d (x,0) = |x - 0] =||x|. Thus
x| is the distance of x from the zero elemenf of the linear space. |
The vector space X (¢ {0}) with the discrete metric d defined by
d(x,y)::{O ifx=y
lif x#y
is a metric space but not a nls.

Thus the converse of Theorem 22.4.4 isnot true.

'22.4.5. Definition : Banach Space
A coniplete normed linear space is called a Banach space.

The followihg theorem is a characterisation of a Banach space in terms of series.

22.4.6. Theorem. Anls X is complete if and only if every absolutely convergent series in X'is convergent.

Proof. Let X' be complete nis and 2 x, be any absolutely convergent series. Thus 2 ||x,, H is convergent.
» e >

n=}

k .
Let Vi = 2 X,. ., For any positive integer p we have

n=]

yl:+p - yk "
k+p k
=12 %= 2%,
n=l1 n=l
ks
n=k+1

IA

Kl

n=k+l

o . k '
As Y |x, | is convergent Eﬂf Ix,| —0as k— oo.

n=l n=k+1

Directorate of Distance Education . o v 207



, ,
FUNCHONGLARGIYSIS ...covovvvvevesicsssseneescssssssssssssssgmsmssssssesessessssssesssssssssssss s oo seseeeeeessessossssoeoosseeeeeo

30, V40 = W4 " —0 as k 5w ie. { y,,} isa Cauchy sequence in X, Since X'is complete, there exists

xeX such that

x=£i_x’2 Y —lmex -Zx

n=) n=} ‘

Hence the series 2 x, isconvergent.

n=l}

Conversely, let every absolutely convergent series in X be convergent. We are to prove that X is complete.
Let {x,, } be any Cauchy sequence in X, Then for each positive integer k, there is a positive integer N, such that
| . :
-zl < foratl am2w,. 1)
We choose N, such that for each k 21, NM > N -

Let Nh= xN,’yz "xlv2 le:y3 ‘xNa xN, and so on.

Then [y =y, =3 | < 3 By )
Now E o is aconvergent series.

S0 Y [%,..| isalsoa convergent series. Hence by assumption ¥ y, = isalso convergent.
k=l k=]

Therefore, there exists y € X such that

S =y
k=l
. n
So, fm Dy, =y
k=1

m
on fm 2o, )=y

o, limx, =y ‘ | C ee—— (2)

=y

Now [, =] =[x, =z, +x,_, -]

ud

S
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Since {x,} is Cauchy sequence we have using (2) -
},iiﬁl!xm -y|<0ie. lim Ix, -y|=0ie. limx, =yeX.

Thus the Cauchy sequence {x,, } is convergent. Hence X'is complete.

22.5. Illustrative Examples
22.5.1. Example. Show that R" is a linear space with usual coordinate addition and scalar mtdtil;lication.
Solution. Let x = (x,,x2 X, ) y= ( V1>V, e y,,)

and z= (z,,zzﬂ,'...,z,,).

Here addition and scalar multiplication are defined as x+ y = (x, Y%y F Yy Xy F yn)

and /ch =(Ax,Ax,,...,Ax,) forany 1eR.

Then we have

i) x+y Tz={X+ VXt Vasen X, +J’n) (z,,zz, »Z, )

(%
(5 + 3+ 2( x2+y2)+zz, (%, +yn)+z) |

|

(x+ (2 )%+ (0, + 2) s %, + (3, + 2, ))
(:

xpxz’ ,JC) (yl+zl’y2+22’ ,y”'*'Z)

=x+(y+2z)

1l

) x+y=(0+Y,%+VasenX, +3,)
= (1 + X5 s+ Xgserrs Yy %,)
=y+x
B 0=(0,0,.0)€ X
x+0=(x+0,x,+0,...,x, +0) = (x,,xzf..,lx,,) = X.
) —x=(~-x,-%,..,~%,)€X and
x+(=x)= (%, = %, %, = %000, X, = %,) =(0,0,...,0) = 0.
V) Alx+y) | '
= A%, + Y% + Ypseon Xy + V)
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=(Ax + Ay, A%, + Ayypes Ax, + Ay,)
= (A% Ay A3, )+ (Ay Ay n Ay,
=}.(x,,xz,...,x,,)+A(yl,'yz,...,yn)
=Ax+Ay
| ) (A+u)x
=(/i+ﬂ)(xl,x2,...,x”)
(s (A ) (B 1))
=(Ax, + ux,, Ax, + fXy ey A, + i)
= (Vzlx,,/lxz,...‘, Ax, )+ (ux,, bix,..., px,)
= (% Xysers X, )+ 2 (X, X0 X, )

=Ax+ pux

vil) A (ux)
= l(ﬂ(x,,xz,...,x,,))
= l(,ux,,uxz,...,,ux,,)

=(A(px), A(ux,),r A(pix,))
= ()%, (At) xy.ees (M) x,)
= (A4) (%, Xpp.en x,)
= (Au)x
viii) - Here the multiplicative identity of the field is 1 and
ix=1(x,,x2,...,xn)
= (1x, 1xy,..., 1, )
= (% %5 %,)
=x

Thus R"is a linear space.
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22.5.2. Example. Show that the set of all m x n matrices is a linear space with matrix addition and scalar
multiplication.
Solution.Let 4=[a,] ,B=[b,]  andC=[c,] and AueR.

The matrix addition and scalar multiplication are defined as

a+fay 4], md 24=[ia, ],

We have

) (4+B)+C=[q, +by]+[cy:l=[(ay +b,,)+c,,]

- =[a,+(b,+¢,)]=[a,]+[8, +e;]= 4+(B+C)
il A+B=[a0+b,,]=[b,,+a,,]=3u
i)  Let 0 be zero matrix of 6rder mXn. Then
A+O=[a,j +0]=[a,j]=A

%) Weknow, ~4 =[-a,]~ 4+(-4)=[q, +(—a”)]=0

9 A(4+B)=A[a,+8,]=[Ale, +,)]=[Aa, +28,]
=[Aa, |+[ 46, ]=A[a, ]+ A[b, ]= A4+ AB

Vi) (/l+;t)A=(2+ﬂ)[ay]=[(/l+y)ay]é[ﬂa”+;ta,j]
- =[Aa,]+[ua, )= A[a, |+ u[a,]= 14+ p4

@ aut)=2fa] -2k

 [A(ua)]=[(w)a, )= () e, ]= (A}

14=1[a,]=[1a,]=[a,]=4

" Thusthesetofall m x » matrices is a linear space with respect to matrix addition and scalar multiplication.

&
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22.5.3. Example. Show that the transformation 7:%° -, g? defined by T (x,x,, x,)=(x,x,) for all
X,,%;,%; € R isalinear transformation. | B
Solution : Let x = (x,x,,x,) and y = (% %25¥;) beany eiemcn’ts of RPand A, ué R,
Now T'(Ax+ uy)
=T[/l(x,,xz,xs)—i»u(y,,yz,ya)] |
= T[(/lx, + 1y, Axy + 1y,, A%, +,uy3)J
= (Ax + ay,, Axy + iy, )
= (/lx,,/lxz)+(,uy,,,uy2)
=A%, %)+ 4(n,,)
= /lT(x,,xz,x3)+/J'(y,,yz,y_,,)
= ATx + uly
22.5.3. Example. Show that the transformation 7; g* — g? defined by T'(x, ,xé) =(0,x,) is a linear
transformation - |
Solution. Let x = (x,,x,),y =(»,,) be elements of R2and A, HER.
Now T (Ax+ uy)
= T[/l(x,,xz)+ﬂ(y1,.1’2)]
=T[(Ax, + uy, Ax, + uy, )]
=(0,Ax, + uy,)
=(0,4x,)+(0, uy,)
= A(0,5,)+ 4(0,,)
= AT (x,,%,)+ 4T (v, ;)
=2Tx +uTy.
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22.5.4. Example Let X be the linear space of all bdunded continuous real functions f{x) defined on the closed
interval I=[a, b]. Prove that the mapping 7': X — R defined by

T(f)= . f(x)dx isalinear functional.
Solution. Here T(f)= f: f(x)dx.

Let f,ge X and A,z € R. Then
T(Af +ug)= [, (Af + g)(x)dx
=J-:[/l (%) + pg(x)]ax

= Af! f(x)dde+ [, g (x)
=ATf + uTg |
22.55. Example : Let R" be n-dimensional real linear space and 7': R” — R be defined by
T (%3 X500 %, ) = By, + By, +.t b;,x,, forall (x;,%,,...,x,) € R" where
Bi,b,,..,b, are fixed real members. Show that T'is a linear functional.
Solution. x = (x,,X,....%, ), ¥ = (¥, 2,5, )€ R" and A, € R.
Then T(Ax+ py)
= T[).(x,,x,,...,x,,)+ ,u(yl,yz,...,y,,)]
=T[(Ax, + 4y, A%, + 5.0 A%, +,uy,,)] |
= b, (Ax, + py,) + b, (Ax, + Uy, )+t b, (Ax, + uy,)
= A(bx, +b,x, +...+b,,x,,)+,z.e('b,yl +by, +..+b,,)
= ATx + uTy.
Hence T'is a linear functional.

22.5.6 Example. Prove that R” is a nls with the norm

=§{?‘f‘

“(x,,xz,...,xn)
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Solution. Let x=(x,x,,..., x,),y= (5 H25eeen y,,) be any member of R"and 4 be any real number.

=i,xj!20
J=1

) Then "x“ = “(xl ’xz’""xn)

) x+y

= "(x,,xz,---,x,,)"'(.}’vyz""’yn)

="(x, TH Xyt Yyse X, +y”)

= Z‘le +,y/,

Slﬁ;(leJ’,ny

J=

-ShbsSh|
= <l + 71

Thus [+ ] < lxf-+ ]

i)y [Ax]= "/l (%1 %5000 %, ) [ = "(/lx,, AXyyeris AX, )n

= Sl =S s =1

v H=0=|(x.x....x,) =0=>12:l|x,l=0=>lx,~l=0 forj=1,2,..n

=x,=0 forj=1,2, wn

= (x5 %,.0%,) = (0,0,...,0)

=>x=0
Hence the result.

22.5.7 Example. Prove that C[a,b] is a nls with the norm

() ()

= max
astsbh
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Solution. Letx =x (), y=(f) and 4 be any real number.

Then we have

) M=) =maxle()z0

D ey =[x )+ ()

= max | (1) + y ()

< max {|x(e)|+|» o}

< {maxle O} + {maxl )}
A+ |

Thus |}x + y| < |x] +|»]
i A= |Ax ()] = max|Ax () = max| 4}x (1)

asish astsh

=[Amax|x () =12 ||

astsh

v |H=0= %Ix(z‘)‘ = 0= x(f)= 0Vt €[a,b]

=x=0

Hence ||| = max |x(t)l is anorm of the linear spaée Cla, bli.e.Cla, b]isanis.

Note: In module 21 we have already shown that C[a, b] is complete. Hence C[a, 8] is a complete nisi.e.a
Banach space.

22.6. Summary. In this module a very important part of functional analysis viz. normed linear space has been
defined. A complete normed linear space is called Banach space. Some theorems have been deduced and exaxhples

are given to illustrate them.

22.7. Self Assessment Questions

1. Show thatthe set ofall real numbers isareal linear space.

Directorate of Distance Education | , 215



F jonal Analysi. ‘
UNCHLONAL ARQLYSIS .ottt essssss e s ese e sasssesssenes s st sesese e e sses st seeesee e ese oo

10.

11.

12..

13.

14.

216

| “(xlaxzw-:fxn)

Show that the set of all complex numbers is a complex linear space.
Show that for w1y positive integer » the set C" of all n-tuples (z1 32y 50ees z,,) is acomplex linear space.
Show that the set S of all sequences {x, } ofreal numbers is areal linear space with the scalar multiplication
and addition as
A} ={ax,} and {x,}+{5,}={x, + 2}
Show that the set P, of all polynomials of degree < » isalinear space.
Show that the set of all real valued functions of real variables is a linear space thh the usual point wise
addition and scalar multiplication. |
Show that the mapping 7. g — g? defined by
T(%,,%,) = (kx,, kx, ) where kis a fixed constant is a linear mapping.
Show that the operator 7 : g2 5 R? defined by
T(x.,x,)=(x,, ) isalinear transform.
Show that the operator 7'; g2 —y R? defined by
T(x,,x,)=(x,,0) isalinear operator.

Let P be the real linear space of the polynomials p(x) with real coefficients defined on the closed interval

is a linear mapping.

[0,1]. Show that the mapping T: P — P definedby T p(x) = ’;ii

'Show that R” is a nls with

= Ex,’ -asnorm.
=i .

Show that R" is a nls with

"(xl’x2v"’xn) = m?xlle as norm.

{x” }

Show that the set of all convergent sequences ‘ { X, } is a nls with the norm as l

= suplx,, l

{=}

Show that the set of all null sequences {x,, } is a nls with norm as '

| = sup|x, .
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22.8. Suggeqted Books for further reading:
1. Functional Analysis with Application: B Choudhary and Sudarsan Nanda; Wiley Eastern Limited
2.  Elements of Functional Analys1s BK Lalnn, World Press
'3, Introductory Functional Analysis with Applications: Erwin Kreyszig; John Wiley & Sons
4.  Introduction to Functional Analysis for Scientists and Technologists: BZ Vulikh; Pergamon Press
5. Functional Analysis : JN. Sharma & A R, Vasishtha; Krishna Prakashan Mandir
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; - PARTI
Paper-II , T L Group-B
Module No. - 23 |
| Functional Analysis
(Basic Theorems of Nomed Linear Space and Banach Space)

Module Structure :

23.1 Introduction

23.2 Objective

23.3 Bounded Linear Transformations
23.4 Hahn-Banach Theorem

23.5 Open Mapping Theorem

23.6 Closed Graph Theorem.

23.7 Uniform Boundedness Theorem

23.8 Summary

23.9 SelfAssessment Questions

23.10 Suggested Books for further reading.

23.1 Introduction A

The four theorems viz Hahn-Banach theorem, Open mapping theorem, Closed graph theorem and Uniform
boundedness theorem are considered as the comerstone of functional analysis and so they are called as fundamental
theorems of functional analysis. The Hahn-Banach theorem is an extension theorem for linear functional. This
theorem is one of the most important theorem in connection with bounded linear operators. This theorem characterizes



Module No. 23 : Basic Theorems of Nomed Linear Space and Banach Space

......................................

the extent to which values of linear functional can be preassigned. This theorem was discovered by H. Hahn (1927)
and was rediscovered in more general form by S. Banach (1929). In an extension problem a mathematical object
defined on a subset M of a given set X is considered and the aim is to extend the object from Mo the entire set X
in such a way that certain basic properties of the object continue to hold for the extended object. In the Hahn-
Banach theorem, the object to be extended is a linear functional defined on a subspace M of a linear épace Xand
has a certain boundedness property formulated in terms of sublinear functional.

"The second fundamental theorem is the open mapping theorem. In this theorem we need open mapping and
complete normed linear space. The open mapping theorem exhibits the reason why completeness of nls are more
satisfactory than incomplete nls. This theorem gives conditions under which a bounded linear operator is an open
mapping. This theorem also gives conditions under which the inverse of a bounded linear operator is bounded.

~ Thethird fandamental theorem of functional analysis is the closed graph theorem. The closed linear operators
have practical importance and so analysts have to use these operators frequently. Closed graph theorem is connected
with closed linear operators defined with domain and range as Banach spaces. This theorem gives the sufficient
conditions under which a closed linear operator on a Banach space is bounded. |

The fourth and last fundamental theorem is the Uniform boundedness theorem or umfrom boundedness
principle. This theorem was discovered by S. Banach and H. Steinhaus (1927) and is of great importance. In
functional analysis there are many instances of results related to this theorem. This theorem also requires the
completeness of normed linear space. |

All these four fundamental theorems charactenze some of thc most nnportant properties of Banach spaces
which normed linear spaces may not have in general.

The open mapping theorem, the closed graphy theorem and uniform boundedness theorem are obtained
from a common source viz. Baire’s category theorem, Baire’s category theorem has various other applications also

in functional analysis. However in this module we only state this Baire’s category theorem and use it to prove these

important theorems.

23.2. Objectives
The objective of this module is to study the four fundamental theorems of functional analysis viz Hahn-

Banach theorem, Open mapping theorem, Closed graphy theorem and Uhiform boundedness theorem. Throughout
analysis many instances are there related to these fundamental theorems. Applications of Hahn-Banach theorem

are given here in details. Other theorems and related results are discussed.
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22.3. Bounded Linear Transformation
22.3.1. Definition. Bounded linear transformation

Let Xand Y'be normed linear spacesand T : ¥ — ¥ bea linear operator. The linear operator T'is said to be

bounded if there is a positive real number Msuch that
x| s Mx| forall xe X.

We note that the norm [|x]| is of the space X and the norm |[75] is of the space Y. For simplicity we denote
both norms by the same symbol ||{|. Also we note that if |x|| < & then |Tx]| < Mk. Thus a bounded linear operator
maps a bounded set to a bounded set. ‘

Itis very important to remember that the definition of bounded functiori in real analysis is different from this
definition. In real analysis the range of a bounded function is bounded but here image of any bounded set is

bounded.

22.3.2. Definition. Norm of a bounded linear opetat()r

Let T: X — Y beabounded linear operator from nls Xto nls ¥, Then there exists M>0 such that
|Tx|| < M |x] forall x € X.

ll I

Forall x # 0 we thus have "" "” < M. This shows that supi—! "xu exists. Norm of Tis definedas

|7

7]/ = sup = ]

(Itis called norm of 7as we shall soon prove that it satisfies all axioms of norm)

As ||| is the supremum of all ﬂu%‘ﬁ » we have forall non zero x € X, ""%;,ﬂ || ie. || < |7 x| -

Forx=0wehave Tx =T0=0 . |Tx| = 0. Also |lx]| =[0] = 0. ... |T| = ||T]| | ]| for x = 0.
Thus |[Tx| < |T]|lx] for all x € X. | _ '
Henceif 7: ¥ — Y isabounded linear Operator’then we have
Nzl <|Tl ] forall xe X.
- Analtemative definition of ||T|| is given below.
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Definition. Norm of a bounded linear operator T’ ;‘ X — Y may be defined as
T)= Tx|.
|71 =suelz|

This is because

Tx -»sup

CIE
"T" sup "x" P

=sup|(Tx’|| where x’ =
W 1" | u “

[Mm““““”

=sup I

22.3.3 Examples of Linear Operators
1. Let X be a nls. The identity operator J: X — X defined by x=x forall x€ X isa bounded linear
operator as | Ix| = x| = 1]}x| forall x€ X. |
2.  Zerooperatordefined 9: X —» X by fx=0 forall xe X is abounded lmear operator as
|6x] =]o] =0 <1x| forall x& X.

3.  Let Xbe anls of all polynomials defmed on [0, 1] with norm given by "x" = %as’f Ix (t )[ Let T be the

dx(t)

differentiation operator T'defined on X by Tx(t)= — Then T'is linear but not bounded. This is shown below.

Let x, (t)=¢" where nis positive integer.

Then [, = max|x, (¢) = max}¢"| =1
and Tx -——g-l dt =m"!
o7, = max f”“ =n

~ So li,‘.llg |7x,] does not exist. Hence Tis not bounded.
i o
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4. Lettheintegral operator
T:C[0,1]— C[0,1] be defined by

Tx(t)= J: k(t,5)x(s)ds where k (1, ) is a given continuous function on the closed square
[0,1]x]0,1]. ' |
Then T'is linear. We show that T'is bounded.
Here k (1, 5) is continuous function on the closed square [0,1]x[0,1]. Soitis bounded i.e. there exists M>0

such that |k (¢, s)| < M forall (1,s) €[0,1]x[0,1].

Now [¢(r) < max|x(r)=|. e e (1)

Hence "Txﬂ = max , J: k(t, s)x(s)ds!

< max f ,k(t s)“x(s)lds

< maxf M x|ds [by (1))
= Mx]

Le. “Tx" < M"xu for all xe C[O 1]

Thus T'is bounded v

We now only state the following important theorem which shows that ina finite dimensional s boundedness

of linear operator is always assured.

22.3.4. Theorem. Ifanormed linear space X is finite dimensional, then every linear operator on X is bounded.
We now prove the following theorem which asserts that for a linear transformation continuity and boundedness |
are equivalent. Also, we show that for a linear transformation continuity at one point assures the continuiity at every

point,

22.3.5. Theorem.Let 77: ¥ — Y bealinear operator whereX and Yare normed lmear spaces 'Ihen prove that

)  Tiscontinuousifand only if T is bounded
i)  IfTiscontinuous atasingle pomt of X then it is continuous at every other points of X.
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Proof.

I7x|
i)  LetT:X - Y bebounded linear operator and x_ be any point of X. Then i‘:gll"‘;l‘lﬂ exists and is |T].

Also we have
[z < |7 ll|x] forall x € x.
For any given £ >0 we take 6 = H;H
Now, "T x—-Tx, "

=7 (%~ x,)| [as Tis linear]

|| [lx- x| [as T'is bounded].
Thus for [Jx— x| < & we get |Tx~Tx,|<[T|6=¢.
This shows that 7'is continuous at x,. Butx, is arbitrary.
Hence Tis continuous over X. _
Conversely, we assume that T'is continuous over X.
‘Then Tis continuous at any arBitrary point x, € X.
.~ Forgiven g> o‘ thereisa & > 0 such that
|73~ Tx, | < & whenever [|x~x,|| < 8.

Let y be any point of X' and we choose x as

w|e-Tw|| < €

o Ire-w<e
)

“Directorate of Distance Education

Oy
X=X, +7.
"l

Then [[x - x, “ =

lﬁz
y

or, <&
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0
—Tyl<€
% ,M
]
=Tyl < £
S
£
on IB1<Zhl

This istrue forall y € X. Hence T'is bounded.
i)  LetTbecontinuous at the particular point ¢ of X. Then from the proof of second part of (i) of follbws that
Tis bounded over X, Hence from the first part of ({) we conclude that T'is continuous over X.
" However, adirect proof of (i) is as follows. »
Let T'be continuous at the particular point £ of X and x be any point of X, Let {x ,,} be ény sequence
convergingtoxi.e. x, — x as g — oo,
Then x, ~x+&—> & as n— oo,
Since T'is continuous at £ we have
T(x, ~x+f);+T§ as n— e
Now T'is linear.
So TIx,~Tx+TE-TE as n—> o
o, Ix,—Txasn-—e
i.e. T'is continuous at x. Since x is any point of X, T'is continuous on X,
22.3.6 Theorem. If X'and Y are normed linear spaces, then B (X Y), the set of all bounded linear transformations
1 from Xinto Y, is anormed linear space with pointwise linear operations. v
Proof. Here B (X, Y) is the set of the bounded linear transformations from X'into Y, The vector addition and scalar
multiplications are here given by | | '
(h+T)x=Tx+Tx
(AT)x = A(Tx)
Then we have |
) [(B+T)+L)x=(G+ )5+ Tx=Tx + Lx+ T
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=Tx+(L+%)x=[L+(5+T)]
S(MAL)+L =T +(5,+T,)
i) (G+T)x=Tx+Tx=Tx+Tx=(T,+T)x
Sh+L =0 +T
m) For the zero operator g we have
(T+O)x=Tx+0x=Tx+0=Tx -

“T+6=T :
iv) For T we have (-T) such that

[T+(~T)]x=Tx+(~T)x=Tx~Tx=0=6x
“T+(-T)=86
0 [AG+5)]x=A[(5+1)x]= AT+ Tx)
= A(Tw)+ A(T3) = (AT)x+ (47,
= (AT +AT,)x
WAL +T) = AT, + AT,
Vi) [(A+4)T]x=(A+p)(Tx)= A(Tx)+ u(Tx)
=(AT)x+(uT)x = (AT + uT)x
S (A+ p)T = AT + uT.
vii) [/l(,uT)]x = /l[(,uT)x] = /l[,u(Tx)] =(Au)Tx = [(zl,u)T]x
s A(UT) = (Ap)T
viii)  For the scalar 1 we have
(IT)x=1(Tx)=Tx
~AT=T.
Hence B (X, ) is a linear space.

We now show that for T € B(X,Y) ® 7]

isthenorm of T'i.e. |T]| = ﬁle"Txu | s e )]
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From (1) we have obviously ||T]| > 0.
For 7,,T, € B(X,Y) we have
|7+,

- =sup(5+7,)s]

=sup|lix+ T

<sup{| 7]+ 7]}
< 7, ' + T, :
sup|Zix|-+sup|T;]
=[5l +I%|
|+ o) s|nl+Iz)
Again forany scalar A and T € B(X,Y) wehave

A7)
=sup|(47)]
=sup|A(7x)].

- =supld]

=|A
[Alsup|r]

=} Irl

Lastly, let [T} = 0. Then sup=- o " “

Il
This implies [|Tx]| = 0 forall x # 0
or, Tx=0fora11 x#0
NowTo=0 .. Tx=0forall xe€ X. So T =0,

- Hence B(X, ¥) is anormed linear space.
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22.3.7. Thoerem. If Y'is a Banach space thenso is B(X, 1)
Proof. Let ¥ be complete. We are to show that B (X, Y) iscomplete.

Let { T;,} be any Cauchy sequence in B (X, Y).

Now for each x € B(.X,Y) we have

[T =|(T, - T) | <7 T = 0 a5 mn—> oo

~.{T,x} isa Cauchy sequencein Y foreach x ¢ X,’

Since ¥ is complete, thereis y € ¥ suchthat T,x — y €Y as n — oo, Thus foreach x ¢ X thereis
y€Y suchthat 7,x — y as n— oo, This determines an operator 7': X — ¥ suchthat Tx = y. Sowe have
T,x - Tx foreach xe X, | D)

Now, T;,(A‘x, +4,%,)= AT, % + ATx,. | | o N

Takinglixﬁit as  — oo we have

T (Ax +A4x,)= ATx + A4Tx,.
Hence T'is linear. We now show that 7'is bounded.

. We have <|r, -7, — 0 as mn— oo

e, {

As set of all real numbers is complete {"71, |} is convergent and so itis bounded. Let |7, | < M forall n.

T,

T,

} is a Cauchy sequence of real numbers.

Z,

From(1) 7x=lim7x

lim7 x

n
n—300

R

=lim|Tx| [ is continuous]

f—=yo0

< tim|r| ]

n—yoa

MmO
This is true forall x ¢ x. Hence Tis bounded. Thus 7 & B(X,Y).

We now show that lim7,, =T
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For ||x||=1we have

[7x-TA =\, - 1) sl -l A=l -2 ©)

Since {7, } is Cauchy, for given ¢ > 0 there exist n, such that

“7:, -—7;,“ <& forall m,n2n,
.. For m,n2 n, we have from (3)

ITx-T,x| <& J )
Keeping n fixed and letting m — oo we get from (4) using (1)
|7, - T < € for all n> n, and for all |2 =1 EE— 5)
Now .~ Tl=s0plt, T = sl -7

Thus by (5) we have
'lgg T, =T i.e. the Cauchy sequence { 7;,} is convergent in B (X, ¥). Hence B (X, Y) is complete.

T,~T)| <& forall n>n,

Remark : From above theorem it follows that B (X), the set of all bounded linear operators from n/s X ihto Xisa
nls. Also if X'is a Banach space then B (X) is also so. Since the set of real numbers is complete we have X ‘; the
set of all bounded linear functionals defined on anls X, isa Banach space. ' o

We note that X" is always a Banach space even if X'is not complete. The Banach space X" is called the
coﬁgujate or dual space of X.

22.4, Hahn-Banach Theorem A ; . .

Hanh-Banach theorem is oné of the most fundamental theorem in functional analysis. We have seen that X
is a Banach space. But if X'is a non zero normed linear space, an important and natural question arises whether
there are any nonzero element in X”. This question is answered by the Hahn-Banach theorem in the affirmative. So
this theorem yields the existence of nontrivial continuous linear functional on a normed linear space. A large portion
of functional analysis is developed with the help of this theorem. Also, it is an indispensable tool in the proofs of
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many important theorems of functional analysis. There are several forms of this famous theorem. Here we state
without proof'the extended form. |
22.4.1. Definition. Sublinear Functional _

Let X'be a real vector space. A real valued function p defined on X is called a sublinear functional if

p(x+y)s p(x)+ p(y) |

and p(Ax)sAp(x)

forall X,y € X and all positive real number A

We now state the Hahn Banach theorem.

22.4.2. Hahn-Banach Theorem : Let X be a real linear space and let Mbea linear subspace of X. Let pbea
sublinear functional defined on X and fbe a linear functional defined on M such that £ (x)< p(x) for every

x € M. Then thereisa linear functional g defined on X'suchthat g (x) = £ (x) forall x € M and g(¥)< p(x)
forall xe X.

There are many consequences of this Hahn-Banach theorem. Some of them are proved here.

22.4.3. Theorem. Let X be a real normed linear space and let Mbe alinear subspace of X.If f € M" thenthere
isa g € E* suchthat f(x)= g(x) forall x€ M and ||g] =]|f|[ |
Proof. We define a functional pon X’ by |

p(x)=1111

Then for x,y € X and any real number , we have
p(x+ )=+
<[ 71(1 + 1) toy triangle inequality]
=[ Al + 1A A
=p(x) +p(y)
ie. p(x+y)<p(x)+p(y)
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and  p(Ax)=| /] |Ax|
| =114 |
=|4lp(x)
Thus p is a sublinear functional on X,
For é.ny x€ M wehave ,
S ()3 f ()| <171 x| fasfis linear bounded functional]
- =pE) ’
* f(x)< p(x) forevery x e M.
Therefore, by Hahn-Banach theorem there existsa lmear funcuonal g definedon X suchthat
g(x)=f(x) forall xe M
and g (x) < p(x) forall x€ X.
From g(x)< p(x) wehave
g(xy<||f] || forall xe X.
g5 sl
or, -g(x)s|f] || forall xe X.
Ths lg(o) il bl fora e x |
This shows that g is bounded functional on Xand lell<|i7] R ( 1)
Ao gl =sup {22 X, o] =1)
> sup{’g(x)i xeM,|x||= 1}
= sup{'f(x)! :x€ M, |x||= 1} [ f(x)=g(x) forall xe M]
=|7] S
ie. gl =|/] - vesserisaserssnrens )
From (1) and (2) we have | =] /].
This completes the proof of the theorem.
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22.4.4. Theorem. Let X be a real normed ilinea.r space and M be linear subspace of X, If zZ€ X and
 dist(z,M)=d >0 then show that there exists & € X" suchthat g(M)={0},g(z)=d and |g|=1.
Proof. Let M, = {x+az:xe M,z € R}.
We now show that M, is a linear subspace of X.
Lét X, +z,%, + 0,z € M,.
Then (x1 + a,z)+ (x2 + a,z)
= (% +x,)+( + @)z € M,
and A(x+az)=(Ax)+(Aa)zeM,
The zero element of Xis o+ oz and so belongs to M,

If x+az € M, then (-x)+(-)z € M, such that (x+ az)+{(—x)+(—a)z} |
=o0+o0z
=0

Lastly 1(x+az)=1x+(l@)z=x+az. .
Thus M, is alinear subspace of X.
We define the functional fon M, by
flx+az) - ad. | U ¢ §
Then f[(x +az)+(x+ a,z) ] | | |
= [ +x)+(en +25)7]
=(e, +,)d [by(1)]
=oyd+0o,d
= f (% +az)+ f (% +@,2) [by(D)]
and f[A(x+az)] '
= f[(Ax)+(Aa)z]
=(Aa)d
= A(ad)
=Af (x+az)

.. fisalinear functional on M,.
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We now show that fis bounded linear functional on A,

Forany x+az e M, where x+az # 0 wehave

fctaz)  jod) _ jold 4
[l + oz [l + ozl |x+ oz lzlﬂu x+ 0]
d d | d

)

Now x + &z isany element of M,, soxis any element of Mand o, is any scalar. Hence ~ p isany element

)

—“1 x —
—(x+az)| |=+z
a a

of M

Since dist (z, M ) =d, we have 2 d

This gives- d <1 .'.MSI.
z_(__’i) e
a

az)

So, sup -[-(ii-——-:x+azeM,,x+az¢0 exists.
| x+az| -

Hence fis bounded linear functional on M, i.e. fe M",

From (2) we have
o f(x+az)
,"f"-sup{ [rrar] .x+az€M,,xf0_tz #0

= sup (d x),:—ZEM
z—o — s
o
d
d
=tie|f|]=t 3)
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Forany x e M wehave

S &)

=f(x+o02)

=od , ,

=0 - f(M)={0} | QT 4)
Also f(2)

=f(0+1z)

=1d

=die fz)=d - L e )

Thus Xis areal nls, M, is a linear subspace of Xand f € M’. Hencethereisa g e X" such that
f(x)=g(x)forall xe M, ‘

and || f]=]g]. [follows from Theorem 22.4.3]

Now M c M, ..g(M)=f(M)={0} [by(4)]

Since z € M, wehave g(z)= f(z)=d [by(5)]

Using (3) we have ||g| = || f]| =1.

Hence the theorem. ' _

We are now in a position to answer the famous question of existence of nonzero elementin X whenXisa

nonzero normed linear space.

22.4.5. Theorem. If X'is a nonzero normed linear space, then there exists a nonzero elementin x*,
Proof. Let X be a nonzero normed linear space. |

Let z be anonzero element of X.

Let M be the trivial subspace of Xi.e . M= {0}.

Then dist(z,M) = Iz~ 0| ="z[| =d (say).

Now in the proof of Theorem 22.4.4 just taking M={0} we have the proof of this theorem,
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22.4.6, Theorem, Let X'be a normed lincar space and z be a nonzero element of X. Then there exists a functional
g€ B suchthat g(z)=||z| and ||g|=1. |
Proof. Taking M = {0}, the trivial subspace of X, and following the proof of Theorem 22.4.4 we getthe proofof

this theorem.

23.5. Open Mapping Theorem

One of the four fundamental theorems of functional analysis is Open mapping theorem. It is connected with
the mapping which maps open set to open set. As open sets play vital role in functional analysis this mapping and
hence the Open mapping theorem has become fundamental theorem of functional analysis. In fact this theorem has
many hﬁportant applications. It states conditions under which a bounded linear operator is an open mapping, This
theorem also gives conditions under which the inverse of a bounded linear operator is bounded.

23.5.1. Definition. Let Xand ¥ be metric spaces. Then themapping 7: x —s y iscalled an open mapping if for
every open set in X the image is an openset in Yi.e. if image of every open set is open.

Note : We should note that a continuous mapping 7': X — ¥ hasthe property that for every open setin ¥,
the inverse image is an Open set in X. A continuous mapping may or may not be open mappinge. g8 T:R—>R
defined by Tx =2x+1 is continuous as well as open mapping. On theotherhand 7 R — R defined by Tx =sinx
is continuous but not open mapping since (0,27) isan open set but its image is not an open set, it is the closed set
[-1,1].

We now state without proof the following Lemma which we need for the proofof the open mapping theorem.

23.5.3. Lemma. Open Unit Ball
A bounded linear operator T from a Banach space X onto a Banach space Y has the property that the image

T(B,) of the open unit ball B, = B(0,1)c X contains an open ball about 0 ¢ .

23.5.4 Open Mapping Theorem | .
A bounded linear operator T from a Banach space X onto a Banach space Y is an open mapping. Hence if T

is bijective then 7! is continuous and bounded.
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Proof. We are to prove that image of every open set is open. Let 4 be any open set of X. We have to show
that 7(4) isan opensetin Y. _

Let y = Tx € T(4). Here A isopenand x € 4. Therefore 4 contains an open ball with centre x.

Hence 4 - x contains an open ball with centre 0. |

Let the radius of this ball be r.

o~ A -x contains the open ball B (0, 7)

1
Hence (A x) contains the open unit ball B (0; 1).

Then the Lemma22.5.3. unphes that T[ (4- x)] contains an open ball about 0. Usmg hnear propexty of

1
T, it follows that ;T (4-x) contains an open ball about 0

=>T(4-x) contains an open ball about 0
= T'(4)~Tx contains an open ball about 0
= T'(4) contains an open ball about T.
Since Tx is arbitrary, T'(4) is open.
- Hence T'is an open mapping.
Finally, let Tbe bijective. Then T~ : ¥ — X exists.Let ™' = 5. Then ST=T.We shall showthatS is
continuous.

Here §:Y — X.
Let G be any open set in X. Then the inverse image of G by Sis the set S~ (G) ie. T(G)

Since T'is an open mapping and G is an open set, we have T'(G) is an open seti.e. 57! (G) isanopen'set.
Thus inverse image of any open set in X’ by Si.e.by T'isanopensetin ¥. Hence T“ is continuous.

We now show that T+ is linear. R |

Let Y1» Y, beanyelementsof Yand T7'y, = x,,T"y2 = X,.

Then Tx, = y, and T, = y,. Since T'is linear for any scalars , B we have

T(ax + fx,)=aTx+ BTx, = ay, + By,
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=T ay+By,)=ax+Bx=al'y +aTy,
Hence T'is linear. v
We know that any linear continuous mapping is bounded, Here T s linear and continous, So, T is bounded.

23.6. Closed Graph Theorem
Closed graph theorem is connected with closed linear operator. This theorem states sufficient condition
under which a closed linear operator on a Banach space is bounded.
| We first define graph of an operator and then defined closed linear operator.

23.6.1. Definition. Graph of an Operator '
Let Xand ¥ be metric spaces. Then the graph of the operator 7': X — Y isthe subset G (T) of XxY defined
by ‘ '
G(T)= {((x,y):xe X,y= Tx)}.
23.6.2. Theorem. If X and Y are normed linear spaces, then XxY is also a normed linear space with the two
algebraic operations as
(51 24) + (320 3) = (3% + 3,31 + 33)
/1(._7&,’y) =(Ax,Ay)
and thenorm as

|G ) =bel+ 1.

Proof. Left as an exercise.

22.6.3. Definition. Closed Linear Operator
Let Xand Y be normed linear spaces T': X; — ¥ be a linear operator with domain X, , € X. ThenTis

called a closed linear operator if its graph
G(T)={(xy):xe X,,y=Tx}

is closed in the normed linear space XxY.
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23.6.4. Closed Graph Theorem. ‘
Let X and Y be Banach spaces and T :X, — Y beaclosed linear operator, where X; c X. ThenifX, is
closed in X, then the operator T'is bounded.
Proof. Here X'and ¥ are Banach spaces. We first show that X is also a Banach space. We know that XxYis a
normied linear space with the algebraic operations and norm defined by
(o) +(mm)=(n+mm+3) o
Axy)=(4x4y)
and | (x, y) = |+l+[1.
Let {(x,,, Y )} be any Cauchy sequence in XxY.
Then for given & > 0 there is positive integér n, such that

"(x.,.,ym)—(x,,,y,,) <¢ forall m,n2n,.

“(xm “XpsVm -y,,){ ‘
+ﬂym ‘y,,ll <& forall m,n2n,

<& forall m,nzn,

=[x, -,

=|x, -5, <& and |y, - y,| < & forall m,n2n, |
= {x,} and {,} are Cauchy sequencesinX'and Y respectively.

Now . Xand Y are complete. Hence thereare x ¢ X and y € y suchthat x, — x and y, —» y as p— oo,

Since € X and y e ¥ wehave (x,y)e X xY

Now [(x,,3,) - (. y)|=lx, = x| +]%, - | > 0as n— e |
(%,57,) = (%) as n — oo, i.e. the Cauchy sequence {(x,,, Y, )} is convergent in XxY. Hence XxYis
complete nis. i.e. a Banach space. | ' |
NowT:X, -7 is a closed linear opefator. So the graph G(7) is (;losed inXxY. Also X, isclosedinX..
Hence both G (T) and X, are complete. '
We now consider the mapping
P:G(T)> X, by
P(x,T5)=x. | o
We show now that P is linear. We have for any scalars 4,4,
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P{A1 (%, 7%, )+ 4 (xz,sz)}
= P{(A"n’lexx)""('{zxz:ﬂszi)}
=P {(’zlxl + szz,T (Ax)+T (A%, ))}
= P{(X,x‘ + A%, T (A, + Apx, ))} "
= Ax, + A%, '
= AP (x%,Tx )+ 4P(x,,Tx,)
This implies that P is linear. P is also bounded because
[P e T =] < ]+ s = s 7).
Also P(x,,Tx,) = P(x,,Tx,)
= X, =X, ‘
*. P is one-to-one. Obviously, it is onto. Thus P is bijective. |
Hence P7': X, — G(T') existsandisgivenby
P (x) = (x.Tx)
Since G(7) and X are complete, applying Open Mappmg Theorem we see that P! is bounded. Hence
there exists positive constant A/ such that
,P" () l SM|x| forall xe X,
I, 7)< M 2] forall x e X,
Now forany x € X, we have
Tt < e+l = ) < 2
Hence T'is bounded.

23.7. Uniform Boundedness Theorem '

 This theorem is the fourth fundamental theotem of functional analysis. There are many important applications
of this theorem. This theorem shows that under certain hypothesis the pointwise boundedness of bounded linear
operators implies boundedness in some stronger senée, namely, uniform boundedness. Before we state and prove
this famous theorem, we state Baire’s Category theorem which is needed for the proof ofthis fundamental theorem.
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23.7.1. Definition. Category. |
A subset M of ametric space Xis said to be
)  nowhere dense (or rare) in Xifits closure A/ hasno mtenor point.
i)  of first category (or meager) in Xif Mis the union of countably many sets each of which is nowhere
denseinX. o A
i) ofthe second category (or nonmeager) in X'if Mis not of first category in X.
We now state (without proof) fhe Baire’s Categoty Theorem.

23.7.2. Baire’s Category Theorem

If a metric space X is complete then it is of the second category ie. nonmeager in itself. Hence if Xis

complete and

X= UAk where 4, is closed for eachk=1, 2

k=l
then at least one 4, contains a nonempty open subset.
Using this Baire’s Category theorem we shall now state and prove the fouxth fundamental theotem of fiinctional

analysis viz. Uniform Boundedness Theorem.

23.7.3. Théorem. Uniform Boundedn_ess Theorem.

Let {T,} be asequence of bounded linear operators 7, : X — Y from a Banach space X into a normed

linear space V'such that {|7,x|} is bounded forevery x € X. Thenthe séquenge of norms {|7;|} is bounded.

<M, foralln=1,2,3,.... | N )

For every positive integer k we define 4, by
4, ={x:|T,x| s kfor all n=1,2,..} | - )
We now show that 4, is closed for each positive integer k.
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Lét & be any limit of 4, and the sequence {x,} ofA ,converges to ¢ . Then from the definition of 4, it follows

~ So,as j — oo this gives "7},{" S k. Thisimpliesthat £ € zik,

HenceA is closed subsét of X.

From (1) and (2) it follows that each X€ X belongs tosome 4,. Hence X = U 4.

k=l

Since Xis complete, each 4, is closed and X= UA,,

k=l

Baire’s Category theorem unphes that some A, contains an open ball, say, Bo B(xo, r) C 4,

Letx be any non zero element of X,

r | R | :
Weset z=x, +| — |x. , e
' (ﬂlxﬂ) 3

. Then "z - xo" = —’:- <r.~z€B,ie ze€ Ak; [by (3)].

 So, "Tz"<k foralln=1,2,.

AgamxoeB c:A ie.x, €4, So"Tx0"<k foralln= l 2

Now for alln=1,2,... we have

240

7.4
=”‘T,, {gil’fﬂ(zq,,)}

bx 31'."_""7;2 =T -

» [by (4)]

<2 s i)

S—U(k +ky)

........ @)
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ie. |74 < (i;k-‘-’-)"xﬂ foralln=1,2,...

Tx| ak
= l"x.?':" < —;o- foralln=1,2,.
= SUp -+ "T " f all

o [~y forelln=1.2..

= "7}, |< -;-°— foralln=1,2,...

23.8. Summary |

Al four fundamental theorems of functional analysis are introduced in this module. These theorems are

related with bounded linear transformations. We define this transformation fifst over nls and then define its norm,

Examples are given and related theorem are studied to have a clear understandmg of this operator. The Hahn-

Banach theorem is stated and its apphcatxons are shown, The other three fundamental theoresm are also proved.

© 23.9. Self Assessment Questions
1.
2.

Let N be a real normed linear space and suppose f(x)= =0 forall f € N'. Provethatx=0.
Let Nand N’ be normed linear spaces and let T'be a linear transformatxon of Ninto N’ If Tis continuous
at x, € N then show that T'is continuous at X, €N, (x2 # x,)
Let Tbea linear transformation of a normed linear space X into another normed linear space Y. Show that 7"
is bounded if and only if T'maps b(')undéd set in Xinto bounded setin Y.
If T'is a bounded linear operator such that its inverse T*! exists, prove that T'is also continuous.
If Tis the function on R? defined by | . |
T(x,y)=(xcos6- ysin@,xsind+ ycosd)
then show that T'is bounded linear transformation.
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6. _IfTisabounded linear functional'orra nls Xand {x,,} is Cauchy in X, then show that {T x,,} isa Cauchy

sequence.

23.10. Suggested books for further reading

1. Functional Analysis with Applications: B. Chaudhary and Sudarsan Nanda; Wiley Eastem anted
2. Elements of Functional Analysis : B.K. Lahiri; World Press. '

3.  Introductory Functional Analysis with Applications : Erwin Kreyszig; John Wiléy& Sons.

4. Functional Analysis : J.N. Sharma, A.R. Vasishtha; Krishna Prakashan Mandir.

242 | , ' * Directorate of Distance Education



M.Sc. Course
o in o
Applied Mathematics with Oceanology
| | and
Computer Programming

PARTI

Paper-1I Group-B
: Module No. - 24
Functional Analysis

~ (Inner Product Spocé and Hilbert Spéce)

oooooo

Module Structure :

24.1 Introduction =

24.2 Objective

24.3 Inner Product Space

24.4 Orthogonal and Orthonormal Sets

24.5 Riesz representation theorem

24.6 Bounded Linear Operators on Hilbert Space
24.7 Tlustrative Examples

24.8 Summary o

24.9 Self Assessment Questions

24.10 Reference.

24.1 Introduction
The linear spaceisa generahzatlon of vector space of two and three dimensions. The concept of length of'a

vector has been introduced in terms norm in a linear space. In a vector space of usual vector one more importaut
notion is there viz the notion of dot product With the help of dot product the concept of orthogonahty can be
introduced. Thls concept of dot product is missing is normed linear space. Hence the questlon arises whether the
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dot product and orthogonality can be introduced in arbitrary linear space, In fact, we show in this module that this
can be done and thus we define an inner product inalinear space..A linear space equipped with inner product will
be called an inner product space. It is shown here that the normed linear space is a special case of inner product
- space. Though we have first discussed the normed linear space (Module 22) and then inner product space (Module
24), historically the notion of inner product space was introduced before the notion of normed linear space.

24.2. Objectives o

We begin with the axiomatic definition of inner product space introduced by the famous mathematician J.
Von Neumann. A complete inner product space is called a Hilbert space in the name of the great German mathematician
D. Hilbert, The modern developments in Hilbert spaces are concerned largely with the theory of operators on the
spaces. The whole theory was initiated by the work of D. Hilbert (1912) on integral equaiions. The currexitly used
geometrical notation and terminology is analogous to that the Euclidean geometry. The generalization ofthe notions
of parallelogram law, Pythagorean theorem, Bessels inequality, Fourier series etc. have been discussed. The
decomposition of any element of the Hilbert space uniquely as the sum of two elements one from the closed
subspace and another from its complement is very important and interesting, The unique representation of bounded
linear functional on a Hilbert space in terms of inner product is realy amazing. The notion of adjoint operator and

theorems relating toit have been studied.

24.3. Inner-Product Space
24.3.1. Definition. Inner product space

Let X'be a linear space over the complex field C. Then X'is called an inner product space if there exists a

function (,): X x X — C which satisfies the following conditions :

i) (-x,y)=(}?§) for x,ye X

i) (Ax+py,z) = A(x,2)+u(3,2) for Aue Cix,y,ze X
i) (x,x)20forall xe X

%) (5,x)=0ifand only ifx =0.

Taking y =x in (i) we get (x,x) = (;,_‘x) forall x e X.

This shows that (¥, x) is a real number, |
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Also we have
(x, Ay + pz) = (Ay + pz, %) [by ()]
=205 x)+ a(zx) [by ()]
=23+ #(z%)
= Z(x,y)+ A(xz) Dby D).
Thus (@x + By, uz +yv)
=a(x,pz+ )+ B(y,pz+ 1)

= ofii(x,2)+ o (x,0)+ BE(y,2)+ B (»,0) |
Taking A = 0 = u we get from (i) that (ox + 0y, z) = o(x, y)+o(»z)

or, (0, 2) =0 + o or, (0, z) = 0 for any ze X,

Thus (0, x) =0 = (x, 0) forany x€ X.

24.3.2. Examples of inner-product spacés |
i) Reisareal innet-product space with the inner product
(%)= ; *iYj
where x= (%, %0000, )s Y = (¥ Vsees V) 04 %57, are real numbers.
)  Cisacomplex inner product épace with the inner product
(x.»)= 2‘1 ;¥
I=
where X = (%, %50, %, ), ¥ = (Dis Yaseors V) @0 X, 9 are complex numbers.
i) Thesequence space /, is an inner product space with the inner product
(x,y)= 2‘1 ¥,
‘,S

where x = {x,},y = {y,} and x,, ¥, arerealOrcomplex‘x;umbers.
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v)  Thesetofall real numbers R is an inner product space with the inner product

) =xy
Here we note that the inner product s the ordinary product.

24.3.3. Theorem (Cauchy-Schwarz inequality)
If Xis an inner product space and x, y € X, then l(x,‘ y)‘z =(xx)(»»)
Proof. Fory‘== 0 we have (x,y)=(x,0)=0 and (»»)=(0,0)=0
|(x, ) , =0= (xx)(y,y)ie. themequahtyholds
Let y#0 and ,1 eC. Thenwehave
0S(x=Apy,x-Ay)= (x x)-2 (x y) /l(y,x)-l-/u (y,y)
(%)= 2 (x, y) /I(x, )+Ml (»y)z0
(5.7)

This is true forany A € C. Taking A = G y)[ y#0]weget

R it I

) (ny)

G50 (3% )

o B o) >0
XX >’(x,y)’2 -
o, (x )——“—'(

|2 < (%) (39).
A linear space x becomes a nls if it is possible to define anorm in X; the same linear space becomes an inner

product space if it is possible to define an inner product s it. So question arises whether a linear space can be both

nis as well as inner product space. The following theorem gives the answer.
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24.3.4. Theorem. Every inner product space is a normed linear space.

Proof. Let Xbe an inner product space. Then forevery x € X we know that (x,x) is a real number and is

nonnegative. We define a function f : X — R by f (x)=(x x)% and show that this satisfies all axions of norm
function.

We have

D f(x)=(xxy220

D (x+y,x+y)=(xx)+(xy)+(x)+(y)
=(x,x)+(y,y)+(;c—,;)+(x,y)
= (x,x)+(y,y)+ 2 realpartof (x,y) ~ -
< (x,x)+(y,¥)+2|( x,y)|

| (x,x)+( Vs y)+2(x x y y)}/ [byCauchy—Schwarzmequahty]
= [(x, %Y+ (, y)%]

e (eprri<aieoa)t
| ie. f(x+y)Sf(x)+ f(y)
i) FOTanY/leCwehave “

(Ax, zlx) =7 (x, x) = I/?,lz(x,x) o
o, (Ax, ﬂx)% =|4|(x, x)y2 |
or, f(Ax)=[4]/(x)
M) (xx)Y2=0 |
= (x,x)=0
=x= 0
Thus f(x) satisfies all axioms of norm functlonandsowe denote 1tby "x“ ie. ﬂx“ f )=(x, x)}/ Hence

every inner product space isanormed lmear space thh norm deﬁned by "xﬂ =(x, x)}/
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Note. Using this norm function the Cauchy-Schwarz inequélity may be put in the form

wNskb | -

We know that every normed linear space is a metric space with the metric-d (x, y) = | - ||. Asevery inner
product space is normed linear space and as every noﬁned linear space isa inetric space, it follows that every inner
product space is a metric space with metric d(x, y)= "x - y" =(x-y,x- y))é

We now define Hilbert space. |

24.3.5. Definition. Hilbert Space

A complete inner product space with the metric defined by, d. (%y)=(x-y,x- y))é is called a Hilbert
space. '

As e;fery inner product space is normed lineat space it follows that every complete inner product space is
complete normed linear space ie. every Hllbert space is ayBaJ}ach space We have provéd that the norm function
defined in anormed linear space is a continuous function, Inﬂmé same manner it is now shown that the inner product
function defined in an inner product space is also acontinuous function. Thus we have the following theorem.
24.3.6. Theorem. In an inner product space, the inner product function is a continuous functioin,

Proof. Let X be an inner product space and x, y be any elements of X. Let ‘{x,,’} and { y,,} be sequehces in
Xsuchthat x, » xe X and y,,-—;yeXasn-—»oo.‘ | |

- Thenwe have -

(x';’ ’n)-(x’y),
.(x,,,y,,)-(x,,,y)-l-(x,,,y)-—(x,y),-

(%030 = ¥)+ (x, =%, )

<[, 3, =) +)(x, =%, ) o N
<[5l =+, -l [byCaﬁéhyschmiﬁeqwm o

—aﬂxn'0+0"yﬂ asn—oeo
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Hence (x,,,y,,)—(x,y){-——»bas n—yoo

ie. (x",y") - (x,y) as 71— oo

This shows that inner product function is a continuous function.

In elementary geometry, we know that the sum of the squares of the sides of a parallalogram isequal to the
sum of the squares of its diagonalsi.e. if ABCDisa parailelogram thenwe have
. AB*+BC?+CD*+ D4’ = AC* + BD’ | |
o, 2(4B*+BC?)=AC*+BD?, | D o

This law is known as parallelogram law.
This parallelogram law is also true for ordinary vectors as

|a+5|’ +‘E-—Er = 2(|2i]2 +|5]2) ,

Geometrically this gives

(o2 +[4 =2(joA +/om )

o, OC?+AB*=2(04*+0B")
Now we state and prove parallegram law -

" forinner product space

 24.3.7. Theorem. If x and y are elements Qf an inner product space X, then

o+ 3P +e= o =2(Jelf + )

Proof, We have ‘
e+ A +x =5l
=(x+y,x+y)+(x-y,x-y) | l
= (5,x)+ (52)+ () + (5 0)+ (5,3) - (6.2) = (2) + (7)
=v2(x,x)+2(y,y)' | |
=2 (Mz +yf ) Hence the theorem.
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24.3.8. Theorem. If x and y are elements of an inner ﬁrOduct space X then prove that
1y , . ,
(52) =3 {le+ A == oI + il + i -] o}
(Thisiscalled Polarization identity) |
Proof We have
bt ol = (e 3,4 3)= ()4 5+ 02)+(19) o -
—"x" +uyu +(x, )+(y,x) | o e (D
In (1) replacing yby-ywe get _
= =l o + (2 =9) + (=5,%)

=+ - () -(x) e s (2)
, In(l)replacmg yby iy we get : ’

el =l ol + () + (%)
=[P I =i y)+i(3,%)

=l + ~i(x ) +i(r.%) C ot A e 3)
In(3)replacmg1by—zweget ' S o N
= =[x +ﬂyﬂ +i(x,)-i(y.x) S S0

From (1), (2), (3)and (4) we get respecnvely
e+ =l +ofF + (5. )+(3:2)
= sF ==l - + (o 3)+ (x)
ibe+ ol =il +iloff +(5,0)-(30%)
il =l = =il =i + (5. 5)- (5,%)
Addingweget, x4y | yff + -+ - - lylt =4(x.)
e (5.3)= s+ o ~e- - +1Hx+'yﬂ -ife~ 'yll]

We have seen that every inner product space isa normed lmear space Isits converse true? Not always.
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Under certain condition a normed linear space becomes an inner product space, and that condition is the holding
of parallelogram law. We now state énd prove this theoreni.
24.3.9. Theorem. A Banach space is a Hilbert space if and only if the parallelogram low holds.

Pmof. For simplicity, we consider the Banach space to be real. We suppose thét in this Banhach space

parallelogram law holds. We introduce an inner productin Xby

1 o | |
(x, y)=z[l|x+}’"2 ~Jx= '] - p— )

We now verify one by one the axioms of inner product.

\_ 1 | 1
Wetave (55) =5 [+ 3l Iy == Z[be+ A - =5 ] = (5.2)
Also (x,x [le +af - llx of

=[] 0=} 20
4

Now (x,x)=0= |t =0=5 x| =0=>x=0.
Alsowhenx=0then o] =0 |aff =0 (59)=0
. vIt'remains to shéwthat ‘ a
(5 +50) = (5,0)+ (k009)
and (Ax,y)= A(x,y) where } isascalar. |
By parallelogram low, we have | o
Nur v+ +Hu+v—wf =2]u+ v + 2w’
and Ju—v+wf' +u-v-wf =2Ju- VII + 2M
On subtraction, we get : -
s+ v+l v =t ~f=v+f *llu ~v=uf’ =2fu+off -2
Using (1) we get (u +w,v)+ (u—w,v)=2(u,v)
This is true for any u, v, win X. _ |
 takingw=uwehave (2u,v)+(0,v)=2(u,v)
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o, (2uv)=2(uv) [ (o, v)=-}[no+vu’—_uo..vnjzo]

o (wtw,v)+ (- w,v)= (2u,v)

Letx,,xz,ybeelementszSettmgu+w =X, U—W=1x, andv-yweobtam

o)+ () =(m+x0p) )
We now show that (Ax, y) = A(x, ) |
where 4 isascaler. | i, 3)

In(2) we take x, = x, = x and obtain
20,5) = (25, 5) R
Now 3 (6, ) =2 %, 3) + (%, ) = (2%, ) + (x, ) = (2x+x, ) = (3, y)
4 (6 0)=3(% 1)+ (%, 3) = (3x, ) + (x, ) = Bx+x, ) = (4x, )
and so on. |
In general we thus have by indixétion that

n(x,y) = (nx,y) when n is any positive integer.

: 1 -
In (1) taking = forx we have (~) = 2 |-+ ff ~|-x- »|} ] = - [llx + - - -y ] ~(5)-
Ifnis any negative integer, let n=-m. Thenmisa positive mteger Hence

(nx, y) = (~mx, y) = ~(mx, y) = -m (x, ) = n (x, y).
So(Ax,y)= A (x,y)is true for any integer A, positive or negatlve

If A isany rational number, let 4 = -q*

p(%y)=(px,y)= ( (qx) y)=é(—’f]£_,vyJ |

—(x’J’) (-‘-I-x’ ) Thus(3)istrueforanyratidnal}1.

Then

 Finally, let A be any real number. Then there exists a squence f" of rational numbers such that 7, —Aas

n =) oo,
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Now for each r, we have

r(xy)=(r,x) - R ()
We have « .
n(xy)-A(xy)= ](r,, —z?.)(x,y)] =lr, —A|(x,y) > 0 as 1 oo, |
(%)= A(x.y) s n— e, |  E—— ®)
Again :
(% 7)~ (2,
[t 2)2.5)=

l .
= o+ s ~fo-sffes n >

=|(rx - Ax,y)

e = 2eoff -~ 2he-of |

s(rx )= (Axy)asn—ee 6
In (4) letting  — oo and using (5) and (6) we get -
A(x,y)=(Ax,y) i.e.(3)is true foranyreal 4.
This proves the theorem.

Note: Incase the Banach space is complex we have to take the inner product ofx x, Y3 as

(x y)= [ﬂx+yll b5k +1|Ix+wll =ille- evll]

- We now introduce uniformly convex space and prove a related theorem.
24.3.10. Definition. Uniformly Convex Space v : .
Let Xbe anormed linear space. Suppose forall £>0 and x,y € X suchthat |x|=|y|=1and |x-y|>¢

imply that %(x +y)

<1-& where & = &(¢) is independent of x and y and o <& <1, Then Xis said to be

uniformly convex. _ ;
The following theorem shows that every inner product space is uniformly convex.
24.3.11. Thorem. Every inner product space is umfommly convex. '
- Proof. Let Xbe any inner product spaceand €>0.
Let x,yeX, Hxll—-ﬂyu-l and ux-y"> e
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UsingparallelOgrém_lawwehave ,
x 2 2 2 2
x, +z-z" ol lE |2
2 2 2 2 2 2
2
o (552 =gt g bF -l
L1 &
2 2 4

L (e
=1-| = |2
)
: . 2
’Ihus,wecanﬁndanumber&:(%) ,0< & <1, suchthat

x+y

<1-6.
2

This completes the proof of the theorem.

24.4. Orthogonal and Orthonormal Sets ,

The inner product in an inner-product space is sumlar to scalar product or dot product in ordinary three
dimensional vector space. As the dot product gives the measure of angle in between two vectors, the inner product
in an ips also gives a measure of’ angle in between two elements of it. Similar to dot product two elements of an ips

will be orthogonal if the inner product between them is zero. This notion of orthogonality is introduced here.
24.4.1. Definition. Orthogonal elements ‘ :
Two elements x and y in an inner product space X are said to be orthogonal if the inner product between

themis zeroi.e.if (x, ) =0.Itisdenoted by x L y.

24.4.2. Definition, Orthogonal Set
A subset S of an inner product space X is said to be orthogonal set if x L y forall x,ye S and x# y.
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24.4.3. Definition. Orthonormal Set _
A subset S of an inner product space X is said to be orthonormal if x L y forall x # y;x,y € S and [x| =1

forevery xe S.
We now show that the famous Pythagorean theorem is true for an inner product space.

24.4.4. Theorem. Pythagorean theorem.
If {x,, Xyyees x,,} is an orthogonal subset of an inner product space then
B PRSI 1 Y Y o e Y i
Proof. We have
I+ %, + ot 3,
= (% + X+t X, % 2y F ot X,)
= (o, )+ (3, %, ) +...+ (%, x,)

+(x2,x,)+(x2,x2)+...+(x2,x,,‘)‘ .

+(x,,,x,)+(x,,,x2)+.~..+‘(x,,,x,,)

+0+0+...+(x,,x,) [ (x,,x,)= 0for alliii]

= (%, 3)+ (%5, %, ) + oo (x,,%,)

2

=l 4l + ot b,
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24.4.5. Definition. Complete orthogonal (or orthonormal) set

Anorthogonal (or orthonormal) set {e, } in the inner product space X is said to be complete if it is impossible

toadjoina vectoreto {e,} such that {{e, b e} is an orthogonal (or orthonormal) set.

Note : It can be proved that every norzero inner product space X contains a complete orthonormal set.

The following theorem shows the importance of complete orthonormal set in an inner product space.

24.4.6. Theorem.

Let {e,} be a nonvoid arbitrary orthonormal set in an inner product space X, Then the following four

conditions are equivalent :

D {e} iscomplete

i) xleforallj=x=0

i) xeX=x=Y (xe)e
i

) vex=f =Fwe)f

Proof. Let (i) be true i.e. {e,.} be complete. We are to prove (ii). If possible let (if) be false. Then there exists

x€ X,x#0 suchthat x L ¢, forall i. Nowwe deﬁneeby e =x/|x|. Then {{e‘r e} is an orthonormal set which

properly contains {e, }. This contradicts the completeness of {e,}. Hence (i7) is true. Therefore (i) implies (n)

256

Let(ij)betrueie. x Le, forall i=x=0.

Now forany ¢, of {¢,} we have forany x e x
(x-X(me)ese))
(e,)- 2 (xe)(ene,)
(s.e,)=(5¢,)(epe, )~ (ere,) = Ovi 5]
(% ef)'(x’ej)["' (e¢))= 1]

0

li
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R R T T R R Ly R L R R

Thus x— Y (x.¢)e, Le, forall/.
Hence by (if) we have x— Y (x,¢,)e, =0
ie x= E(x, e )e,. So (iif) is true.
. (if) implies (if).
Let (iif) be true i.e. forany x € X wehave x = 2 (x, e )e,
Then |«ff
= x)

(); (%) e,,z(x,e,)e,)

i

-2[2 %) (x,e,)(e,,e,)] |
= Z(x,e,)(r)(e,,e,)['.' (e,,_ej)= 0 for all f%j]

i

- Sse)(Fe)l: (oe)1]
S

Hence (iify implies (iv).

Finally, let (iv) be true. We are to show that (i) is true. If possible, let () be nottrue i.. {¢,} benot complete.

Then there exists ¢ € X with |J¢f =1 suchthat {{e.}.€} isan orthonormal set. Then e L ¢, foralli.
ie. (e.¢,)=0 foralli ' A e a1

Since (#v) is true we have

ﬂeﬂz = Zl(e’ ¢ )‘2

=20 oy (1)
=0
ic. Je] 0.
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This is a contraction, as [l¢] = 1.
Hence (i) is true. Thus (iv) implies ().
This completes the proof,

Remarks.

D Theseries x=}(x,¢,)e, isknownas Fourier series of xand (x,¢, ) are called Fourier coefficients
A Seres
of x.
i)  Theidentity |x|" = 3°|(x,¢,)[" isknownas Parseval’sidentity.
i o

In the following theorem we prove the Bessel’s inequality.

24.4.7. Theorem. If {¢;,¢,,...,¢, } isa finite orthonormal set in an inner product space Xand.x is any element of
X, then

Sse ) shf and

”

x- Z (x, ¢, )e, is orthogonal to e forallj=1,2,..,n.

=l

Proof, We have

i=l

2

=.(x~g";(x,e,)e,,x-i(x,e,je,)

i=1 J=1

=(x,x)—(x,§(x,ej)ej) [Z(x;e,)e,, )

el

{3 w0 o § () 3

i=]

=(x,x)- Z(x e )(x e ) Z(x,e,)(e,,x)
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[SweFo)oe)]
=l - (s, )
<k -3l f - Slesa) + 3
= - e

o Ifse,) <l
J=l

- This mequahty isknown as Bessel’s inequality.

2 2 e

-g(x,e,.)(;,_ejﬁg(x,e,)(x,é,)(e,,e,) [‘-’v(e,,ej)=0 for all i;;j]
(x’e;l){z ["' (e,,e,): 1]

For the second part we have for any e j (j=12,..,n)

(x~i(x,e,)e,,e,)

=]

(x.e,)- }":(x, e)(ene j)

il

x,e,)—(x,e,)(e,,ej)['.' (e,,ej)= Ofor all i # j]

(
=(x,ej)—(xsef)["' (ej,ej)= l]

=0

Hence ¥ - Z(x, e,)e, isorthogonal to ¢ forallj=1,2, ...n.

i=1

This proves the theorem.
24.5, Riesz representation theorem

~ Before proving Riesz representation theorem we first prove the following important theorem as aéorisequence :
of parallelogram law. This theorem has several applications. S ,
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24.5.1. Theorem. If M is a non empty, closed and convex set in a Hilbert space X, then there exists a unique

element in M of smallest norm. :
Proof. Let d =inf {|x]: x € M}. Then there existsa sequence {x,} in Msuch that |x,| = d as 1 — oo,

Using parallelogram law we get
X x, x| T
b - =20 20
2 2 2 2 2
2 2
X, =X Iy 2 1 2 fIx, +x
a = =_x +-~x - = m .........
e R AR e )
. . ' X, +x,
Since Misconvex and x,,x, € M, wehave 2 EM.
x +x |
Hence |<=—2 > d?, Thus (1) becomes

PR X Y O o
o fr -l <2l + 2l -4
Taking limit this gives

lim |lx, - x, | <24 +2d* -4d?

n,m—roe

or, lim|x -x[ <0

n,m-—}oc
or, n'l”i‘lll” Xn ™ Xm "2 =0
or, lim "x,, -X, " =0

Freardt
i.e. {x,} isa Cauchy sequence in M. |
Now Mis a closed subset of the complete space X. So Mis complete, hence there exists an element x e A/
such that lim x, = x. | | -
As the norm function is continuous we have

~limfx,|=d

Il =tim »,
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Thus we get the element x in M with smallest hoxm. ‘We now show that this element is unique.
If possible, let there be another y in Msuch that |y = d.
Therefore, x # y,x,y € M and |x]| =|y|=d.

Applymg parallelogram law we get
2
x+y
EH o2 42
- bl -F3
a d? | x+y
S—+—-d*|as|—=||2d|
22 [as 2 ]
=0
o, |x-y|=0
o, x-y=0

o, x=y.

This isacontradictionas x # y.

Hence the element in M'possessing smallest norm is unique. This completes the proof of the theorem.
Using this theorem we shall now prove the famous decomposition theorem. For this we need the following

deﬁnitions,

24.5.2. Definition. Orthogonal Complement
Let M be a subset of a Hilbert space X. The orthogonal complement of M s the set of the elements of X

which are orthogonal to every element of M. Itis denoted by M o

We have the following results. ,

)  Forevery subset Mof the Hilbert space, the orthogonal complement A is always a closed subSpacé
of X |

i) IfM={0}then M* =X

i) IfM=Xthen M* ={0}

iv) If M#{0} then M* #.X
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V)  Orthogonal complement of M+ is Mi.e. (M + )l =M.

We now prove the following decomposition theorem.

24.5.3. Theorem. If Mis a closed subspace of a Hilbert space Xand x € X, then there exists unique ¢lement y

inMandzin M* suchthatx=y+z

Proof. Letx be any element of X, We define the set S by
S={x-w:weM}.
Since Mis closed subspace of X, it follows that Sis a non empty closed convex subset of X. Hence from
theorem 24.5.1. there exists a unique element in S of the smallest norm. Let this unique element be z.
Since z € S, thereis ye M suchthatz=x-y s ¢))
Now let # be an element in M of norm one. Then |
z2—(z,®)u
= x-y-(zW)u
x—{y+ (2, u) u} | | o EE O )
Since y € M,u € M and Mis asubspace it follows that y + (z,z))u € M. Hence from (2), z—(z,u)u€S.

Since z has smallest norm in S we get
Il <]z~ (z.u)a]
o Jelf o= (u)uff
= (2~ (z.u)u, 2 (z,u)u)
=(2,2)~(z.(z u)u)~((z.u)u,2)+ ((z,6)u,(z,u)u)
=2 - (z.u)(z.0) - (z8) (0, 2) + (z.) (2.) (w, )
= [l ~[(zs )" = (zo) () (o) () [+ () = ol =1]
=[lf ~|(z.)"
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or, }(z,u)iz <0

or, [(zu)f<0

or, I z,u)| 0.

This implies that (z, #) = 0. Thus for any elementuofM with umt norm we have (z, u) 0.

Let v be any non-zero element of M. Then v/ M is an element of M with unit norm.

| |
.-.[z,ﬂ%ﬂ)-.:o or, m(;,v)=0 or, (z,0)=0

Hence z L v forany v € M. Thismeans z L M i.e. z€ M*.

Thusfrom(l)wehavex—y+zwhere zeM and zEM*.

For the uniqueness, let there be y*(# y) in Mand z’(# z) in M* suchthat x=y'+2’.

Then x=y+z=y’+z’ where y,y’e M and z,z’e€ M*. o

- We have then y-y' —z’-z. Since M and M* aresubspaces,y yeM and 2z --Z‘EMl But
y-y=7-z |

Therefore, y-y’ e M M* and Z-ze MOM*

As MONM* ={0} wesee y—y’=0and 2’ ~z=0 ie. yéy’ and 7=z

Thisisa contradictionas y’ # y and z" # 2. |

Hence the theorem.

We are now in a position to prove Reisz representation theorem.

24.54. Théorem. Riesz represntation theorem. - »

Iffis a bounded linear functional ona Hilbert space X, then there isa unique y € X such that f(x) = (x,»)
forevery x€ X. ' ‘

Proof. Since fis bounded linear functional, it is continuous.

Let M denote the kernel of fi.e. M ={xe X : f (x)=0}.

Hence M s a closed subspace of X.

Directorate of Distance Education - o . 263



FUNCHONGLANQIYSIS ....co.cooeoevrereressrrssrressrssssiossissssisssnsesessssssssnsssssssssssssesssess s e st eesee e e s esseeeeeeseo e

If M= X, then f(x)=0 for all xe X. Thus we-havéf(x)=0=(x, 0) for every x € X. This proves the
theorem. .

If M # X, there exist x’e X~ M and M* = {0}. For this x’ we have by Theorem 24.5.3 unique
ye€Mand ze M* suchthat x’ = y+z. Since z ¢ M we have f(z)#0. '

Let x be any element of X,
Thenwehaveas f(z)#0
(528} 12 1) 1te)- =0

: x
Therefore x-%é—z’—;ze M. Since ze M* wehave

(53-8 a1z 0

o, (=2)-763)
o, f()(z2)=f()(x2)
o LEm)
==
o f(1)=20xz)
JoF
Or, X}=|X —__5
(s d

5

o, f(x)=(x,y)where ¥= :I?;FZ

Thus f/(x) = (x,)) forevery xe X.
If possible let there exists y (;t y) such that f(x) = (x, ") for every x€ X. Then (v.y)= (x, ) for

every xe X
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................................................................................

or, (x,y-y')=0 forevery xe X.
choosing x = y— y’ wehave (y—y’,y-y)=0ie. y-y =0
i.e. y=y’. Thisisacontradictionas y’ # y. '

Hence the representation is unique. This completes the proof of the theorem.

24.6. Bounded Linear Operators on Hilbert Space
There are remarkable results relating bounded linear operators in Hilbert spaces. We shall first prove a
theorem on the basis of which adjoint operator is defined. This theorem is an outcome of direct application of the

Riesz representative theorem. _
Let B(X) be the set of all bounded linear operators from a Hilber space Xto itself.

24.6.1. Theorem. If T € B(.X) then there exists S € B (x )"such that
(Tx,) = (x, Sy) forall x,y€ X.
Proof. Forafixed y € X, wedefine thé functional ¢ : X -C by ¢(x)= (Tx, y) forall xe X,
Now for x,,x, € X and A4, 4, € C wehave ' '
0 (A% +4x,) = (T (Ax, + %), y)
=(ATx, + ATx,,y) [+ Tislinear]
=4 (T%,¥)+ 4 (Tx,, )
=A@ (% )+ 40 (x,)
This shqws that ¢ is linear. -
Again, |6 (x)| =|(Tx, »)
<|7+|ly| [by Cauchy Schwarz inequality]
<|I7| || || [ Tisbounded and linear]
o6 (x)| s M| forall x€ X where M =|T] ||
Thus ¢: X — C isabounded linear functional onX.
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Therefore, by Riesz representation theorem, there exists a unique z € X, suchthat ¢ (x)=(x,z) forall

xeX.
This process gives a unique z corresponding to fixed y of X.
i.e. this process defines an operator, say S, such that Sy =z.
Hence forall x,y € X we have

(Tx, y) = (x, Sy) o Divesseniee m
We now show that this §; X — X islinear. ‘

For y,,y, € X and A4, 4, € C wehave
(58 (43 + &3,)) = (T%, A3, + 4,)
| =2 (Te )+ 2 (Te, ,)
“ Ao+ A(e8)
= (%, 48,) +(x45,)
| = (A4S + 45,)
o, (%S(An+hy,)-ASy - 4Sy,)=0.
Thisistrue forall x € X. Hence taking
x=8(Ay+4y,) - ASy, - 4y, it follows that
S(Ayi+43,)= Ay, ~ 28y, =0
ie. S(Ay+4y,)=AS + A4,
Therefore, Sis linear. We now show that S is bounded.
In(1) pﬁttingx =Sy we have '
(79, 5)=(S, )
or, S =(1(sy).) -
<7 (sy)| 1] oy Cauchy Schwarz inequality]
SISy as Tis ounded tinear
SIS for sl ye x.
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Hence S: X — X isabounded linear operatbri.e. SeB(X).
If possible, let there be another S’ € B(X) suchthat (Tx, y)=(x,S%) forall x,y € X.
Then we have

(x,Sy)=(x,8%) forall x,y € X
o, (x,Sy—S%)=0 forall x,yeX.
Choosing x = Sy— S’y we have

(Sy-S%,Sy~S%)=0 forall ye X

= Sy-S%=0 forall ye X

= Sy-S’y forall ye X |

=5=5
This is a contradiction. Hence Sis unique.

This completes the proof.

24.6.2. Definition Adjoint Operator | |

Let T € B(X). The thereexistsaunique 7" € B(X) suchthat (T, y) = (x,7°y) forall x,y € X. This T*
is called the adjoint of 7 L

The following theorem gives some properties of adjoint operators.

24.6.3. Theorem. For T,T,,T, € B(X) and A e C the following properties are true
) (R+%) =T +T; | |
i) (AT) =AT"
i) (5,5) =%
M T=(r)=r

=|r|

jr°7| = |7l

T‘
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Proof. We first note that if (x, y) = (x, z) for all xze€ X
theny=z. This is proved as follows

¢ 9) = (x,2)
= (x%,3)-(x,2)=0
=(x,y-2)=0 .
As this is true for all x, choosing x =y —z we get (y—z, y —2) =0
This implies thaty -z =0 or,y=2z.
)  Forany x,ye X wehave
(x(@+5) ¥)=(@+1)x.5)
(4T )
=(Txy)+(Txy)
=(®Ty)+ (= Ty)
=(%Ty+Ly)
= (x,(T' + T;)y)
This s true forany x, y,e X. Hence (T +7 ) y=(17 +1;‘)y. "
TlnsxstmeforallyeX | o
Therefore, (T, +1,) =T + T}
i) Forany xe X and 4 e (C wehave
(7Y 5)=((a7)x.5)
=A(Tx,y)
=A(xT"y)
=(%A17)
Therefore (AT) y=2AT"y= (ZT')y. Thisistrue forall y e X.
Hence(AT) = A |
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i) Forany x,y€ X. wehave

(wtam) ) ={)=)

T, (1), »)

((
(
(Tz)
(o1
(x

s T (1))

TTy)

Thisis true forall x, y,e X. Therefore (TT, )‘ yv=_(Y;‘T2') y.Thisistrue forall ye X. |

Hence () =1, 1"

iv) For x,y,e X, we have
(s179)=(x(r") »)
o =(Txy)
=(»T%)
=(1y.2)

= (x’ Ty)
This is true forall x, y,e X. So T*y =Ty.. Ttus1strueforall yeX

Hence 7" =T.

v) Forany x,y,€ X wehave
(1%,9)=(xT"y).
Putting x =T"y we get,
(r(r"y).3)=(T"r.T5)
o, (T'y.T'y)= (T(T »)s )

IT yﬂ <uT (T'y “u YI¥] by Cauchy Schwarz mequahty]
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V)

ot

0

ot

(y)

o

0

ot

0

ot

From (1) and (2) we have |

|5 <k s A 1+ Tisbounded ndlinear

[*sA<lirl vl

[l<iri

Ty

-
~l=|r]

Iri=|z)]
I7l <] fwsing 1))
|=|r]

I

Vi) For I,T" € B(X) and x€ X we have

i)

-

T (m)|

<7z [+ T* isbounded and linear]

<[7*li7liA] 1. 7 is bounded and linear]

Hence ﬂT'T” <

I

Il

But |7 =|}7|. Therefore,

[rl<lef

For x e X wehave

IlTx"2 =(Tx,Tx)

270

= (x, T'T x) ,
< "x""T 'Tx" [by Cauchy Schwarz inequality]

=kl
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(r°T)]| I+
B

%14
%

<]

Al 5|

T'T

o, |mds|rT

Hence |7 < !

T°T|

o, |rf<lrT

From (1) and (2) [T =

IT'T

This completes the proof.
Some important operators are defined below.

24.6.4. Definitions. Let T € B(X ). Then
) Tiscalledselfadjoint or hermitianif T=T*
i)  Tiscallednormalif 7*T = TT*
i) Tiscalledunitaryif T°T = TT" = I (identity operator)
i)  Tiscalled positive operator if (Tx,x)2 0 forall xe X

We now prove some theorems relating the above defined operators.

24.6.5. Theorem. Forany '€ B(X),I"'T isapositive operator. -
Proof. For xe X we have o
(T'Tx, x) = (T* (Tx), x) = (T, Tx) =T xuz 20

Hence T"*T isapositive operator.
24.6.6. Theorem, The operator T & (B)(X) is self adjoint if and only.if (T%, x) is areal number for every x e X.

In particular, every positive operator is self adjoint.
Proof. Let Tbe selfadjoint i.e. 7° = T
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Then forany x € X we have
(Tx,x)=(%,T"x)
= (x,Tx)['.‘ T = T]
-
Hence (7%, x) is a real number.
Conversely, let ( Tx, x) be areal number forevery x e X.
We have | _ |
(T (e4y), x4p) = (T (0=p), x-p) + i (T (etiy), x+iy) — i (T (x~iy), x~iy)
= (Tx, x) + (Tx, ) + (T, ) + (T3, ) '
= (T, x) + (T%, 0 + (T, ©) - (B, y)
+i [(Tx, x) + (Tx, iy) + (T (iy), x) + (Tiy, )]
=i [(T%, %) = (T, ) + (T (), %) + (T, )]
=2(Tx,y) +2 (I, x) A
+i(Tx, x)+i-7 (Ix, p)+i* (Ty,x) +i-(Ty, »)
=T, x)+iT (Tx, ) + 2 (Ty, %) =i+ (T, y)
—4(Txy) |
ie. (T (e49), x49) = (T (v9), x9) + § (T (e+iy), xtiy) — i (T (o-iy), %-iy) =4(T%)) e ()
Taking conjugate and noting that (T, x) is real for all xeX ie. (fc?x) =(Tx,x) forall x& X we have
(T(x+2), (x4 )= (T (x=2), (2= )= i(T (x+i9), 5+ )
+(T (x-iy),x-iy)= 4(1—‘_x,;) =4(y,Tx)
Interchanging x and y we get

(T 040), y+x) = (T =), %) — i (T (r+ix), i) + i (T (y—ix), y—ix) = 4(x, T5)
o, (T (), xt9) = (T (o-p)s %-9) =1 (T (o), i (=) + i (T (o+iy), i (v-) = 465, T)
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o, (T(x+y),x+y)-(T(x~y),x~y)-i 4T (T (x—iy),x—iy)

+i(-—i)(:?)(T(x+iy),x+iy) =4(x,7y)
or, (T (), x+y) — (T (&), %) — i (T (x=iy), x-ip) + i (T e+ ), x+D) = 4%, ) e (2)
From (1) and (2) we see that
(Tx,y)=(x, Ty) forall x,ye X.
This shows that T = T"* and therefore T'is self-adjoint.

24.6.7. Theorem. If T, and 7, are self adjoint, then 7,7, is selfadjoint ifand only if 7\T,= T,T,
- Proof.Let7,and 7, be self adjoint ie.
=T and T, =T, e )]
We first assume that 7, T, is selfadjoint
ie. (L) =77,

From this we have
LT =17,
o, T,T; =TT, [by (D).
Now we assume that
LT, =T,
Using (1) we get from this
LT =17,

o, (L) =TF
ie. T\T, isselfadjoint.

This completes the proof of the theorem.

24.6.8. Theorem. If 7, and T, are normal operators such that each commutes with the adjoint of the other, then

T‘-i~T2 and Tl T2 are normal. |
Proof. We have I.7; =TT, and T,Ty =TT, ()
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[T =LT and I7; =TT i @
W eare to show thatand I,+T, and 7,7, are normal.
Now (L+TL)(G+L)
- =(G+L)(5+1y)
=TT +T,T + LT +T,T; | O 3)
and (L+L) (T +1;)
=(['+5)(7+T,)
=L+ L+ LT +T,T,
=N +T,T +TT; + T,T; [by (1) and (2) o e @)
From (3) and (4) we have |
(L+L)T+L) =(T+L) (4 +1,)
i.e. T,+T, as normal.
Again,
(IL)(AL)
=TL T
=1 (LT)1
=L(LT)E by (1)]
=(15)(zr)
=(BT)(R'E) by @)
=T, (L),
=T, (L'T)T; [by (1]
=(5T)(5)
=(IL) (1%)

- Hence T,T, is normal.
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24.6.9. Theorem. If T € B(X) is such that (7x, x) = 0 for all x, then 7= 0.
Proof. Forany x,y € X and &, B € C we have by hypothesis |

(T (orx+ By).ax+By)-lof (Tx,x)~|B] Ty, y)=0

or, (alx+BTy.ax+pBy)-laf (Txx)-|B] (Ty,y)=0

o, o (Tx,x)+oB(Tx,y)+ b (Iy,x)+ BB (Iy,y)~ lef* (7x,x)-|8 li (Ty,y)=0
o, |af (Tx,x)+aB (Tx,y)+ B&E(Ty,x)+| B (Tv,y)- lef’ (7x,x) | B (Ty.y)=0

()

-t

aB(Tx,y)+aB(Iy,x)=0
If @=14=1, weget(Tx,y) + (D, x)=0
If a=i,f=1, wegeti(Tx,y)—i(Ty,x)=0
or, (Tx, y) ~ (Ty, x) =0
Adding (1) and (2) we have 2 (Tx, y) =0
_ or (Tx,») =0
This is true for all x, y € X. Taking y = Tx we have
(Tx, Tx)=0forall xe X
~ie. Tx=0forall xe X
ie. T=0.
This completes the proof.

24.6.10. Theorem. T € B(X) is normal if and only if “T "x
75| =|7x] forall xe X

Proof. Let

|

or, (T *x, T‘x)r- (Tx,Tx)for all xe X

x| = uTxlI2 for all xeX

or, (TT’x,x): (T'Tx, x)for all xe X

or, ((TT' - T’T)x,x) =0forall xe X

Directorate of Distance Education
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o IT'-T'T=0
oL IT*=T'T
Hence T'is normal.
Againlet Tbenormali.e. 77* = 7T
Therefore, 77* - T*T =0
«(TT"-T°T)x = 0x for all xe X
o, ( TT)x OforallxeX
So (77" -T'T)x,x)=(0,x)=Ofor all xe X
o, (IT'x=T'Tx,x)=0forall xe X
o, (I7°x,x)-(I"Tx,x)=0forall xe X
o, (TT"x,x)=(T"Tx,x)for all xe X
or, (I'xT'x)= .(Tx, Tx)forallxe X
or, "T‘x"2 =|Tx]|? for all xe X
‘o, |7 =l for all xe X,

Hence the theorem.

24.6.11. Theorem. If T & B(X) isnormal then || = |72
Proof. We known the result that if T'is normal then
|7°x| = 7| for all xe x | - e ¢))

Let Tbe normal.
Then taking x as Tx we have from (1)

[ @)=l (=)
llr7)| ="

sup! T T "- sup”sz"

=1
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|
o, [ =[] tby Theorem24.6.3.]
This completes the proof of the theorem.

or, l(

24.7. Tilustrative Examples B .
24.7.1. Example : Let X be a normed linear space and let denote CorR.Thenthemappings T: X x X — X
| and T’: Fx N — N defined by T'(x,y)=x+yand T'(c, x) = ax are continuous.
In other words the vector addition and scalar multiplication are continuous.
Solution : Let {x,} and {y,} be sequencesinXand {g,} asequencein Fsuch that

X, => X, Y, = Y, @&, —> & s B —> oo whe;e xeX,yeXanddEF - R — e (1)
Now [T (x,,3,)-T(x, )

=[G+ 3) -G+ 2)]

<l =+l -
-0 as n— oo [by(1)]

Hence T(x,,y,)— T(x,y)as n— oo
Again T (

=, x, — x|

T'(a,,x,)- T’ (a.x)|

n-n

=, - ax+ax-ad

L (x, =n)+(a, -»a).x;"
sla,,mx,,—xn+|a,,—a_]||x|| Lo ane
— 0 as n— o [by(1)]

Hence shows that Tand 7 are continuous.

24.72. Example. Let Xand ¥ be normed linear spacesand let T': XY be alinear continuous transformation.

* Show that the Kernel of T'is a closed linear subspace.
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Solution : The Kernel of T'is defined as
Ker(T)={x:xe X,Tx =0}
Let x, y € Ker (T ) and a, 3 be scalars.
Then Tx=0and 7y = 0. v
Now T(ax+fy)=aTx+ By [as Tislinear]
= a0+ A0
=0
- ~ax+pByeKer(T).
N This shows that Ker(T) is é linear subspace of X. |
We now show that Ker(T)isclosed.
Let x be any limit point of Ker(T). Then there exists a sequence {x,,} in Ker(T) such that x, — x as
n—es, ' | |
Since T'is continuous we have Tx, — Tx as 1 — oo,
But Tx, =0 forall n. So Tx=0i.e. x € Ker(T)
Heénce Ker (T)isclosed.
.Thus Ker(T)is aclosed linear subspace of X.

24.7.3. Example
LetSbea non-empfy subset of a Hilbert space X. Then the orthogonal complement S* is a closed linear

subspace of X.
Solution, By definition we have S* = {xe X t(x,y)=0forall yeS } -
Since (0,)=0forall y e S, we have O_é S* i.e. $* isnon empty.
Let x,%, € 5* and a,  be be scalars. |
Then (x,,»)=0 and (x,,y)=0 forall y€S. ‘
‘Wehave (@x, + fx,, ) = @ (x, )+ B(x,y)= -0+ £-0=0

Therefore arx, + fx, € S*. Hence S* isasubspaceof X,
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--------------------------------------------------------------------------------

Now we show that S* is closed. |
Letx be any limit point of S*. Then there exists a sequence {x,} in $* suchthat x, — x as n— co.

Since x, € S* forall n, we have (x,, y) =0 forall .

We know that inner product is a continous mapping.

n—yeo n—yeo

So lim (x,,y)= (lim x,,,jr)

or, lim0= (x,»)

n=pee

or, (x,y)=0. This is true forall y€S.
Hence x€ S*.
This shows that S* is closed linear subspace of X.

24.7.4. Example. If M,, M, are non-empty subsets of a Hilbert space Xand M, c M, then My c M} .
Solution. Here M, C M,. Letxbe any element of My. ' s
Now x€ M;
= x is orthogonal to every elément inM,
—» x is orthogonal to every elementin M, as M, C M,
= xeM;
Therefore M; c M},

24.7.5. Example. Prove that an orthonormél setina Hilbert space is linearly independent.
Solution, Let {¢,,€,,....¢, } beany orthonormal set in the Hilbert space X.
Then (e,,e,)¥0 forall i # j. |
=1fori=j ' L e ¢))

Let 2, &, =0- . | [ —— )

=
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For any k, where | < k < 5, we have
(Zaje,,e,,]
J=l

Z(aze/’ )

J=l

3

=§aj(ej,e,,)

=a, [by(1)]
* Againusing (2) we have (ﬁajéj,e,,)=(0,e,,)=0
. Jul .

| Hence ¢, = 0. This ié true for all k= 1,2, ..., n. This shows that {e',,ez, ., } are linearly independent.

24.7.6. Example. Show that in an inner product space, x L y ifand ohly if we have J+ Ay| =|jx - Ayl fm" all
~ scalars 4. |
Solution. Let |x + Ay|=]x-2 y" forall scalars A
Then [+ Ay =[x~ Ay
o, (x+Ay,x+Ay)=(x=Ay,x~Ay)
or, (x,x)+Z(J;,y)+/l(y,x)+ﬁ(y,y) =(x%,x)-2(x,)
=A(y.x)+ A1 (y,y)
o, 2A(x,y)+24(y,x)=0 o o
or, Z(x,y)-wl(;,—y-):O |
Thisis true forall 4. Taking 4= (x, y) we have

(353) (5.2)+ () (%5)=0
o (ny)(xny)=0
]x, l =0
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or, I(x, y)‘ =0
o, (x»=0
o, xly.

Conversely, let x L y i.e. (x,y)=0.
Then forany A wehave
e+ 25 == o
= (xx)+ (. )+ A(, %)+ A2 (%)= (x, ) (x’ )+ﬂ(y,x) -A2(7.7)
=22 (%,y)+24(3,%) |
=0+0
=0 |
or, e+ Ay =lpx~25f°
or, [le-+ Ay| = |- 23]

24.8. Summary :
Inner product space is the most natural generahzatlon of Euclidean space Inthis module we have studled -

many important theorems and properties of inner product space. The main concept of ips is the orthogonal concept.
The Rieszrepresentation theorem and the generalization of Pythagotean theorem have been studied. Propeties of
bounded linear operators on Hilbert space have been discussed. Finally, theorems relating to adjoint of bounded
linear operator have been studied; Examples are given to have a clear concept and notion of this important space.

24.9. Self Assessment Questions. » ,
1. Inthe space of all complex numbers, show that (zl A ) = 2,7, defines an inner product.

l’

in an innder product space by direct-Calculatidn and also by pax‘allelng'amlaw.

2.  Provethe Appollonius identity

1 : 1
Je=of +le-of = S off +2}2-2(x+7)
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10.

If [+ Ay| =[x~ Ay| is true forall scalar A then show that x L y. Interprete the result geometrically, Is
the converse true?

Ifin an inner product space (x, u) = (x, v) for all x, show that u = v.

Showthat x .L y, forallnand x, — x as n — oo together imply x L y.

Show that for a sequence {x,,} in an inner product space the conditions "x,, " — ||| and (%,5x) > (%, %)
imply convergence x, — x. , _

Let T: X — X be a bounded linear operator on a complex inner product space X. If (7, x)=0 for all
x € X, show that T'=0. Show that this result is not true in the case of real inner product space.

Show that the space C [a, 5] is a Banach space but not a Hilbert space.

Hints: Forx = x(t) 1, y=y(t ) — parallelog1mn law does not hold.

Let X denote the space of all real valued continuous functions on [0,27]. Show that X is an ips with inner
27 ) ’ ) 1
product defined by (x,y)= J; x(t)y(t)dt. Show also that {e, ()} where ¢(f)= Top ond

cosnt
(’ )=—=n=12,... i anorthonormal sequence in X,
Ny

3 Letx, Jbe non zero elements of a Hilbert space X. Show that |x + y| = ]|+ |¥| holdsifand only if y= Ax

- where A isascalar.

11.

If Xis areal inner product space and if [l + o = "xu +| yu thenshow that x 1 y. Show further that this

. isnotnecessarily trueina complex ips.

24.10. Suggested Books for further reading :

1.

1 S o
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Introductory Functional Analysis with Applications: Erwin Kreyszig; John Wiley & Sons
Functional Analysis with Applications : B. Choudhary and Sudarsan Nanda; Wiley Eastern Limited

- Elements of Functional Analysis : B.K. Lahiri; World Press

Introduction to Functional Analysis for Scientists and Technologists: B.Z. Vulikh; Pergamon Press A

Functional Analysis : J.N. Sharma & A.R. Vasishtha; Krishna Prakashan Mandir.

caee O omem

Directorate of Distance Education



N

"Learner's Feed-back"

After going through the Modules / Units please answer the following questionnaire.
o Cut the portion and send the same to the Directorae.
. S
v To
The Director »
Directorate of Distance Education,
Vidyasagar University
Midnapore - 721 102

1. The modules are : (give ¥ in appropriate box)
[ ] easily understandable; [ | very hard; [ ] partially understandable.

2. Write the number of the Modules/Units which are very difficult to understand :
QP 3 Write the number of Modules / Units which according to you should be re-written :
4, Which portion / page is not understandable to you? (mention the page no. and portion)
5. Write a short comment about the study material as a learner,
2] deasasasesssestessbersesntssrenanasronasonts yessrssssannsesseneanes O N R L R TR R R ghabrbisadeenangqreanss Seasssosesssatastes N
Qe
(Full Signature of the Learner)
DALE & vovrrvrreeriirrnenennns
Enrolment NO. oo
Phone / Mobilc NO. i










