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Classical mechanics which was primarily supposed as the study of motions of physical objects such as
motion of celestial bodies, is now considered as the part of mechanics deling with the objects neither too big so that
 there exists a close agreement between theory and experiment, nor too small interacting object so that systems are
considered on an atomic scale.
Classical mechanics may be classified into three sub-sections:
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(i) Kinematics: It deals with the all possiblé mbtions of material systems without reference to the agency which
causes motion. ; L

(1) Dynamics: It deals with\the motioné to the forces associated with it aldng with the properties of moving
bodies. As such this subsection introduces the concept of force and explains possibility of most favourable
types of motion which take place under the action of given forces.

(i) ~ Statics: It deals with the system of forces which’act'ually give no motion to the system. For equilibiium ofthe

system the net effect of the forces should be zero..

Objectives

e Mechanics of a particle

¢  Kineticand potential energies

e  Conservative force

e - Conservation laws

- Mechanics of a system of particles

e  Kinetic and potential energies for a system of particles
e  Conservation laws for a system of particles
e  Virial theorem

®  Generalised coordinates and constraints

e Principle of virtual works 4

o D’Alembert’s principle

~®  Generalised forces

. Exercise.

1.1 Mechanics of a Particle

Let 7 be the position vector of a particle with respect to some given originand vy be its velocity at time# then

. dr ' ' ' ' ' -
G ~ 1.1
-2 | - | By
- The linear momentum p of the particle is defined as the product of the mass and its velocity, i.c.
p=mv. | : (12)
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The Newton’s second law states that there exist a frame of reference in which the motion of the particle is
described by the following well known equation

Fodp_d ~ |
F= b (mv). , (1.3)

It also known that the equation (1.3) does not valid in all reference frames. A reference frame in which
equation (1.3) valid is called an inertial or Galilean system. This frame, even within classical mechanics, is an
idealization. In practice, it is usually feasible to set up a coordinate system that comes as close to the desired
properties as may be required. In the ‘laboratory system’ a reference frame is fixed in the Earth and it is sufficient
consideration to an inertial system. But, in astronomical study it may be required to construct an inertial system by

reference to the most distant galaxies.

Work
Suppose a particle is displaced at a distance 7 due to the application of the force . Then the work done dW by
the force on the particle due to the displacement dr is |
dW = F.dF. . . (14)
If the particle is displaced from point P, to P, with position vectors 7 and 7, respectively along any path,
then the work done by the force F acting on the particle is given by

W= F.d. | 45

Kinetic energy ,
The kinetic energy of a particle is deﬂned as a scalar quantity equal to half the product of the mass of the pamcle

and the square of its velocity. That is, if a particle of mass m is moving with velocity ¥, then its kinetic energy is

given by
. 1

T=—mv

i (1. 6)
Let 7 be the velocity of the particle of mass m acted upon by a force F. By Newton s second law of

motion, we have

= dv

F=m—.

dt

Multiplying both sides scalarly by 3, we get -
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=_ dfl
dw d(l 2)
or ——— MV |

If v, and v, are the initial and final velocities at times 1, and £, respectively, then the work done by the applied
forces on the particle is given by

- ty d 1 2
W = jl' -(};(Emv Pf
= J K d(lmvz)
2 2

= —l-mv22 -—lmv,2
2 2

= T,-T,,whereT, and 7, are the initial and the final kinetic energies of the particle
= gaininK.E. o ;
Thus the gain in kinetic energy of a moving system is equal to the work on the system by the applied forces.

Conservative forces
If the force filed is such that the work W is the same for any physical possible path between initial and final points,
then the force (and the system) is said to be conservative.

*Analternative description of a conservative system is obtained by imagining the particle being taken from -
point P, to the point P, by one poissible path and then being returned to point P, by another path. The independence
of }he work done W,, from the point P, to the point P, on the particular path implies that the work donearound -

such a closed circuit is zero, that is,
§F.ds =0, oan
Physically, it is clear that a system cannot be conservative if friction or other dissipation forces are present,

because F.ds due to friction is always positive and the integral cannot be vanish.
The necessary and sufficient condition that the work #,, be independent of the path of the physical path

taken by the particle is that F be the gradient of some scalar function ¢ of position, i.e.,
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...............................................................................................................................

F =V : , , (LY
The function ¢ is called the scalar potential.
Again, the necessary and sufficient condition for the force 7' to be conservativeif cur! F = 0. Thus, if Fis

conservative then F can be expressed as grad ¢ = F where ¢ is a scalar potential.

Potential energy ] E
In a conservative field of force F , the potential energy (P.E.) ¥ of a particle situated at P is defined asthé“work

doneby F inmoving the particle from P to some fixed position O. Thus the P.E. V,is given by
V, = [F.d. |
PO .
Since, F is conservative, F = grad ¢
V,= jﬁ.dF =jgmd¢.d7 = jé‘-"-dr=¢o—¢,,
PO PO Poar

Thus ¥V = -¢ +¢,.
Now, O can be any fixed point the potential energy at any point ¥ is unique to within an additive constaﬁt. It
may be noted that the P.E. is a function of position only, i.e., V = V(F).
Thus in conservative system
F=grad=grad(-V +¢,)=—gradV. : (1.9)
where Vis potential energy. ’ '
Many vimpox’tant conclusion of mechanics can be expressed in the form of conservation theorems. Some of

them are presented below.

Theorem 1.1 (First conservation law) Iftotal force F acting on the particle is zero then the linear momentum
D is conserved.
Proof Conservation of linear momentum follows from Newton’s second law of motion in the form

d, ., dp =
“ =t =F, 5= m .
7 (mv) A where p=mv

- dp
Thus if the total force F is zero, then -(5 =0,ie., p =constant.
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- Hence the linear momentum is conserved.

Corollary 1.1 If the total forces acting in any given direction is zero, the linear momentum in that direction

is conserved,

Theorem 1.2 (Conservation theorem on angular momentum) The fotal torque N acting on the particle is

zero, then the angular momentum L is conserved,

Proof: The angular momentum I with respect to some reference origin Oisdefinedas L =7 x p where7

is the position vector of a particle with respectto Oand p is linear momentum.

The torque, i.e., the moment of the applied force on the particle about Odefinedas N =7 x F.

Now,
a g—(i"xﬁ):£xﬁ+?x@
dt dt dt dt
= VXPHFxF=vx(m¥)+Fx F
= FxF=N
‘_"If’_the torqueis zeroi.e., N = 0 then gt-=0,i.e. L =constant.

Hence angular momentum is conserved.

Theorem 1.3 (Conservation theorem of energy) If the forces acting on a particle are conservative then the

total energy of the particle is conserved, i.e. T + V = constant.

; - ' 1 - s
Proof. The K.E. T=—2-mv =-2~mr.r.

Therefore,
f‘g - %m%(??)::—l-(i?-f-??):m?i’
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il

do_d g_[
dt’dt( too)=

d _
where Vis P.E. Therefore, 7 (T+V)=0ie., T+ V=constant. Hence total energy is conserved.

1.2 Mechanics of a System of Particles
Let us consider a system of particles with masses m,,m, ...,m, and position Vectors 7,75, 7, .. For the system of
particles, we have to consider the external forces acting on the particles due to some outside sources and the

internal forces on, say, some particle i due to all other particles in the system. Then by Newton’s second law

@ A R (R 1)}
M . SRS
where F(© isthe external force applied on the ith particle and E, is the internal force on the ith particle dueto the
jth particle, S : g : , :
Now summation is taken over all particles, |
> & i ZZ i+ EL, . | | -

i={ inl J= =] i=}
Jj=!

The term, Z F, © represents the total external force Fe) applied on the system, while the first term vanishes,
i=]
since the law of action and reaction states that each pair f},‘ + F}j is zero.
The left hand side is

SB35 i) 2 Sm)

i=l i=l
To further reduce this expression we define a vector R as the average of the radii vectors of the particles,

weighted in proportional to their mass, i.e.,

s mh o mh
R= 2 (1.12)

where M is the total mass of the system. The vector R defines a point known as the center of mass, or more

loosely as the center of gravity, of the system. Then equation (1.11) reduces to

Directorate of Distance Education 7
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d2
dr’
This states that the center of mass moves as if the total external force were acting on the entire mass of the

¢ d (e ’
—(MR)=F© o M—Jt2—=F() | (1.13)

system concentrated at the center of mass. Purely internal force, if they obey Newton’s third law, therefore have no
effect on the motion of the center of mass.

Now, the total linear momentum is
di<- ) d dR =
Z W, Z, E(gmm]ﬁ;(MR) M=-= MV, (1.14)
where V' isthe velocity of the center of mass. |
Hence the total linear momentum of the system is the total mass of the system times the velocity of the centre
of mass. This states that the total linear momentum of the system is the same as if the entire mass where concentrated
at the centre of mass and moving with it. |

Consequently, the equation of motion for the center of mass (1 .14)'conCIUde the following result.

Theorem 1.4 (Conservation theorem for linear momentum). If the total external force acting on a system

of particles is zero, the total linear momentum is conserved.

Angular momentum for a system of particles

Let I, be the angular momentum of the ith particle. Then I, = 7 x p,.
Then the total angular momentul Z of the system is

8 Directorate of Distance Edycation
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n _.( ) n n -
= e
- (FxEN+ X 2 (FxF,)
i=] j=1 j=1
J#i
The second term can be considered as a sum of the pairs, i.e., 7 x F, +7, x F, = . XF, —F, X F;=

(5-7)F

i Ji e

But, 7; -7, is identical with the vector F,'j from j to i and therefore, 7, x 13,/ =0. Since 13,, is along the line

-

between the two particles, i.e., 7; and hence the sum vanish. That is,

Hence
LS ExF9 =y N =N (1.15)

which is the total applied torque of the system of particles. |

Theorem 1.5 (Conservation theorem of angular momentum for a system of particles). [f the total applied
torque for a system of particles is zero then the total angular momentum for the system is conserved.

d (e
Proof. From the above relation, we have = N,

Lo dL .
If N iszero then 7 0. Hence L =constant,

Hence the total angular momentum is conserved.

K.E. and P.E. for a system of particles
Let W, be the work done by the external force F; acting to ith particle in displacing it form position P, to P, Then

1 2 & 5!
W = 'z'miV/ =[Y;]/»,

A

where T is the kinetic energy of ith particle.

Directorate of Distance Education 9
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Now summing over all the particles of the system, we have

> W =I5} or W,=1-1; (1.16)
where W, is the total work done by the external force, and T,and T, are the final and initial values of total K.E, of
the system.

For a conservative system, the force ﬁ,’ acting on ith particle is expressed as the gradient of some scalar
function, i.e., |

F=-vy

where V, is the P.E. of ith particle.
Considering directional derivative, we get

av,
VV =—,
'as
" Therefore,
- aV .
F =
=73 (1.17)

Work done by the external force [, acting on the ith particle in displacing it form position P toP,isgiven
by

A
A

W= j Fdsz-j ———dS——[ 12

Now, summing over all the particles of the system, we have
SW=Y[-V] o W,=V-V, , ~ (1.18)
where W, is the total work done by the external forces, and V, and V, are the initial and final values of total
potential energy of the system.
Comparing equations (1.16) and (1.18), we have
L-T=V -V,
r, T, +V, = T, + ¥, = E =total energy of the system This result leads to the following theorem. -

Theorem 1.6 If the forces acting on the system of particles are conservating, the total energy of the system
of particles which is the sum of the total K.E. and the total P.E. of the system is conserved,
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1.3 Virial Theorem
Let us consider a system of particles with masses m,,m, ,...,m, and position vectors 7,7,...,7,. Let 13, be the
force applied to the ith particle. Then the equation of motion of ith particle is given by |

. E=h _ | | a9
where p, isthe momentum of ith particle. o |

Let us introduce a quantity ¢ such that 4
4’:2131'}; ’ (1.20)

~ where the summation is taken over all the particles of the system. ‘
The derivative of ¢ is givenby -

RN D VLR A R

where m, is the mass of the ith particle.

or 7=2T+ZF}-F,- | 1.21)

where T'is the K.E. of the system. 3
The time average of equation (1.21) overatimeinterval T is givén by

1 ,d(b AT = = =
ﬂog{dt.,-zﬂZE-r,., (1.22)

where T istheaverage K.E. of the system over time interval tand »_ F; .7 isthe average value of Y FF over

the time interval 1.

The equation (1.22) can be written as
1 . N ‘-
() -0(0) =2T + 2 £ -F. | (1.23)

Now, if the motion is periodic then all the coordinates repeat after a certain time. If this is chosen to be the

time period of motion, which is generally the case, then ¢() = ¢(0) and hence the L.H.S. of equation (1.22)

vanishes.

Directorate of Distance Education 11
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Hence
2T+) E.7=0.
Again, if the motion is non-periodic then consider the motion in which the coordinates and velocities forall
particles remains finite, so that there is an upper bound to ¢ . Then by choosing t sufficiently long the L.H.S. of

equation (1.21) can be made as small as we please. Hence for a proper choice of 1, L.H.S. of equation (1.21) is

zero. Thus, in both the cases L.H.S. of equation (1.22) is zero and we have

2T+Y E.7=0 or T=~-;-ZF;.F,, | | ,(1.24)'

which is the Virial theorem. The R.H.S. is called the Virial of Clausius.

Example 1.1 [f the particles attract each other according to inverse square law of force, prove that 2T + V
= 0, where T and V represent respectively the total K.E. and P.E. of the particles.

SoLution: For a conservative system, the forces F are derivable from a scalar potential function by taking the

gradient of the latter, so that F, = —V¥/, then by Virial theorem

T= 3 D> VV.E.
For a single particle moving under a central force, the above equation reduces to
7. 10V
2 or
If the force law varies as r", then
V - kr"”
so that
%Z—r =(n+Dkr".r =(n+ )™ = (n+1)V.
"
Thus
7"ty
2

In the case of inverse square law of force n=-2, then above equation becomes

|
il
|

r 2T +V =0

N
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1.4 Generalised Coordinates .
The cartesian coordinates system is not only possible system of coordinates required to define the position of a
mathematical system. In fact, the choice of the coordinates is perfectly arbitrary and is determined on the basis of
 the problem concerned.
Now we may think a wide variety of possible coordinate system, any set of parameters which give an
unambiguous representation of the configuration of the system of coordinates in more general sense.
Any quantities q,,9,,...,q, which define completely the position of a mechanical system will be called
generalised coordinates of the system and ¢,,4,,...,4, are called generalised velocities.
The generalised coordinates may be any parameters. They may be angles, axes, moments or any set of
suitable parameters. Following are the some examples of generalised coordinates: ‘
1. Adynamical system be a simple penaulum of length /, the corresponding generalised coordinate is 0,
the angﬁlaf displacement from the vertical.
2. Anparticle on the surface of a sphére, gen‘eral'is‘e‘d coordinates are 9 ¢ where 9, ¢ are the polar
coordinates on the surface.
3. Alaminalying on a plane, generalised coordinates are x, 3, 9, where (Jé, ) are the coordinates of the
centroid and ¢ is the angle made by a line fixed in the plane.
4. Arodlying on a plane surface, generalised coordinates are x, 3, @, where (x, y) are the coordinates of

one end of teh rod and @ is the angle between x-axis and the rod.

Degrees of freedom
The number of independent parameters which can be independently varied and are required to define uniquely.
“The number of independent variables of a system is called the number of degrees of freedom or d.o.f. of the
system.

If the system is connected by & constraints for » generalised coordinates then d.o.f. will be n—k.

The d.o.f. of 3-dimensional cartesian coordinates systemis 3. But, if a particle is moving along thesurface

x* 4y’ +2% =4 then the number of degrees of freedom is 3~ 1=2.

1.5 Classification of Dynamical System

Any restriction on the motion of a system is known as constraint and the force responsible is called force of -

constraint.

S
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In rigid body the constraints on the motion of the particle are the distance r,remain unchanged. This constraints
reduce to the number of degrees of freedom of a body and therefore also reduce the number of its independent
generalised coordinates. The constraints may be classified as follows:

Ifthe constraints involved in a system be such that the condition of constraints can be expressed as equation
in terms of coordinates and possibly in time ¢ in the form ‘

[(9:92--9,)=0,j=12...,k(<n). (1.25)

Thenthe system is called connected holonomic system and the constraints are called holonomic constraints.

Example 1.2 The di;tance between any two points r, and r, of a rigid body remains unchanged, i.e.,
2 § I . :
(r,. - rj) =c;. This is an example of a holonomic constraints.

Constrains in which the time ¢ does not appear explicitly are known as Scleronongic constraints. Ifthe time

t appear explicitly in constraints they are called rheonomic constraints.

Example 1.3 A pendulum with a fixed support is scleronomic, whereas, the pendulum for which the point of

support is given an assigned motion is rheonomic.

Ifthe constraints cannot express as equatlon i.e., in the form of (1. 25) then the constramts are called non-
holonomic constraints and the system involved with non-holonomic constraints are called non-holonomnc system.
Some of the constraints of a system may be expressed as

| F(@15@254,) S 0,/ = 1,2,..., k(< n). (1.26)
Example 1.4 The walls of a gas container constitute a non-holonomic constraints. The constraints of a

particle placed on the surface of a sphere is also non-holonomic. It can be expressed as (rz -a’ ) 20, where

a is the redius of the sphere.
There are other types of constraints for which the condition of the constraints cannot be expressed in the
form of (1.25) or (1.26), but are expressible in terms of non-integrable relations of the form
adt +(a,dq, +a,dg,+..+a,dq,) =0 : (1.27)
where a’s are in general functions of ¢’s and #. The system with cons}r‘aints (1.26) and (1.27)are caljed non-

‘holonomic system.
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The constraints of the form (1.25) and (1.27) are called bilateral constraints, i.e., if oneimagine a small
allowable displacement from any configuration of the system. The negative of the displacement is also allowable,
assuming any fixed value of time such bilateral constraints are always expressed as an equality.
As non-integrable nature of the form of (1 27), one cannot obtain of the form (1.25) and use these to
eliminate some of the variable. Hence non-holonomxc system always requued more coordmates for thelr description

then theird.o.f,

1.5.1 Principle of Virtual Work
Avirtual displacement is an arbitrary, instantaneous, infinitesimal displacement of a dynamical system mdependem
of time and consistent with the constraints of the system. The work due to virtual displacement is known as virtual

work.

Example 1.5 4 particle is consirained to move on a surface, the force of constraint is ﬁérpendicular to the

surface, while the virtual displacement must be tangent to it, and hence the virtial work vanishes.

Suppose the system is in equilibrium, i.e., total force Z E onevery partxcle is zero, then the work done by

this force in a small virtual displacement &7, will also vanishi. e. ZF 8r -’ o

Let this total force be expressed as sum of applied force F(") and forces of constramts f Then the (@bove

equatlon takes the form
ZF") 8r+2f or = 0.
If the virtual work done by the forces of constraints will be zero then

This equation is called the principle of virtual work.

The following is an example where the work done by constraints force is zero.

Example 1.6 4 particle be constraints to move on a smooth surface so that the forces of constraints being
perpendicular to the surface while virtual displacement tangential to it, then virtual work done by forces of

constraints will be zero.

Directorate of Distance Education 15
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'1.5.2 D’Alembert’s principle
We consider the system which will remains in equilibrium under the action of forces 7 plus a reversed effected

force p,.

Therefore F + (—- D ) 0. Hence by the principle of virtual work,
(F p,\) =

or, Z(ﬁ‘“’-—ﬁ,)-ﬁﬁ +Zf,.87, =0

++"* Dealing with the system for which the virtual work of the forces of constraints is zero,
We write " , )
| Z(F “~p,) i = | (1330)

Thls xs.called D’ Alembert’s principle.
This implies that the sum of the virtual work done by the external force and the reverse effective force isgero.

1.6 Generalised Force in Holonomic System
Consider a dynamical system with » partié:leS of masses m,,i = 1,2,....n, with position vectors 7 withrespect to
the origin O. We suppose that the particles undergo a virtual displacement.

- Letthe ith particle m, at position 7 at time s undergoes a virtual displacement to position 7 + 87, Suppose

F; and F;' are the external and internal forces acting on m, , then the vertual work done on m, is (£, + F,')-8Fi.

So, the total virtual work done on all the particles of the system is

5W=ZN:(177- +F).8% =i17",-°5f5+ﬁ1‘7"55’ | (1.31)

iwl iw] i=l

where Z F .87 s the total work done by the internal forces of the system, when we consnder to be zero. Then

i=l

from (1.31)

:’qz
&

ST
W= F.

i=]

(1.32)
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Let us suppose that the system is holonomic and the generalised coordinates are ¢,,955..--9, then

Fo=1(q1:925e-0).
“Ths
. OF oF oF LN R G s e
8F = —1-8g, + ——8q,+....+ —-8q, = ) —84,. (133
a0 2, g, " R o Sk

Using (1.33), equation (1.32) becomes

7 = z(pz ]2(2%‘%—&]

i=1 k=1\ i=1 k
=>08%, S S (134)
k=1 . o
Y oF | | o
Q=) F.—. FEE ot (135
b= B - | | (1.35)
The coefficients 01,05 ..., 0, arecalled components of generahsed force assoclated mth the coordinates
G15G5»-.---»q,, TeSpectively. Itis called generahsed force because Q, is the coefﬁcxent of 8q, m(l 35).
If the system is conservative and if V' be the potential energy cf the system in any cqnﬁgqrggxon space, we
have ) .
W =-38V. (1.36)
Inthis case, ¥ =V(q,,q;»++--»q, ). Thus from (1.34) and (1.36), we have
Y 0.8, =-Y —38,. 8 oaan
k=l C k=l a‘h N o RS S
Since the dynamical system is holonomic, dg, ,dq;,‘;;..dq,., are indepenident and arbitrary. -
Thus from (1.37), we get ‘ e
ov
=——, k=12,...,m 1.
O 20, n (1.38)

1.7 Unit Summary
In this unit, the mechanics of a particle and a system of particles are studied. The basic terms such as work, kinetic

energy, conservative forces, potential energy are defined. The conservation laws viz., conservation theorem of
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linear and angular momentum, conservation theorem of energy are stated and proved. Also, these conservation
theorems are proved for a system of particles. The virial theorem is stated and proved in this unit. The most
fundamental coordinates, i.e., generalised coordinates are defined. Different types of constraints and systems like
hononomic, non—holonomié, seleronomic etc. are defined. The principle of virtual work and D’ Alembert’s principle
are stated. The generalised forces are defined here. '

1.8 Self Assessment Questions
1. Definethe following terms :
(1) work, (ii) kmetxc and potential energies, (111) conservative and non-conservative forces
State and prove conservation law of linear momentum and angular momentum.
State and prove conservation law of energy.
Show that the rate of change of angular momentum is equal to the applied torque for a system ofparticles.
State and prove virial theorem.

Define generalised coordinated with example. Also, define degrees of freedom ofa system.

I~ N VR N VRN

" Define constrains. Define the following terms with examples :
(i) holonomic consﬁ'ains, (if) non-holonomic constrains.

” :

 State principle of virtual work and D’ Alembert’s principle.
9. Whatdo you mean by generalised forces? Find the expression of it in terms of generalised coordinates.

1.9 Suggested Further Readings

1. H. Goldstein, Classical Mechanics, Addison-Wesley, Cambridge, 1950.

T.W.B. Kibble, Classical Mechanics, Orient Longman, I:ondoh, 1985.

L.D. Landauand E.M. Lifshitz, Mechanics, 3rd ed. s Pergamon Press, Oxford, 1976.

A. Sommerfeld, Mechanics, Academic Press, New York, 1964,

J. Synge and B. Griffith, Principles ofMechanzcs 2nd ed., McGraw Hill, New York, 1949,

AW
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A rigid body is defined as a system of points subject to the holonomic constaraints where the distance
between all pairs of points remain constant throughout the motion, _
A rigid body with n particles can at most have 3n degrees of freedom. These degrees of freedom are greatly

reduced by the constraints, which can be expressed as,
r=c, o ' 2.1)

if i
where 7 is the distance between the ith and jth particles and ¢; ’s are constants. The actual number of degrees of

freedom cannot be obtained simply by subtracting the number of constraint equations from 3, for there are

1
En(n ~1) possible equations of the form of (2.1), which exceeds 3# for large . But, the equations (2.1) are not

all independent. To fix a point in the rigid body it is not necessary to specify its distance to all other points in the
body, one needs only the distances at any three other non-collinear points. |

Thus once the positions of three particles of a rigid body are determined, the constraints fix the positions of
all remaining particles. The number of degrees of freedom therefore cannot be more than nine. But, the three
reference points are themselves not independent, there are in fact three equations of rigid constrains imposed on
them

N2 =Cys I3 =Cys N3 =0

which reduce the number of degrees of freedom to six. Therefore, only six coordinates are needed. A rigid body

in space needs six independent generalised coordinates to specify its configuration.

Generalised coordinates of a rigid body
Before setting up the motion of a rigid body which is free to rotate about a fixed point it will be necessaryto identify
three independent parameters specifying the orientation of a rigid body. The most common and useful set of

parameters are Eulerian angles. ,

The Eulerian angles 6, ¢,y form a set of generalised coordinates for a rigid body with a fixed poi nt. They

can also be used as part of a set of generalised coordinates for a rigid body free to move in space. Let 0(x, y,2)
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Unit 2 : Rotating Frames

be the origin at the body set of axes with respect to space. Then the cartesian coordinates x, y, z togethér with the
Eulerian angles 0, ¢,y describe the configuration of the body. Since the numberx, y,z,0,¢,y canbevaried
independently without violating the rigidity of the body. It is clear thata rigid body, free to move in space, has six
degrees of freedom. V '

Objectives :

o Generalised coordinates of arigid body

e  Euler’sangles

e Velocity and angular momentum in rotating frames

e  Coriolisforce

e  Focault pendulum ,

¢ Euler’sequations L

e  Invariable line and plane - N "_;;: . L

) Exercise.

2.1 Eulerian Angles ,
The Eulerian angles are defined as the three successive angles of rotation of a rigid body about a point fixed. The
sequence will be started by rotating the initial system of axes Oxyz (fixed in space) by an angle ¢ ‘ counter-
clockwise about the z-axis and the resultant coordinate system will be labelled as axes £ng . In the second stage
the intermediate axes £n¢ are rotated about the  -axis counter-clockwise by an angle § to produce another set,
the axes £'¢’ . The &' -axis is at the intersection of the xy- and &'y’ -planes and is known as the line of nodes.
Finally the axes &'n'¢’ are rotated counter-clockwise by an angle y about £’ -axis to produce the desired
x’y’z’ system of axes (fixed in the body). The angles ¢,0,y are known as Eulerian angles. These angles will
completely specify the motion of a rigid body about a point fixed in the body. Therefore, they act as the three
needed generalised coordinates. We observe that all possible positions of the body can be obtained by assigning
valuesto ¢,0,y , intheranges Os¢s2n,0,<_'95n,0s\u.<.2n. ‘ |

2.1.1 Representation of coordinates x’,y’,z’ in terms of x, y, 2

Let (x, ;, z) be the orthogonal space set of axes and (x”, y',2’) bethat of body set of axes. In order to account for
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therotatory motion, we shall carry out the transformation from space set of axes to body set of axes. The transformation
is worked out through three successive rotations performed in a certain order,

First rotation
First of all space set of axes are rotated about z-axis so that xy-plane takes a new position &, 7. The rotational
angleis ¢ . The transformation of this new set of axes &, N, fromx, y, z can be represented by

z2, G

A

(s

B
FIGURE 2.1: First rotation
E=xcos¢+ysin $+0.z

=~xsind +ycosd +0.z.
E=0x+0.y+1Lz

or, SR :
&1 | .cosd. sing  0][x x
N|=|-sin¢ cos¢ O0||y|=Djy
4 0 0 1{|z x
where

cos¢ sind 0
D=|~-sing cos¢ 0
0 01
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Second rotation
The second 1otation is performed about new £ 2xis 5o thet £ axis coincide withbody 27 -axis. Theanes and

n’ obtained after rotation about & throughanangle .

i z

5

FiGURE 2.2: Second rotation

The transformation can be represented by

& &
n'|=Cin
& &
where
1 0 0
C=|0 cos 6 sin8].
0 ~-sin® cosO
Third rotation |

ok

The third rotationis performed about &' axis, .., about 2” -axis 5o that new axes &" coincides withthe body x'-
axisand the axis " coincides with the body y’ -axis. This completes the transformation from space set ofaxes to
body set of axes. The rotation angle is W .
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FiGURE 2.3: Third rotation

where

cosy siny 0
B=|-siny cosy 0].
0 01
Tehrefore, we have arrived at body set of axes after three successive and sequential rotation of space set of
axes. The complete matrix of transformation will be

x' g 4 x x
Y'[=Bin|=BCin|{=BCD|y|=A4]y
z' ¢ 4 z z

where

cosBcosy —cosOsingsiny  cosysing +cosOcosdsiny  sin ysin®
A=BCD=|-cossin y —cosOsingcosy -sinysing+cosOcospcosy cosy sin@
 sinBsin¢ -sinfBcos¢ cos0

This relation gives the relation between old and new set of coordinates.
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2.2 Components of Angular Velocity, in Terms of Euler Angles ,
Ifis often convenient to express the angular velocity vector in terms of the Euler angles and their time denvatxves
Suppose a rigid body rotates about a point O fixed in both body and space. Let Ox, Oy, Oz be three mutually
perpendicular axes through O and fixed in space. Atany time ¢, suppose the body has ana.:\g,ulat velocity ©
referred to these axes. Then this angular velocxty o can be consxdered as consisting of three successwe rotations
with angular velocmes

0, =, ©,=6, o,=V,. |
where ©, is along the space z-axis, @, is along the line of nodes (along &' -axis)and ©, is along the body 2z’ -

axis. Since ® is parallel to the space ;—axis, its components alopg thg body axes x’,y’,z’ aregiven by

("%)x, = ¢sinBsiny
(co ) )y' = ¢sinBcosy
(co¢)z, = - $cosd

The line of nodes, which is the direction of ®,, coincides with &' -axis, so the components of o, with

respect to the body axes are

(@), = écosQ
((D,e)y, = —siny
@), = o

The components of ®,, lies along the z” -axis. Now adding the components of the separate angular velocities,

we obtain the components of o along the body set axes:

o, = ¢sinBsiny+dcosy
®, = $sinOcosy — §siny
0, = hcos + .

Rotatiﬁg axes xyz by anangle ¢ counter-clockwise about the z-axis we get the resultant coordinate system
as the axes £ng . Againrotate Eng about & -axis counter-clockwise by an angle ¢ to produce &'n'C’ . The &'-
axis is at the intersection of the xy and &'’ planes and is known as the line of nodes. Finally £''¢' axesare
rotated counter-clockwise by an angle y about the &' -axis to produce the x’y’z” system of axes, fixed in the
body.
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2.3 Frames of Reference Rotating with Constant Angular Veloclty
Case I: When the origins of the two frames coincide
Consider two systems Sand S the latter being in uniform rotating to the form’er which is at rest in absolute space.

Let the origins of both the systems coincide. Let 7, 7,k betheunit vectors assocxated withaxes X, ¥, Zof system

Sand i”, ", .k’ the unit vectors assomated withaxes X, ¥, Z of system S Then the position vector R m terms of

its components are
R=xi+yj+zk : 22
and R=xT'+yf'+zk. B R X )

Anobserverin system § situated at the ongm O will observed the time derivative of R tobe
R _a, dy , d : |
— —k’, ' .
aa Tal | @9

But the time derivative of R relative to an observer in the system Swill be

,@_£7'+ﬁ1¥:"+.‘1{1}"+x!£+ '_dz.,.+ dk,
a @ a’ T a Y aw A

since the unit vectors i/, j*, k* actually change with velocity to the observer fixed in system S,

2.5)

—

O

Since /" is a unit vector is perpendicular to i’ and must therefore lie in the plane of /" and ;. Then

dt
—r= AT AR | (2.6)
Similarly,
d" B
—é———Ak + A, Q.7
dk’ Y s, - -
b AT | 28

Differentiating the relation ;*, j = 0, weget -

A
a dt

=0 ' Q9
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Using (2.6) xj and (2.7) x7’ we have

o d'l"/ - d]l
—=A I'~—=A,.
Jog A and =

Substituting in (2.9) we get
= A+ 4,=0.
Similarly, from j j = o weget 4, =—4, and from 7’ k’ =0 weget 4, = —4;.

Equations (2.6), (2.7) and (2.8) become

(2.10)

L= aeai
%— = Ak = AT

dk’

‘;1—[— = —Azil - A:,j’.

Then we have

A
—+y .tz —
(A7 A 4 AT =47

=(~Ay - 4,2 ) +(A4X = 4,2)j +(Ayx’ = 4,y )k’

=14, -4, 4 ) o ' 2.11)

Choosing 4; = w,,~4, =w, and 4, = w, where W,,w,,w, are the components of angular velocity vector

w of system S, i.e., w=i'w, + jw, +k'w,.

Then (2.11) may be written as
. . - ;‘; ]; ];/
'Eﬁ—,+ ,511:+Z,_4£_w w, w,|=WwxR Clep
a7 ar A | (212)
x' Yy oz
27
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From equation (2.11) and (2.12), we get
R _ fl-x—z""+fil-]"4—-5“12—1'5’4-ii)x R.
a dr ar ar

dR) _(dR) . s |
(7;)3:(;;-J8'+WXR. ' - (2.13)

Casc II: When the origins of the two frames do not coincide
Let there be two systems S and .5, the latter being in uniform rotation relation to former which is at rest in absolute

Thatis,

space. Let 7, J, k be ihe unit vectors associated with axes X, ¥, Z of the system ' and i ',]",'I;’ , the unit vectors
associated withaxes X’,Y”,Z’ of the system §'. Let O and O be the origins of the system Sand §' which do not
coincide. ‘

Let 7, bethe position vector of origin O of system S relative to the origin O of the system S.

If 7 and R are the position vectors of the particle P relative to the origins O and O respectively, then the
velocity of the particle P relative to the moving system ' is given by

%=?'%+7'%—+k’%. | | (2.14)
The position vector of P relative to system Sis given by

R=F/+F.
Then the velocity of the particle relative to system S'is given by
i15—-3'—(F +F)-—-d—F°—+{r-
d dt‘’ dr dt
dR _dr, dF . o | |
..._..=...__..+._....+ X . . B 5 . ! .
o aa a TV @.15)

Here 7, is the velocity of origin ¢ from equation (2.1 3) relative to O.

2.4 Coriolis and Centripetal Forces
We recall the equation (2.13)

[die) _(dii) vwx ki
o “\a , y - Q.13)
dt Space dt Doy |
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This equation is the basis of kinematical law upon which the dynamical equations of motion forari gid body
are found. :
Let 7 be the radius vector from the origin of the terrestial (body set) system to the given particle.

Then we have
(fi) =(i‘z) +WXF.
At Jspace  \ Gt Jpogy

o fdr dr . o v
We denote [ ) and (EI—) by ¥, and V respectively. Using these notation the above relation
Space Body

dr
becomes

V.=V, +WXF. . | : (2.16)

Thus, :
d s dis\ o

@)} - (@), o=

Thisleads to
, =§;(I§+W><r)+ﬁx(ﬁ+wxr)
:-g;(ﬁ)+——v?-xF+ﬁxl+W+I7b+WX(»’&x?)
.=5b+%xF+ZWxI7,,+Wx(WxF), 2.17)

where g, and g, are the accelerations of the particle in the two systems. But, the equation of motion in the inertial

system (space set) is

-

—

F =ma, = ma, +m%x? +2m( WXV, )+ m# X (WX F)
or,
F-zm(erZ)-mﬁx(wf)-m(i?xf):ma,,_ 1)
t
Therefore, to an observer in the rotating system it appears as if the particle is moving under the influence of

an effective force. That is,
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'F;jf =md, = ﬁ-2m(ﬁxl7,,)¥mﬁx(ﬁ'x F)’—m-‘—ﬁ—ﬁ.’

Theterm 2m( WX 17,,) is called the Coriolis force, it is perpendicular to the plane containing v and ¥, . The
order of the magntude of these force may sasily be caloulated for 2 particle onthe eanth surface.

The term mw x (W X F) isa vector normal to w and pointing outwards. Further its magnitudes ;11 sin
and this term is known as the centrifugal force. ' |

When the particle is fixed with respect to the body set of axes then V. =0. Thenthe Coriolis force is zero.

—

Again, for a uniform rotating system, ;3 is constant and hence the term m— ¥ =0, Therefore, the

acceleration g, referred to the uniformly rotating system is given by

Thatis

where
g, =——wx(wxr
m

and F is the force due to the earths attraction only,

Example 2.1 Find the horzzontal component of the Corzolzs force actmg on a body of mass 0. 1 kg moving
northward with a horizontal veloczty 100 m/sec. at 3 0°N latitude on the earth, ' ‘
SoursTion: Taking XY’ and Z’ axes along east, north and vertical directions respectively, the velocity of the
body moving towards north is given by - B
v/ =100/'m/sec =10* j’cm/ sec.
The angular velocity vector w of the earth is given by
W = wcosAj + wsin k.

-Here ) = 30°. Therefore,
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#=weos30° 7" +wsin30°k’ = —é—g—w]‘%—;—w/}"

The Coriolis force is given by

. ey ‘\/3 ] Y
P =-—m(w><v)=-—m[(2 w’ +2wk x10*

= —mwx—l—xl()‘ .i=“f‘lf><104mW?,
2 2

Here m=0.1kg. = 100 gm. and W = =———— rad./sec.

2460 60
Therefo ﬁ“'lX’IO“XlOOX—o-——%-L*;d""‘““;"”3;""(1 €s
erelore, 73 A% 60x60 CYeST 3617 CYmes.

That is, the horizontal component of Coriolis force of 36 dynes isacting alongthe east. . . -

2. 5 Deviation of Freely Falling Bodies from the Vertical

Let us consider the problem of free fallofa body onthe earth surface. The eaxth isrotating thh an angular velocity

F=07x 10-4 rad./sec. with north-south as the axes of fotation. Let X WY, Z  be the axes along the east, north

and vertical directions respectively and 77, 77, * i’ bethe unit vectorsalong X, ¥’ and 7’ axes respectively. Let

the body of mass m be falling freely on the surface of the earthi. Let 5/ be the velocity of the body at any instant £,
Then

Ww=wcosAj' +wsin Ak’ and ' =-vk’,
where  is the magnitude of velocity, 3, negative signrepresents that the body is moving vertically downwards,

while positive z-axis is vertically upwards.
The Coriolis force is given by
Foo=2m(wxv’)
= -—Zm{(w cosAj’ +wsinAk ') x (—V’E ')]

= ~2m{-wv'cos}j '} = 2mwv'cosAi®, o | - (2 19)
The equation represents that the Coriolis force, in this case, is actmg along posxtxve x-axxs Therefore, the

direction of the body will be towards east in the northern hemisphere.
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2
If 7 is the acceleration along x-axis, then the equation of motin along x-axis is given by

d’x -

m~d—-2—z =2mv'wcosAi’.
That s,
2
%Tx =2v'wcosA. ; . (2.20)

If g is the acceleration due to gravity, then v = gr (usmg the formula v= u+ft here =0 and f=g).
Using this result equation (2.20) becomes

d’x |
_—=2 COSAL. . : ' 2.21
dt2 gW : ( )
Integrating with respect to £, we get
dx r? _
= = 2gwcos7&.~é— + A4, 4 isaconstant, D (2.22)
__ From theinitial conditions we know that i 0 at r=0. With this substitution equation (2.22) yields 4=0
and takes the form
ar & | | 223)
- Again integrating we get,
o S , ,
X = gwcos‘%—g—*B',B istheconstant.: -~ -~ JRREE: o (2.24)

From the initial conditions it is obvious that initially the deviation is zero, i. e., x=0 when r=0. The above
equation takes the form '

3

x= %gwéosk, | (2.25)

This equation represents the deviation along x-axis at any time ¢ at latitude , . If s the height traversed by
the body in time ¢, then we have

| , L [
h= Z):gt2 (using the formula s = ut + -z-,ftz)
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2h
of, r=_|—.
' g
Substituting value of t from above equation iri (2.25), we get
1 (2h)’”
x = TEWCOSA| —
= 3thosx[g-;-z) . o o (2 26)
.3 g) | ‘ |

This is the deviation of the falling body from thie vertical due to the rotation of the earth towards east in the

northern hemisphere and towards south i in the southern hemisphere.

Example 22 Calculate the deviation of ﬁeely fallmg body from a height of 100 meters at latxtude 45”N due;
to Coriolis acceleration. o > o :
Sorution: The deviation of freely falling body from the vertical at latitude 2, is given by .

V2
X = Z whcos 7&(—2——}}-)
3 g

H w,- "271,' o d’/
- T 24x60x 60 M4
7 =100 meter = 10% cm.

A =45%and g =980 cm/sec?.

TR 2 2n 2% 10 ci
{ x—-——x—-——~—-——————x10“><cos45° =155 em.
Therefore, 37 24%60%60 ( 980 ) 0 cm

2.6 Focault Pendulum

In a frame rotating relative to an inertial frame, some additional forces such as Coriolis force and the centrifugal
force appear. Thus unlike uniform motion in a straight line rotation may be said to have an absolute meaning.
Mechanics make no distinction between two frames in uniform relative VClOClty Buti in case there is a questlon of
rotation, we may just go to investigate whether mechanical phenomena require some Coriolis type of force for their
explanation. If they do, we say that the frame is rotating meaning thereby that it is rotating relative to anipertial _
frame and the magnitude -and direction of the Coriolis force would determine the magnitude and directjon of
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angular velocity w.

Precisely this is the idea behind the Foucault pendulum experiment. Our frame is one that is bound to the
carth, We shall develop the theory assuming that the earth is not an inertial frame and assume for the moment that
the rotation is about the polar axis of the earth with angular velocity w.

Apparently all the heavenly bodies are revolving round us about once in a day. But it would be simpler to
think that we ourselves are rotating rather than the millions of stars that we see. In any case, the earth-bound frame
and the astronomical frame (i.e. the rest frame of the distant stars) cannot be both i‘nertiyalv. Foucault’s pendulum
experiment is designed to decide which one of these, if at all any one, is iﬁertial and we make the calculations
provisionally assuming that the earth frame is non-inertial.

We can consider a simple pendulum, its point of support is fixed to the earth. One eould look atitasa
problem with a time-dependent constraint-the point of support sharing the motion of the earth. But we shall rather
treat it asa pendulum with a time-independent constraint but in a non-inertial frame.

We adopt a cartesian coordinate system with the x-axis towards the east, the y-axis towards the north and
the z-axis vertically upwards. Of course by vertical we mean the earth’s radial direction. The latitude of the place

s ¢ . Wehave w, =wsin ¢ . The equation of motion of the pendulum bob will be of the form

" mi-mg-F,, =2m(V x W)
Centrifugal term is omitting. As it is a constant force during the motion of the bob, we are absorbing it within mg.
Of course due to the centrifugal force as well as the peculiarity in the shape of the earth, g will not be exactly
towards the centre of the earth.

We may neglect this slight departure. The force of constraint ﬁ‘ ., has already been evaluated by Lagrange’s

equation of the first kind in connection with the spherical pendulum and assuming as before that the amphtude is

small (sothat 7 = 7 =0,z = —/ ), we get

5e+§x=2ywsin¢ | 2.27)

j3+~f—x=v—2xw\sin¢. BTN R ‘ ' (2.28)

In the Coriolis force expressmn tw, and Zw, have been neglected, thus only w, = wsm¢ is effective.

Multlplymg equauon 2. 28) by i, addmg it to equation (2. 27) and wrxtmg n=x+iy,we get

N+ i?— n+ 2iwsin¢n = 0.
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Let 1= 4e™ be atrial solution, then

a? +2awsin¢ *:ng =0.

or,
v
o’ =-wsind j:(w2 sin? ¢ +—§—) . : C(2.29)
Therefore, the solution is
n=e-lwsin¢l[A,eiPl +A2e~lpl] . ‘ (230)
where

12
p= (wz sin® ¢ +€—) .

In(2.29) 4, and 4, are arbitrary constants. As they are in general complex, there are in reality four arbitrary
constants. As is the usual method, they are determined by some initial (or boundary) conditions about, say, x,y,%, .
However as there may be a wide variety of these conditions, this procedure could lead to tedious (but by nomeans
difficult) calculations and would not be quite illuminating for our general purpose. ,

Consider the term g~sin . If we take w to be due to the diurnal rotation of the earth w.._27r/ 24hrs_l 0

rad /sec. Thus within a time of the order of a few minutes (more precisely a time which is small compared to a day)
theterm ,-wsin#r would not appreciably vary and the dominant variation will be due to the term within the brackets.
The latter térm represents a simple harmonic motion with period 27/p= ZnﬂE ,asthe w term is comparatively
small. Thus observation over small intervals of time would show only a simple harmonic motion for both xand y
(which are combined in M), as in the ordinary spherical pendulum in an inertial system. Ifhowever one makes an
observation after a fairly long time (i.e., a time comparable with a day, say 3 or 4 hours), the modulating factor
¢~sin# would have undergone a significant change. To understand the influence of this change, assume for snnphcnty

that the term within the brackets in (2. 30)is purely real, say, 4 cos(pt + o). Thenat timer=0

x=Acos(pt+ o)

y=0.
i.e., it is simple harmonic motion in x-direction. But at time = T'(say).

x = Acos(wsin¢T)cos(pt + ).
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y =-Asin(wsin¢T)cos(pt +ou)
Now the oscillation will appear to be simple harmonic motion in a direction making an angle (—wsin ¢7") with the
x-axis, i.e., the plane of oscillation apparently rotates with an angular velocity wsin o about the z-axis.
The conclusion is by no means dependent on the assumption that the term in brackets is purely real. Consxder
instead that it is purely imaginary, say, iB cos(pt + B) Thenat time /=0,
x=0
y = Beos(pt +B)
i:e,,itisamotion purely in the y-direction. Again after time 7, |
x = Bsin(wsin¢T)cos(pt +B)
y = Beos(wsin¢T)cos(pt +P).
Thus the new plane of oscﬂlatlon makesan angle (n /2 - wsin¢T) with the x-axis instead of /2 prevxously and
we have the same conclusnon as before.
~ Thus the observation will consist in noting whether the plane of oscillation changes and if it does to calculate
the value of w from the rate of rotation of the 'plané of oscillation, Actual determination of w in this way shows that
it agrees with the value calculated from astronomical observations, i.e. w= 27 / 24 hrs.
~Thisapparently shows that the astronomical frame is an inertial one while the earth-bound frame is rotating
“relative to it. This fact that the astronomical frame is an inertial frame has been confirmed to a very high degree of

“accuracy by later observations and analysis.

FiGURE2.4:
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2.7 Dynamics of Rigid Body when Rotating About a Fixed Point

2.7.1 Components of velocity
Let O be a fixed point about which the rigid body is rotating and G be the centre of mass.

Let JG =R, OP = 7, GP = 71.Let w be the angular velocity of rigid body} whose axfs along a direction
with cdmponents (w,r W, wz) .Let ¥, be the relative velocity of the ith point P. |
Therefore, v N
W=wi+ wy]'+ wk.
Therefore,
V, = Wxr=|w, w
X; Vi Z;

=~
~
.§ bl

= ;(wyz’ WD ) +-7(w~‘.x" - sz,.) + E(nyi - wyxi)'
Now, (v[)" =Wy w"y”(v')y =WX, - szi’(vi)z =W, Y, WX,

These are the components of the velocity at the point P about a fixed point O.

2.7.2 Components of angular momentum

Let /1 be the angular momentum of the rigid body. From the definition

h = ZF; X P =Zﬁ X(mfﬁ-)=zmi(’7 x¥,)
i i i

. —

i J
=zm' X; Yi
L), (), (x),..

= Zmi {y,. (), - )yzi}f +iz,(v), - (v )zx,}f + {x,(vi)y ~(v, )xy,}E.
Since h = b7 +h,] +h.k . Therefore,

b= Zmfn). -2 ()]

X

Xy

<
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= Zm,{y,.(y,.wxv—x,.wy)—-z,'(x,w; -'z,.w,)}"’
=wm(yitz)=w Y mxy - w.  mxz.

Let us mtroduce the notations '
4= S +2),8= (s +x7).C= S5 +37),
D= Zm,y,z,, E= Zm,z,x,, Z mxy;,

where 4, B, Care called moment of inertia while D, E, F are called product of inertia about Ox, Oy, Oz respectively.

Then
h.=Aw,—~Ew,~Fw,. " ' ’ (231D
Similarly,
h,=Bw,~Dw, - Fw,, ' 7 (2.32)
h,=Cw,—Dw, — Ew,. (2.33)

Note: Ifthe axes are principal axes then o
D=E=F=0andhence h, = Aw,,h, = Bw,, h,=Cw,, (2.34)

2.7.3 Kinetic energy of a rigid body
The K.E. (T)is given by

T = Tm

i

3
ey
—~~
=
Nl
NN
+
~
x
S’
[ aaar €]
<+
—~
<
N
[ r™
[

2 2
m({(ziwy —yiw:) +(xiw: _'ziwx)z +(yiwx —xiwy) }

Wj{zmi(yiz +2 )}""‘;‘W}: {zmi(ziz +x:2 )}""%w.z {Zmi(xiz +y1‘2)}

-W wzzmiyizi —-wxwzzmlzlxl -Ww wyzmixiyi

il
™M

(Aw + Bw? +Cw) Dw,w, - Eww, - Fww,

N!-—-‘
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Note: If the axes are principal axes then

T= —;—(Awf +Bwi +Cw3).

2.8 Euler’s Equations of Motion for a Rigid Body Rotation ,
Let arigid body be rotating about a point O fixed in both body and space. Let us take the coordinate axes Ox, Oy,
Oz along the three principal axes of inertia of the body .at O. These axes are arbitrary orthogonal and fixed in the

body. Let 7, /, k be the unit vectors along Ox, Oy Oz. At time t, the body has an angular velocity w and the
angular momentum /4 as

#=wi+wj+wk and h=hi+hj+hk,
where w,,w,,w, are the components of w along 7,j,k and h,,h,,h, are the components of / along Ox, Oy,

Oz.

Consider a particle of mass m of the body at P(x, y, 2) so that 7 = JP. If v be the velocity of P then

v=wxF A Now ,
h= ZFxmi':ZFxm(WxF)
= > ml(F-F)i—(F-#)F}

= Son(x? +y? +2 = (xw, + yw, +on |

Then
h = Zm[()ﬁ +3% + 2w, - (xw, +yw, +zwz)x]
or
ho=w, o m(y +2°)=w, ) mxy- w, Y mzx
or
h = Aw,~Fw, —Ew, | (2.36)
Similarly
h,=—Fw, +Bw, —Dw, | . 237
h, =~Ew, - Dw, +Cw, ' (2.38)

where 4, B, C, D, E, F are moments and products of inertia with respect to the axes Ox, Oy, Oz. Since Ox, Oy,
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Oz are the principal axes of inertia of the body at O, so D = E = F = 0. Then equation (2.36) - (2.38) becomes

B = Aw, | | (2.39)
h, = Bw, | (2.40)

h, =Cw, (2.41)
where 4, B, C are now the principle moments of inertia at 0. Now let "
Fj: Fi+Fj+Fk |
be the external applied force on the particle of mass m at P. We have from Newton’s second law of motion
g o . .
Zr xm—Jt—;:erF. . (2.42)

But,

Therefore,

Then equation (2.42) becomes

-

%:Zmﬁ: N (say)
where N is the moment of the force F about O. Therefore,
f% +Wwxh=NJi+N,j+Nk (2.43)
where |
N, = X(vF -2F))
N, =) (2F, - xF.)
N, = 3 (xF, - yF,)
Here N, N,, N, are the moments of external forces about Ox, Oy, Oz respectively. Now, from (2.43)we

have
hi +hj+hk+i(wh -wh)+j(wh —wh)+ k(w,h, = wh)=NT+Nj+Nk
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Comparing the coefficients, we get

he+wh —wh, =N, | 44
bawh=wh =N, (245)
h.+wh, ~wh =N,. e e
When the axes are taken as principal axes then the above equations become
Aw, ~ww,(B-C)=N, - 247
B, ~w.w,(C~4)=N, (248)
Cw, —wxwy(A—B)= N,. ‘ . (2.49)

These equations are known as Euler’s dynamical equation for motion of a rigid body about a fixed point.
Note: If there is no force, then F —¢.Inthiscase N, =N, = N, =0, Then above equations become

AW, = (B=C)w,w, =0 | (2.50)
Bw, —(C~A)w,w, =0 (2.51)
Cw, —(4-B)w,w, =0. | (2.52)

2.8.1 Conservation of K.E. and angular momentum
Multxplymg equations (2.50), (2.51) and (2.52) by .»W, and w, respectively and adding we get
Aw W, + Bw w, +Cw,W, =0.
Integrating, we get

Aw} + Bw? + Cw? =constant

or,
2T= constant.
Therefore, K.E. of arigid body is conserved
Again, multiplying equations (2.50), (2 51) and (2 52) by Aw,, Bw and Cw, respectively and adding we
get ’

Aw, + Bw, W, +Clw =0
Integrating, we get

A*w? + B*w} + C*w? =constant = H,.
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as h, = Aw,h =Bw h =Cw, , H* =h> +hh? + h? = A*W? + B*w? + C*h?
X Y y z P4 X Yy < X y Z

Therefore, the magnitude of resultant angular momentum is conserved.

2.8.2 Invariable line and invariable plane

A line through the point O in the fixed direction of j iscalled the invariable line. Let P be a pointv such that
(j}; =y atany instant. We draw a line PN perpendicular from P on OQ (see Figure 2.5).
We have

h=Awi+Bw,j+Cwk
and
w=wi +w,] +wk.
Therefore,

h.ib= Aw? + Bw? + Cw? = 2T.

M
Invariable line EEEEEE CoT
Invariable Plane
N P
o
L V
0

FIGURE 2.5: Invariable plane.
Thus, during the motion
h.w =constant. (2.53)
Then from equation (2.53) we have
ON =Projection of w in the direction of /; = constant.
Thus Nis a fixed point during the motion. The plane through N perpendicular to the invariable line OQis a
fixed plane. This fixed plane is called the invariable plane.
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The motion of a rigid body about a fixed point (under no forces) may be represented by the rolling of an
ellipsoid fixed in the body upon an invariable plane. The invariant plane is fixed in space. This ellipsoid is known as
Poinsot ellipsoid. The point of contact of the ellipsoid and the invariable plane lies on the instantaneous axis of
rotation and so there can be no slipping at this point. Hence the ellipsoid rolls on the invariable plane. The curve

traces out by the point of contact on the ellipsoid is known as the polhode while similar curve on the invariable

plane is called the herpolhode.

2.8.3 Instantaneous axis of rotation

Let the rigid body be turn about the fixed point O and at time f, let w,, wy ,W, be the components of angular

velocity about the principle axes O4, OB, OC then the direction cosme of the resultant axis of rotation are
w, Wy, w,

{7, o w } where w? + w +w’ . But, w,,w,,w, have been expressed in terms of Eulerian angles 6, ¢,y

which change from time to time. Hence W,,W,,W, as changes as time changes Consequently, the resultant axis of

rotation also changes implying that at different instant there are different axis of rotation. In view of this, the resultant

axis of rotation is known as instantaneous axis of rotation or simply the instantaneous axis.

2.9 Solution of Euler’s Dynamical Equations

We have the following three equations
AW? + Bw? +Cw} -2T =0
AW+ BwW +CPwl —H* =0
w2 +wl 4wl —w’ =0,

Solving these equation by Cramers rule, we get
w? B W) _ whooo __w‘.l‘ :

T B C| |4 2T C| |4 B =21 |4 B C|
o B | |4 - Y |44 B -H| |4 B' C7
SR T O N I R B S T B I D U U

Therefore

: -BC(B-C) ,2T(B+C)-H*
Wi T (4-B)(B-C)(C- A)[ BC ]
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BC 2
_ 22—y, 2__2T(B+C)-—H
Similarly, ' ’
Wj = A=BYB-C [KZZ’:'WZ],WhCI'C Kzz = ( * ) il
AC

AB
"= Boe- A) %5 =9 where 33 -

27(A+B)-H*
AB '

~ Now, w* =w} +w. +w?.
- Differentiating w.r.t. time £, we get

WW=ww +wWw, +w,W,

or, , o ,
i = W{B'ACJF C-4, A»k—B]
g A B C
o - | e |
& e eV o) (GRS R CRry
_(B-C)(C- 4)4-B)
ABC
- (=) ) )
[by substituting the values of w,,w,,w, ]
or,
V- wz)(giwwzf)(%i - W?) T
Integrating we get |

waw » =i(t'+c).‘

jﬂm-wxm—wwﬁ-wﬁ
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Substitutihg w? = y, therefore, 2wdw = du. Then '
J. du =12(t+c),
JO2 =) - )N} )

which is an elliptic integral, this gives the time £ in terms of w.

2.9.1 Integrable cases of Euler dynamical equations

Casel. 4 = B.
In this case the Euler’s dynamical equations reduce to

Aw, - (4-C)w,w, =0
Bw, —(C—A)w,w, =0
Cw,=0
From (2.56) w, =constant = n (say)
. Multiplying (2.54) and (2.55) by w, and w, respectively and adding we get

A(wb, + ) =0 -

or,
w; +w, = constant

or,
w=wl 4wl +w ==constant§.a o

Therefore, w, the resultant angu'lar\tvelocity is constant.

Now,
cos” (3—) =P (say)
w
is constant.
Therefore,
W, = Weos p.
or, |

wi+ w2 =w’ —w! =w’sin’ p (by (2.57)).

Directorate of Distance Education
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2.55)
2.56)

(2.57)

45



Principle of Mechanics

...............................................................................................................................

Let
w, = wsin pcosy and w, = wsin psiny, (2.58)

Substituting the values of w,,w,,w, in(2.54), we get

-Awsinpsinx% =(A~-C)wsin psiny.n

Or,
@ _A4-C
a4

or,
% =———mn(t=1,),

where ¢, is the constant of integration.

Therefore,

~Crte-1)}

w, = wsin pcos{-

w, = wsinpsin{*fign(t —to)}

w, = wcos p.

Therefore, the components of angular velocity are known.

Case IL. Let B be the mean of moment of inertia so that either A> B> C or A < B < C and also H? = 2BT
where T is the K.E. and H is the resultant angular momentum. )

In this case, the Euler’s dynamical equations of motion reduce to

Ao, ~(B-C)w,w, =0 (259
Bw, - (C-A)w,w, =0 O (2.60)
Cw,—(A-B)ww, =0, X 3)

Multiplying (2.59), (2.60), (2.61) by w,,w, and w, respectively and adding we get
Aw W, + Bw w, +CwW, =0,

Integrating
Aw; + Bw, +Cw] = constant= 27 = H? / B
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Again, multiplying (2.59), (2.60), (2.61) by 4w, ,Bw,,Cw, we“get

A*wob, + BPw,w, +C?w,w, =0
or,

A*W! + B*'w ,C*w! =constant= H”.

The above two equations can be written as
ABw? + BCw! —(H* = Bw}) =0
AW+ CW! - (H - B*w}) =0

Solving these equations we get

w? w? H' - BW]

X z —

C'-BC AB-A* ABC'— A’BC’

Therefore,
w? =————-——-—B—C~‘——1—~(H2 —Bzwz)
A-C AB ¢
w=AzB L gy
* A-C BC Y

Putting w, and w, in(2.60) we get

dw
B*—),'= - ;
- B5 (C-A)w,w,

it
I+

(C—A) é:_c_'..l_(HZ_BZWZ):’i:E
A-C AB

i+

\/(B‘CXA" P) ~—1—(H2 _Bzwz)
AC B g

Bdw _ - -
_bdv,  [B-CYd-B) 1,
H - B'w, AC B
Integrating we have
B - -
1 tanntf 2 =i\/(B C)(4 B)}—(t—to)
H H AC
A
= i'ﬁ("’o)

47
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H\/(B-C)(A-B)
AC

A=—
where 3

or,
w, =% —g-tanh{x(t -t,)}

Thgrefore,
B-C 1
2 = nA_B{Hz - H? tanhz(?»(t—tb))}

3

N
{
Q
&
Q

| CorollaryZIAs t = oo, tanh{A(t —1,)} > 1 and sech{M(r-1, )} = 0. In this case, w, —0,w, -0,
- w, > tH/Bast > o,

So finally the rigid body rotates about the axis of mean moment of inertia.

2.10 Worked out Examples
Example 2.3 (a) 4 rigid body is rotating about a fixed point at which A, A, C are principal moments of
inertia under a couple ~\w, ,~Aw,,~Aw,, where w,,w,,w,, are the angular velocity components under the

principal axes. Prove that at time t,

-mpa s [OC
w, =ae™/4 sm(Te e +e)

- oC _
w, = ae M4 cos(Te wje +s)

wy =ne ™ where o = "C-4)

a, nare constants.
(b)  Also, show that instantaneous axes would approach ultimately to coincides with the lecst axis

of the rigid body.
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Sourution: (a) Here the Euler’s equations are
AW, —=(A4=Clw,wy ==Aw,
A, =(C = A)wwy = -,
Cw, — (A= A)ww, = -Aw,

From (2.64),
¥y 2
W, C

A
or, logw; = o't logn,n constant

or,
Wy = ne /¢, ' o

Multiplying equation (2.62) by w, and (2.63) by w, and adding we obtain

. . Ao
WW, + Wy W, = -:I—(w‘ +w2)

or,
S (W +w) === (w! +7)
or,
-
?&w ++w?)) T
Integrating we get

w? +w? =a’e™/*, aisaconstant.
Let w, = ae™*siny, and w, = ae ™ cosy, .

Putting these values in (2.62) we have

Aa[-—%e'“”’ siny +e /" cosx%] —(A=C)ae™* cosy.ne™ = -Aae”

d .
or, A-;;t-(‘--—n(A -C)e™c =0

or,

Directorate of Distance Education
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(2.65)

M4 siny
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ax _ n(4-C) o MIC
dt Y

ajC

= —~ge” where ¢ =

n(A-C)
A

Therefore,
x=-0(~C/N)e ™ +¢= %ge‘“/c +€.
Hence

- . |Co _
W, =ae /A Sln{Te N/C")'S

- Co _
w, = ae M/ cos{——fe “/C+e}

wy = ne MC,

These are the required components of the angular velocity.
(b) We have

w4 . CO
w, = qe ¥/ sm{»i—-e MIC v g

- Co _
w, = ae™ /" cos{—x—e MIC + g

w; = ne ¢,

Direction cosine of the instantaneous axes is given by
W W, Ws

2 2, .2"° 2 7 2’\/ 2 2 2
\/w,+w2+w3 le+w2+w3 W, W, +wy

But

—2M/4 -2M/C

wl +w; +wl =a’e™ 1 nle

‘ 2
- a . ~VC
=ne 2u/c{1+___2_e 20y 4 1/c)}
: n
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N

FIGURE 2.6:

Therefore, the direction cosine are 0,0, 1 as ¢t —> o0 for C> 4.

Hence the instantaneous axes ultimately coincides with the least axis i.e., with the z-axis.

Example 2.4 4 uniform right circular cone vertical angle 2a moves under no forces except at its vertex
which is fixed. It is set rotating about a generator. Show that its axis describes in space a right cone of angle

2 where
tanf} = -;—tanoc +2cota.

SoLuTioN: Let O be the vertex of the cone about which it rotates. The principal axes at the vertex O are the axes
of the cone and two lines through O at right angles to the axis of the cone. Thus Ox, Oy, Oz are the principal axes
at O. ;

Let w be the initial angular velocity with which the cone is set rotating about the generator. Thus initially
w, = wsina, w, =0, w; =wcosa.

Here A = B = moment of inertia about the vertex is

M an
T (a* +4n?),
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. . 3IMa?
where i = acot @, h = height, a = radius of the base and C =+ 0

In this problem the Euler’s equations are
AW, =(B-C)w,w, =0
B, —-(C - A)w,w, =0
Cy ~(A-B)ww, =0

‘Here B = 4, the above equation become
A —(A-C)wyw, =0

or, W=——w,w, (2.66)

. A-C '
or, W, =-—=ww, (2.67)
A
Cw, =0
o, w;=0 ~ (2.68)

Integrating (2.68), we get w, = a,q isaconstant.

But, initially, w, = wcoso . Thus a = wcosar.

Hence

W, = wcosa, . ' (2.69)
Dividing (2.66) by (2.67) we obtain

W w,

;’: = ——‘:"T and ww, +w,w, =0

Integrating we get, w? +w? = b, b isaconstant.
Initially, w, = wsina, w, = 0. Therefore,
b=w’sin’a. (2.70)
Hence
wl+w! =wlsin’a.
The invariable line is fixed in space and its direction cosines are proportional to Aw,, sz ,Cwy.,

If @ be the angle the invariable line makes with OZ, then
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Cw
c0sf = = 232 2,2
\/A wi + B°w; + Cw;

C
= i [since B = 4]
\/Az(wf +wi)+C*wi

_ C

~ J 42w sin? o+ C?wcos? o
3 C

- JAtanta+C?

That s,

Atano 1 a* +4K
tan0 = =— — x tana
C 2 a '

tano +2cota

which is constant as «is constant.

Therefore,
tanf = ~;—tanoz +2cota as 6=

Hence axis of z i.¢., axis of the cone describes about the invariable line aright cone of vertical angle 2.

Example 2.5 4 body moves about a point O under no forces. The principal moments of inertia at O being
34, 54 and 64. Initially the angular velocity has components w, = n,w, = 0,w, = n about the corresponding

principal axes. Show that at any time 1.

and that the body ultimately rotates the mean axis.

SoLuTion: Since there are no forces, the Euler’s equations of motion under usual notations are
A, —~(B=C)wyw; =0 2.71)
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B, —(C— A)w,w, =0 (2.72)
Cw; —(A4 - B)ww, =0. (2.73)
Substituting the values of 4, B, C'we have
(2.74)
(2.75)
Iy = —w,w,. (2.76)
From equations (2.74) and (2.75), we obtain
9w, +5w,w, = 0.
Integrating, we get
9w} +5w? =constant = q (say)
Initially, w, = n, w, = 0, therefore,
a=9n" @.77)
From (2.74) and (2.76), we have
WW, = wyw, =0,
Integrating we get
w; —wl = b (say)
Initially when w, = n, w, = n, we get b = 0. Thus,
W =wl. (2.78)

Then (2.75) becomes 5y, = 3w,w, = 3w?.

- Therefore,

59

@ = —;—(9112 -—5w22)

54

r=1sf v, 3 n, =‘/§tarm“([-5-w2].

=090’ - 5w}

Therefore,

W, = % tanh(%)

Further when ¢ — oo
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Therefore, w, = 3n/+/5 . Now putting w, = 3r/+/5 in(2.77), we get w, = 0. From (2.78), w, = 0. Thus,

we see that the rotation is about the mean axis.

2.11 UnitSummary

- The generalised coordinates of rigid body are defined. The Euler’s angles are introduced. Components of angular
velocity in terms of Euler’s angles are deduced. Expression for Coriolis force is deduced and its effect in freely
falling bodies is shown in this unit. A note on Focault pendulum is given. Euler’s equation of motion fora rigid body

when rotating about a fixed point is deduced. Some integrable cases of this equation are discussed. An exercise is

given.

2.12 Self Assessment Questions

1. Provethat(i)the K.E,, (ii) the angular momentum (5 ) , and (iii) the magnitude of the angular momentum

(H?) are constant throughout the motion.

2. Assolid cube is in motion about an angular point which is fixed. If there are no external forces and

w,,w,,w, are the angular velocities about the edges through the fixed point, prove that
w, +w, +w, =constantand w’ + w? + w? =constant.

3. Ifarectangular parallelepiped with its edges 2a,24,25 rotates about its centre of gravity under no
forces. Prove, its angular velocity about one principal axis is constant and about the other axis it is
periodic. ‘

4.  Theprincipal moments of inertia of a body at the centre of mass are 4,34,64 . The body is so rotated
that its angular velocities about the axes are 3n,2n,n respectively. If in the subsequent motion under

no force w,,w,,w, denote the angular velocities about the principal axes at that time ¢, show that

- 9n
W, = 3wy = NG sechuand w, = 3n tanh .
where
1
u=3nt+—log,5.
5 08
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Calculate the eastward deviation of a particle of mass 10 gm. falling freely from a height of 100 metre
above the surface of the earth at (i) equator and (ii) latitude 60°N.
Prove that acceleration is same in fixed and in rotating axes.

Write a short note on ‘moving frames of reference’.

2.13 Suggested Further Readings

56

1.

2.
3.
4
5

H. Goldstein, Classical Mechanics, Addison-Wesley, Cambridge, 1950.

T.W.B. Kibble, Classical Mechanics, Orient Longman, London, 1985.

L.D.Landauand E.M. Lifshitz, Mechanics, 3rd ed., Pergamon Press, Oxford, 1976.

A. Sommerfeld, Mechanics, Academic Press, New York, 1964. ’

J. Synge and B. Griffith, Principles of Mechanics, 2nd ed., McGraw Hill, New York, 1949.
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Principle of Mechanics

(The Langrangian and Hamiltonian Formulations)

CONTENT ;

3.1 Lagrange’s Equations of Motion.
3.1.1 Expression for K.E of the system.
3.1.2 Electrical Circuit.
3.2 Hamilton’s Equations of Motion.
3.2.1 Deduction of Hamilton’s equations of motion.
3.2.2 Advantage of Hamiltonian over Lagrangian,
3.3 Routhian ofa Dynamical System.
3.3.1 Routhian equations of motion.
3.4 Worked Out Examples.
3.5  Unit Summary.
3.6 Self Assessment Questions.
3.7 Suggested Further Readings.

The Lagrangian and Hamiltonian functions have may applicatins in modelling mechanical and physical problems.
Due to their wide applications these functions are studied extensively. In this unit, we introduced Lagrangian and

Hamiltonain functions and their applications to solve mechanical problems.
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Objectives .

e Lagrangian and Hamiltonail functions.

¢ Lagrangianequations of motion in diﬂ‘erent cases.
e  K.E.ofadynamical system.

e  Hamilton’s equations of motion.

e Advantage of Hamiltonian.

*  CyclicorIgnorable coordinates.

e  Routhian and routhian equations of motion.

) Worked out examples.

e  Exercise.

~ First of all we present two important results which are essential to deduce Lagrange formulation.

Lemma3.1:1f 7 =7(q,,q,,....,q,,!) then
oF _ OF

'a"qf;"" 3 forallj.

A

Proof: lere 7 =7(q,,9,,....,4,,!). Let ¢, be independent of . Then
dr _or dq, | OF dg, OF

dt 0q, dt Oq, dt Ot
= .._ai.i_ 5 _a_;i._*_ +d .?f:.;._@_i
ql aq’ q2 6(]2 """ qn aqn 5! .

Again, differentiating w.rt. §,,4,,....,¢, wehave

oF  oF oF oF or  oF
o, Lo

85, 0q,°04, oq a4, oq,

or  OF
In general, ”a;" = gq_ j=1,2,..,n
J 1

Lemmma3.2:If 7 =7(q,,q,,....,q,.t) then
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d ar _oF
dt aq/ aq/ fOI' allj
Proof : From Lemma 3. 1 .

d, .. OF « OF.
=t a4

0
Replacing 7 by ; we get

afo) afo) s o (o),
dr\oq, ) ot{adq; T dg, \ dq, :

o' F o°F
= 9tog ; +E &

i a%aqj' A
o0 |oF or
R S o e
aq,{ar 2% q’}
_.__a...{jdu._r_}-—_é_’_‘:_ f n '
oq, \ar| " aq, » forallj.
That is, the order of the operaior 8 and - ar have been mterchanged

3.1 Lagrange’s Equations of Motion
Let g,,9.,...,q, be n generalised coordinates of a dynamical system with n degrees of freedom. Suppose.
the number of particles in the system be Nand m, be the mass of a typical particle and 7, bé its position vector at
time 7 with respect to the origin, so that ;
7 =g gasedust)s i= 12,0 N | e
Differentiating w.r.t. f we get
dF _ O dg,  OF dg, O
= =éa—c};~+...+5;1—:—a—t—+5}~
Z 30!
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Thus the infinitesimal displacement 87 can be connected with 8g; as

o7 = Z 30 % ¢ 5’ (3.2)
J

but the last term is zero since in virtual displacement only coordinate displacement is considered and not that of

time.
or,
= OF = 3q '
,Z.;:aq, , (3.3)
The virtual work done
N - - aﬁ
o -$ror-$A5 ]
izl i1 ; Y4,
= OF 3 R
- 221‘7-5—&1/ =203, (.4)
Joi q; J
or,
whereQ ZF a (3.5)
q;

0O, isknown as generalised component of force.
Itis observed that ¢’s are not necessarily have the dimension of length and similarly O’s not necessarily have

the dimension of force and hence from this analogy, (s are generalised components of force.
< S Qe 2 e 3 af';
Now, Z}Mn =Y, m .8 = mr,. 25;5% [From (3.3)]
i= i i 7 o '

- X Xmiateg. o (.6
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d 8 1 L2 ‘_i _]_ )
-2l (z ) (m

d{or) or |
Z{alE ) 67

whére T= z %mﬁz.

Now, from D’ Alembert’s principle.
585~ 587 =0

d{oJoT | dT .
or, ;Qjﬁqj ~z,:{:1;[52)_§]—;}6q1 =0 [using (3.5)and (3.7)]

d| oT or
: —| — |- —- =0, 3.8
o Ef:{d’(aq/) g, j} ’ ©-8)

Case 1. Unconnectgd holonomic system. L
In this case, the ckoordinates 4,455+, are independent. Therefore, the virtual displacements g are
independent. Thus, the coefficients of (3.8) are separately vanish. |
Therefore, we have | | |
%(%J-%-Qj =0,j=12,..,n. o ’, 69
These n equations are called the Lagrange’s equation of motion of the first kind for an unconnected holonomic

system.

Case 1.1 Conservative system
Let V'be the P.E. function.

~F==(AV), = .-%I-/-. Then
Id

i
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Lov o ov

0 = i PO OV
! 1= I aqj (=1 ar[ aq_/ aqj
Since V'is a function of coordinates only,

v

— =0,
aqj

Using these results (3.9) reduces to

_‘!. ﬁﬂ _£+§Y_—O

dt\ 3¢, ) dq; 9q,

d(or aV} (or ov 0
o, T - -

dr\9q, o4 J Laq'f 0q, ‘

d|or d

—{—(T=V)p~—(T-V¥)=0
o L a-n|- L)

d{odL | oL

o _.——-'—20, .21,2,”-, y
or dt(aq,) 2 =% n, (3.10)

where L = TV isknown as Lagrange’s function of the system. It is also called as the connective potential of

the system,

Equations (3.10) are called Lagrange’s equation of second kind for conservative forces.

Case 1.2 Force is not fully conservative.

Inthis case O, can be cxpressed as

Then from (3.5),

d EZ_,QZ’_]_.EL_QLQ,
dt\dg, d¢,) oq, 9q, '
d| oL oL , ‘
o 3 "5(7=Qj where L =T~V (3.11)
J J
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Unit 3 : The Lagrangian and Hamiltonian formulations

Case 2 Connected holonomic system

Let g,,4,,...,q, be the the n-coordinates of the system connected by k independent equations.

S(@1:42549,1) = 0,1 =1.2,... . k(< n). (3.12)
Then & = Z"L‘&I, =0,i =12,....k. ‘ - (3.13)
3, ,
A 9
Let each generalised force is obtained from a potential function Vas Q= 9, :

Let the constraints are workless. Therefore, the generahsed constraint forces C must need the condition
ZCS‘L =0 | | (3.14)

Using the method of Lagrange’s multipliers with A, wehave A,6f, =0... ...

, - 0, AT ‘
) —~5 ,=0,i=12,..,k. [from(3.13
Summing over i, we get

k

E{KZ{———&L} . e i

i=

Therefore, from (3.14) and (3.15)

$15 5 Sc

<

qu

or, 2{27‘ CJ} =0 - L (16)
We choose ), ’s such that B ‘ E ' '
k
C,:Zx,—aézf'—,j-_-l,z,...,n

i=] N

Therefore, the total generalised force

k

v Jf,
= Q+C =———+ ) A, =,
G 9, Z‘ dq,

Now, from case 1,
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d| or or
| e | = —— = total generahsed force
dr\dq,) oq,

(
. 4 a?'_af/J ar _ aV Z’w
' . dt \aqf aq/ aq/ /‘ aq/

8|

or,

(oL ) Ay
P _— = 7\ =L j= 2,...,’1.
\aqj dq, Z 9 .

~ The above 7 equations are the system of (n + k) unknown of which n are g’s and kare 3 ’s.

To solve these equations, required & more equations which are supplied by k constraints.

Case 3. Non-Holonomic system
~ Foranon-holonomic system, there must be more generalised coordinates than the number of degrees of

freedom. Therefore, 3¢ ’s are no longer independent if we assume a virtual displacement consistents with the

constraints. Let 4,9,,...,9, be n generalized coordinates of the system. Let there be & non-holonomic constraint

equations of'the form of k non-integrable relations as

Jza;fa’qu/+a’dt=0’i=1’2""’k’ (3.17)
where a’s the functions of coordinates.

Now for a virtual displacement at time ¢, we have

VT

Eaa,_m_lz k(< n). - | G.18)

Let us assume again that generalized applied force Q, is obtained from a potential function as

___BK,], =1,2,...,n.
dg,

Let the constraints be workless. So, the generalized constraints forces C, must be satisfied by the condition
2.Cydg, =0 ’ - (3.19)
=1

for any constraints.
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. Unit 3 : The Lagrangian and Hamiltonian formulations

Now, we multiply equation (3.18) by a factor A, , the Lagrange multiplier and obtain the kequations as

2, 4,69, =0, i=12,...k(<n)

Jj=1
k n
or, XhDa8q,=0
1=l J=l
Substracting these equations from (3.19), we have
n k n '
2.C8q, -2 %D a,8,=0
j=1 ial  jel
Interchanging the order of summation we have

n k
Z[Q"Zkiag}aql‘:oa ‘ v' ’ o o (3.20)

Jjui i=l

Upto this point, the 3, ’s has been considered to be arbitrary and if we choose ), s such that

C = 2)»,,,

i=l

then the coefficient of 8¢ ’s are zero and the equation (3.20) will apply for any set Qf g ’s. In other words, the
8q ’s can be choosen independently. | |
Now, the total generalised force is

Q;"ma[ =0, +(; =""‘"f+z7“: R

Substitution these in the equation for non-conservative system where,

27”. a; ,we have
dfar)_a : | -
—— = ai"xi’j::l yeeeshL 21

Then (n+ k) unknowns i.e., n numbers of ¢’s and k£ numbers of ?» s are evaluated with the help of the

" equation (3 21) and the equation of constraints which can be written as

Za,jdqj +adt =0,i=12,....k(<n)
=1
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n
or, Za,.jq'j +a,=0,i=12,...,k.
=

3.1.1 Expressgg\n for K.E. of the system

Letus cor;sider asystem of N particles with n generalized coordinates q,+9,, ...v, q, and having position
vector 7; for the ith particle with mass m, .

ThenK.E. T'is

2
OF &\OF
'"Zm‘r “Z (a:+za: ]

i J=1

- 2 ( ) Z'ar,,,a
DY

i j=1 aq k=1 04

Iw (Y - OF OF
= E,Zml(—é?) +Zj:{2,:m'§5(}j

T[S )

i aq/ aqk
=L+T+T
1 o7\
where T =~2-Zm‘(5ti)

6r or,
7= }
7 {2,: s 9q,

AN
and b= ZZ[ 2% a')”"

The function 7, is a quadratic homogeneous function of §' ¢'s, T, isahomogeneous function of g'sand T,

isafunctionof ¢'s and .
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—

If the transformation equation does not contain the time explicitly, i.e. %E'— = 0, then only the last term of the

above expression, i.e., 7, isnon-vanishing, i.e., in that case K.E. is always a homogeneous quadratic function in

genemlized velocities.

Example 3.1.1 A particle of mass m moves in a plane. Write down the Lagrange’s equations of motion for this

particle using plane polar coordinates.

Solution. We have x = rcos0, y=rsin8.

Therefore, % = 7 cos@—rsin®, y=rsin0+r0cosd.

1 /., . | S \2
Then T=—2-m(x2+y2)=~2~mr2+(r9) .

. OF oF B,
=V E.ZL - PO FoirEE i :
Also, 9, ’2 i 3, Thus O, =F p =F and Q,=F ae-F rii =rFy,ni is the unit vector
perpendicular to the direction of 7 . We have
d aT aT~ d . 2 _ v
dt(af) 5 =& on g () -m¥r=F ®
d(dT) oT _ d, o o
Also, dt(&é) 36~ % or g (r)="h,
or, 2mid+rmb=F,. (i)

Equations (i) and (ii) are the required equations.

Example 3.1.2. Find the Lagrange’s equation of motion fora pendulum in spherical polar coordinates, oflength /.

Z

Solution. Here x = £sinBcos¢

y ={sinBsin¢

z = £co0s0. Y

Then % =/0cosBcosd—IpsinOsing
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 p=18cosOsin¢+/hsinBcosd

2=1sin0.6.
“KET =%m(',&z )
= %mlz(éz +¢? s‘in2 0)

and P.E. V = —mgl cos(n — 0) = mgl cos0.
The Lagrangian L =TV
= -zl-mlz[é2 +¢? sin’ 9] —mgl cos®.

The equations of motion are
d|{oJL | oL
TR P

o For the coordinate 0

d(a) o,
dai\od) o0

o, mPH- mi*$? sin®cosO — mgl sin@ = 0,
For the coordinate ¢
d(0L) oL
L1% %)
ar\ah)” 2
o, mi’$sin® 0@ +2ml*6¢hsin6cosd = 0.

These equations are the required equations of motion.

Example 3.1.3 A particle is constrained to move on the plane curve xy = ¢ under gravity. Obtain Lagrange’s

equation.
10,
Solution. Here the K.E. T = —2~m(x2 +y? ), V =mgy.

: . c
Bu, y=cfx,on ==
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Now, the Lagrange’s equation 1s
d (6’L)~ oL _ 0
dt\ox) ox

d c? 1 4c> mgc
14— g =d=mi?| - — |[+—=}=0
or, dt{( x)}{2 (x’] x?
or, m(x’+c’x)E-2mc’x’ - mgex® =0,

Example 3.1.4 A double pendulum consists of two particles suspended by mass-leés rods as shown in the

following figure. Assume that all motion take place ina vertical plane Find the differential cquatlon of motnon,

linearizing the equations assuming small motion.

Solution. Let v, = £ bethe velocity of the first particle and the velocity i ¢

of the second be ¢¢ and there difference of directionis (¢ - 6).

By cosine formula, we find, v, , the velocity of the lower particle

P
-

with respect to the origin Oas
v =(t0) +(ed) +2(8)(¢)cos(6-6)
The total K.E. of the system is

1 1
T = —2—me +—2-mv§

= omt[207 447 +20hcos{s -0)].
Thetotal P.E. is

V = —mglcosd —(mglcosd +mglcosd).

. theLagrangianL =T-V
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i(?f:)_ oL _o
a\o®) o0
or, mfz[ZG +¢ cos($ —6) - ¢? sin(¢ - 6)]+2mg€ sin@ = 0. 0]

Lagrange’s equation for ¢

or, mlz[iﬁyfécos(d)—e)‘—é”svin(¢—9)]+‘mg£sin¢=0. | | - ®

| Equatxons (i5 and (n) are the eqtiaﬁons of l;ibﬁon of the double pend;ﬂum.
If we consider small motion, i.e., ¢, 6 and theirtime derivativé aresmall
ie, cos(¢~ 9) ~1 |
- sin(§-0)= 46
singzg.sing=¢.
Then equations (i) and (ii) are reduce to

' m22[2§ +$]+2mg£6 =0
and  mt’[§+8]+mgth =o.

Example3.1.5A uniform rod of mass 3m and length 2/, has its middle point fixed and a mass m attached at one
extremity. The rod when in horizontal position is set rotating about a vertical axis through its centre with anangular
velocxty equalto \/2xg/ ¢ . Show that the heavy end of the rod will fall till the inclination of the rod to the vertical

is cos” [ (n* +1) - ]andmllthennseagmn
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Solution. Let LM be the rod whose middle point is O. The mass m is attached at L. Initially, let the rod lies along
OXin the plane of the paper. On the rod ML, take a point P such that OP= § , the‘element PQ =d¢. Further, at
any time ¢, let the plane through ML and the vertical have turned throughanangle ¢ fromits initial position and let
the rod be inclined at an angle ¢ to the vertical. Then the generalised coordinates are § z;nd 0.

Taking O, the mid-point of the rod as the origin and OX and OY ( a line perpendicular to the pléﬁe of the paper) and
OZ (aline perpendicular to OX) as axes of reference, the coordinates of the point P on the rod are given by

x = EsinBcosd, y = EsinBsind,z = & coso. ‘ R
Therefore, % =£BcosOcosd—EPsinOsing

y=EBcosBsind +EPsinOcosd

2 =-£Qsinb.

Thus, square of velocity of
P=V=i+y+#
= §2(62 + ¢ sin’ 9) .
Square of velocity of mass m =
= Ez(éz +* sin’ 9) .

3 .
The mass of the element PQ = %dﬁ = dm (say)

s 13m iy 5.
TheKE. = sdmVy === de(6" +" sin” O)¢’

N | =
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3m

= H(éz +¢? sinz 0)e%dx.

3m,s,  1g . I
K.E.oftherod = 75-(92 +¢7 sin? 6) L E2dE
U e 0 |
= —m(6? + 6% sin? )2,
zm( ¢ sin )
Again, square of velocity of the particle = ¢2 (()2 +§? sin’ 6) )
1 arer 12 |
K.E. of the particle = > m¢? (92 +¢’ sm2 G)f

Thus, the total K.E. T=K.E. of the rod v
+K_E. of the particle ’

- -;-mez(éz +¢7 sin’ 9)+%m€2(92 +§¢7 sin’ 9).
m

me*(67 +¢7sin’ ).

Also, the work function is givenby

W = mglcosO +c

where ¢ is a constant.

. The Lagrange’s equation for ¢
dfor)_or_ow
dat\ob) o ¢

or, i(2m£'2¢3sin2 8)=0.
Coodt

Integrating, we have

¢sin? @ = K , where K isa constant.

; 2
Initially, when 6 = /2, ¢ = —Z—g
2ng
.'.K=1/—-—
» 14
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2ng

Thus, éSinz 0= 7 A . (i)
The Lagrange’s equation for §
sy o o
di\o®) o0 0
or, %(Zmezé) ~2mf2? sin0 cos® = —mg! Sine
o, 2£0-2£¢*sinOcosb =~gsind. o | i
Substituting the value of ¢ from (i) to (i), wehave RN

200 - 4ng cotB cosec’® = —gsinb, | o ‘ (i)
Integrating, we get o -

200 +4ngcot’ 6 =2gcos®+ D,
Initially, when 6 = /2, = 0, then D =O.
Thus 266 + 4ng cot? © = 2 g cosH. ' : @iv)
Hence, the rod will fail till § - o . Thatis, ’

2ncos’ 0 —cosBsin’ 0 = 0.
If cos@ =0, then 8 = n/2 ; which gives the initial position. Also, if

2ncosH ~sin? 6 = 0 then

cos’0+2ncosd—1=0.

Thatis, cosf = —n++2n? +1.
This proves the required result. If we substitute this value of ¢ in (iii), we find that § comes outto be

positive. Hence from this position, the rod will rise again.

Example 3.1.6 For a dynamical system
2
T=%{(1+2k)92 +206+¢°}, v =i’2—{(1+k)e2 +9’}, .

0,¢ are coordinates, n, k are positive constants. Write down the Lagrange’s equations of motion and deduce that
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(é-&i)+n2("—f’,;f)(e-¢)=0

andif 0=¢,8=¢ atr=0then 0 =¢ forall.

Solution. The Lagrangian for this problem is
2
L=T-V= %{(1 +2k)p? +2é¢'>+d>’}~%{(1 +k)0% +¢°}.

The Lagrangian equation for g

_‘?_(éé)_.aﬁ=o

dt\dd) oo

or, %{51 [(1+2k)(26)+ 24»]} + fzi(l +k)(20)=0

o, (1+2k)B+$+n*(1+k)o=0 ' | ®

The Lagrangian equation for ¢

or, 57{—;-(29 + 2¢)} +n=0
o, O+¢+n’9=0 P @)
Multiplying (ii) by (1 + k) and subtracting from (i), we have ‘

O{(1+k)-(1+26)} +8{(1+ k) -} +n*(1+ K)o~ 2 (1+ k)0 = 0
o, k$-8)+n*(1+k)$-0)=0. | (i)
Let ¢-0 = x . Then (iii) becomes |

2
R (1+k)

x=0, 0 31 g% =0

where A’ =12—(~1:—k—)
o

The general solutionis
x = Bcos At + Csin At. @iv)
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When t =0, =0.Thenx=0(since 6=¢).
. B=0andso x=CsinAr-
Also, % = ACcos At -
Again,when§ = at t = 0,% = 0.
. AC=0,0r,C=0.
Thus,x=0or, ¢ =0 forall+.
This is the required solution.

3.1.2 Electrical Circuit
The Lagrangian for an electrical circuit consists of a finite numbers of capacitance, inductance and resistance,

L.=T,-V,
where L, is the Lagrangian for electrical circuit.
L,, is the magnetic energy,
V. isthe electrical energy and the corresponding Lagrange’s equations are

dfol) oy o
dr\og, | oq,
where O, is frictional force of the system. If the system is free from friction then ; =0 and consequently
A0y | Oy _
di\ o, | o&q,

Example3.1.7 Find the Lagrangian equation of motion for the following system

i L, L L, Iy L,
rw O P e e SN S ¥ Panan
E - C —C Y
l AAAS——g < AAAN g € AAAN
R R R
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1
Solution. For the system, the magnetic energy 7, = )

and the electrical energy V; = ~(g, - ¢,) / C+=

[Where ¢, ischarge corresponding to the current ;, ]

1., 1
S L =T, -V, ='2“L1‘I12+"

2
1
"5(‘1} ) C -5 %) G +q1
and @, =~-Rj,
Lagrangian equation for the change g,
dfon) oL, _,
dt\ 04, 6q 1 !

d -
or1, dt (qul) 9 Cqu -E= Ql

or, Ld +§.L:QA_E:Q]=

C]
For the charge ¢,
di, . 4-% -9 |
- + =
dt (L2q2) - ‘Cl C2' - Q2

1 1 q,
LG, -+ +q,| —+ 2=0
or, g, - Cl qz( ¢ ', ) c, 2

For the charge g,

TR PR
L -
33— G, C Q3
Hence the Lagrangian equations are

Lg, +.‘_1CL.__%2_= E-Rgq,

] 2

76
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2 1,1,
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.......................................................................

3.2 Hamilton’s Equations of Motion
Let 7 = 7(q,,4;,--.9,) be the position ofa particle. Then the K.E. of the system of N particles is

—‘Z Z o dg, , OF da, , | O dg,)
dg, dt 0q, dt T og, dt )

l==|

i} _l.*zm(iq AP ] ”

n

lzm LR LI o 2’2+26F" O g+
=& aq, dr 2. qn 2q, g, 9.9,

= P|1412 +p22q§+”'+pnnq3 + Pngidr +-

oL

Let P; =—6~c]7

Then P =‘é{i—“a‘7:‘—2pnql + P4y + Pyt Drd,
04, 04

Similarly, p, = p,§, +2ppg,+..FPrad,

-------------------------

--------------------------

In general,
b 4, 2py Py ot Py
D, 4, Pn 2Pn ' D
t {=P| | whereP= e |
b, qn‘ L Pm P 2phn
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.............................................................................................................................

From the above relation we observed that p ; (called the generalised momentum) can beused asa generalized
coordinates.

We define the Hamiltonian H as
H(q,,935-:q,> D1 D yeers Dost)
=220~ L@1sGs s @y Gidaseeesdnel) | (322

3.2.1 Deduction of Hamilton’s equaﬁohs of motion -

Let H(q,,05.:+4,, D1s D3 »---» D, »#) be the Hamiltonian of the dynamlcal system ofd.o. f nand

I 0208 A - N, N ) be the Lagrangian of the system and ¢, and p; are the generalised
coordinates and momentum xespéctively.

Now, dH = Z d +Z-——d +—a—dt R | (323)

SinOC L= L(qu"';qn’q'}""’q.n’t)’

oL aL oL
= ), —dq ; d +—dt

) . OL :
=ijdqj+2pjdqj+-—a—;—dt‘ | o : (G.24)

From Lagrange equation

51, d aL _d_( )_.
g, dr\og, | ar P

J
From (3.22), H= ijq, -L
or, dH% ijdq, +qudpj —dL

. . . . OL :
= 2. pdi,+) G,dp, =Y p,da; = pdg, ——éth [using (3.24)]

: . oL | | |
= qudpj -ijqu —~(—3—I—dt, | , (3.25)
Equation (3.23) and (3.25) are identical. Comparing the coefficients of dp,, dg ;and d, we get
.  OH | ©OH o0H &L :
q4,=7P; = —=—— =12, .
J apj J aqj and ot ot J= ) (3 26)
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Equations (3.26) are known as Hamiltonian equations of motion.
Note: From (3.26) we have

oH oL @
o % o H+L
ot ot or’a( * ) 0

o, H+Lis explicitly independent of time.
Also, -—'(Z P4 ,) H + L) = 0 [From definition of Hamiltonian]

or, Z P4, isexplicitly independent of time.

3.2.2 Advatange of Hamiltonian over Lagrangian
In Hamiltonian formulation there are two sets of first order differential equations combmmg to2n degrees of

freedom while in Lagrangian formulation, there are n second order differential equatlons correspOndmg ton degnees

of freedom. .
One reason of the importance of the Hamiltonian form of equation of motion is that it facilitates, the use of

transformation is obtained in solutions. Later, we shall discuss the apphcahon ofHaxmltoman in canomcal tmnsfonnaﬁon
involving the pair of quantities ( P4, ) inthe solution of Hamxltoman equatxon of motxon -
Comparing the Lagrangian and Hamiltonian formulation, we see that either L or H can be regarded as
descriptive function for the system from which a complete set of equations of motion can be derived.
Lemma 3.3 If His not an explicit function of 1, then H is a constant of the moti;on. )
Proof.: Since His independent of ¢, we have
H=H(q),q25++4n> P> Pas-ess Pa)

dH NOH. <OH .
= =) —q,+ ) —p;
Then dt j=1 aqj ’ ;apj ’
ZaH oH i@H OH
j=l an‘ 6pj J=l ap/ aqj

[using Hamilton’s equations]

That is H= Constant.
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Lemma 3.4 If the equations of transformation do not depend explicitly on time and if the potential energy is
velocity independent, then H is the total energy of the system.
Proof. We consider a dynamical system with N particles. The position vector of the i-th particle is given by the

assumption as ‘
;'l.=;;(ql’q2»~-',qn)si=1»29"'9"' : | (i)
By the second assumption, we have

Potential energy =V =V(q,,4,,-.-,4,)

and kinetic energy = T = Z mi?.

i-l

" Now, 7, -Zqu,z—IZ AN

Jj= I

T—-—-Zm‘[z ol j )2.

=] J=l

Thus T'reducestoa homogeheous quadratic function Y O/

. Therefore, by Euler’s theorem on homogeneous function, Z 4, g: =2T. v B (i)
J=1

Now, H ijqj

oL

2 .-———L since P = 6q'.
Jj=t J

C av
7 T-V —
Z 8 ( ), since 3, =0

=27 —(T -V ) [using (ii)]

Thus, H = T+ V, which is the total energy of the system.
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Example 3.2.1 Given a mass-spring systéfr consistirig of a mass m and a linear spring of stifiness k as follows.

Find the equation of motion using the Hamiltonian procedure, assume that the displacement x is measured from the

unstretched position of the spring.

Solution For this system H = 2 pq,-L=pi-L

TheK.E. T= %izm

Here or Feox or, F' = — kx.

In conservating system, F = ~VV = _a.
) ‘ kx‘l
[when x =0,V =0 i.e., constant of integration is zero]
2
wL=T-V=tmg B
2 2
1 ko
H=pi—| —mz* - |,
and px (2mx 2)

Since p = mix , then above equation becomes

2 2 2 2 2
pP 1l p k& _p Kk
H=f & 2 - F
m 2 w2 am 2

oH ., OH
Weknow, p, =—— and 4, =—.
b aq/‘ j apj

Thus j):-%}i=—kx
* [Using ()]

A ke -
Therefore, X = p/m=-—
m

or, mi+kx=0,whichrepresentsaS.HM.

Directorate of Distance Education

81



Principle 0f MECRAARNICS ..............coooivueennerieererssiseseeeseessssesesesasasestesane st nstsisaesse s samtssssisanens

3.3 Routhian of a Dynamical System
Cyclic or ignorable coordinaets:

We know, Lagrangian L is a function of generalised coordinates ¢ ; » generalised velocities ¢; andtime .

oL »
Now, if coordinates ¢; (say) is notin L then -a—q— =0, Then this coordinate is known as cyclic or ignorable
! ;

coordinate of the system.,

Routhian:

Let 4,,9;,-..,9, be the n generalised coordinates of an unconnected holonomic system. Let the coordinates

9:935.--5q; are CyCliC.

Let usdefine a function
R= R(qk+l’qk+2”"9qn!qk+l’q.k+2""’q'n"31’B2""’Bk’t)

) v
= L(qk+l""’qn’ql’qz’---’qn’t)“Zﬁiqi' ' (3.27)

iw]

k oL
or,R = L-ZB,.q’, , where B, =52~'
i=l

i

The function R is called the Routhian of the system.

3.3.1 Routhian equations of motion

We have from (3.27),

k
R = L(qk+l""vqn’41’q2 ’°"’qn’t)"2Biqi-
i=1

Taking an arbitrary variation of R, we get

k-

& dR
OR= ), — 61
i;l 9, b+ —kzn 9, 21; (3.28)
Variationon L gives
5 oL
i=k+1 94, = a ‘ |
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.......................................................................

k
Since R = L—-ZB,@, where B, 25—
i

i=]

' k
. 8R=3L-Y (B,54, +4,58,)

i=]
", oL oL oL k ..
;—*56 ;5(1—5 +2 0= ;(Biﬁqﬂqﬁﬁi) | © (3.30)
0L.. &NOL.., & oL..
N s N M= =—0g; + =V,
ov 255,00 = Zigg M+ X 5%
oL
—ZB&J +Z 5q
i= k+l
Then (3.30) becomes ﬁ
R = Za—SqﬁZBSq.*-Z*—-Sqﬂgﬁt Z(BSq,+q.56)
i=k+} i=l l=k+l
2 oL 2 oL k oL
= — &g, —8q, — Y g.0B, +—o¢
i=kz+laq,' &], +i=kz;|aq'i &L gql B’ oq, - (3.31)

Then equation (3.28) and (3.31) must be identical. Therefore, comparing (3.28) and (3.3 1), we get
OR dL OR oL .

= =2 =kt

dg, 9g, 94, 94,

R oL R
L and g == =12,k
o o A=

Thus the Routhian equations of motion are given by

oL ) dL
——=0
dt aq, 9q,
dR) OR
, =0,i=k+1,...,n, 332
> dt(aq,) dq, - (32
and j—-—-d: i=12,...k. (333)
Hence equation (3.32) gives the equation of motion for non-cyclic coordinates, i.e., for g, ,,,...,q, and from
(3.33) we get the cyclic coordinates g,,g,,...,q,, -
.83
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Example 3.3.1 In a dynamical system of two degrees of freedom, the K.E,

1 ¢ 1.,
=— +—
Yatbg 2%

andPE. V=c+ dqzz

Find q,,q, where a,b,c,d are constants.

Solution. The Lagrangian

L=T-y=2 g +—1-c)2—c-dq2.
2a+bgl 27 2

Here g, is cyclic coordinates, so we apply Routhian method,

oL
In this problem g, is cyclic, —— =0.

a%
_dL ¢
B"aq, T a+bgl’ ®
The Routhian equation of motion for ¢, be
d[OoR ) OR _ o .
dt\d¢, ) aq, | ()

Where R = L-B4,

1 ¢ 1, 2
— 4+— _c_d —
> a+bqf 2% q, ﬁlql

Bi(a-+ba2)+5 ¢} - c- dai Bi(a+ba})
1 1. .
= —5Pila+ba;)+2d;~c-dg;.

». the equation of motion is

d(oR) OR
Sl = =0
dr\ 94,
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.......................................................................

d,. ’
o, —(d:)+(Bibg, +2dg,)=0

=

o, §,+(Bib+2d)g,=0

or, §,+ A%, =0 where: 4’ =Blb+2d.

o, ¢,= BSin(At +g),, where € and B are arbitrary constants.
4

a+bg;’

o, ¢ =P,(a+bq})=B,{a+bBsin’(4t+e)}

Now, B, =

o, ¢ = JB,{a%sz sin’( At +¢€)}dt

= jB,adt +%fﬁlez{i fcosZ(At +€)}d

1, 1 2
= B,(a +§éB )jdt—;ﬁ,bB IcosZ(At+8)dt

2 2
= B,(a +é§—)t —%%sin[z(m +e)]+C,

C is constant.

Hence the required coordinates are

=B (a+—l—bB’)t-é§-2-B sin2( A4t +e)+C
9, =P > Vs

and g, = Bsin( At +¢).

3.4 Worked Out Examples _
Example 341 Calcﬁlateﬂxe Lagrangian function and then solve the following pmblerh. |

A particle of mass m, is suspended bya light inextensible string of length / and another particle of mass m,
at the point of support of m, and it can be moved on a horizontal line lying.in the plane in which m, moves.
Solution. Let at time  the position of mass m, and m, are respectively (x,0) and (x', »'). Also, m, inclined at
asmall angle ¢ attimet. ‘

Then x'=x+/{sin¢
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y' =Lcosé.
*'=X+¢lcosd
V' =—¢Lsin¢.

1
the K.E. of m, is T} = > m*” and

PE.is¥, =0.
The K.E. of m, is

m {%? +2£x¢ cos + 0247}
and P.E. of m, be
Vy=-m,gy’ = -m,glcos.
Let T'be tﬁe total K.E. of the system and ¥ be the P.E.
Then T=T,+7T, = %m,icz + ~21-m2 {J'cz +2(xpcoso+ e’é’)}

= -21—(ml +m, )i +%mz(2€x¢cos¢ +£29%).

V="V+V,=0~mglcosd=—m,glcos.
Therefore, the Lagrangian L = T— V'

%(m, +my )x? + %mz(w'cq')cosd) +£029% )+ m,glcosd

0| —

(rm +m, )5 + (%0 + g)m,Lcos o + —;—mzfzd)z.
. Thisistherequired Lagrangian.
The Lagrangién equation for:x is

a2,
dt\ox) ox

d , .

or, E[(mi + )% +my £ cos9.$] - 0= 0
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.......................................................................

of, (m+m,)E+melcosd.—mlsing.¢* =0. 6)
The Lagrangian equation for ¢ is

dfa)_a_,
dt\ob) o9
or, g;[mzfcf cos¢+m2£’2d)]+ (26 + g)mzféin«j) =0

or, m(£2¢+LEcosd)+ m, (% sin¢ + gsind)

-m, Lising = 0. (i)
If ¢ is small, then neglecting ¢* and sin¢ ~ ¢, cos¢p ~ 1.
Then (i) and (ii) reduce to
(m, +my )%+ my ¢ = 0. : (iii)
and  m,07¢+m, 05 + myLgd = 0. o @)

Integrating both sides of equation (iii) w.r.t. £, we get
(m, +m,)x +myt¢ = ¢,,c, isaconstant.
Again, integrating we get

(m, +m,)x =-mlo+cyt +c,

3 m,¢ ct+c, \
o, X%~ + : \%
m+m, m +m,

Putting the value of ¥ from (iii) in (iv), we get

202
Myl 2+ my g0 = 0
m, +m,
¢ |-
or, { - }¢+g¢=o
m, +m,
] glm +m;)
or, ¢+w2¢;0wherewz="""z'g‘“"
or, ¢= Asin(wt+g), , | (Vi)

where 4 and € are arbitrary constants.
Putting this value of ¢ inequation (v), we get
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o . ot +c
x=——"2 Asin(wt +g)+——2 (vii)
m, +m, m, +m,

The equations (vi) and (vii) are the requierd solution of thé given problem.

Example 3.4.2 A particle of mass m is attached to a fixed point O by an inverse square force F, =—u/r?, where

H is gravitational coefficient. Find the equation of motion in plane polar coordinates (r,9).

Solution. Here T = %m(xz +3)= ~21-m(1"2 +r@? )

2

F=-B__ grad V=—--a—V— or, V=—p/r.
r or

Hamiltonian H= H(r,0, p,, py)=T+V

= %m(i'z +r292)—-—":-.

oL . . .
Now,p,=-5;=mr or, F=p,/m

dL 2 A P
=—=mr'0 or, 6=,
Ps 09 mr?
Vip 2 p | p
. H= —m Sty -=
. H ) [mz i |y
The equation of motion for r is
. __oH P W
E R rand e /B e e
Pr="% { m’r®  r?
b b o B
or, mF=-".- or, mi-L 4=
Comr oy mr’ r

The equation of motion for @ is

pe=._%§=0 or, mrid =0 or,é=_constant=7»(sa}’)

Or, 9=h+A.
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Example3.4.3 Use Hamilton’s equations to find the equations of motion of a projectile in space.
Solution. Let (x,y,z) be the coordinates of the projectile in space at timet. The K.E. is

1 /.0 .2, .
T= *z-m(x2 +3 + Zz) , where m is the mass of the projectile and the P.E.is V' = mgz.

1o, 02, -
Therefore, L=T-V = Em(xz + ) +2%)—mgz. )
Since L does not involve f explicitly, so Hamiltonial is given by
H=T+V=—;—m(j:2+y2+22)+mgz. (@)
oL _ . . | .
Now, P, = =5 =mh p,=my, p,=ms. @
Substituting the values of %, y,2 from (jii) to (ii), we get
1
H=57n-(pf+p;+pf)+mgz. ()
The Hamilton’s équations are |
X=—’Q—I_1~=O’ x:i{l——_—_’i{.,
ox op, m
oH oH b
’ =-—--———-—=O’ '3-——-—-:——‘!-,
Py dy ‘ op, m
_H__ L M _p
P="% & op, m’

The above equations can be written as

g=Piog
m

y=&=0
m

’z‘=£—5-=-g.
m

These are the equations of motion of a projectile in space.
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Example3.4.4 The Hamiltonian of a dynamical systemis givenby H = gp® —gp + bp , where b is aconstant,

Solve the problem.
Solution. We have H = gp® —gp +bp o ' Q)
Hamilton equations of motion are
jo o
ap’ g
or, q’:2qp-—q+b=(2p—-l)q+b, : - ()
and -p=p’-p. o ' (iif)
From (iii), we get '
P 4t o, (l - ~——1—-)dp = dt
p -p p p-1

. P _ . . .
Integrating, we have 108 1= t+k  where kisa constant of integration.

t+k

S =

V4
p-1
et 1 t+k
= =={1+coth| X5 ||,
oL PR 2[ « ( 2 )J

Substituting the value of p in (i), we get

g=q coth[f—;—kJ +b

d t+k | B
or, thl -q coth(m—z——) = b, (iv)

Equation (iv) is a linear ordinary differential equation.
Therefore, integrating factor

..'fcoth(i"zi‘)dt -2 log{ sinh(%ij}
=g =g

_ 1

B t+kY
’hz M
D
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Multiplying equation (iv) by the integrating factor, we get

d q _ b

dt sinhz(t+k) Sinhz(t+k)
2 2

Integrating, we have

= 2b coth(ﬂ) + A,
2
where 4 is the constant of integration. Hence, the required result is

q = Asinh’ (-t—iﬁ) —~2bcos t——+-’f—) siynh(fj—-—l—c-).
2 2 2 )

Example 3.4.5 Use Hamilton’s equations, to find the equation of motion of a simple pendulum.
Solution. Let / be the length of the string, and m the mass of the bob, forming a simple pendulum.
Attime , let the string be inclined at an angle @ to the downward drawn vertical. |
Velocity of the bob= ¢§.
Tz-;-mfzéz, V = —mgl cosb.
nL=T-V = %mlzéz +mgl cosf
' oL :
for which po =~z = mi*6.

Since L does not involve ¢ explicitly, therefore Hamiltonian H'is given by
H=T+V = —;—mlzé2 —mglcos®

2
=lm Py

2 m?

1
—mgl cos® = —— p? —mgl cosH.
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Hence Hamilton’s equations are

p9=—%—g—=-mglsin6 0
- dH p ..
and 6= = | ()

P
Differentiating (ii) we have 6 = P

1 .
=- ;1—1—; mgl sin© [by ()]

=——‘gsin6.

Thus 6= - if— sin®, which is the usual equation of a simple pendulum.
Example 3.4.6 Using cylindrical coordinates, write the Hamiltonian and Hamilton’s equations for a particle of
m assm moving on the inside of a frictionless cone x? + y? = 2% tan? ¢t..
Solution. Let (p,$,z) be the coordinates of any point in cylindrical coordinates.

Then x =pcos¢, y=psin¢ and here z=pcota

T = %m(é‘cz +3* +2°) = —;-m(p2 +p%? + peot? a)
= %—m(b" cosec’a +p’$?)
V' = mgz=mgpcota, since the particle is above the vertex (origin).

SL=T-V= —;—m(pz cosec’a +p’$?) - mgpcota

‘ oL .
fromwhich Py = 55 = mpcosec’a

oL 2t
=E—=m .
%= P’
Since L does not involve ¢ explicitly, therefore Hamiltonian His

H = TJrV:Z;—m({)2 cosec’ou+p’¢? ) +mgpcoto
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1 p; P, |
==m + +mgpcoto
| m* cosec’or m’p? &p
i 2 2
= 1 p"z +£—§- +mgpcoto
2m| cosec’a P ’
Hamilton’s equations are
p, = —gy——ﬁ—--—mgcota p= H___ P
P 9p mp? ’ op, moosec’a.
oH OH _ p,
p = e—-—= O’ ¢ D e I e
top op, mp’

These are the Hamilton’s equations.

3.5 UnitSummary

In this unit, two most fundamental functions of classical mechanics, Lagrangian and Hamiltonian are introduced.
The Lagrange’s équations of motion are deduced for holonomic and non-holonomic as well as conservative and
non-conservative systems. The Hamilton’s equations of motion are deduced for holonomic and conservative system.
The cyclic coordinates of a dynamical system are defined. The Routhian function is defined and Routhian equations -
of motion are deduced from Lagrange’s equations of motion. Many problems are solved using Lagrangian and

- Hamiltonian functions. An exercise is supplied with this unit.

3.6 Self Assessment Questions:
3.1 A particle of mass m moves under the influence of gravity on the inner surface of paraboloid of
revolution x2 + y? = gz whichis frictionless. Obtain the equations of motion.
3.2 The Hamiltonian of a dynamical system is givenby H = g,p, —q,p, —aq; +bq; ,
where g, b are constants. Solve the problem.
3.3 Ifall the coordinates of a dynamical system of n degrees of freedom are ignorable, prove that the
problem can be solved completély by integration.

3.4 Aparticle of massm movesina force field of potential V. Write the Hamilton’s equations of motion in
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spherical polar coordinates.
3.5 Iftheequations of transformation do not depend explicitly on time and if the potential energy is velocity

independent, then H is the total energy of the system,
dH ) .. .
3.6 Provethat A = YR where H is the Hamiltonian function.

3.7 Construct the Routhian for the two-body problem, for which L = %(" 24y 29) -V (r).

3.8 The Lagrangian for a system of one degree of freedbm can be written as
L= --"g-(q‘2 sinwr +gqwsin 2w +q*w’).
Determine the corresponding Hamiltonian.

39 If2T=6*+0%?and ¥ = %ﬂzez prove that the Hamilton’s equations give
8’ = a’ cos’(nt + o) + b7 sin’ (nt + at)

and ,tan(¢+B)=-2-tan(nt%0¢), o

~where a,b,0,,B are constants.

Suggested Further Readings =

1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, 1950.
T.W.B. Kibble, Classical Mechanics, Orient Longman, London, 1985.
L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed., Pergamon Press, Oxford, 1976,

2
3

4. A.Sommerfeld, Mechanics, Academic Press, New York, 1964.
5

J. Synge and B. Griffith, Principles of Mechanics, 2nd ed., McGraw Hill, New York, 1949.
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Objectives

¢ Variational principle.

e Euler-Lagrange equations of smgle and mu!'aple dependent vanables

¢ Hamilton’s principle. T

¢ Lagrange’s and Hamilton’s equations of motion from Hamilton’s prmcnple
* Modified Hamilton’s principle, : C

¢ Principle of least action and its deduction.

* Exercise.

4.1 Calculus of Variations : Deductlon of Euler Lagrange Equation
Consider the simplest integral

IRy e, N ()

dy
where y' = Zx. Here F'is aknown function of y, y'and x, but the function ¥ (x) is unknown, The problem isto

findapathy=y(x), x, < x < x,, which optlmlze the functional J.

The value of J is different along dxﬁ’erent paths connectmg the pomt Pand (0] havmg coordmates (xo , yo) and
(x1,1) respectxvely We have to choose the path of i integration, y(x), such that J has statxoncuy value.

Consider two paths out of infinite number of possibilities, such-that the difference between these two for the
given value of x is the-variation of y, i.e., 8y and may described by introducing a new function n(x) and € to
describe the arbitrary deformation of the path and the magnitude of variation respe'ctive¥y; | : . o

Y

A

P (x07y6)
0 : > X,
Fig. 4.1 Variation of path.
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The function n(x) must satlsfy the followmg two conditions :
() Allvaried paths must pass through the fixed points L0, i.e., n(x,) = n(x, ) =
@i m(x)mustbe differentiable. ; ;
Let PRQ be optimum path i.e., Jis optimum along PRQ and let the equation of PRQ be y=y*(x).
Also, let PR'Q be another path. ‘
Therefore, y = y*(x) +8y = y*(x) + n(x)a and y' = y¥ (x) + ' (x)e.
Thus the value of Jin PR'Q is - _
J= J; Fy*(x)+n(x)e,y* (x)+n/(¥)e,x)dx [by(4.1)]

Hence fora given 1(x), Jis a function of g only.
Therefore,

J(e)= [ F(y* @)+ n(x)e.y* (x) +1 (x)e,x)dv

The condition for extremum of Xg) is

dJ(e)
de
Again, from Figure 4.1 we see that J(g) will be optimum if € = 0.
Thus, the necessary condition of optimization of Jis
dJ(e)

--——-——-~=O =
T fore=0.

Now, —~ j dy afv +——ldx,
& So\opde oy de oy de

[where y = y*(x)+n(x)e and y' = y*' (x)+ n’(x)é ]

f:(% N+ 200+ )dx

= [ {B 0+ n@er® 0+ @) ne)

=0,

Xo

£, (y* )+ e,y (0)+ 1 e, ()

dJ
Since e 0 fore=0, therefore,

97
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%o

[ {Fy(y"',y Hoxmx) +F (v, (x'),‘x)n'(x)}dx =0 @2
Now, we consider the term e ~ :

-[: £ (y*’,‘,y *’,x)n’(x)dx =f‘ [,:V’ N (x)dx

=[F, [ Goyas] j[{ jn (x)dx]gk

=[S B s [ngeg) = () =)
Thus (4.2) becomes |

{neor as- (5, e fas=o
o [{R-(F, fnwa=o

Since n(x) is arbitrary deformation of the path, therefore,

d(oF) oF - ‘
HF)5- | T )

This equation is known as Euter-Lagrange’s equation or simply Euler’s equation.

Example 4.1.1 : Prove that the shortest distance between two points in a plane is a straight line.
SoLuTioN : An element of distance between two points in xy-plane is givenby

(ds)’ = (x)’ +(ay)’

on ds=[(ax) +(@)]? = {1 +(%)Tzdx.

The total distance between two points having coordinates (x, 7 ) and (xzk,’ ,) isgivenby
1:01) *2 dy :
dx »
J= J((Xl)’x) ds = J. [ (dx) ] o ’ @

==Jm2 F(y,y',x)dx,
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| 4
where F(y,y’,x)z{H(%) } = (147",

If Jis to be minimum, then
d(oF) oF
Bl Ll B " i
dx( ay’] o [Euler’s equation]
d_¥ |0 Y .c c
or Ll —w|T or, — 7 =C(, Cisaconstant.
dx (1+y’2)}é (1+y”)%
. - C2
or, yl=C(1+y/2)|/2 or, /2::_1—:67
, C
Or, y - 1_c2 =a (Say)
or, _c{y__= .
*odx ,

Integrating, we get y = ax + b, where b is constant of integration, which is the required equation of the
straight line, |

Example 4.1.2 Prove that if F does not depend on x explicitly then F—y' -gf,— is constant.

Proor. The Euler’s differential equation is

=\o')
Multiplying above equation by y' and adding, and subtracting " -?57 (where y’ = %—x- and ¥’ =gxy—’)
we get |
d(oF\ ,0F ,0F _,0F
—_— -y —+ — —_=0
G vl e A Vit ™
yd(OF), wOF nOF 10F,_
o, JV |\ 9y y y y

I
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d J OF #wOF  ,OF OF] oF _
a" ) vy w
d yOF\_dF oF
or, ay] dx  ox
d[ ,oF OF - |
or, E[YIB;T”F]F ax“go ’ o ' O

If F does not depend upon x explicitly, then %f— = (0 and hence we must have

e

d| ,0F
—=—F =0
el
or, —QE- F =constant
o, F-y %F_; = constant. ' | v o ()]

Example 4.1.3 (Brachistochrone Problem).
Show that the path followed by a particle in sliding from one pointto another inthe absence of friction i in the

shortest time is a cycloid. ,
[The problem of finding path followed by a particle in sliding from one point to another in the absence of
friction in the shortest (brachistos) time (chronos) is called the problem of Brachistochrone.]

Solution : Let the particle of mass m slide freely along a curve
from the origin 0 (0, 0) to the point B (a, b) under the influence
of gravity. Let y axis be vertically upward and v the velocity of ' B (@ b)

the particle at any point P (x, y) of its path. Then from the

principle of conservation of energy T + V = constant, ' | i
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1
ie. —Z-mv2 —mgx =0 [At0 K.E+P.E=0]

or, v2 = 2gx

o (&) (&) ]
o (&) |5 -

or,

Integrating between the limits t=0to ¢ =tand x =O to x = a, we have

.
t= [ L=t = [ F(y.y x)d,

Nl

1+ &
where F(y,y,x)=.|——,y ==
(».5',%) \’ 2 "

Unit 4 : Variational Principles

‘Now, tis a functional, according to the problem #is minimufn'. Thenthe problemis tofinda path y=(x) such

that ¢ is minimum. Thérefore, by Euler’s theorem

d(oF)\_oF _,
dx@y’

a1y 30[--_‘2&:0]
o6 dx| \2gx J1+y”? oy
/ ,

———=C, .
or, ) gx(l + y/z) (cis a constant)

Directorate of Distance Education
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% T a1 2ge
2gxc 4gc x
or, V= f %= (1+1-4gc™x)
Substitutingx=4;c (1-cosB)=a’(1- —cos0), wherea —Zglc“ - | v o
sin© sin©
+2a’ sin% cos9. 49
‘[ 0089 J' cosy / /
-fa (l—cose)de a’(e san) . | _ ‘ } (#)

The constant of integration is zero at (0,0).
Therefore, the prarametric equation of the path is x=a'(1-cos6),y = a’(6 - sin 0), which represents a

cycloid.

Example 4.1.4 Show that a sphere is a solid figure of revolution which has max’immﬁ .v‘olurrie fer a given surface
area. |

Solution. The volume of sphere may be supposed to be ﬁxed of'a large number of dics while the surface area may
be supposed to be form a large number of rmgs

" The surface area of sphere |

A= 27|:jyds = 2nfy[(dx)2 +(ay)’ }%

| iy | y[l +[%)2J%dx

=2nfy[l+y”]%abc, y’=%- 0]
The volume of'a sphere |
V=nfyds. (il)
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Combining (i) and (i7) we may write
A
nfyzdx to 21:_[ y(1+y? )%dx = Constant.
[For fixed area and volume]

or, j[yz +(1+ " )% de = Constant

or, f[}’z + 7&}’(1 +y"* )% }dx = extremum (say)

Let F=y2+7\,y(1+y’2)%

Since, F does not depend on x explicity, we have

F
yl —7—F =Constant.

oy

oF 1 ) —}4 / 2yy/

O 0+ay——(1+ 2y =
Now 37 =023 )8 =1
Therefore, (iv) gives ‘ |

}\‘ /
Y y); ,V”yz"’“y(”y’z)% = Constant =c.
(l+y )2, .

By y=0, at x =0 (at the origin), gives c=0.

.'.(—%—yz—ky\/1+y" =0
1+y/2 2
kyy'z—yz(Hy’z)%-—ky(Hyn)
or, J — =0
’ (1+y7)? '
or, Kw’2~y2(l+y’2)}éwky—k)y’z=0

or, -y2(1+y’2)}é -Ay=0

Directorate of Distance Education
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or, -y2(1+y’2)}é = A).

Squaring, we have
yz(l +y/2) =22,

Solving for ', we get

R
dx y
Integrating, we obtain

~A? = y? = x - x,, [ x, the constant of integration]
o, (x-x) +y*=2% | |
This equation represents a sphere with centre at x, on k-axis and radius A. Hence we say that for the values
ofarea4 and volume V of sphere Fis extremum.,

Thus the sphere is the solid figure of revolution which has maximum volume for given surface area.

4.2 Derivation of Euler-Lagrange Differential Equations for Multiple Dependent Vgriables

Here we consider that the integrand F occur in the integral to be minimize or maximize is a function of one
independent variable x and multiple dependent variables y, (x), y, (x),.....

' Thenthe probelm is to find the functions y, (x); ¥ ( x),..... such that the integral
J= j:o'F(y,,yz,....,y,’,y;,....,x)dx , (4.4)

may be stationary.

Consider two paths out of infinite number of possibilities, such that the difference between them may be
described by introducing new functions n, (x) and €.

The functions n, (x) must satisfy the following two conditions : |

@®  Alltheneighbouring paths must pass through the fixed points Pand Q, i.e., n,(x,) =1, (x) =0.

(i) m,(x) mustbe differentiable.

Let PRQ (Figure 4.1) be the path along which Jhas stationary value and PR’Q be the neighbouring path. If

y, and y.’ are the values of y, and ¥, along the varied path, then introducing n, (x) and €, we have
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» =y +0y, =y +en(x)
L]
Yy =Y, 48y, =y, +en,(x)

-------------------------------------------

Vi = Vi 8, = yy +en, (x).
If the integral has stationary value along PRQ, then

J(s):J;o'F(y, +HEN LYy HEN s Ve +ETsennny V) HEN], V) + Ny, Yy +EN e, X)X (4.5)

Now, J(g) is stationary for =0, as in case of single dependent variable.

Expanding (4.5) by Taylor’s theorem and differentiating w.r.t. € and then setting e=0, we get

d](a)] o { oF ,aFde. o
L *

The condition for the path along which J has stationary value is

%20
2 '

With this condition for Jto be extremum, we have from (4.6)

fx'z[ gﬁd’c o - | (4“.7)1

k

- Integrating the second term by parts, weget

x_, OF oF |" (n_ d(oF
dc=|n, —| - —_ = ldx
J‘xo nk ayli [nk ”J 2 ]XO an nk ayz

~Lnlar)e

[since 1, () = n; ("'l)i= 0.]
Using this result equation (4.7) becomes

X ’ oF d{ oF
A L de=0
JZ[” », "*dx(dyk)]
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i |OF d(oF ' o
P dx = 0. 4.8
or, f Z [ayk (dy,,)] (4.8)
Since 7, are perfectly arbitrary and independent of one ano’ther, each of the terms 'i‘n equation (4.8) must

vanish independently, we have

oF d(oF
£ 0,k =123,....
, & (ayk) _ |
d(oF) oF_, -
% a\a) | | )

Equation (4.9) represents a whole set of Euler-Lagrange equations each of which must be satisfied for an

extreme value.

4.3. Hamilton’s Principle
Thé priliciple : .

. Thepathactually traversed by a conservative, holonomic dynamfcal system from time fo and ¢, isone over
which the inegral of the Lagrangian between limits £, and #, is stationary, i.e., the time integral of the Lagrangian is
extremum, | |

Mathematically, j "Ldt=J = extrernum, ’ ‘ (4.10)

where Jis the extremum value of the time integral of the Lagrangian and is known as Hanulton s prmcxple function

for the path.
Equation (4.10) can be represented as

stm=o

where & is the variation symbol.
This principle helps to distinguish the actual path from the neighbouring paths.

4.4 Deduction of Hamilton’s Principle from D’Alembert’s Principle
~ Letusconsider that the conservative holonomlc dynamical system moves from Pto Q, where P and Q are
initial and final configurations of the system at times ¢, and ¢, respectively. Let PRQ be the actua] path and
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PR'Q, PR" Q the two neighbouring paths out of infinite number of possibilities.
For the deduction of Hamilton’s principle the following two conditions must be satisfied :
()) &t mustbe equal to zero at end points, i.e. at #, the particle must be at P and at ¢, the particle must
beat Q. ' '
(#)  &r must be equal to zero at end points, i.e., the: pomts 'Pand Q are fixed in space.
Let the system be acted upon by a number of forces represented by F. Let ith particle of the system acted

upon by force F; acquire acceleration 7, r, , so that we have

neighbouring

From D’ Alembert’s pinciple, we have
(1_';, m, ,) Or =0

or, ZE & -Ymr-8F=0. - @1

i #

The K.E. of the system is
=—I-Zm?2 | C | 412)
2 - (A . S ‘ ( .

Taking small variation, we get
8T =Y mf 8.
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Now, %{me‘a"?}=zmﬁ'5ﬁ,+zmﬁ'%(57,-) . @.13)
= mf -5F +Zmr 87, |

Here we have interchanged the operation of variation and of differentiation w.r.t. time , ..

' 1(55) = 5(.@)
dt dt

Ithappens in virtual displacement. \
Combining (4.11), (4.12) and (4.13), we have

W =3 F 6% =S m5 67
=Zi Zmﬁ-c‘ii’. —Zmr Sr
Car(s
~—~{Zmr Sr}
d PR
or, 5T+6W=2;{’Zm,r-5r,},

where 8/ is the virtual work of applied forces. Now, integrating this equation w.r.t.  between the limits t
and ¢,. '

=0, D (4.14)

j (57 + 8w )ar -[Zmr SrJ

~ Since the configuration of the system specified at time #, and ¢, , the variation 8?, are zeroat £, and 1.

"
lo
In terms of generalised coordinates ¢,,9,,....,4, the equation (4.14) can bé written‘as

f;{” +2,0,8q, )d’ =0, | 4.15)
j=1 »

where Q,'s are applied generalised forces.

The results (4.14) or (4.15) are often consider as a generalised version of Hamilton’s principle.

For aconservative system

W =38V,
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where Vis the P.E. Then from (4.14)
[[6r-87)dr=0
o ['8(r-v)ar=0
or, ;’SL dt=0
or, & Ldt=0

f)
-, Ldt isextremum.

.........................

Unit 4 : Variational Principles

(4.16)

Example 4.4.1 Use Hamilton’s principle to find the equation of motion of one dimensional harmonic oscillator.

Solution : The K.E. of harmonic oscillatoris

T=—1~mi:2.
2

The P.E. of harmonic oscillator,
1

V=-dex=jlocdx=5lcc2.

. the Lagramgian of the system
L=T-V=tm? Li,
2 2
According to the Hamilton’s principle
8['Ldt=0

o, o :'%(micz — ke*)dt = 0.
or, BL"S(mxz - kxz)dt =0
o, SL"(mchfc — kx&x)dt =0

. d
But, o&x = E(SX)

Directorate of Distance Education
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or, ,: mx gt—(ﬁx)dt - J:)' kxSxdt =0

. I8 yd . 4 -
or, [mx Sx]lo —J‘lo m;(x)&xdt —J:o kxdxdf =0. o (l).
But, 8x=0 at the fixed points, i.e. at instants ¢, and ¢,.
< [mi8x]! =0,
The equatin (i) gives

- "mi(x)axdt—j"locaxdt=o
v odt fo

o, ['(mi+kx)Bxdr = 0.

Since §x is arbitrary, the above equation is satisfied only if mi + kx = 0, which is the equation of motion for

one dimensional harmonic oscillator.

Example 4.4.2 Use Hamilton’s principle to find the equations of motion of a particle of unit mass nioving ona
plane in a conservative field. ‘
Solution. Let P(x, y) be the position of a particle moving on the xy-plane under the action of the forces X, ¥

where
xoB oyl
Ox oy
1,. . _ :

By Hamilton’s principle, we have
8['Ldr=0or, ['sLdr=0.
f f
Therefore from (i), we get

[ (485 + yoy~8¥)dr = 0

LY P 1514 ov
or, J:o(x8x+ ySy»—B;—S»——é—y—-Sy)dtzO. | 0
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how. h, d ,
- Now, «[«. x8x dt =J:0 x;{—t-(ﬁx)dt
=[kox]! - ["gowat =~ w8xdt
[since §x =Qat ¢t =¢,and ¢ =¢,].
Similarly,
4 f
Lyww:-&y&m.
Using (#if) and (iv) equation (if) becomes

J';'[(x’ + %)Sx + ( V+ %J—I:—)Sdet =0.

Now, 8x and 3y are independent and arbitrary, therefore

These give the equations of motion.

4.5 Deduction of Lagrange’s Equations of Motion from Hamilton’s Prﬁiciﬁle

The Lagrangian L for the generalised coordinates ¢,,9,,....9,, is
L= L(ql’qz""”qn’ql)qz""’qn’t)'

Taking 6 variation, we have
&2:6+Z—%
J =} jnl

(8t = 0, since in & variation there is no time variation along any path and also at the end points). . -

Now, integrating between the limits ¢, and 7, we obtain

ﬁ&djz BtﬂjZ&Mm
According to Hamilton’s principle,

f&m:a

Directorate of Distance Education
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J Z 5 dt+J' Z—-——-qudt-o. » 4.17)
, tien OL oL d |
Now, jz'é“ ‘I ,};aq ar

szl Z(SJJS d'}

= ,Z, ( Ja di

[Since 8¢, = 0 at the ends points.]
Substituting this value in (4.17), we have

[ asg,a- [ 524 (i;j}sq,df:o

w| OL  d| oL
or, f‘f’;lé—c_]‘:_;@—(a HS dt-—O“‘

The variations of generalised coordinates are independent iff

dfoL) oL EERE
=0 1,2...
dt[aq,] ag, " TR [ 1 L)

which are Lagrange’s equations of motion.

4.5.1 Deduction of Lagrange’s equations of motion for non-conservative system
From generalised Hamilton’s principle [equation (4.15)]
We have

J‘:(ST +2 Qfaqf)d’ =0. i 419
7
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oT
}: 5‘1 Z"""&I Integnahngweget

Now,

or, J 8Tdt-j Z or qud 1 Z———qudt

Now, consider the first term 0f (4.20),
a T d h
I ~ 84, dt( ) [Z}T"aql} .‘; Zdt(aq,}

_—"Z( )qu . [atends 3¢, =0]..

- from (4.19), (4.20) and (4.21), we have

ﬂ;; 8, d -IZ ( )Sq df+jZQ8qjdt..

h or d .
o 45

Since 8, are arbitrary, the above relation will be valid iff

g
_a_]_l._..d_ _QZ '}'Q_/'O’J 1,2,..... s,
Oq; dr\9,
d|{or | oT
-—_ - —_—_—= ',j‘:l’z’ 1,

o dt(aqu oq, '

which are the Lagrange’s equations for holonomic and non-conservative é}féfem. -

4.6 Deduction of Hamilton’s Equatidlis:o”f Mation from Hamilton’s Principle
The Hamiltonian H for the generalised coordinates ¢,,4;,...,9

(P/,qj ) ZpJqJ (qf’qf_”)’

or, (q,,q,,) ZP,‘I, (Pﬁqi”)'

Directorate of Distance Education
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4.20)

@4.21)

P, 1S

- (4.22)
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Taking Svariation,
. OH OH
8L=23(P84,+4,8p,) -\ 2=, + 2784, 1.
op; ™ 0q,
Integrating between the limits ¢, and ¢,, we obtain
" ; o 0| OH oH |
| 8Ldi = J: [>p,84,+4,8p, ]t —_[o {Za—pj% + Z@Sqf}d" (4.23)

- ByHamilton’s principle,
[‘sLar=o0.

Therefore, (4.23) becomes

,:'SLdt =[>p,84,+4,8p,]at ~f‘{2 5;51’/' DN q,}df =0. (4.24)

Now, consider the term
J::ij g, dr = ZJ:pj gt-(é‘»q,)dt
= Z{[P,» 3,], “f,f,'gy(l’f)?’% dr }
= _f,:z;;j 8, dt. [+ 8q, =0 éttheends]

Substituting this value in (4.24), we have

" OH OH
-p 8q,+q 8p,-—-—-8p.--—~—-8q. dt|=0
J.,O{Z{ VY A apj J _ aqj | _

| W, OH . OH). |.
or, L{Z(‘h“gj)ﬁl’f-[Pj+5(1f]5pj}df =0. - o - (4.25)

J J

If 8¢, ‘sand Op, ‘s are independent of each other, the integrand (4.25) is satisfied only when the coefficient
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of 8, and 8p; vanish separately i.e., when

OH . oH
§ o —— = = 12,00,
g, an and P; 6q, J

which are the required Hamilton’s equation of motion.

4.7 Modified Hamilton’s Principle

According to Hamilton’s principle, we have
8=5["Ldt=0.
to
The relation between Lagrangian and Hamiltonian is
H=3p4,-1
J

o, L=) pg,~-H
J

Then (4.26) becomes

& = 5.[:[21@,4, —H]dt =0
J

1y . '
or, L [Z p;84;+8p;q, - SH]dt =0,
J

This s called modified Hamilton’s principle.

4.8 Derivation of Hamilton’s Equations from Variational Principle

: Variational Principles

(4.26)

427

(4.28)

Consider two paths PRQ and PR'Q out of infinite number of possibilities between P and Q and shown in

Figure 4.3. In this case Svariation comprises independent variations of both ¢, and p; atconstanttime ¢. The

difference between the two paths for the given value of 1, may be described by introducing a parameter o.common

to all points of the path of integrating in phase space.

If g, and p; are the values of ¢, and p, for the varied paths PR'Q, we have -

Directorate of Distance Education
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o
9; r
or
&g,
P; P R
>/
t h
Figure4.3
(=g, +8g, =g+ M50 = 5
q9,=4g;+ qj—qj+‘$. a=g;+1n,00 ‘ (4.29)
. P, . ,
and pj=pj+5pj=pj+~a-&~8a=pj+§18a, - . (430)
, aqj apj ;
wher 2 =1, and P =§,. v e “4.31)
The variationsin ¢, and p; are given by
8q, =180 '
8, =&, 8. (4.32)

[From equations (4.29) and (4.30))

30 =0, then 8¢, =8p, =0, sothat ¢; = ¢, and p} = p,,1.e, the varied path PRQ coincides with the

Asthe times at end points are not varied sothat

v Tl,(lo): Tl,-(‘:) = O}'

E,(t)=§, (’_x) =0. (4'33)
Interms of parameter o, Hamilton’s principle becomes
oJ 0 i .
8 =—da=8u—[ {; P, - H:Idt. | (4.34)
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As the times at the end points are not varied and hence are the functions of o, so that the differentiation and
integration may be interchanged. |
Then equation (4.34) may be written as

Sar'

> p4-

]dt=0

6q, oH

8q, oH op,

or,

w04,

But, | 2P,

0q,
= P 0.

sm;:e [, ]

Sa "Z[ap’
4l
=J‘lop

i

6a’6q,

Jar

d(0q,;

_..[?__

T dt\ ba

o
p; th
oo

}M

4.35
do.  p; oa ( )

[, = [ b, dt [Using @3]

(4.36)

m,( )-p,m,(t) = 0. [Using (4.33)]

Then using (4.31) and (4.29), equation (4.35) becomes

SQL:Z‘};,q; —'ﬂ, pj -

v LT

J;i:;

3

[Using 14.32)]

b

QJéjsa“njpjﬁa—

oH _
oq ; /

0.
0q,;

§18a—[pj+

Spj"[f’j"'

Directorate of Distance Education

o8 ,|dt=0.
0q,

OH

—&,|dt=0
ap,

H oH P
——1n,8a-—E& ba |dt =0
n.l a apjgj ajl

"a"i."{')n/ ﬁa]dt'—'o

oq

J

4.37)
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- Butthe variations 8¢, and 8p, are independent of each other; the integral (4.37) is satisfied only when the

coefficients of 8, and 8¢ vanish separately, i.é., when

g -2y p+éﬁﬁo
: J apj and ¥; aqj
. _OH | oH . '
ie, 9 “op, nd P = *5q—j’f = 1’2’--"7’ 4.38) -

which are required Hamilton’s equations.

4.9 Principle of Least Action
The time integral of twice the K.E. is called the action. The principle of least action states that

af'2rdr=o0. IR (4.39)
But, in system for which Hamiltonian H remains constant,
2T = ; P,
| Therefore, for such systems, the principle of least action may be written as
Ajl;';p,- G, dr=0, o o 4.40)

where A represents a new type of variation of the path which allows time as well as position coordinates to vary.

4.10 Deduction of Principle of Least Action
To deduce the principle of least actiori we use a variation termed as A variation ih which
() timeas well as the position coordinates are followed to vary,
(i) time? varies even at the end points of the path, |
() the position coordinates are held fixed at the end points of the path, i.e., ’Aq , = 0Oattheend points.
Let PRQ be the actual pathand P/R’Q)’, the varied path. The end point P and Q after time At take the
positions of 7 and (¥ such that the position coordinates of P and Q are fixed while the time ¢ is not fixed. A point

R on the actual path now goes over R on the vaned path with the correspondence
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1 - "
by to+AL L t+A 1, LA

Fig. 4.4

q,>q;=4,+4q,.
It o is variational parameter, then in 8 process ¢ is independent of a; but in A process ¢ is function of o even
at the end points, i.e. #=t(c). Thus the g, depends on # and a throughout. S |
Analytically A variation is defined as

Aq, =[:%qf(°‘”)]da

do dt do
0q, . dt
=~5&-’-da+q1-‘—1—&-da
aqj : 8d ot =q A - ’ : | .
But, qu---é&—da [same as (4.32)] and rwlV t | (441)
qu=8qj+qjN' : o (4.42)

Analytically, A-variation of any function f (q i t) isgivenby

Af=;(%qu+%qu+—%ft-At]
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(4.43)

It may be noted that A operation and time differentiation are not interchangeble,

!
J= L Ldt = extremum.

Taking A variation, we have

M:Aj"Ldt=(8+At+i) "Lt
1 dt J'e
=8J:"Ldt+At l"dL

=8['Ldr+[L A’

to

1, 4
= [/8Ldr+[Lat]

o

_l"z{——a +— qu }dH[LAt]
° J

Oq f

From Lagrange’s equation, we have

dfoL) oL _,
at aq, 9q,

a_dfa
or, Oq, dt 6q,

Also, weknow, 8¢, = -g;—(Sq ’ )

120~

(4.44)

(4.45)

(4.46)
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- Using (4.45) and (4.46), equaﬁon (4.44) becomes
o | d[OL aL d
Ldt = — = Sq,)|dt+{L At
fo J’to;{dt(aqj}s aq dt ( q/):l [ ]

- KZ[P/ 8g, +p, —(%(Sq ,)]dt +[LAf];
R

- L:Z.C%(pj 8q,)dt +[LAM];!
h d A
=[5 {p g, —a, A+ {28, oy e

[ Sdlo, ) Sl 00+{20

J

Z[pJqu] Z[p,q,At] [LA‘]:‘:‘ o e 447

But, [ijq ] =0 since Aq =0 at end pomts

. equation (4.47) reduces to
h
Af La -_-[(L-Zp,q,)m]‘o
=-[HAT,. . (4.48)

oH
If we consider the system for which ar =0, i.e., for which H remains constant, then

[HA) =A[" Hat.
) to
Substituting this in (4.48), we get

Al"Ldt = -Aj"Hdt
1 to
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o, Af "(L+H)dt =0. (4.49)
o, A ‘o'(uzquj - L]dt =0
J
or, A.’:o Zp/q/ dr=0. (4.50)
J
This is the principle of least action. The quantity flz p,4, at is generally called Hamilton’s characteristic
. 0 J
function.
But ijq'j =2T.
J

4 C » : .
Aflo 2T drt =0, ' | 4.51)

which is another form of principle of least action,

Example 4.10.1 Apply principle of least action to prove that out of all possible paths between two points, the
system for which K.E. is conserved moves along the path for which the transit time is extremum.

Solution. According to the principle of least action,
Ul
~A["2Tdr=0.
fo
IfK.E. of the system tis conserved, then above equation yields
Af"dr=0

which states that the system moves along the path for which the transit time is extremum,
4.11 Unit Summary

Inthis unit, Euler-Lagrange’s equation is deduced and some problems have been solved using this equation.
The Hamilton’s principle and its modification are stated. Using Hamilton’s principle, Lagrange’s and Ham ilton’s
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equations of motion are deduced. The principle of least action is stated and proved. An exercise is included with

this unit.
4.12 Self Assessment Questions
[ |  doF) oF
4.1 Prove that J = L) ».y' s x)dx vnllbemlnumumonlywhen o (gy’r}-‘éy— =0.

2. Brovetbat J = [ (3 s Vs Yo Yo Vo)

will be stationary only if
d|[O0F ) OF
—| = |-—=0,k=12...
il ) o1
wherey,,“-@!‘“

4.3. State and explain Hamilton’s prmcxple and denved Lagrange s equatxon of mouon from 1t stcuss how the
result will be modified if the forces are non-conservative. ‘

4.4 Prove that the equation of curve for which surface area is minimumis a caterary

h_y_'__ll,
a

X =ac0s

where a and b are constants.
4.5 Derive Hamilton’s equations of motion from the variational principle.
4.6 Provethat J=“jF(u,ux,uy,uz,x,y,z)dxdydz

will be minimurm only if

OF afaF) o[oF) ofoF _0
ou ox\ou, ) oy\ow, ) oz\ow)

4.7 State Hamilton’s principle and derive if from D’ Alembert’s principle.

4.8 State and prove the principle of least action.
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4.9 Findxand y as functions of 7, sothat
J= [z(x +y) mgy]dt

may have stationary value. It may be assumed that x and yaregivenat ¢, and ¢,.

4.10 State Hamilton’s prmcxple How can the principle be used to find the equation of one dimensional harmomc
oscillator?

4.11 A particle of massm moves under the influence of gxavxty on the inner surface of the paxaboloxd of revolution
x* + y* = gz whichis frictionless. Obtain the equations of motion.

4.13 Suggested Further Readings

1. H. Goldstein, Classical Mechanics, Addison-Wesley, Cambridge, 1950.

T.W.B. Kibble, Classical Mechanics, Orient Longman, London, 1985.

L.D.Landauand EM. Llfshxtz Mechanics, 3rd ed., Pergamon Press, Oxford, 1976

A Sommerfeld Mechanics, Academlc Press, New York, 1964

J. Synge and B. Griffith, Prznczples ofMechamcs 2nd ed McGraw H111 New York 1949

A
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i
Applied Mathematics with Oceanology
and
Computer Programming

PART-I

Module No. - 41
PRINCIPLE OF MECHANICS .
(Canonical Transformations, Bracket and Hamilton-Jacobi Method)

Group-A

CONTENT :

5.1
5.2
53

54

5.5
5.6

5.7
5.8
5.9

Canonical Transformation.

Legendre Transformation.

Generating Functions and the Canonical Transformations.
5.3.1 The necessary and sufficient condition for a transformation to be canonical.
5.3.2 Examples on canonical transformation.

533A property of canomcal transfonnanon

Poisson Bracket.

5.4.1 Properties of Poisson bracket.

5.4.2 Hamilton’s equations in terms of Poisson bracket.
5.4.3 Constant of motion.

Hamilton-Jacobi Theory.

Hamilton-Jacobi’s Equation.

*5.6.1 Physical significance of S.

Separation of Variables in Hamilton-Jacobi Equation.
Liouville’s Theorem.
Worked Out Examples.

5.10 Unit Summary.

5.1

Self Assessment Questions.

5.12 Suggested Further Readings.

In this unit, canonical transformations, Poisson bracket and Hamilton-Jacobi method are introduced.
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Objectives

*  Canonical transformations.

®  Legendre transformation.

*  Generating functions. : :

¢ Necessary and sufficient condition for canomcal transfonnatxon.

¢ Poincaré theorem.

*  Poisson bracket and its properties.

®  Hamilton’s equations using Poisson bracket.

*  Constant of motion. B

®  Jacobi’sidentity.

®  Hamilton-Jacobi equation. :

¢ Solutionofone dimensional simple harmonic oscillator.

e  Liouville’stheorem.

e  Exercise.

5.1 Canonical Transformations : .

There are a number of problems in mechanics for the solution of which, it is often desired to change one set of
position and momentum coordinates into another set of position and momentum coordinates which may be rather
suitable. For instance we assume that ¢, and p, are the old position and momentum coordmates and Q, and 7,

are the new position and momentum coordinates related by the transformations

P = B/(pl’pb”"pn_’ql’qZ""'qn’t) ' 5.1
Qf’"‘Q./(anl’z’-wpmq”%w--qu) >
o, F= Pj(pj’qj’t)’Qf = Qf(pf’q/”t) o ,’ (-2)
then if there exists a Hamiltonian A in the new coordinates, such the
oH . OH o f
P=-ZL and 0 =2 ¢3)
/ [0} / oP, : :
The transformations (5.1) or (5.2) for which equations (5.3) valid are called as ga_n_gp_u_:gl or contact
transformations. - o

Through in the Hamiltonian formulation the momenta are independent variables similar to generalised
coordinates but the canonical transformanons include the simultaneous transfonnatxon ofthe independent position

and momentum coordinates ¢, p, to the new set Q. P.
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Here );, P, are referred as canonical coordinates.
Let H'be the Hamiltonian in the old coordinatesand L, L the Lagrangian in the old and new set of coordinates

respectively, then by the definition of Hamiltonian, we have

H= ijqj L and H= ZPQ, : (54)
J=l J=l
5.2 Legendre Transformation N , A
The Legendre transformation is a mathematical procedure used to changed the basis from the (q ;245! ) set

A to the (qj,p,, ) set.
Let there be a function of only two variables f{x, ), so that the differential of f may be expressedas .

A
Cy*axdx+6ydy

=udx+vdy,
7 - | 69

of
_— Vo= .
where 4 = ox and 2y

(5 5)

Let us now change the basis from x, y to the independent vanables u,ysothat the dxﬁ’erentxal quantities may

be expressed in terms of du and dy.
Let there be another function g of variables # and y, such that

g=/[~ux -G

Therefore the differential of g is given by
=df —udx - xdu. (5.8)

Substituting value of df from (5.5) in (5.8), we get

dg = udx + vdy — udx — xdu
or, dg=vdy-xdu, (5.9

which is the required form.

As g =g (u,y), therefore

dg= a’/”ot’u+agdy o - (5.10)

oy
Comparing (5.9) and (5.10), we get
127
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du :an dy
Thus by the help of (5.7) we can transform the basis from x,y to the independent variables u, y provided x
and u satisfy equation (5.6). '

5.3 Generating Functions and the Canonical Transformations

From Hamilton’s principle, we have

8£"Ldt=0 and 8" Ldt =0, (5.12)

where L = ijqj Hand L= ZPQ H.

J=1

ens_[ ijqj dt-—

:, s :
and sj (> Po,-H)dt=0. |, | - (5.13)
The two expressions of (5.13) are sunultaneously vahd if the integrands dxffer by a total time derivative of an

arbitrary functionsay G, i.e. if

(g, ~H)-(220,-F)=FL. | ENCAT)

The integrals (5.13), wh_en combined become

§f,:[(§p,-qj )(EPQ, Hdt..

ndG

8| —dt=0
or, O ar
’ldG

o, 8] —-dt= 8[G(1)-G(1,)]=0. | (5.15)

[since the end points are fixed.] ‘
-The function G is called the generating function of the transformation. The left hand side of (5.14), the first
expression is a function of ¢’s, p’s and ¢ and the second one is a function of Q’s, P’s and ¢, Hence the generating

function G in general is a function of 4r+1 variables q’s,p’s,Q’s, P’sand .
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~ But, with the help of transformation (5.2), it is possible to reduce G to be a function.of 2n+1 independent
variables one of which is £ and the other 2n variables are from p’s, ¢’s, P’s, Q’S. |
These are four possibilities of the generating function G:
@ Gi(q,,0,.1), provided thatonly ¢,,0; aretreated independent.
@) G,(q,,P,1), provided thatonly ¢,, P; are treated independent.
@) G;(p,,Q,.t), providedthatonly g,,0; are treated independent.
®) G,(p,,P,,1), provided that only p;, P, are treated independent.

Case I The generating function G is a function of ¢,,0,,7.
Let G= G,(qj,Qj,t)
= Gt(‘]nqzv--’%’Qan """Qn’t)'b

Then from (5.14), we have

(5p,4, - H)- (22,0, - H)= 220

3G, . G, . G
= e (] outinst B . 4 et B
3q, zag, 9+

G, |. aGi. z G _
R
J. .

aq/)
oG c/y — oG
or, Z p_/"'é—l a’q,—Z(Pj +-;Ade+(H—H*——a—t|)dt=O.
\ 9, 2
As (s, ¢ s and ¢ are independent riables, we have
P, o Gl16s)
p o 9,
' 8g, . (516b)
3G SR
and H=H+_ét_" (5.16¢) -

Equation (5.16a) states that Q, can be determined in terms of q,.p,.! . It means that (5.16a) 6an give
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transformation Q, = Q,(qj,p,, ) Knowing Q(q,, P )from (5.16b), we can determine P, = P(q,,p, )

Finally, (5.16¢) provides the connection between the new Hamiltonian and the old one.

Case I1. The generating function G is a functionof ¢, P, ¢ .

Let  Gy(q,,5.1)=G\(4,,0,,1)+ 3, PO, - | (5.17)
Substituting the value of G, in (5.14), we have

(Xp,4,-H)-(3 P 0-F)
=2{6,(0,2.1)-3 BO)}
= 2322 4+ ?)% B +aaG,2 "(ZBQ/ +0,B)
o 3o Bzo-Bhn-(r-n- B

as q;, F; and t are independent variables, we get

. 9G, ‘
pj—géj— (5.183)
3G .
o ='aF,2" | (5.19b)
and E=H+§§A. | (5.19)

Equations (5.18a), (5.19b) and (5.19c¢) represent the canonical transformation for the given generating
function G,

Equation (5.19a) states that P, can be determined in terms of ¢,, p;,¢ . Knowing P(q P, ,t) , wecan find

g (q 13D)s t) from (5.19b), while equation (5.19c) provides the connection between the new Hamiltonian 7 and
old Hamiltonian H.

Case I11. The generating function G is a function of p,, Q,t.
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As before the relation between G, and G, canbe obtain as

G\(4,:0,+)= Gs(p,: Qyut) + 22,4
Substituting the value of G, in(5.14) and then proceeding as before we get

_ 3G, - .
G
P = - , ' .
J 30, i (5.20b)
and H= H+~é;i. (5.20¢)

Case IV. The generating function G is a function of p s Byt
In this case, the generating function G, and G, are connected by
Gy(p; Put)=Gi(a,,0,:)+ X RO, - 2 P4,
Substituting the value of G, in(5.14) we get
aG,
ijql ‘ -H= ZPQ -H+— 5
=270 - ﬁ+ PN/ /AIN T ZPQ +ZPﬂ/
= dG : .
or, -H=-H+=%-3 PQ, +2h,

oG G, < : .
or, —-H= —H+2 P ZaPAPJ*_ ot ZPJ'Q/+zquj.

J

Comparing the coefficients of p; and P, we get

__9G, '
U=, . (521)
aG )
Qﬁg;.f | (521b)
— oG | .
and H=H+——at—“. - (521¢)
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Equation (5.21a) states that P, can be determined interms of ¢, p,,¢ . Knowing P, , we can determine O,

from (5.21b) intermsof q,,p,.¢. '

5.3.1 The necessary and sufficient conditidn for a transformation to be canonical.

Theorem 5.1 If Z(deQj - pdq j) or 2( P99, - deQj) be an exact differential then the transformation
P = Pj(qj,pj,t) and O, = Qj(qj,pj,t) is canonical.

. Proof. We know that for a canonical transformation, the relation (5.14) should be satisfied, i.e.,

(ZPJ‘IJ-H)4(ZEQ'1-F)=%§;—- | (522)

If the generating function G does not include ¢ explicitly then

— oG G
H=H+—=H |'+w—=0]
+ar ( ot O)

Then (5.22) reduces to

. . dG
2 pAi~ 2RO =
or, Z ( r,dq, - PdQ, ) = dG , where dG is the exact differential of G and G is the corresponding generating
function. '

3.3.2 Examples on canonical transformation
Example5.3.1 If' the transformation equations between two sets of coordinates are P = 2( 1+ \/c—]_ cos p)\/-q_ sin p,
Q= log(l +J¢7cosp) ,

@ show that the transformation is canonical

() the generating function of this transformation s fi=—(e®- 1)2 tan p.

Solution: Here pdg — PdQ

. _cospdqg-2gsinpdp
= d '2 1 d
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= (p—%sian)dq +g(1-cos2p)dp

- d{q(p-—%sirﬂp)}.

This shows that p dg - P dQ is exact. Hence the transformation is canonical.

e?-1Y
() Wehavee? =1+ chspor,q=(cosp .

P=2(l+ qcosp)\/asinp or, P=2e%e%-1)tanp.

Si q=...?._6_3. P=-§.Cjiv
ince, ™ ) 'BQ s thereforg
T i = - -—1
dp (cosp) (e ) v p

and %—%— = —2eQ(eQ - l)tanp.
Integrating,
| G, = —I(eQ - 1)2 sec’ p dp=—(e? - 1)2 tan p,
and G,= —Jeg(eQ ~1)tan p dQ =—(e - 1)2 tan p.
Thus G, = ~(e? - 1)2 tan p, is the generating function.
Example 5.3.2 Consider the generating function
G, = %qu cotQ
where m and w are constants.

oG
Solution. Then P = ‘5{'}" =mwq cot Q

P= _é_c.;.l_ = .M—z—- .
00 2sin’Q
From (ii), we have
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qg= \/—;—S sinQ. » ‘ (iid)

Then from (i) and (jii) we have
P =+/zmw P cosQ. . , (iv)
The generating function does hot mvolve the tlme t exphcxtly, thus the value of the Hamiltonian is not affected
by the transformation and it is only necessary to express Hin'terms of the new Qand P.

Suppose the Hamiltonian has the form
H = _£._ + m q2 . (V)
Thus the Hamiltonian in new coordinates is

H=wP | | (vi)

The equation of motion for Qs

==,

oP
Thatis Q= wt + 0. Then from (iii),

g= 1/% sin(wt + 1) , (vi)

Now from (vi) and (vii), we have

’2H .
9= 3
| mw

where H= E (the total energy) = constant, since His independent of time.

if;sin(wt*d), T _ (vii)

The equation (viii) is the solution of a harmonic oscillator.

5.3.3 A property of canonical transformatfons
Theorem 5.2 (Poincaré theorem) Under canonical transformation, the integral

J= f | 2 daa,

remain invariant, where Sisa two-dimensional surface in phase space (phase space is a 2n-dimensional space
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having coordinates g,,q,,...,g, and p,, p,;..., D, )-
Proof. Since the position of any point on the two-dimensional surface is specified by two parameters. Let 4, vbe

the parameters. Then

g, =q,(u,v) and p, = p,(u,v) - (5.23)
Therefore, |
" a(Qi»Pi)
quidp, = Z Wa dv, | ' (5.24)
h &q.-p,) . . .
where “‘“—’”a(u,v) ~ isthe jacobian of ¢,, p, w.r.t. u,v.
Let the canonical transformation be
0, =0a,.p,.) and B = A(q,ppt). | (5.25)
So, we can write
oG, B) :
dQ.dP, = Y —————=~dudpv.
Zk: Q. dP, ; 6(u,v) uay . o (5.26)
If Jis invariant under canonical transformations as in (5.25), then we can write
J | 2. dadp, = j [ > do.ap
i k
qtap: Qk"Pk
dv d
jJZ ——du JJZ Buv) du v
a(qi’pi)_ a(Qk’Pk) |
o, Z,: (u,v) - ; ou,v) (5.27

Thus the proof of invariant of J under canonical transformation is equivalent to the proof of identity (5.27).
Let the generating function be G,(g,, P,,) for canonical transformation from ¢,, p, t0 g, £ . Therefore,

_0G,

D% (528)

i

8*G, 8q, G, 0P,
P _ +
Now, 5, Z(@q,&qk ou  0q,0P, ou
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op, asz aq,, 62G2 aPk
—= + L
and 5y Z(aq,aqk ov " 2q,0P, ov

k

Here
(0., 99, Op,
g:p,) _ ou du
z,: &u,v) "Z dq, op, : | (5.29)
o v
aq, ( G, o, , &G, aP,,)
ZZ Ou \0q,0q, ou ©q,0P, du
=TF%e (2G, oq,, OG, oA,
ov \0q0q, ov 0q,0P, ov
[ oo o4 |oa oA |
ZZ 9°G, oy 6u+an ou Ou |
= 4<% 09,609,194, Y4x| og0P, 09 OP (5.30)
| o v v v
We have
2 aqi aqk 3 an 6q1
) G, |ou oul_yy G, lou ou
ik 5‘1,3% aq' aqk ik aq,(aq, aq,, aq:
v v v v
. |99 %4y
- __ZZ 06, lou du
T % 0q,0q, 9, 0g,
v v
dq, 0q,

ZZ 3'G, o
T 04,09,99, 94,
ov Ov

(5.31)
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Replacing g by P, we have from (5.31)

oF

op,

Zz.?fgz_au Bu
~ o pPoP,|OF, Ok,

=0.

ov ov

Now, equation (5.30) can be written as

o lm el e 2R
Za(q,,p, =ZZ ou oul, 0G |ou ou
aPaP OP OB oq,0F,|%. Ok
ER v v
&G, op,  9°G, 0q,| Ok
oP,0P, du " oPoq ou) ou
&G, o, 0°G, 8, R
oP,OP v T opog ov ) ov
(asz) oR|  |ag, o
P, Ou =Z ou Ou
aG,) on| T|% %
oP, "By ov Ov
-3
oG,
where 7p aP .Q,,
a(ql’pl) a(Q’
Theref()re,z Z -

ousv)

- This completes the proof.

5.4 Poisson Bracket
The Poisson Bracket of two dynamical variables X(g, P, t) and Y(g, p,¢) is defined as

2.32)
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5.4.1 Properties of Poisson bracket

Property 5.4.1 Poisson bracket does not obey the commutative law, i.e.

[X.Y]=-[r,x] (5.33)
Property 5.4.2 Poisson bracket obey’s the distributive law of algebra i.e.,
[X+7,Z]=[X,Z]+[1,Z] $(5.34)

Proof. [X"'Y’Z]:Z

J

Zr[ax+aY]az_ ox  ov)oz|
- T\%, g, )op, \op, op, ),

_ ;Iﬁ{_‘z-ﬁ{iz_]}rzﬁ oY oz oy azH

71\ 9, 0p, p; &g,

NX+7Y) oz _(X+Y)oz
dq, 0p, op;, 0Oq,

= [X,Z]+[1,Z] |
Similarly, [ X, ¥ + Z] = [ X, Y] +[ X, 2]

Property54.3 [X,¥Z]=Y[X,Z]+[X,7]z. | (5.35)

oX oYZ) ox ¥rz
Prof. [x.7z]=3 ( )_ox a1z)
7L%; %, o, &,

o Y52+ZaY)_aX y 9L, oY
J aqj apj apj apj aqj -6qj

_ {Z(QK_E%_Q{EZ_J}M{Z(.?{QLEX_QZ)}
J aq/ apj apj aCI/ J aqj apj ap] aqf

Proper:: 5.4.4 [p,,P,-] =0:[qnqj] ,foris j. (5.56)

q9.P g,
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apl apl apl apl ]
Proof. PisD;
. [ ’ ;J] Zt:[a‘h o op; an /
- ;[o.s,k ~8,.0]=0
[where 8 , is the Kroneker delta].

Sumlarly, [Qi ’qj] =0

Property 5.4.5 [9:.p,]=8,. (5.37)

Z(aqi api - a.Qi ap/)
+ \0q, Op, Op; Oq,

= 98,.8,-00=3,.

k

Proof, [q,,p,]

"Property 5.4.6 Poisson bracket of two dynamical vanables is invariant under infinitesimal canonica! transformation,
i €. [X’ Y]q,p = [X’ Y]Q,P

oxX oY oX oY
Proof. [X.,Y],,= ( ' -
r=2:\ 20,38, 21,30,

3 _‘75{2(5” 9q, aYaP') 9&2(2{?&+2¥_?&Jl
- 5|90, T\ 8q, OF, " ap, o oR | 5\ 0q, 00, dp, 0Q; ||

_xly[ ov(ax o _av o), or(ox o oX 2,
, aq, ap,\ 60, 0P, P 8Q,

20, oP, 9P, 80,
oY oY .
{BZ{X 0l +5;[X 2, } | (5.38)

Now, [X.a],,=-[9.X],,

__yloa o 2 X
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) _Z{aq, [Z oX dq,  OX aka ) [Z X 54, , X op, ]}

oq, OF, apk OF, OF, an an op, 00,
- Z Z O, g, Oq; g,
aqu a0, 6P, P, 80,
L9X 3 oq, 0, Oq, oq,
apk m an a})m aP m an

oX (). ¢
= -;{-é;;[qi’qk]g,p +_a_p_k_[qi’pk]Q'P}

X o | (539)

o9, Op; o,
1) ¢ '
Similarly, [X>P/]= 2~ (5.40)
 Using (5.39), (5.40), equation (5.38) becomeés
oY( oX) or(ex
X, Y| = +— XY
[X:T]o. ,Z{aq, ( op, J op, (661. )} [ ]
The value of the Poisson bracket remains the same m tw"o diﬁ’erem system.
Property 5.4.7 Condition for a transformation to be canomcal in terms of Poxsson bracket
The transformation 0, = Q,(¢,,p,), P, = P (q,,P,) will be canonical if [Q; 19 ] 0= [Pj’ Pf](,,,, and
[Qpr,Lf?- L » (5.41)

0Q. 0Q, an o0,
Proof. |0,,0,| = ( L2 TR CE
[ J Qj]q,P ; 6qk apk apk aqk

For the generating function G (q 19Ot ) we have

_96, 96
©0g" " ag,

From these relations
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o, _ &G, _ 0 (8G)__2P .

60, 0Q,0q9, 9q,\00,) 94, (5:42)
8G, . &G,

Similarly, for the generating function Gz.(q i Pj,t) ,wehave Pi © £ Q= 5p. fromthese relations
; ; >

o _ 06, _9_{_6_.0_)29_

0P, 0Pdq, 0q,\ OP, | dq,
. 9p, _ an | |
" op, og, | | (5.43)

Similarly, for G (pj,Qj, ) and G, (pj,P ,t),we'canget

=+  (5.44)

09, %,
o0, b,
oq, _ an |
and s ) 0 | (5.45)
50, 0P, 20, 0P,
Now [ " ’]qp ;(aq,‘ Op, Op, 04,

99, oq aQ, op ‘ |
Z(a‘h 5Ql; op, 6ij) [using (5.42) and (5.44)]

00

-0 P,]w =1
Similarly, we can prove that _
l0.0],=0[2.2],,=0 [B:R],,=0 and [p.p],,=0 (545)
Example 5.4.1 Show that the transformation
g =+2PsinQ, p =2 P cosQ iscanonical.

Solution. From the given equation we have

tanQ=g/pand P=(p’ +q?)‘/2.

|
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Now, [0,0]=0,[P, P]=0,

- To pl=|2Q0P 0QoP
and {Q’P)‘(aqap op aq)

= cos’ Q1 +tan’ Q) = 1. |

Hence the transformation is canonical.

Example 5.4.2 Using the fundamental Poisson bracket, find the values of aand £ for which the equation
| Q =g cosPp, P = g° sinPp represents a canonical transformation.

Solution. We know that the transformation is canonical if

[0.P]=1[0,0]=0,[P,P]=0.
Now, [©, P] =(§_Q~ﬁf__§g_5_£)

= ag* cosPp.q® cosPp.B +¢° sinPp.Bag®”' sinPp
= apg**'(cos’ Bp+sin’ Bp) = afg "',
Ifthe transformation is canonical then oBg2*~' = 1. ,
Equating the coefficient of ¢ on both sides which is possible only if we take
2a0-1=0o0r, o =1/2.
Also,aB=1 . B=2.

Hence the required values of o and B is 1/2 and 2.

P ox or] |
=[x, ¥r]={ < v |+ x, 25 |
Property 5.4.8 ax[ ] [ . }{ 6xJ | | (546)

Proof, [X.Y]=3

J

ax oy aX,aY) |
09, 9p, op,; o,
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Z{ 0 (&)or ox ¢ (ﬁ)-i(i{)it_%i(é{) .
7 |0q,\ox JOp, 0Oq,0p,\Ox) Op,\0x)dq, Op, 06q,\0x)|

Property 5.4.9 Jacobi’s Identity
If X, ¥, Z are three dynamical variables then - _ .
[ rz]+[r[z.x])+[z[x.1]=0 - 64

r.z]J+[r.[z,x]]

.[x,[nzn-w,zn

- Proof.

[ oY 0Z oY Z —[(0X 6Z oX 8Z
-|* Z(a;:a—n‘é;'é;ﬂ [”’Z(‘am:“s;:s;ﬂ
[rzae) ez el irag]
L i aq'l ap i A apl aql i aql apl
ox oz
* _Y Zap, 661,} , '
Y AZ oY 9Z X Z X 9Z
Y x L x, 2222 v, y,22
2[ 2, ap,] ,Z[ % % ] Z[ %, ap,}’Z[ % aq,]

‘ araz YAL) 4 oY 19z R YAE) 4
= X,— X,—|—-1 X, X,
{[ 34, apf'[ aq.]aq, [ ap]aqf [ aq,]ap,

axloz [. ozlex ax oz oz |ax
dr, |y, |y, | Y,
aqi apl L. ap) _ aql apl aq/ aql aql

Az 2l )
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where » |
ozlor [ az]ar [, ozlax
S= X,—|—-17%,
Z{[ ap,}aq, [ Bq,]ap,- [ 8@]611, |
&k
0q, | %p, |
[t can be shown that by expanding the Poisson bracket S = 0. Then above expression will reduces to
% [r.2]}+[r[z.X]
0Z oX aY
= — X
(-3 ){[Y |l ]}
dZ oY | |oX
-1 X Y
op, {[ ap,] [ap, }} }
0Z 0 0Z 0 '
== {=-— —| X, Y|+ ——][X,Y]} =~ Z,[ X,Y]|
Z{ p; g, [_ o o, ap,[ ]} [ [ | 1
o, [X,[1,z])+[r,[z, X])+[Z,[ X, Y]] =0.
Hence the result. '

5.4.2 Hamilton’s equations in terms of Poisson bracket

We have,

'[q!, H]- 2(aq, OH g, BHJ Z(Qq_,_ _a_g___o)

99, op, p, 3, 9q; 9p;
oH . OH |
= -—-—-80_ =,
7 Op; p;
oH
p,,H =
Similerly, [ 2 H ] = 5

Hence the Hamilton’s equations are

qm-é;*—[?nﬂ] | S (5:48)
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) oH : ‘ .
and P~ ”‘5;7 = [pi’H]' (5.49)

Equation (5.48) and (5.49) thus can be referred to as the Hamilton’s equations of motion in Poisson bracket

form.

5.4.3. Constant of motion
If F (q 13D t) is adynamical variable then

oF . dF

2 oH BF _0H +§_1_“_
aqj op, 3pj dq, ot

oF
=.[F’H]q,p + —a";‘
: . OF
If F does not involve 7 explicitly, then o 0.
In that case,
dF ; L ; A
— =[FH], 650
Now, if the Poisson bracket of ' with / vanishes ther‘x‘ from the above equatibn | |
dr
@ =[F,H]=0 or F=constant. - | o (85D

That is, F becomes a constant of motion. Thus all the quantities having zero value their Poisson bracket with
H are therefore constant of motion.
Conversely, the Poisson bracket of a constant of motion with H will be zero. This properties can beused to

identified, i.e. to find the constant of motion. .

Theorem 5.4.1. (Poisson’s theorem) The Poisson bracket of two constants of motion is itself a constant of

motion.
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Proof. We have, from Jacobi’s identity,
[x.[r.2]]+[¥.[z,x])+[z,[x, Y]] =0.
Let Z = H then
[ L1, 1 [ X+ [, X, 1) =0
Now, if X, Y are both constant of motion, then [X,H]=0 and [Y,H]=0.In this case, the above
experssion reduces to
[#.[x,Y]]=0ie, [X,¥],H]=0.
This indicates that (X Y} isa constant of motion. Hence the Poisson bracket of two constant of motion is itself

aconstant of motion.

5.5 Hamilton-Jacobi Theory

We know that canonical transformations can be used to provide a general procedure for solving mechanical
problems. Two methods have been suggested. If the Hamiltonian is conserved then the solution can be obtained by
transforming to new canonical coordinations which are all cyclic, since the integrations of the new equations of

motion becomes trivial. An alternative technique is to seek a canonical transformation from the coordinates and
momenta, (g, p) at the time  to a new set of constant quantities which may be the 2n initial values, (q,,, po) ,at
t = 0 withsucha transformation, the equations of transformation relating to the old and new canonical variables
are then exactly the desired solution of the mechanical problem.

q= q(qa’pa’t)’ P = p(qo’pn”t)'

These give the coordinates and momenta as a function of their initial values and the time.

5.6 Hamilton-Jacobi’s Equation

For canonical transformation from the set (q D, ,t) to the set (Qj P, t) , we have

oH . oH — oG
“ap T Tag ad H=H+r, (5-52)
j J ‘

where H, H and G are transform Hamiltonian, old Hamiltonian and generating function respectively.

9,

The set of new variables O, , P, are constant in time and then the equations of motion are
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. _OH . 0H |
=2, p=-2 2,
oG |
We can take JF = () and hence H+'§t—= 0, (5.54)

It is convenient to take G as a functionof ¢, P, ! i.e., in our earlier notation we designate the generating
function as the transformation equation for the generating function G, are

oG oG
P=—2 0 =—2,
7 og, 9 oP, | (5.55)’

Using the result of (5.55), we can write the expression (3.54) as

: : oG
H(q],qz,---q”,p‘,pz,...pn,t)+~é?' =0

. 6G, 96, 9G, ), %, _, - |
or, 15925+ y» aq‘ ’ aqz "'-'6qn ’ ot : ‘ (5,56)

The equation (5.56) is a partial differential equation in (n ‘1) variables while equation (5.54)isin (2n +1)

variables, this shows that the above substitutions has reduce the number of variables by . The equation(5.51)is
called Hamilton-Jacobi’s equétion. "
~ The solution of this equation is called Hamilton principle function and is denoted by S. In that case

Hamilton-Jacobi’s equation is expressed as

| s a8 88 )& g
ot o, o, 09, ) o

oS
or, simply H +-5;' =0,

5.6.1 Physical significance of S
Taking total derivative on S

ds as . as .88
@D N g == g, +—
at ;64,- A ;qu, ot
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=) pq,—-H H+—=0
; P [as ot J »
=/ ,
or, §=[Ldt +constant “ (5.57)

So that Hamilton’s principle function differ at most from the infinite time integral of the Lagrangian by a

constant,

3.7 Separation of Variables in Hamilton-Jacobi Equation ‘

The Hamilton-Jacobi equations are employed as a useful technique if it is possible to separate the variables
in the Hamilton-Jacobi equation. Consider a case in which the Hamiltonian is a constant of motion, it may or may
notbethe total energy. Let us then consider the canonical transformation generated by the Hamilton’s characteristic

function Fand its corresponding Hamilton-Jacobi equation. The variables ¢, contained by the equation are only

separable ifa solution of the type F =" F(q,,0,,05,...,t,) (5.58)
exists such that it splits up the Hamilton-Jacobi equation into 7 equations of the type
OF, : :
H; 9 or 2O @y | =00 : (5.59)
. qj : : . ;

All of the n equations given by (5.59) are of the first order and each of them involves only one of the
coordinates ¢, and the corresponding partial derivatives of £ withrespect to g, . Their solutions mainly require

OF,
them expressible for 'a‘;‘ and thenintegrated w.rt. g .
J

~ Ifwetake the trial solution for Hamilton-J acobi equation of the form
S(qj,aj,t) = F(qj,aj) + S’—(t,aj),,

then the Hamilton-Jacobi equation yields

a N\ )T

Here the first term involves only the time and the second one involves only the position coordinates ¢, ;
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therefore it will hold for all values of the variables only if the two terms are equal and opposite constants i.¢., say

oS oF -
"5;‘"""“1» H(‘Ij"é”q‘;)zo‘n- _ »(5.60)

The first equation gives on integration
S=-0,.
The second equation is the Hamilton-J acob1 equatxon forF.

Example 5.7. 1. Solve the Harmonic oscillation problem by Hamilton-J acobi method.
Solution. Let us consider one dimensional simple harmonic oscillator. For such a system force is conservative i.e.,

F= -_-kq where k is spring constant.

1 p’
andKE. T= '2'"1\’2 == where p = mv.

Hig, pf)=T+V =2+ 5.
(qp) * '2m+ 2

-
g 8q°

€ have q’aqa aq 2m 2

Hence Hamilton-Jacobi equation is givenby

2 ' . .
1(as)  kq* oS ,
e —| 2|+ —=0.
be Zm(aq] i Yo . ®
Since the explicit dependence Sonis involve only in the last term the solution of (i) can be found in the form

S(g..t)=W(g,0) -0, (i)
where o is the constant of mtegratmgtobedcterrmne latter as the transformation ’
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Substituting these values in (i), we have

2
M
(aq) 2
or, -(T;—Z/-=42ma~kmq2=x/mk gzq-fqz

or, W=\/mkj\/%—q2dq+c S | ()}

~where C is aconstant of integration,

Then from (ii), we have

S=W—w=«/mkj1/-2ﬁ-q’dq-ar+c. - : (W)

Here, C an additive constant does not effect the transformation becausc taking partidl dﬁﬁvanve,w Lt a
(new momenta P) to give S (the new position coordinate Q)it reduces to zero.

The value of ﬂ (constant) correspondmg to new position coordmatescanbébvaiuatbdas, .
B=—
J \/Za/ k -q°

2 ;

o \/::;(t +B)= sin"(q\/%)
o, 9= \/};{ sin{‘/—g (¢+ B)}
putng =% g 2 nfurp,

whichis a familier solution of aharmonic oscillator problem. |
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oS _ow
Now, p = 5; =— i 2mo. — mkyg® [from (iv)]
= \/ 2mo. - 2mo.sin® {w(t + B)} , [using ()]

= 2ma cos{w(t +B)}. _ (i)

Let at time £ = 0 the particle has the values ¢, as the initial displacement and p, as the initial momenta then

from (v) and (vi), we have ' ,
20 . .
o = ’7 sin(wp) : (vii)
Py = 2mat cos(wB). (vili)
2 2

‘I qo i k _Po
. —— = l = 2 2

e 2moc or, 2mo. = p, +mkqy.

Now, from (vii) and (viii) the Sis related to g, and p,as ’

tan(Wﬁ) vk (qo ) | | R ' ()
0 .
and aisrelated to p, and g, by the relation

2mo. = py +mkq; . | - ®

Let the particles start fromrestat ¢ =0, Po= 0 from (IX) we have
tan{wP) =undefined

o, wB=mn/2

. From (x), 20 = kq; and from (v)

g = \/Z—E—‘-sin{w(t +B)} = gy sin(wt +n/2)

= g, cos(wt).

i .

This is a particular solution.
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Evaluation of S and L
From S = vmk —z-lgoﬁ—qqu—w-i-c.
Substituting the value of ¢
= Vima,|Z wJ‘ cos* {w(t +PB)}dt —at +c
= ZaJcosz{w(t +B)dt -t +c

s L= %'f— = 2a.cos’ {w(t +B)} - a

5.8 Liouville’s Theorem

Statement. The phase volume (i.e., the volume in phase) p A
occupied by a set of particles is constant, D (g, p+dp) C(q+dq, p+dp)

~ Inother words, the number of particles per unit volume in —> >

. . s —> —>
phase space is constant, i.e., the density is constant. —_ BN
Proof. Case I. For one degree of freedom > >
In th f one d f freed h
n the case of one degree of freedom, we av§ a two A@GD) B (7dz. p)
dimensional phase space and the volume element reduces to P _ q>
v ig. 5.

the area element dp dg.
Let p = p(p,q,t) be the number of particles per unit area.
If ¢ isthe velocity of the points entermg through AD, then the number of points which enter through AD in

unittimeis pg dq.
The number of points leaving through

L0,
AC= [pq A (pq)dq]dp .
q
Therefore, increase in the number of particles which remain in the e}ement ABCD.

. .9, .
= pgdp- {pq + Eg(pq)dq}dp
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5 ;
= ——(pad)dadp. 561
P (pd)dqdp (561)
Similarly, the number of particles which enter through 4B = pg dg.
The number of particles which leave through CD
— {pg+-2(pp)dp rdg.
Oq
Therefore, increase in the number of particles which remain in the element ABCD
= ppdq - {pc) + j-~(p1r'9)01’p}a’q = -2 (op)dq dp. (5.62)
op _ dp
Total increase in number of particles in the element ABCD from (5.6 1)and (5.62) is
0 3,
| —(pg)+—(pp) |dqdp.
L?q (pd)+- p(pp)} qdp
. op
This number must be equal to -é't‘dpdq .
Therefore, we must have
op 8, O,
—dpdq = -| — +— d,
> P [aq (rg) ap(pp) qdp
op 0, .\, O,
— +— dpdq =0
or, [ a5 (p4) ™ (pp)] ipdq
op O, .\, 90, .
—_ +— =0 {as dpdg #0
oL B (pd) ap(PP) [as dpdq ]
o 06¢ .0p, 0P, .0pP . :
LipHrg—+p—+p—=0.
or, Paq q 2q Pap Pap (5.63)
From Hamilton’s equations, we have
oH__, oH_,
g Pad 5=
Then 5, = “apag *™ 8g  ogop’ (564
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Since Hamilton’s has continuous second order derivatives, then from (5.64) we have

P__9% |

P o4 | . (5.65)
Using (5.65), equation (5.63) may be written as

op .0p _op :

i +p—=0.

o e Pap (5.66)

d |
or, —{e(p.g.0)}=0

o, p(p,q,t)=constant.
Hence the density in phase space is constant which is Liouville’s theorem.

Case IL. For more than one degrees of freedom
Inthis case, the phase volume is given by

dV =dqdq,...dq,...dpdp,...dp,... » (5.67)

As inthe first case the increase in number of particles in the volume element

_{5(pq',)+6(pq'2)+ +6(qu)+
y =

g, 0q, 0q,
JAen) Ae),  aAeh), |, o 5:68)
o o op,
, o
But, this must be equal to % dV | so that we have
oy {20, 200), ), 2), L
o 9, 9,

_ Z{ Pd:) a(ppk)}d

oq,

op op , .0 0P . . OB
— 4 —, + + = (.

OoH . oH

Using Hamilton’s equations "a“‘]“ = =P and ‘a;; = qi this give
k
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op O H oG, ©O*H =
= L ' (5.70)

d> == :
o, poq, " oq, 0q,0p,

Since Hamiltonian has second order continuous derivatives equation (5.70) give

. 2, .
P, 04, ( 7

Using (5.71), equation (5.69) can be written as

op o . , Op .
=) — —p,t=0
Py Z{aqk 9 + Pk}

k

d
Of, E{p(ql’qz”“'qkv--:pl’pZ""pk’“"t)} =0

1€ P(gy»Gase-useres Pys Pasers Pioeerst) =cONStANL.

Hence the density in phase space is constant which is Liouvlle’s theorem.

5.9 Worked out Examples

Example 5.9.1 Show that the transformation

a9

1oy o
P.-Z(p +q ),Q tan .

is canonical.

Solution; The transformation will be canonical if the expression pdq - PdQ isan exact differential.

Here pdq— PdQ
: 1 pdq;-qdp
- pdg —— 2 gt 2
paq 2(p 1 ) pr+q°

1
= pdq -~ (pdq - q4p)
= E(qu +9q dP) =d ('2" PQ) , an exact differential.
Hence the given transformation is canonical.
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Example5.9.2 Prove that the transformation
Q= log(isinp), P=gcotp-
q
is canonical.
Solution. The transformation will be canonical if the expression pdg — Pd( is an exact differential.

Here pdq - PdQ = pdg - g cot p-dllog[}— sin pﬂ
q

= pdq —qcot p. T ! d(smp)
—sinp \ 9 .
q

tp gcosp.dp—sinp.dg
= d has 2 Co .
paz—4a sinp q°

= pdq —cot p(q cot p.dp — dg)
= g(1-cosec’ p)dp +(p+cot p)dq
= d{g(p+cot p)}, which is exact differential,

Hence the given transformation is canonical.

5.10 UnitSummary

In this unit canonical transformation is defined and its utility to solve physical problems. Le gendra
transformation is also introduced. Different types of generating functions are deduced. The necessary and sufﬁcient
condition for canonical transformation is established. Poincaré theorem is proved in this unit, The one of the most
fundamental bracket, the Poisson bracket is defined and several properties are investigated. Poisson bracket is
used to represent Hamilton’s equations. Hamilton-Jacobi equation is deduced and using it one dimensional harmonic

oscillator problem is solved. An exercise is supplied with this unit,
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5.11 Self Assessment Questions

5.1

52
5.3

5.4

5.5
5.6

5.7

5.9

What is a canonical transformation?

Prove that the following transformations are canonical.

O Q=P P=-q,

i) Q=gqgtanp, P=logsinp.

Write a note on canonical transformation and the relation between old and new Hamiltonians.

Show that the transformation
Q= log(ﬂ), P=gcotp
q
is canonical. Find the generating function G (g, Q).
Show that thé transformation |

Q=log(1+/gcosp), P= 24(1 ++/g cos p)sin p.

is canonical. Find the generating function G (g, Q). ;_

Derived the necessary and sufficient condition fora transfohnation to be canonical.

Find the values of aand Bso that the equation Q =2¢° cosBp, P =" sinPp represents a canonical
transformation. What is the form of generating function G, in this case.

Find the condition that the transformation

P=ap+bq,Q=cp+dq

is canonical.

Show that the transformation

1
0= > P =gp’ is canonical.
Prove that the transformation

P . _
q= \[-}_—;sm O, p= «]me/'/; cosQ

is canonical and find its generating function G (p, Q).
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5.10 Prove that the Poisson bracket of two constants of motion is itself a constant even when the constants

5.11

5.12
5.13
5.14
5.15

5.16
5.17

5.18

5.12

‘e

AN

158

depend on time explicitly.
Show that if the Hamiltonian and a quantity G are constants of the motion, then Sy Must also bea constant.

Derive Hamilton’s equations of motion in terms of Poisson bracket.
Prove Jacobi identity. .
Show that the Poisson bracket is invariant under canonical transformation.

If H is the Hamiltonian and fis any function depending on position, momenta and time show that

Lty

dt
Outline Hamilton-Jacobi theory and apply it to solve the problem ofone dlmensxonal harmomc oscillator.

Use Hamilton-Jacobi method to determine the motion of a particle fa]hng vertically ina uniform gravitational
field.

1 o
Apply the Hamilton-Jacobi theory to one dimensional Hamiltonian # = 5(@” + *)to deduce the motion of

_aparticle.

Suggested Further Readings

H. Goldstein, Classical Mechanics, Addison-Wesley, Cambridge, 1950.

T.W.B.Kibble, Classical Mechanics, Orient Longman London, 1985.

L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed., Pergamon Press, Oxford, 1976.

A. Sommerfeld, Mechanics, Academic Press, New York, 1964.

J. Synge and B. Griffith, Principles of Mechanics, 2nd ed., McGraw Hill, New York, 1949,
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In this unit we have introduced three important topics of mechanics - motion of symmetric top, small oscillation
of particles and strings and the special theory of relativity.

Objectives

e  Equationof motion of symmetrical top.
e  Steady motionis stable, o
e Oscillation about equilibrium,

e Normal mode and normal frequencies.

e  Vibration of alinear triatomic molecule.
e  Oscillation of double pendulum.

*  Motionofvibrating string,

*  Galilean transformation.

e Basic postulates of special relativity.

. Lorentz transformations.

e  Force and mass-energy equation.

. Lagrangiam formulation.

e  Exercise.

6.1 Moticn of a Symmetrical Top P ,
A top is defined as a material body which is symmetrical about an axis and terminates at one end of the axis

in a sharp point called the vertex or apex. o v |
In figure 6.1, O is the vertex and OC is the axis of the top. Since ;he top is symmgnjical about its axis,

therefore centre of gravity G lies on the axis OC.

z
3

Fig. 6.1
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Unit 6 : Motion of top, Small Oscillation, Special Theory of. Relativity

6.1.1 Equations of motion of a top (Derived from Euler’s equations)
Suppose a top spins with its vertex O fixed in contact with a floor rough enough to prevent slipping. Let OC

be the axis of the top and G its centre of gravity where OG=h,

Let Ox, Oy, Oz be the fixed axes and O4, OB, OC the principle axes at O. Let C denote the moment of
inertia about OC and 4 that of about O4, and as the top is symmetrical about OC, therefore B=4.

Initially, OCis in the plane zOx. At an instance L _let OCbe inclined at an angle 0 to Oz and the plane zOC
making the angle y with the fixed planezOx. Leto,, ,, ©, be the angular velocities of the top about 04, OB, OC
respectively and L, M, N the moments of the external forces about these axes. ‘

The external forces acting on the top are its weight mg acting vertically downwards through G inthe direction
parallel to zO, and the reactions acting at O,

The direction cosines of Oz with respect to OA4, OB, OC are

—sin@cos¢,sinBsin¢,cosd or —sin 6,0,cos6

as in case of top ¢=0.

Hence the weight (—mg) acting at G (0, 0, A), has its resolved parts

mg sin 0, 0, -mg cos 6 | |
parallelto O4, OB, OC respectively.

The reactions act at the origin O (0, 0, 0).

Henceusingthe fomula L= (y,Z,~2)

-l similarly using the formulae of Mand N

We find that

L =0, M=hmg sin0, N =0.

Hence Euler’s equations are

Ay, =(B=Cw,wy =0
Bw, —(C - d)wyw, = hmgsin®
Cvy — (A~ B)ww, =0, | | (6.1€)

The Euler’s geometrical reiations are

6.13)
- (6.1b)
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w, = 0sin¢ — s sin@ cosd
w, =0cos¢ +\sinOsin¢
w; = ¢+ cos6.

Since foratop ¢ = 0, the relations reduce to

w, =—\ysind
Wy = 6
w, =\ cosH.

Here, B= 4, therefore equation (6.1c) reduces to
w; =0 or, w,=n (constant)
or, \pcosO =n. [Using(6.2¢c)]

Equation (6.1a) be comes
de . . -
A —d?[-—\p sinB] - (A4~ C)0y cosB = 0 [Using (6.2a)]

or, - A{sin®-2A46v cosd + Oy cosd =0
or, -—A\Tf-sine —2 A6\ cosO +Cn6 =0
Eqﬁation (6.1b) reduces to
A%[G]-&(C— A) y? sinBcosB = mghsin®
or, Af- Ay?sin@cosd +Cy? sin@cosd = mghsin®
of, AB- A\y’sinOcosO+Cmy sind = mghsinb.
Equations (6.4) and (6.5) are the equations of motion of the top and are of second order.
Further, we proceed to reduce from them the first order equations :
Multiplying (6.4) by sin 8 and integrating, we get

Ay sin* 0 + Cncos8 = D (Constant).

© Also, multiplying (6.4) by 2\ sin® and (6.5) by 26 and substracting, then we get

2480 +2 46\y? sin© cosO + 2 Ay sin® © = 2mghsin 6.
Integrating,
A(é? +* sin’ 6) +2mghcos8 =E (Constant).

...........................................................................................................

------------------

(6.2a)

(6.2b)
(6.2¢)

(6:3)

- (6.49)

(6.5)

(6.6)

6.7)
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Equations (6.6) and (6.7) are also the equations of motion of the top but are of the first order.

Equations (.6.4), (6.5), (6.6) and (6.7) are known as the equations of motion of the top. While (6.4) and
(6.5) are of the second order, (6.6) and (6.7) are of the first order.

Definition : _
The motion due to the change in 0 is called nutation and due to the change in y is called ‘grecession. The

general motion of the top about its fixed vertex O is a combination of these two motion.

6.1.2 Equations of motion of a top (Deduce from Lagrange’s equations)
Inthe casé of the motion of a top
B=A4,$=0and w, =—ysin0,w, =é,w3 =n =y cos0.
Hence the K.E. is
2T = [A(w,2 +W )+ wa] [since B=4]
= [A(\;'/z sin’ 0 +67)+ Oy’ cos? 9]
The PE. V is

V = —-mghcos6 : s
where A is distance of C.G. frbm the vertex O, and 0 is the inclination of OC to the vertical Oz.

Here the generalised coordinates are © and \y

1 quation for 6

afon) o o

di\ob) 0 o8

or, -g;(Aé)-{A\ilz sinf casB — C\y’ sin@cosB} = mghsin®

of,  Af- A% sin®cos® +Cny sind = mghsine. 6.8)
163
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Equation for v
dfar)_or_ov
at\oy) dy oy
di o
or, -C;(A\usm 8+ Cy cos 6)=0
Integrating,
o,  Aysin’6+Cncosd =D (Constant) - | 6.9)

Equations (6.8) and (6.9) are well equations of motion of a top.

6.1.3 Steady motioﬁ ‘

The motion of a top is said to be steady if it spins about its vertex O in such a way that its axis OC makes the
same angle with the vertical OZ throughout the motion.

A In case of steady motion g = ¢ (Constant), hence from equation \y cos® = n we have y = w (Constant).

This shows that the angular velocity about the. vertical OZ is constant.

So when motion is steady the axis of the top describes a cone about the vertical with uniform angular velocity.
Thus precessional velocity s is constant.

Putting 6 = &, = 0 and \y = w inequation

AB - Ay? sinBcosO + Cnyjs sin® — mghsind = 0
We have

w? Acosa~ Cnw +mgh = 0. (6.10)

2.0 :
w=Cni\/Cn 4Amghcosoc. | (6.11)

of,
2Acosa

Thus in general there are two values of the precessional velocity w, the two precessional velocities w,,w,
(say) are real and distinct provided that '

C’n’ > 4Amghcosa.,

which is the necessary condition for the existance of steady motion.
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A particular case :

ho_ ‘
Ifo= % then from (6.10), w = %— . This implies that if the top is given an angular velocity 2 about OC,

h
and OC when horinzontal is given an angular velocity %g; about OZ, then OC will continue to revolve uniformly

ina horizontal plane round the vertical OZ.

6.1.4 Steady motion is stable (When axis is vertical)

A top is executing steady motion with angular velocity n abdut its axis which is vertical, to show that the
motion is stable. .

We are required to show that that axis, of the top which is vertical in the state of steady motion, will perform
simple harmonic motion about the vertical, if disturbed slightly. . o

General equations of motion of the top are

AB - A\? sinBcosB + Cn\y sin® = mghsin®

and AV sin? 0 + Cncos6 = D.

Since motion is steady with axis vertical,

| 0=0,6=0,y=n..D=Cn A |
Also, C*n* > 4 Amgh condition for steady motion when o=0. Let theAmotion be slightly disturbed. Tlie

disturbed motion is a general motion of the top, hence its equations are

AB — Ay? sinB cosB + Cny sin = mghsin®. 6.12)
Ay sin’ 0+ Cncosd = Cn. 6.13)
From (6.13), we have
 Cn(1-cos8)  Cn
Ay = = .
v sin’ @ 1+cos8

Substituting the value of y in(6.12), we have
2 2 2 2
A% ————E—’l-——z—sinecose L7
(1+cosb 1+cos

sin® = Amghsin®.
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Since 0 is small, sin6 = 0,cos6 = 1, the above equation becomes

L2 2,2
A’Q'—-CZ 078 tmgho
s (Cn’-4Amgh), | 7
or, 9=-( YWE 6. (6.19)

The coefficient of 6 is negative since C2n* > 4 A mgh. This is the equation of S.HM.

Hence the motion of the axis is SHM about the vertical OZ from which 6 is measured. In other words, axis
of the top, if disturbed slightly from its vertical positiohﬁi‘r‘x stéady motion, will tend to come back to its pre-
disturbance position. This implies that the steady motion, in which axis of the top is vertical,is stable.

The period of oscillation is

2n 4A2 = 4nd : : | . .
(C2 2 —~4 4 mgh) (CZnZ __4Amgh)y2 ' : (6.15)

6.1.5 Steady motion is stable (when axis is not vertical)

Let the axis of the top is inclined at a constant angle o to the vertical, and precessional velocity w. We show
that, when the axis of the top disturbed slightly, from its position in steady motion, then top will come back tothe
original position,

Equations of motion of the top are -

AB — A? sinB cos + Crys sin® = mghsin®
and Ay sin® 0 +Cncosb = D.

Since the motion, originally, is steady with 8 =,y = w. Hence, the above equations reduce to
Cnw - Aw? cosa = mgh and D = Awsin® a + Cncosa.

Let the steady motion be slightly disturbed, so that motion is theh a general one and so its equations are

AB — Ay? sinB cos® + Cmys sinB = mghsin. - (6.16)

and Aysin’ 0+ Cncos® = Awsin® a + Cncosa. | (6.17)

Eliminating \y between (6.16) and (6.17), we have
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A*Bsin’ 0 - { Awsin’ o + Cn(coso - co's())}2 cos®

+Cnsin® 6{ Awsin’ o+ Cn(cosa ~ cos0)} = Amghsin‘ 6.

Since the disturbance is small, therefore we may write 6 = o + &, where & is small.

The above equation becomes

AEsin*(a +8) - [Aw sin’ o + Cn{cosa — cos(a + F,)}]z cos(o +&)
+Cnsin’(o + &)[Aw sin® o + Cn{coso — cos(a + &)}]

= Amghsin*(a +§),

Since ¢ is small, neglecting small quantitites of second and higher order of terms of .

or,

or,

or,

or,

A%(sina +Ecosa)’ - [Aw sin? a. + Cn{coso, - (coso — & sin oc)}]2
x(cosa — & sinat) + Cn(sino. + & cosa)’ [4wsin® o
+Cn{cosa—(cosa~Esin oc)}] = Amgh(sino. + Ecosa)’

AEsin* o —(Awsin® a +Cnt sinoc)2 (coso—Esina)
+Cn(sino + E cosar)’ ( Awsin® o+ Cnk sinat)
= Amgh(sin* o+ 4 cosasin’ a) |

A’Esin’ o —(A*w sin* o+ 264 Cnwsin’ a)(cosa ~ & sinat)
+Cn(sin’ o+ 2E sina.cosa)( Awsin® o+ Cn sinat)
= Amgh(sin’ o +4& cosasin® o)

A*Esin’ o —(4°w sin® o + 264 Cnysin’ o) cosar
+& A*w? sin’ o + Cn(sin+ 2E sina.cosa) 4 wsin® o
+£C?n? sin® o = Amgh(sin® o + 4% cosasin® )

A% - 4w sinacosa +Cnw Asina +& 4w sin’ a +£ C?n’

= Amgh(sino + 4§ cosat)
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o, A%-A'wsinacosa+(A4w cosa +mgh)dsina +& 42w sin’ a

+&( 4w’ cosa +mgh)2 ( ywz) = A}ngh (sino +4E cosar)
or, A%+ E_,[Azwz(sin2 o +cos’ o) +24 mghw’ cosa + ngzhz](;}-i—)

=4& Amghcosa.

or, A% +§[A2w4 -2 Amghw? cosa + ngzh-z](__l_z_) =0
w

A’w' -24 mghw? coso.+m*g*h?

o, &=- yew §
AW? —mghcosa)’ +m’g?h*sin’ o
_ AZLZ £ - (6.18)

(The coefficient of & is negative)
This is the equation of S.HM.
This shows that axis of the top, if disturbed slightly from its position in steady motion, will tend to come back
to the pre disturbed position.
Hence the steady motion, with axis inclined at o to the vertical is stable.
The period of oscillation is
2n- Aw

(AW -2 Amghw? coso.+m*g*h?

)}é

Ifthe top is set in motion in usual manner, then » is very large and the two values of the precessional velocity

are approximately

Cn_ mgh
Acoso.” Cn

The first value is large and second is small when 7 is very large. For the first value of w the period of
oscillationis

2nAw  2ndcosa . ; o
= (approximately). (6.19)

Aw? Cn
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For second value of w the period of oscillation is

2nAw 27nA

_m_gh_ - (approxxmately) . (6.20)

6.2 Small Oscillations .

A system of particles is said to be in static equilibrium if the particles constituting the system are at rest and the
total force on each of these particles is constantly zero. We consider the small oscillations about the position of
stable or static equilibrium in cases where these small oscillation are regarded of sucha small gmplimde, which may
cause only the fundarmental frequencies excited and none of the harmonics. This consideration of small oscillation

has very wide applications in molecular spectra, coupled oscillator, etc.

6.2.1 Oscillations about equilibrium
Suppose the system is fully conservative, so that the generalised coordinates ¢,.¢,,....¢, of the system are
time-independent. The system will be in equilibrium if the generalised forces Q, acting on the system are zero, i.e.
Q= [ gqi )0 =0. (6.21)
Here the subscript zero denotes that the derivative is to be evaluated at ¢; = q,,.,&k =1,2,...,n.
Thus the potential energy has an extremum at the equilibn'urﬁ position of the system. The equilibriumis said to
ha stable when a small oscillation of the system from the position ofthe equilibrium causes it in small bounded

motion about the position of rest and it is unstable when such a small oscillation causes it in unbounded motion.

Let g, ~ g0, =, (6'22)
represents the deviation from ¢, . ,
Expanding potential in Taylor’s series about o » WE get
V(‘]n‘]:w-uqn)=V(‘Ion%z» ‘Im +Z( )m
aqk 0
N, +
Z[a‘h 9q; J i
169
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av 1 Fa%
o, V=V+ — + — —_— Ho (6.23)
: ‘k‘:(aqk]’“ 2Z(aqkaq,)o”*"’ |

0 k.j

The first terms on the right being a constant may be taken as zero and the second term vanishes by virtue of

(6.21).
Then (6.23) becomes
1 34 1 o
Ve=— : N == 2. Vmm, S .
where

o
V, = =V,.
99,04, ),

Also, we know that the K.E. T'is

1 .. L
T==3 TAM,. | | | (6.25)
24 - |
. 1 .o
Thus L=T~V=52[njnknj~%nknj], ’ (6.26)
koj
[by (6.24) and (6.25)] ’ ’ ;
The n equations of motion derived from the L,agrangian equation are _
2LA, 42V, =0k=12,.,n, 6.27)
s J : )
o,  Thi+¥Im=0, : o ' (6.28)

where T= [Y,‘(j ], V= [V,q. ] are two symmetric and constant matrices.
The equations (6.28) forms a set of simultaneous differential equations with constant coefficients representing
the motion of a set of coupled oscillations. ' | | '
Let TV =4, . 6.29)
Then (6.28) becomes #+ An = 0. | | (6.30)
Let A =1+*1 beatrial solution of (6.30), then
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A+ wn=0. (6.31)
Here n may be regarded as a displacemént vector with 7 components Ty, Theweees e
Hence from (6.30) and (6.31) we can interpret the result in the form that a S.H.M. of the vectorn with
angular velocity w is possible if |
An=w’n. (6.32)
or, if(A-w'Ijn=0.
This implies that ) is a eiger vector of 4 and w? be the corresponding eigen value or eigen frequencies. The
eigen values are given by | |
l4-w2l|=0 o, [V-wT1=0.
The matrices ¥ and T being symmetric, the eigen values w? are real.

Each oscillation with a definite frequency is said to be an eigen vibration or normal mode of the system. It has

a characteristic feature that during such a vibration, the corresponding vector n does not change in direction but in
magnitude only and consequently the mode consists of the simultaneous oscillations of several degxeés of freedom.
In case 4 is degenrate (i.e., having two or more commensurable frequencies) there is an arbitrary choice of
the normal modes which correspondence to the same eigen frequencies. -
If we introduce the coordinates x, along the directions of the eigen vectors 1, of 4 to describe the system,

the equation of motion for the x, may be written by (6.30) as

=Wl
.

)'ék +W,ka =0 or x, =¢ée

Here the coordinates x, are said to be normal coordinates of the system.

"6.2.2 Free vibration of a linear triatomic molecule ‘

, Consider the equilibrium configuration of the molecule such that two of its atoms of each of mass m are
symmetrically placed on each side of the third atom of mass M. All three atoms are collinear. Assuming the motion
‘along the line of molecules and there being no interaction between the end atoms, let & be the force constant
approximated by two strings of free joining the three atoms. |

Taking & ,€,,&, asthe displacements of each atom fromthe equiiibrium configuration, the K.E.and PE. are
given by |
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and

V= M-8 k()

2
k
5‘(“;1 +2&.»z ‘*‘éz‘zé éz 2&2@3) ‘ (6.34)
In this case, Tand V are
| m 0 0 , k -k 0
T=§- 0 M 0 ,V=-2— -k 2k -k| . . (6.35)

The eigen frequencies are given by

'V—szl-:-O
k-w'm -k 0
oy 2 e ; . _
o -k 2k-wM -k |=o  (636)
0 ~k k—w'm - . _ , v

o, w(k - wzm)[k( M +2m) - wzmM‘] =0

2ok k(M +2m)
‘m’ mM
Thus the three normal frequencies are

w, =0,w, =‘/:/::-:,w3 = /_/(_(1+&?1_) 4 (6.37)
m m M v

" Herethe firsteigen value w, = 0 doesnot correspond toan oscillatory motion, since the equation of motion

o, W

for the corresponding normal coordinatesis ¥, = 0, ‘which actually produces a uniform translatory monon Sucha
vanishing frequency is caused by the molecule translated rigidly along its axis without any change in the potential
energy, since restoring force against such motion is zero.

Let n;,m,,m; be the eigen vectors corresponding to w,, w,, w, respectively. Let components of 1}, be

"My My, My, those of n, be Ma1» M5 Ny those of 1, be M315N325 N33 -
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kK -k 0 ||, 0

Therefore, ~k 2k —k|m,|=|0|
0 -k & n,l |0

o, kn,-kn,=0
~kn,, +2km, -k, =0
—kn,; +kn,3 =0.
Solving, we get 1,, = ,, =M, = & (say), 50
1 _
n, =a(lLl)=all}, ' . - ' (6.38)
1

which follows that each atom is equally displaced (see Figure 6.2).

o~ O O

Fig. 6.2
Now, w, = 1/(/‘ m) gives
0 -k 0 0
M M
-k 2k-k— =kiln,i=|0
m .
0 -k 0 {[Mxn 0
or, M, =0,
Ny + My =0
or, n2| = —n23 = B (53}’)
1
So, m,=P(1,0-1)=p 0 | (639)
-1
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Fig. 6.3

This follows that the central atom remains at rest while the end atoms are displaced equally in opposite sense (see
Figure 6.3).

in, Wy = —ZC— 1+—2—T—) i
Again, W; = " W ) Bives
2m/M -k 0 N3y 0
-k ~-M/m -k Ny (=[0] .
0 -k =2m! M || n, 0
- 2m
or, My =M =7 (say)and Ny, = AL
1
-2m

Therefore, 1, = 7(1,7,1)= Y| -2m/ M (6.40)

1
m M m
Fig. 6.4

This follows that the displacement of end atoms is equal while that of the central atom is equal to neither of

end one’s and moreover differs in phase (see F igure 6.4).

The matrices ) and T are
_g . 0; m 0 0
L L and T=|0 M 0
Y *‘—MY Y 0 0 m
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The matrix ) will be orthogonal, if n'Tn =1, -

o o allm o oo B 2y 100
’ = 0 0 mila - 00 1
Yomr Y By |
(2m+ M)a’ 0 0 100
o, 0 2mp? 0 " 010
4m 0 0 1
0 0 2my’+—y’ .,
! meTr Y | .
or, (2m+ M)(Xz =11i.e. a:m

. 2m‘32=] i.e. B:—J—ilz
m

and 2m+i’z1—-— yi=lor, V= .
2m| 14+ —
M

6.2.3 Ex~mple of the double pendulum as a couple oscillator
Suppose there are two pendulum of equal mars and length suspended froma ndn-ﬁgid §upport sothat the
'acement of one pendulum affects the potentxal energy of the other and v1ce—versa. ‘ '

Let us ﬁrst ¢ mder the mouon of a snnple pendulum of mass m and leng’th l mchned at 6 to the vemcal At

this instant let 5‘ be the arc length along the circular path Then -

5, =100, ‘ (6.41)
Let 7, and ¥, be the K.E. and P.E. respectively.
1, 1 . |
and V, = mg(l - Icos®,) = mgl(1-cos, ). B (X )
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Fig. 6.5

Uéing the natural unit such that m, /, g all can be made equal to unity, ileem=Il=g=1, ﬂlen (6.42) and (6.44)

gives
1.
7}=§9f (6.44)
.0, _fe 176y T
. Vi=1-cosB, =2sin* L =2{ L-— —l) o
and PTITEe =SS [ 2 31(2 }
But we are considering small oscillations, therefore cubes and higher powers of  can be neglected.
Thus we have
S0 Y 1. | o

Letus now assume that T is the K. E and Vthe PE. of the coupled oscillator, i.e. double pendulum, then the
results (6. 44) and (6 45) denved fora smgle pendulum wﬂl appear inthe followmg form foradouble pendulum

1
= %(ef +6; -2k6,0,) A 647

where kis a coupling constant dependent on the actual structure of the pendulum support and 8, is the angle of the
second pendulum from the vertical, '
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The two symmetric matrices Tand Vare

11 o 11 -k '
T=—2-O | and V=—2— 1 o - . (6.48)

and the eigen frequencies will be given by

V-w1=0 or, '1:;:2 1:§2=0~  | (649
ie. (1-w?) —k*=0 or, W =1%k, (6.50)
or, w=(1ik)y2.
If £ is small then

w:li—%k, | o - (6.51)

neglecting higher powers of k.

The normal modes of oscillations are given by

1""W2 -~k e]' _ 0
-k 1-w*||6,] |O
o, (1-w')8,—k6,=0

kB, +(1-w?)8, =0

o 1kB, -k, =0 :
52
or, ""ke';vi ke‘z =0} .. (6 )
0
These give 5’”‘: 1.

2

Casel. If ) =1 and £>0, the pendulums oscillate together with an angular frequencyles:é; thad that of one of the

2

pendulum simply.

Case II. If é‘l" = -1, k>0, the two pendulums oscillate in opposite directions at a frequency larger than the
2 v » ;

uncoupled frequency.
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In general the combined oscillation will be the superposition of the two modes of oscillations and the
phenomenon of beats is shown by the oscillations of either pendhlum.
6.2.4 The equation of motion for the vibrating string

A string is a wire whose length is very large as compared to its diameter and which perfectly uniform and
flexible. When a string streatched between two points with a large tenéion, is plucked transverse vibrations are
produced in it. In order to somplify the problem, let us assume that the string vibrates only in vertical plane.

y
A
T(x+dx)
) AB2] 0 <+
M
0O x x+dx >x

Fig. 6.6

Consider the motion of an element PQ of the string of length dl. Let O be the origin and P(x, y)and Q(x-+dx,
+ah?) be any two points. Let 7(x) and T(x+dx) be the tensions at P and Q respectively and 6(x) and O(x+dx) the
aples which the tangents at P and O make with x-axis. The total horizontal force along x-axis on the element PQ

N

T(x +dx) cos®(x + dx) - T(x) cos6(x). (6.53)
The total vertical force along y axis acting on the element PQ s '
T(x +dx)sinO(x + dx) — T(x)sinO(x). ‘ (6.54)

Assuming that the vibrations take place in the vertical plane only, the horizontal motion is negligible and

hence, force represented by (6.53) is zero. ,
If m is the mass per unit length of the string, then the mass of the element PQ is m dl,
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According to Newton’s law, the equation of motion, neglecting all other forces, is given by

2

mdl%—%’- = T(x +dx) sinO(x + dx) — T(x) sin8(x).

Dividing by dx, we get

n dl y _ T(x+dx)sin®(x +dx) - T(x) sin B(x)
dx ot dx

But, (dl)’ =(dx)’ +(dy).

L*( )]}/ 62y T(x+dx)s’“°("+d") T(x)sme(x)
dx

ot ' dx

~Taking the iimit dx —» 0, the above equation reduces to

W . o |
"{H(@]] 27 2 2 [1(x)sin6(0)) = = (Tsine) o (655)

) | o
¥
oy

\/1-tb-tan€) \[(@)

Then equation (6.55) reduces to

. 24
m@gMQ\}’:z 2
or'| \ax) ox| 8y

3 e
1
+(6x)

9 .
If we consider that the vibration is small then the slope 5’% is small compared to unity, then wehave

mdY - a[Téz]
61 oxl ox]

Let us further assume that the tension 7'is constant throughout the string, then

But, sinf =

@
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o’ ox?
o ¥ Ty | (5.56)
ot moox? | '
oy ,dy
e
where ¢ = (T/m)%. | (557

The constant ¢ has the dlmensmns of velocity and actually it is the velocity with whxch the wave travels along
the string. Equation (5.57) represents the equation of motion of the vibrating string. |

It may be noted that the motion of the string is descnbed by the ﬁmctxon Wx, f) Iocatlng each pomt xonthe
string at every instant of time just like the motion of the system of partlcles is described by the functlons x(O, /1),
2(#) locating each particle at every instant of time.

Ifin addition a vertical force Jper unit length acts on the string, then the equation of motion of the vibrating
string is given by
2

mdl-g;{- = T(x +d) sin®(x + d) - T(x) sin®(x) + / dl

which gives, as before,

PY 3y ' Co
at)’_T___az_ 7. . : (6.58)

This is the equation of motion of the vibrating string for small amplitude of vibration, where tarsion T'is
tant and fis the external force applied per unit length ofthe string.
Iffis the gravitational force, then /= -m dlg, and the equation of motion of the vibrating string will be
62 y ) 62
—— = . 6.59
Initial and boundary conditions :
The initial condition may be taken as initial position
Vo(x) =.V(xa0) (6.6u)
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and initial velocity Vo(¥) = {—g—f—] : - | (6.61)

=0
If the string is fixed at its ends, then the boundary conditions are .
»(0,)=y(1,t) =0. (6.62)

6.2.5 Normal modes for the vibrating string »
To find the solution of (5.57), we use the method of separation of variables. Let us consider the solution of

the form _
y(x.t) = X(x)o(t) (6.63)
where X is the function of x only and ¢ is the function of / only. ' \
X Py _, oX |

__é?_} =bh—
Then we have. A FRRPw %l

2
oy _ 40 Iy _ (3%

d =— )
e A T Y
Substituting these valuesin (5.57 L wa et
.Qi(_? _ cz az RY
o’ oxt
Dividing throughout by ¢.X . we uct
1 62¢ c azx : ' I “ 6.64
¢ a X ox 6.64)

In the above equation L.H.S. is independent of x and R.H.S. is independent of #. Therefore, if above

equation is to be satisﬁed both sides must be equal to a constant —w? (say).

2
18% _
Then 372 -w | | | | (6.65)
2 A2
X
and f)?%-xy S (6.66)
From (6.65),
2
%t—dl = —w. (6.67)
181
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The general solution of this equation is

¢ = A4, coswt + B, sinwt, ' ) (6:68)
where 4, and B, are constants to be determined. - - ~
From (6.66),
X w? :
et 6.69

. The solution of this equation is

X = 4, cos= + B, sin 2% _ (6.70)
. ¢ 4 ;
| .whérc 4, and B, are constants to be determined.
Applying the boundary conditions h -
y(0,8) = y(I,t) = 0, because the ends of the string,,are‘ﬁxea and 'fhey do ﬁotrrvibrate; Lt
Then X(0)= 4, =0

wl sinwl

and X())= Acos—-—--&-B2 =0,
: c

stinﬂzo or, sinﬂ:Oas B, #0.
c v

c
This equation holds iff
wi
-;—=m€,wheren=1,2,3, .....

The frequencies v, = %—t‘ = — ’;3 ;(; = L 2,3....are called the normal ﬁ_eguenmes of vibration of the string.

Substltutmg the values of 4, and w, in equation (6.70) and (6.68), we have
X = B sin % o (67)

and b= 4, cos~7—;~€£+B sm—'%f-’-. (6.73)
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Hence the solution of (6.57) is given by

l !
—A3251nn +cos = +BB mnmsxnm
/ l / /
= Asxnﬁ?x—cosjﬁ-i-l?s —'Z—l@sinffl—c—t . 6.74)

where 4 = 4,B, and B = B, B, are constants.

This solution is called a normal mode of vibration of the string.
The initial position and velocity of the nth mode of vxbratxon ofthe string given by equatlon (6.74) are

Yo (x) = ¥(x,0) = Asinz—ln—x— - ' (6.75)
_nmcB ., nnx " ,
and V,(x)= {6!1} "7 sin—=. (6.76)
The most general solution of the equation (6.57) is given by
y(x,Or—‘Z[A smw—?—cosﬂ; +B sm-r%tismﬂ;ﬁ] (6.77)
n=1
- Theconstants 4, and B, are given by
Z ., nmx
7o) = $(x.0) = 3 4, sin== e
. w=hncB, . mmx oo R ‘ : ~ :
Cand ()= ) ——rsin— - | (6.79)
) Evaluatxon of constantsA and B
| Using Founer stheorem one can computed the constant 4,and B, using (6.78)and (6.79)
Multiplying (6.78) by sin—'%”‘i and integrating within the limit from x=0to x = £, we have
Jeorsin e = (3 sin
) n=l
183
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¢, nnx X
=4 fo sin® -l-—dx‘ (other terms vanish)

2n1nx}k
1 .

= %’l L l( 1-~cos
nd = % [ 70 sin-’il—mfdx. o | (6.80)
Multiplying (6.79) by sin 177"5 and integrating within the limits O and ¢, we get
J:vo(x)s;in% = jlibz;-é"—sinz z}u—dx

0

n=]

e B, ¢ o 2nmx
-; 57 J;(l cos= )dx

_nncB, nnc B,

Mddodal T

2/ 2

2 i . HTX -
R Bn = —]:1—75—6? Ovo(x)sm——-l—-dx. - (6.81)

Thus the complete solution of (6.57) is given by (6.77) where A, and B, areavailable in (6.80y and (6.81 ).

6.2.6 Lagrange’s equations for vibrating string
Letus take y(x) as a set of generalised coordinates analogous to ¢, . In place of subscript ¢ denoting the
ious degrees of freedom, we have the position coordinate x denoting the various bbints on the string. For an
ideal continuous string the number of degrees of freedom is infinite.
Let the sin’ng be fixed at x=0and x =/, then its position y(x) can be r’epfesented by Fourier series ﬁrom

(6.78) as

Y(x)=Y g, sin - | 682)
k=]

. knx :
Multiplying both sides by sin 7 and integrating between the limits x=0 to x =/ the coefficieryts q,are
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givenby
2 ¢ . knx , .
9 =3 [ y)sin= ek =12,... (683
The coefficients ¢, represent asuitable set of generalised coordinates because they give a coﬁmplete’descﬁption
of the position of vibrating string. When the string vibrates, the coordinates g, become functionsof7,i.e.,

y(x,t) = qu () smﬂ | » | (6.84)

k=1

Now, to find Lagrange’s equation we have to determine Lagrangian in terms of coordinates ¢, .

l 2
TheKET = > (%) dx. (6.85)

Differentiating equation (6.84) w.r.t. r and squaring, we get

2 o0 0
(%y;) =2 > 44, sin % gjn 7.  (6.86)

nT= f%mi i 0.4, si11k—71-5x~si11ﬂix¥d,§ .

k=l r=|
o0 1 . . H
= Zzl’"‘]k (6.87)

(. kmx . my [1/2 for r=k
[ o sm——i—-sm————(/ = 10 Jor 1%
Now, calculate the P.E.V. dircctly calculating the work donc against the tension 7'in moving the string from its
~ilibrium position to the position y(x). Let (x, £) be the position of the string at any timé ¢ while the string is being
moved to y(x). ' o ' - '
At time r=0, the string is in the equilibrium position, i.e. y (x, 0)=0.
It ¢ =1, is the time at which the string arrives at its final positions then
y(x’tx) = y(x).

The work done against the vertical components of tension 7'during the time interval df is given by

v =- I—a—(Téy—)(éy—dt)dx._
0 ox\ ox N\ ot
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o
Integrating by parts and keeping in mind that y and -5)-;- areOatx=0and x =/, we get

1, 0y &y
= | T———=—dxdt
v "'0, Ox Oxot

ol ¢l [oy)
== [ =12 dxla.
BI[LQT(GJ:) ]

The total work done is given by

.— . i M1 ay,z f
V—J.O dV—'JO{:E -é_‘;) dx]t:O
~ I_I_T(éyjzdx o | | |

=72 & | | (6.88)

This work done is stored as the P.E. in the stretched strixig. '

5 ;
Substituting the value of —a'i:- from (6.82) in (6.88), we get

" 2
V= /}«TZ(-/?E) q} cos® LY

02 & l
- 2
=%TﬂZ(—]§—n—) q,f(l+cos-“1———-)dx
k=1
21, (knY
=Y -7 ) 42
=L (z)qk

The Lagrangian furiction for the vibrating string may be written as

: 211 . 1 k'lr2
L-:T~V:§[Zlmqf~ZTl(T) q,f]. . (6.89)
o _1, . _Q_L_,._LT,(_’&“_)Z |

Thus 3,2 qk,aqk 2T T | (6.90)

The Lagrangian equation is given by
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d(1 1, (k) |
or, dt(z mq,,)+2 ( 7 ) 9 [Using (6.90)]

1 1. (kY
—Img, +=Tl| = | g, =0
or, > mqg, 5 (1 )qk

- T(kY o
which is required Lagrange’s equation.
Substituting

Wy =—|—"] =|—— ] since | —|=¢C
m\ 1 / m

fme | (6.92)

or, w, =-—.

Then (6.91) becomes o
G, +wigq, =0. 4 (6.93)
The general solution of the above equationisgivenby
q, = A, cosw,t + B, sinw,t. ‘ :
Substituting this result in equation (6.82), we have
CX(xt) = ‘2[144. sin %ﬁposw,%(ﬁ + B, sin ——k;}x—sm w,,tJ | T | ;, B | o (694)

Ifinitial conditions are such that

Y =2y(x) o |
and %=Vo(x)att=0.} : . e (695)

Then we have as before

2 . knx
Yo(x) = Z A, sm—-—l— _ | (6.96)
k=1

and v(x) =Y Byw, sin‘k~7l£x—. (697)
k=1 )
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Multiplying (6.96) and (6.97) by sin—k"lE and integral between the limits x=0to x = ¢ we have
! . kmx ’
4, = [ () sin =, (6.99)

2 ¢ . knx
and B« =vao(x)81anx. " (6.99)

The coordinates g, defined by equation (6.83) are called normal coordinates for the vibrating string. Each
normal coordinate represents one normal mode of vibration, It is clear from (6.89) that the Lagrangian may be
represented by the sum of terms, each term containing one normal coordinate or one degree of freedom. Thus by

the use of normal coordinate a problem of many degrees of freedom is sub—dmded into separate problems one for

each degree of freedom.

6.3 Special Theory of Relativity

Attheend of the nineteenth century, the physics community had two incompatible descriptions of phenomena,
Newtonian mechanics and Maxwellian electromagnetic theory. Newtonian mechanics assumed thatall inertial
frames were equivalent, while Maxwell’s wave equations gave a universal speed of light that was the same in all
inertial frames. Albert Einstein developed the special theory of relativity to replace Newtonian mechanics with a

theory that was consistent with electromagnetic theory. ; ,
In Newtonian mechanics, a set of well-verified laws applies in an inertial frame of reference defined by the
first law. Any frame moving at constant velocity with respect to an inertial frame is also an inertial frame. Consider
- frames denoted by Sand §’ with (1, x,y,z) and (¢, x',5’,2") the coordinates in Sand §' respectively.
"out loss of generality, we assume the coordinates axes are aligned, x along x’ and so on. Let kS’ be moving

-..itiveto Sinthe positive x-direction at a speed v, as show in Figure 7.1

Nowtonian mechanics assumes the spacetxme coordinates in S are related to those in §’ by the simple

expressions

e 8
L
b3 -
|
<
S

/ {i.n

N R
[}
N e
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Fig. 7.1 : Galilean transformation from S to S by a velocity v in the poéiﬁve‘x-dir’ect‘ipn.

| Trér;sfonnations of tlns type are called Galiléan mfonnaﬁons. Underthis assumption, it follows that Newton’s

second law,

relating the applied férce, Fand the momentum, p remains f;wariant, and .A

F=Fl.(={and p=p ~ (7.2)
The time in both the Sand S’ frames is assumed to be (¢ = ¢’). The Newtonian world view is that the
universe consists of three spatial directions and one time direction. All observers agree on the time direction upto
-»sible choice of units. Under these assumptions, there are no universal velocities. It # and #’ are the velocities

.+ particle as meusured in two frames moving with relative velocity ¢ as shown by Figure 7.1, then .

i =i | (73)
Maxwell’s electromagnetic equations, on the other hand, have a universal constant (denoted by ¢), which is
interpreted as the speed of light. Since this is inconsistent with Newtonian mechanics, either Newtonian or Maxwelljan
mechanics would have to be modified. After carefully thinking about how the universe would appear to an observer
traveling at the speed of light, Albert Einstein decided that Maxwell’s equations are correct to all inertiai obseryrs
and the assumed transformations for Newtonian mechanics are incorrect. The correct transformations make the

speed of light the sance to all inertial observers.
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Basic postulates :
There are two basic postulates used in special theory of relativity. One of them is the extension of the

conclusion drawn from Newtonian mechanics and is called the principle of relativity, while the second is an

experimental fact and is called the principle of constancy of velocity of light.

Postulates : ‘
1. Principle of relativity : All the laws of Physics have the same form for all inertial frames.
2. Principle of constancy of velocity of light : The speed of light has the same value in every inertial frame.

6.3.1 Lorentz transformatmns

LetS and S be inertial systems the latter is movmg with veIocxty v nelatlve to former along positive direction
of x-axis. Let there be two observers O and O situated at the origins of Sand S respectively. Let us suppose that
the axes of two systenis coincide at #=¢'=0. Let us further suppose thata light signal Spreéds out from the origin at
=0, When the same signal reaches at P, let the positions and times measured by observers O and O’ be «20
and (t’ x'y, z’) respectively. The light pulse produced at =0 will spread out as a sphere whose radius will
increase with speed ¢. Then the equatlon of the sphencal surface when the pulse reaches at P, relative to O, will be

X+yt 2t =00 o ) o

o, x'+y’+z'-c?=0. o (7.4)

> X, X

Fig. 7.2
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Similarly, the equation of spherical surface relative to O is

xl2 +y/2 +Z/2 ;_czt/z

or, x?+y?+z2%-c4?=0. (1.5
It may be noted that c is not primed since according to second postulate it is constant in both the systems.
We know that the velocity of §' is only along x-axis, therefore from symmetry '
/o 4
)z)' :.-5} | S (7.6)
Using (7.6), we get from (7.4) and (7.5)
" X2 =2 ;xn —cétlz. ’ Jy(:7.7)
Let the transformation equations relating to x and x’ be- \ ,
x' = k(x-wr), T EE DU T : o (1.8)
where k is independent of x and ¢. _ ,
The reasons for consider this relation are (i) the transformations must bc: linear and simpléét, (#i) it must
reduce to Galilean transformations for low velocities, because Galilean transformations are correct for low velocities.
Equation (7.8) in sufficiently general to satisfy above conditions. Since ihemotion is relative we may éSsmne
that the system S is moving relative to § with velocity —v along positive x-axis, therefore we may write
X = k’(x’ + vt’). 7.9
Substituting the value of ¥’ from (7.8) in (7.9), we get B : E
x= k’{k(x - vt)+ vt’]

X /
or, ~7c7=kx~kvt+vt

x
or, vt =z,~~kx+kvt

— _’f..+w.~x]
k

/

or, ¢! =£{i}c~%~+vt~x]
: Y

Directorate of Distance Education 191



Principle of MeChQRICS ...........coeoevereerrvereeresirinn, FOTUT et rreee e s e e e beeb e beeaters o bersetenaertentraebes

192

x 1

Putting the value of ¥’ from (7.8) and # from (7.10) in equation (7.7), we get
(. 1\T
2 _ 2t2=k2 -yt 2__ 2k2 t—"“'(l""—)
x*-c (x-wt) -c o Cr
. 1 2
or, xz—cztz—kz(xz--2vxt+v212)+c2k2 t—‘—’-c-(l——,;;;):} =

0. (11

~»
P
~N
]
N
<I§
N
Pt
i
S
N’
+
< Ia
(]
/TN
ok
|
E|-
\..._/N
| S
i

o, x'-c’—k*(x*-2vxt +v'et)+ck

As the equation is an identity the coefficients of various powers of x and # must vanish separately.

Equating the coefficient of xz in (7.11) to zero, we have

Zkzv + c%’{——%(‘l —-k%—,-)} =0

2c%k? 1
2k - I-—|=0
oh [ ( f kk’)

or, ¢ =(?-v})kk'=0. = (7.12)

Equating the coefficient of 2 in (7.11) to zero, we get
- =k 4%k =0
o, ¢ ~(’-v k=0 (7.13)

Comparing (7.12) and (7.13), we get

k = k/. (7. 14)

Therefore, equation (7.13) gives

2
1
=t -
vl 1=vi/c?
} .

e (.15
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Using (7.14), equation (7.10) becomes

[ wx
klt—-—1
CZ:|

L.

=k r--’f(l——l;)]:
| v k

2 :
k[’ -%{1 —(1-57)” (Using (7.15)]

a.16)

Substituting the value of k from (7.15) in (7.8) and (7.16), we get

/ x“‘vt

RNV

, t-wxlc

-\ll—vz/cz

X

(7.17)

Combining (7.6) and (.7.17) and using standard notations

(7.18)

(7.19)

These are called Lorentz transformations of space and time.

In deriving the above transformations we have assumed that system §' is moving with velocity vrelativeto S
along positive x-axis, but if we state that system S is moving with velocity —v relative to S along positive x-axis,

then in above transformations we may interchange x and ¥/, y and y/, zand 7, ¢ and ¢ respectively and obtain

x=y(x"+Bct’) ]
y= ’
t=y(t'+§x—) ‘

c
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These transformations are known as the inverse Lorentz transformations.

It may be observed thatif v — 0,y — 1, then the Lorentz transformations approach Galilean transformations.

Example 6.3.1. Calculate the length of the rod moving with velocity 0.8C, Given proper length of the rod is 100
cm. .
Solution : If /is the length of the rod when it is moving with velocity v, then
2
(-5)
y c

where I, isthe actual length of the rod.

I=1,

Given [, =proper length = 100cm, v=0.8c¢.

2
s =100,/1- (9&) = 60cm.
c

Example 6.3.2 : Prove that the four dimensional volume element dx dy dz dt is invariant under Lorentz

transformations.

Solution : According to Lorentz transformations

dx' = dx (1—\%2) |

dy' =dy

dz' =dz
dt .

and dt' = ————-
J(1=v*/e?)
 Therefore, the volume element in system S is dx'dy'dz’dr’
N - =dx (l—ﬁ];iydz;lt;—;dxdydzdt
W) e~
~ =volume element in system S.

That is, four dimensional volume element is invariant under Lorentz transformations.
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6.3.2 Equation of force in relativistic mechanics; variation of mass with velocity

According to the Newton’s second law, the force acting on a body is given by
f’=-§-=%(mi), (121)
where p is the linear momentum, m is the mass and v is the velocity of the body.
In order to find a relation between mass and velocity consider the hypothetical experiment first devised by
Tolman and Lewis. Let there be tWo systems S and 8, the latter moving with velicity v relative to former along the
© positive x-axis. Let there be two similar elastic balls 4 and B placed in system S and S respectively. Let the velocity

of the ball 4 be v along positive y-axis and that of B along negative y/-axis.

y Y
A A
vt
> —
- ol >x %
S S
Fig. 7.2

Let the balls be such that their mass are equal when measured in the same systein. Let the velocities of the
balls and that of frame ' be such that the balls collide when the line of their centres is along y-axis, so that the xand
zcomponents of velocities do not change as aresultof impalt. If 4,,,4,, and u,, arethe cdmponents of velocity of
the ball 4 along x, y and z axes respectively as observed from system S before collision,” we have

U, =0,u, =uand u,_ =0. o

2
v
Also, 4y, =v,u,, =-u (lf;z—),u,,:; 0,

[Using Lorentz transformation]
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where #%,,,4,,,4,, are the velocity components of ball as observed in S before collision.

Thus the resultant momentum of the whole system before collision as observed from system Sis

2 .
mgu j +mvi —mu (1 - -Z—;) ¥i : (7.22)

where m is the mass of the particle moving with velocity v while m, , the mass of the particle at rest.
After impact each ball reverses its y components of velocity.

- Therefore, the components of velocities of both the balls afier impact as observed from S are given by

w, =Ow =-u,w, =0
ax 1z

and Wi =V wby = u‘f wbc =0.

Thus the resultant momentum from the system S after impact is

- |
—mou ] +mvT +mu /(1 —12—] j. (1.23)
C

According to the principle of conservation of momentum, i.e., momentum before impact is equal to the

momentum after impact,

That s,

T gyl
- T 14 -
myuj+mvi —mu /(1—-—711
¢

=—myu ] +mvi +mu [l-—

or, 2mou 2mu1/
= —

v? . ' Ly e
or, (1__2_J . (7.24)
c =

Thus the law of conservation of momentum leads to a very important conclusion, i.e., massof a bo.!

%<
N’
~.
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increases with increase of velocity.

- myv
The momentumis p = ———==
12
c2

and the force

(7.25)

T3
]
S
B |

S
N
T
°~§ <,
SN—’

d e ———
dt ( vz)' ‘ (7.26)

Equation (7.26) represents the required equation of the force in relativistic mechanics.

Equation (7.26) is invariant under Lorentz transformation.

6.3.3 Equation of energy in relativistic mechanics : Mass energy relation

The force F is given by Newton’s second law as

F‘=§;(mﬁ)- . (1.27)

According to the definition of K.E. we know that K.E. of amoving body in equal to work done by the force
that imparts the velocity to the body from rest, therefore, K.E ‘ ‘

v vd
T= Lo Fds= J'o -C;(mv) ds .
vd, \ds vod, v
= J, )=t = | ve(mv)dt = [, va(mv). : (7.28)

According to the theory of relativity, from (7.24) we have
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dv

v
=m0Lv +

v v
e (1-v*/c)® ” (729

2 2v
Putting 1-- _v_{ =z, Then ——5dv = dz.
c C

e mocz J-M’/"2 272y = o o
S >

=c*(m=m). SRR o (7.30)
This is the K.E. equation in relativistic mechanics. '

For the low velocity (7.30) reduces to ordinary expression forK.E. i.e.,
1 . .
T= —2~m0v2, for v<<c. ‘ ' ’ 730

Equation (7.30) represents that the K.E. ofamoving body is equal to gain in mass due to its motion times .
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This suggests that the increase in energy may be considered as the actual case of the increase in mass. Then
we may suppose that the rest mass m, is due the presence of an internal store of energy of amount myc?  this s
called rest energy of the body.
Total energy
E  =K.E. +restenergy
=(m—my)c* +myc’
of, F=mc. (7.32)

This is Einstein’s famous mass-energy relations and states a universal equivalence between mass and energy.

Example 6.3.3. A particle of rest mass m is moving with a velocity 0.9¢, calculate (i) its relativistic mass, (i) its

K.E.,, (iii) why it is incorrect to use expression —2-m0v2 for K.E. in this case?
Solution : The relativistic mass

m=——-——’zl-9-——-— sy
v2
DURSEEN | I ST I
(5]
Given y= O9c |
o = T =2.3m,
v? 09¢ Y
1"——7 1... o
¢ c

(if) The K.E. isgivenby

Some=

T =(m=my)e? = (23my —my)c? = 13myc?.

| .
(iii) The expression 5 myv’ is correct only for low velocities which may be verified as follows:

T:(m~hz0)02 =ty |

(1-v*/c?)
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2\
e e

= 1+“2*c‘2“1 myC” for y<<c

1,
=—myv?.
2 0

1,
In this case we do not have v<<c, therefore it is incorrect to use 3 myv©.

6.3.4. The Lagrangian formulation of relativistic mechanics |
The Newton’s equation of motion is generalised foxj special relativity, we now establisha Lagxangian formulation
of the resulting relativistic mechanics. Here We find a Lagrangian that leads to the relativistic equations of motion in
terms of the coordinates of some particular inertial system. Within these limitations there is no great diﬁ‘icu'lty’in
constructing a suitable Lagrangian, It is true that the method of deriving the Lagrangian from D’ Alembert’s principle,
will not work here. While the principle itself remains valid in any given Lorentz frame, the derivation there is based
on p, = mV,, whichis no longer valid relativistically. But, we may also approach the Lagrangian formulation from
the alternative route of Hamilton’s principle and attempt simply to find a function L for which the Euler-Lagrange
equations, as obtained from the variational principle
81 =8 Ldt =0, | (7.33)
+zree with the known relativistic equations of motion.
© Asuitable relativistic Lagrangian for a single particle acted on by conservative forces independent of velocity
would be
L=-mdJ1-B -7, | O (134)
where V'is the potential, depending only upon positionand p* = v*/c? , with v the speed of the particle in the
Lorentz frame under consideration. That this is the correct Lagrangian can be shown by demonstrating that the

resultant Lagrange equations,
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i 9£ ""a"L"'O SRS S Sl » »
dr av,' axi ’ L e v (7'35)

Since the potential is velocity independent v, occurs only in the first term of (7.34) and therefore,

ol e | - (136)

The equations of motion derived from the Lagrangian (7.34) are then

da| my ov

dt{ J1-p? Ox,

Note that the Lagrangian is no longer L = T—V but that the partial derivative of L with velocity is still the
momentum.

We can readily extend the Lagrangian (7.34) to systems of many pariicles and change from cartesian to any

desired set of generalised coordinates g. The canonical momenta, P, will still be defined by
B=— | (71.37)

so that the connection between cyclic coordinates and conservation of the corresponding momenta remains just as
in the nonrelativistic theory. If L does not contain the time explicitly, there exists a constant of the motion
h=g, P~ L. (7.38)
However, the identification of  with the energy for, say, a Lagrangian of the form of (7.34) cannot proceed
along the same route. Note that L in (7.34) isnot atall a hdmogeneous function of the velocity components. The
inrcct evaluation of (7.38) from (7.34) shows that in this case his indeed the total energy :
h= 'lnv’;z +mc? m +V

which, on collecting terms reduces to

mc?
1-p?

The quantity kis thus again seen to be the total energy E, which is therefore a constant of the motion under

h= +V=T+V =E. ' (7.39)

these conditions.
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Application : Motion under a constant force
It will be no loss of generality to take the x-axis as the direction of the constant force. The Lagrangian is
therefore |
= —mcz\/i-:(—f - max, v (7.40)
where B = x/cand aisaconstant magnitude of the force per unit mass. From (7.40) the equation of motion is

easily found to be

a/_B_|_a
ar\ J1-g2 | ¢

- The first integration leads to
B at+a
« ‘/ 1-p° c

ar+o h ‘
or, B= / +(at + o) 2 ’ where o is aconstant of i mtegratlon Asecond i mtegratxon over t from 0 to tand

x from x, to x,
7 (at/+ a)dt/
X = xO = o —.—..........___.__2_
c*(at’ +a)
leads to the completc solutlon

e F e N

Ifthe particle starts atrest from the origin 5o that x, = 0 and v, = 0 = , then (7.41) can be written as

2
e 2.,
¥+ |~ ==,
a a

which s the equation of a hyperbola in the x plane. The non-relativistic limit is obtained from (7.41) by considering

(at +a) small compared to c.
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6.4 Unit Summary :

Inthe first section of this unit we have deduced the equations of mbtion of a symmetical top using Euler’s and
Lagrange’s equations. We discuss about the steady motion of the top when the axis is vertical and is not vertical.

Inthe second section, we discussed about the small oscxllatxon about equilibrium and we solved two problems
using this concept. The vibration of strings are also studied here.

In the third section we introduced the special theory (_)f relativity. The postulates of its are stated. The expressions
for Lorentz transformation are deduced. The force and mass-energy equations for relativistic mechanics are deduced.

6.5 Self Assessment Questions
6.1 A top has an axisof symmetry OG, where G is the centre of mass, and it spins with the end O ona rough
horizontal table. The mass of the top is M and its moment of inertia about OG and any axis through O perpendicular
to OG are C and A respectively. Initially, OG is vertical and the top is set spinning with spin » about its axis. It is
then slightly displaced. If in the subsequent motion 8 is the angle OG makes with the vertical and ¢ is the angular
velocity about the vertical, show that

A¢sin® 0= Cn(1-cosb) and

A(? sin®0+67) = 2 Mgh(1 - cos6)

where OG = h.

Consider the equilibrium configuration of the molecule such that two of its atoms of each of mass M are
v metrically placed on each side of the third atom of mass m. All three atoms are collinear. Assume the motion.
along the line of molecules and there being no interaction between the ends atoms. Compute the K.E. and P.E. of
the system and discuss the motion of the atoms. |
6.3 Find the Lagrange’s equation for the vibrating string fixed at end points and solve it.
6.4 Prove that if the length of the string is held constant and number of particles in the stririg is assumed to be

increasing, the equatin of motion approaches

dy Ty

512 mox®’
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6.5 Show that under one dimensional Lorentz’s transformation 2 _ 022 = x” _ 022,

6.6 State the fundamental postulates of special theory of relativity and deduce the Lorentz transformations.
6.7 Show by direct application of Lorentz transformation that x? + y? + 22 ~ ¢%¢? isinvariant.

6.8 - Show that for low velocities Lorentz transformation approaches to Galilean transformation.

6.9 State and prove force and energy equations in relativistic mechanics.

6.6 Suggested Further Readings
1. H.Goldstein, Classical Mechanics, Addison-Wesley, Cambridge, 1950.
T.W.B. Kibble, Classical Mechanics, Orient Longman, London, 1985, -
L.D.Landau an.dE.M.: Lifshitz, Mechanics, 3rd ed., Pergamon Press, Oxford, 1976.
- A. Sommerfeld, Mechanics, Academic Press, New York, 1964.
J, Synge and B. Griffith, Principles of Mechanics, 2nd ed., McGraw Hill, New York, 1949.
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' Module No. - 43 .
Partial Differential Equations of First Order

1. Partial Differential Equations
In most of the physical problems in science and technology, there involve two or more independent variables,

as a result of which the dependent variable becomes a function of more than one variable and possesses partial
derivatives with respect to several variables. For example, the process of diffusion in physical chemistry leads to
the equalization of concentration u with a single phase and is governed by the laws oonnectmg the rate of flow of the
diffusing substance with concentration gradient. As a consequence, the derivatives

ou ou ou ou

ox’oy’or o
will. in general, be non zero. Moreover, higher derivatives of the types

o'u 'u Oy

ox? &yt or’ez’
may be of physical si gnificance in a particular problem. Thus uis a function of x, y, zand t, i.e. u=u(x, y, z, t).

Hence, for such a situation, we can obtain a relation between the derivatives of u in the form

ou Ou du du du 62u J=O

F,,,f,,““_“—'*‘ geeey T T
(”z oy oo dcdr

etc.

(1.1)

Such as equation relating partial derivatives is known as partial differential equation.

Some well known examples are :-

. 0w 'u O
Laplace’sequation: 75+ 5 +55 =0
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ou u ' u
(1.2)

. . . . \ — e o e e, e
Heat conduction or diffusion equation: £y ol o o

o*u (62u ou a’)

Wave equation: 77 =¢"| 75+ 6y2 P!
Ou ou 63
'K — ot CY e e = ()
or’teweg de Vries (KDV) equation: o T 3

For two independent variables x and y, if z is the dependent variable, i.e. if z=z(x,y), then usually we adopt

the following notations:

o o &z Oz Pz o
pP=7T,4= = 2 N harat L 2.
Ox ay ox 3.755)’ 5}/

~ The higher order derivative occurring in a partial differential equation is its order. For example, the order of

(1.3)

the first three equations of (1.2) is 2, but it is 3 for the last equation.

2. Ongm of Flrst-Order Partial leferent!al Equatlon ; _
Inthe study of a physical or social phenomenon partial dxﬁ‘erentxal equatlons originate in many ways. Let us

now demonstrate how partxal dlﬁ’erentlal equatxon of first order occur ,

CaseI: Elimination of arbitrary constants ,

Consider a relation f(x,y,2,a,b)=0 involving two independent variables x, y and one dependent variable z
such thatz= z(x,y), aand b being arbitrary constants. Differentiation this equation partially with xespect toxandy
s oapectively, we get - | -

5f o oz -0, af of oz -0
Gx oz ox 6y 0z Oy
Eliminating a and b from these two relations and the given relation, we get an equation of the form
F(x,y,2,pq)=0 .1
which is a first-order partial differential equation. v

As an example, consider the equation (x — a)2 +(y- b)2 +2% = 1, whereaand bare arbitrary corstants.

Differentiating thing equation partialiy with respect to x and y we get respectively
z(x—a)+2zp=0 and z(y-b)+2zg=0>a=x+zp,b=y+2zq .
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Substituting the values of a and b in the equation we get Z(p’+q’+ 1)=1 which is the desired first-order

equation.

Case I : Elimination of functions
Suppose that two given functions u=u(x,y,z) and v = v(x,y,z), where z=z(X,y), are connected by the relation

&(u,v)=0. Differentiating this relation partially with respect tox and y we obtain

(2, 00, (% ,2) 0

du\dx ~0z) oviox ~ Oz
op(ou Ou), 0¢
4| —+q— 0
and w(ay qaz) ,av(ay "a)
. . . .o0p  0O¢ o
respectively. Eliminant of B and rn from these relations leads to
Oudv _oudy (?ﬁ‘.?ﬁ-?ﬁ?ﬁ) _oudv _dudv
oy 0z 0z Oy 2 or oxoz)! oxdy oOyox
o(u,v) d(u,v) d(u,v) |
| p+ q=
6 o(y,z)" 8(zx) a(x,y)
or, Pp+Qq = Q2
a(u v) o(u,v) o(u,v) ' TN TSR
, = 2 R=-— , L ;
where, : a( ) a(z,x) a(x, ) : _ S SRR . (23)

The first-order equation (2.2) is called Lagrange 5 equatzon of the f irst order

- Asanexamplc, consider the equation 2 = f ( j Differentiating this equation pamally thh respect tox

and y, we get respectively
' x x
z )\z z z

| X - . . " . L
Eliminating / (—2}’)‘) between these two relations we obtain xp(z - yq) =gy (z= px) whichisa first-

order partial differential equation.
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3. Classification of First-Order Partial Differential Equations
First-order partial differential equations are classified acording to the nature given below:
(@) Linearequation: A first-order partial differential equation is said to be linear, if itis linearin x, y and z, i.e,
ifitis of the form.
P(x,y)p+Q(x,y)q=R(x,_y,z)+S(x,y) NER))
For example, the equation px(x + y)b-— gy(x+y)=(y-x)z+ 2( ¥ ~x*) islinear.
(b) Semi-linear equation: If a first-order partial differential equation is linear in p and q and the coefficients of
pand q are functions of x and y only, i.e. if the equation is of the form
P(x,y)p+Q(x,7)q = R(%,,2), ' (3-2)
then the equation is called a semi-linear first-order partial differential equation.
For example, the equation y’p — xyq = x (z-2 y) isa semi-linear partial differential equation.
(©)  Quasi-linear equation: A first-order partial differential equation is said to be quasi-linear, if it is linear in p
and q, i.e. if the equation is of the form
P(x,y,;)p+Q(x,y,z)q=R(x,y,z) (3.3)
For example, the equation x(z— 2y° )p+y(z -y? —2x2) = z(z -y - 2x2) is quasi-linear.
(d) Nonlinear equation: A pamal differential equatxon which does not belong to the above three types s called

non-linear equation.
For cxample, the equation 2xz - px? - 2gxy + pq =0 isnonlinear first order partial differential equation.

Existence of Solutions: Cauchy-Kowalewski Theorem

The existence of solution of a partial differential equation is not guaranteed. However, if the equation satisfies
a set of conditions (to be stated later on), then its solution does exist. Before the discussions of the existence of the
solution, we first define a solution and its various types associated with a partial differential equation.

We have already seen in Section 2 that a relation of the form f(x,9,2,a,b) =0 leadstoafi rst-order partial
differential equation. Such arelation containing two arbitrary constants a and b is a solution of that first-order
equation and is called a complete solution or complete integral of it.

On the other hand, any relation of the type f { u(x,y,2),v(x,y, z)} = 0 providing a solution of the first-
order partial differential equation is known as a general solution or general integral of the equation. We can also

obtain the general solution as the locus of a parametric family of curves, called characteristics of the envelope of
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‘.f

the family f (x, ¥,2,4, ‘I”(a)) =0, wherebis supposed tobe a function of a. The general solution of a first-order

partial differential equation is a parametric family of surfaces, called infegral surfuces.
Eliminating the arbitrary constants from the complete integral, we obtain the singular solution or singular

integral. Thus, if the equation F(x, y,z,p,q)=0 possesses the complete solution F (x,»,2,a,b) =0, thenthe

7] 0
a, b-eliminant from the relations f =0 5{{ =0, afb =0 isthe smgular solutlon. However, singular solution can also

OF . oF
be obtained by eliminating p and q from the differential equation ¥ (x, 3.2, p,q) =0 itselfand ‘5; =0, ‘a‘;l‘ =0,

Exampled.1:The equation z (p2 +q*+ 1) = ¢? hasacomplet¢ integral of the form (x — a)? +(y ~b) +2° =%,
where aand b are constants. Find the singular and a generation integral assuming b =a.
Solution : Differentiating the relation (x - a)’ +(y- b)Y +z° =c? partially with"reépect to a and b we get.
respectively —2(x~a)=0,-2(y-b6)=0 =5 a = x,b = y. Thus eliminating aand b from the above relation gives
the singularintegralas z = t+c. '

oz

N | |
When 2=%¢, p=—=0,¢ =5=0 which satisfy the equation 2* (p* +47 +1) = ¢*

Again making b=a in (x-a)2+(y—b)2 +z% =¢? and then differentiating w.r.t. a, we get.

1 ,
~2(x-a)-2(y-a)=0= a=5(x+y).Elhninaﬁnga,ﬂ1egeneraJ solution is (Jc——y)2 +22° =2c%.

Cauchy problem:
In order to find the existence of solution of a first-order partial differential equation, the conditions to be

~.tisfied are given by Cauchy problem which we state as follows:

Let us suppose that

(@ fhe functions x, (), ¥, (#),2, (#2) along with their first partial derivatives with respectto 4 are -
continuous inthe interval M : 4, < 4, <y, a.nd

(b) the function F(x,y,z, p,q) iscontinuousinx, y, z p, g inaregion U of the xyzpq space.
Then it is required to establish the existience of a function ¢(x, ) possessing the following properties:

@  #(x ) andits partial derivatives w.r.t. x and y are continuous functions of xand y in a region R of the

xy-space.
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@)  the point {x.7.8(%).8,(x.¥).8,(x,y)} €U and
Fi3,8(5,7),8,(5.2).8, (£.)} =0, vs,yeR,
@) the point {x, (), y,(#)} € R and #{x (1), 3, (1)} = 20, Ve M.
Cauchy problem can be stated geometricaliy as: To prove the existence of a surface z = ¢(x, }{) passing

through the curve T with parametric equations

x=x(n)y=n(#)z=5(k) | ) @.1)
and atevery pointof which the direction ( p,g,~1) of thenormal issuchthat
F(x .z y2 q)=0 ’ k Lo ke @y

W ehave tom ake som e otherassum ptions regarding the function Fand the curve I" to prove the existence”
ofasolution of (4.2) passing through the curve I~ . The existence theorem depends on the nature of these assumptions:
We now state the existence theorem (without proof) which is due to S.Kowalewski and is known as Cauchy-
Kowalewski therorem. B
‘Cauchy - Kowalewski theorem:

Suppose a function g(y) along with its derivatives are corfztinuou_s for ! y- yl <3J,x, be a given number
and z5= 8 (¥y),49, = 8'(¥, ). Also we assume that the function f (x.v,2,9) and all its partial derivatives
are continuous in the region S:|x—x,|<8,|y~y,|<8,|z=2,|<8. Then there exists a unique function
¢( X, y) such that h |

() 4(xp) andall its partial derivatives are continuous in a region R:|x—x|< 5, y— Y| <8,
oz o
() z=¢(x, y) is a solution of the equatton =flxyz,=— o VX, yeR gngd

o (i) B(x.¥)=8(¥),Vy of in the interval ]y-—yo] <$,.

5. Quasi—linear Equations of First Order
We have seen in Section 2 that Lagrange’s equation is ngen by

P(x,3,2) p+Q(x1,2)g = R(%,7,2) 'V 6-1)
This equatxon canbe generallsed ton mde‘pendent variableas ' ‘
1)lp|+[)2p2+"'+P1u-R V (5.2’
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Where each of P,(i=1,2,..,n), and R is a function of n independent variables %, ;... X, and the

' oz .
dependent variablezand Pi = E'xf,(l =12,.., n).

The method of solving the equation (5.1) lies on the following theorem;
Theorem 5.1: The equation Pp+Qq =R has the general solution #(u,v)=0 where ¢ is an arbitrary

function of u and v and u(x,y,z)=¢, v(%,, z)‘= ¢, are the solutions of the equations % = ng = %—,c,

and ¢, being arbitrary constants.

M ,‘ N K ) . d : . . .
Proof. Since u(x,y,z)=c¢, is a solution of —‘% = % = —l—é , so this equation and the equation
ux dx +uy dy +uz dz = 0 are compatibie to each other so that
| Pu,+Qu,+Ru, =0
Similarly, wehave Pv, +Qv, +Rv, =0.
Solving for P, Q and R, we obtain

j2 0 R

o) 0(uy)  0(u)
8(y.z) 9(z.%) a(x,y)
Now we have already seen in Section 2 that the relation ¢ (u,v) = 0 leads to the partial differential equation

6(u,v)+ 8(u,v)= o(u,v)
Panz) Ta(zx) 0(xy)

Substituting from (5.3), we find that ¢(u,v) =0 isasolution of the equation Pp+Qq=R.

(53)

The equation e ’Q‘ R is known as Lagrange s auxiliary equations.

Geometrical interpretation of the equaﬁoh of Pp+Qq=R:
Noting that the direction cosines of the_.normal to the surface z = f (x, y) at a point are proportional to

oz

%,é—y-,-l ie. p,q,~1,Lagrange’s equation (5.1) can be writtenas ,

Pp+Qq+R(-1)=0 ~ (5.4)
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Thus the normal at any point to the surface z = S (x ») is perpendicular to a straight line with direction

cosinesinthe ratio P:Q: R. On the other hand, the equations & -g- = gl-; represent a family of curves, the
’ p
tangent at axiy point of which has direction cosines in the ratio P : Q: R.Alsotherelation ¢(u,v) =0 where

u(x,p,2z)=c, and v(x,p,2z)=c, are two partxcular integrals of the equations 7= —‘g = % , represents a
family of surfaces passing through such curves. Now since a curve of this family through any point on the surface
lies entirely on the surface, so the normal to this surface at that point is at right angles to the tangent at the point to
the curve. In other words, it is perpendicular to the straxght line thh direction cosmes propornonal to P:0:R.

X dx _dy_dz
Since the equation — P 0 R —-and Pp+(q = R define the same set of surfaces S0 they are equnvalent
and, therefore, the relation ¢(u,v) =0 isanintegral of the equation Pp + Qg = R in which u (% y, z)=c, and
: . dx dy dz
v(xy,2)=c, are two independent solutions of 5= 0 =% and ¢ is an arbitrary function of wand v,
The method of solving the general equation (5.2) is given by the following theorem which we state below.
The proof'the theorem lies along the same lines as in Theorem 5.1.

Theorem 5.2: Let u,(x,,x,,...,,),(i =1,2,...,#),, be n independent solutions of the equations

dxdx dxdz

])’ T trerae R’ R ,
vhere eachof B,(i=1,2,~,7) and R is a function of % %y5... %, and z. Thenthe relation ¢(u,u,,...,u,) =0,
hore ¢ is arbitrary, is a general solution of the partial differential equation B p, + Bp, +..+Pp, = R, where

p = gf— (i =.1,2,...,n)'

Example 5.1: Solve px(z - 2y2) =(z- qu)(z'--y2 - 2x3)
Solution: We rewrite the given equation in the form
px(z—2y2)+qy(z-y2 ——2x3)= z(z——y2 —2x3)
Lagrange’s auxiliary equations are |
dx N dy dz

x(z—2y2)—y(z-yz—-2x3)='z(z—y2-2x3)‘ ()
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From the second and third equations of (1) we get ’; =7 '—‘?'; =6
Also, from (1) we have
ax_ _ 2ydy —dz
x(z~2y2) (2y2——z)(z-y2-—2.x»3,),
T i) )
' ox yr-z+2x
dx b 5
o, TEToSW erev=y —~z
o, — 2DV ik =0
x
. v 2 . yoz o
Integrating —| — |t ¥* =cross= ¢, l.e&.— —+—+X" =G,
x X x

2
y z_JY
Thus the required solution is ¢ (‘; v + x3] =0,

ot ot 2%
Example 5.2: Solve (t+y+z)5;+(t+z+x)~a—y~+(t+x+y)-éz--——,x+y+z

Solution. In the given problem, the auxiliary equations are

dx dy dz dt

(4427 1+z+x [+X+Yy X+y+z

:d(x-—y)___d(y—z)___d(z—-t)=d(x+y+z+t)
-(x-y) -(y-2) —(z-t) 3(x+y+z+1)

The first two terms give on integration —Y = ¢, ,aconstant, the second and third terms lead to Z:—tz— =Cy)
-2 . zZ-
a constant while the last two terms give (x+ y+ 2+ ,)% (z-t)=¢;,aconstant.
—y y- 1
Hence the required solution is ¢(-x——¥-, b4 f (x+y+z+t) (2 '—t)) =0.
y-z z—
213
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6.  Integral Surface Passing Through a Given Curve

We have seen in Section 4 that if the auxiliary equations

dx _dy dz '

G-L.z | 6.1y
possess solutions u(x, y,z) = ¢, and v(x, y, z) = ¢, then the solution of the corresponding quasi-linear equation

Pp+Qq=R _ (6.2)
is of the form '

#(u,v)=0 | (6.3)
arising from a relation o

$(cc,)=0 | (6.4)

between the constants ¢, and .

Now to find the integral surface passing through a given curve " having parametric equations
x=x(t),y=y(t),z=z(t),t beingaparameter, the solutions u(x,p,2)=c, and v(x,,2) = c, mustbe such
that

u{x(t),y(r), 2(1)} = ¢, and v{x(r), y(), 2(t)}=c
Eliminating ¢ between these two relations, a relation of the form (6. 4) is obtamed and then the desired solution will
be given by (6.3). .
Example 6.1: Find the integral surface of the equation

(x—y)y2p+(y——x)x2q ==(x2 +y2)z

tiirough the curve xz = a,y= 0

Solution. Here the auxiliary equations
d_ dy __ dz
=)y (=02 (242

lead from the first two terms on integration x° + y* = ¢, aconstant. Also from the above equations

dlx— -
(x-y) - = ¥ y=czacon'stant.

(x—)')(x2+y2) (x2+y2)z z

Thus the general solution is ¢( +y’, b4 J 0.
z
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3
. : . a
We take the parametric equations the curve in the form x =1,y =0,z = - Then £’ =¢, and 1’ =d’c,,

1 31
* Y 5 Y x y
i.e. ¢} =t=a’c? =>c? =a’c. Hence the required integral surface is (x*+y ) ( )

(x’+y’)2 2=d(x-y).

7. Surfaces Orthogonal to a Given System of Surfaces
Consider a one-parameter family of surfaces

F(x,y,z)=c | o | a.n

¢ being a parameter. Now the normal at any point (x,,2) to this surface has direction ratios

(P,O,R)= ((Z aaf aF) Also, ifthe surface z = f'(, ) cuts the system of surfaces (7.1) orthogonally, then

its normal at the point ( x, y, z) lies along the direction ( Zi Z; ] ie. (p,g,~1) andis, therefore, perpendicular
to the direction (P, Q, R) of the normal at that point. Thus, we have |
Pp+0q+R(-1)=0,ie Pp+Q0g=R (7.2)
Conversely, we note that (7.2) is perpendicular to the normal to the system (7.1) at the same point and,
therefore, any solution of the partial differential equation (7.2) is orthogonal to every surface of the system (7.1).
Thus the equation (7.2) represents the general partial differential equation determining surfaces orthogonal to

the system (7.1) and these surfaces are generated by integral curves of the equatidns

dc dy dz , » » :
F " oF oF | (7-3)
x w o

Example 7.1: Find the equation of the system of surfaces which cut orthogonally the cones of the system

xX+yt+zt=cxy.
X . x*+yt 42 .
Solution. We have F(x, y,z) = ————— =, ¢ being a parameter.
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The auxiliary equations are
& _d | xdk oyl _d I
_Bf_ QE"?E xzmyz_’zzf‘yz_zz__xz"'i; M
ox & oz
‘ dx + yd :
From(l),wehaveE—E;);-Z=2£€=>x2+y2+zz=C,,aconstant.
- z

xdx—ydy dz _ x*-)?

Also the equation (1) gives TR -——:>-——5—y—=cz,aconstant.
2(x -y) 2z z

12 : : x? =y
Hence the required orthogonal surface is ¢[x2 +y 22,2 2y J= 0,0r ¥ +y'+7" = f[ z? )
¥4

Example 7.2: Find the surface which interest the surface of the system z (x+y)=c(3z+1) orthogonally and
which passes through the circle x? + y? =1,z =1.

: z(x+y) . . :
Solution, Let F(x,y,z)= el ¢, ¢ being a parameter. The auxiliary equations are
L N S S
OF ~OF ~ oF z  z x+y

O &y & 3z+l 3z+1 (3z+1)

vdx a 3z+1)dz
& _dy_(z+l)d | )
z z X+y

a

The first two relations of (2) give x — Y = ¢, ,aconstant Also from (2) we have

detdy (3z+1)dz
2z xX+y

= (x+y)d(x+y) =2(3z2 +z)dz

= (x+y)’ -(42° + 22%)=c, aconst.
Now the given circle has parametric equations x = cos, y=sint,z=1.
Then cost-sint~c, and (cost+sint)’ -6=c,, i.e. (cost-sint)’ =¢? and (cost+sint)’ <6 +c, .
Eliminating # between these two relations we ggi
2=6+c, 4, le. ¢l +6, =420 (x=p) +(x+y) -2(22 +2%)-4=0
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ie. x*+y? =2z + 2% -2 isrequired equation of the orthogonal surface.
8. Compatible Systems |
Tar first-order partial differential equations
F(x,y,2,p,q)=0and G(x,y,2,p,q)=0 @D
are said tobe compatible if the solution of any one equation satisfies the other.
| 8(F,G)
o(p.q)

We assume the Jacobian J = #0. Then the equations (8.1) can be soived in the form

p=p(%y2) and g=q(x7.2). |

Now we know that a necessary and sufficient condition for the Pfaffian differential equation X dr =
to be integrable is that X .curl X =0, where X =(P,Q,R),r =(x,y,z), and each of F, Q, Ris a function of
X2 ;
Hence the condition for the equations (8.1) to be compatible is that dz = pdx + gdy must be integrable and,
therefore,

% _,% % 2 _,
0z "0z oOx Oy

ie, g.+pg.=p, +qp, 8.2)
Differentiating the first equation of (8.2) with respect to x and z, we get
F+F,p,+Fq.=0and F,+F,p,+Fgq,=0 (8.3)
respectively. Multiplying the second equation of (8.3) by p and adding the result to the first equation, we obtain
F +pF,+F,(p,+pp,)+F, (9, +pg,)=0 (8.4)
Similarly from the second equation of (8.1), we have
G, +pG.+G,(p,+pp,)+G, (9. +pg,)=0. 8.5)

Eliminating p, + pp, from(8.4) and (8.5), it follows that

2F.G), A(F.G)_3(F.G)
(9. +p4.)=
(x, p) a(z,p) d(p,z)
8(F,G) (F,G)jl

q9.+pPq.= +p _

or, A [a(x p) " 8(zp)

In a similar way, if we dlﬂ'erentxate eachof (l 8. l)thh respect to Y and z and then proceed as above, we get‘

theresult
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ptap ___{a(F c;)+ a(F, G)J &7
; (r.9) " o(zq) ‘
Substitution (8.6) and (8.7) into (8.2) leads to
O(F.G) a(F,G)+6(F,G)+ oFG)_, 88

5(xp) " 0(zp)  0(v4) * o(zq)
which, in short, is writtenas ;

[F,G]=0 R (89)
(8.8) or (8.9) is the required condition for the equations (8.1) to be compatible.

Example8.1: Shows that the equations xp = yg and z(xp + yg) = 2xy are compatible and solve them.
Solution. Let F(x,y,z,p,q) =xp~yq =0, G(x,,2,p,9)= z(zp+yq)- 2xy 0
a(F 9(F,G) o(F, G) 6( )
=20y, X)Ly
e Bp) T 00ne) T a(zr)

oFG)_

= px* +2xy

Hence, [F,G]= 2xy+p(px2 +qu)~2xy+q(—xyp+y2q)
=P ¥ =g’y =px - pirt =0 (v pr=gy)
- Thus the given equations are compatible. -
Now, the equation F(x, y,z, p,q)=0,thatis, px - gy = 0 leads to the Lagrange’s auxiliary equations as

dy dz
P Y giving solutions xy = ¢,z =c,, where ¢, and c, are constants

9. Nonlinear First Order Partial Differential Equations
Consider partial differential equations

F(%,3,2,p,q)=0 | ©.1)
in which F is not necessarily linear. It has already been noted in Section-8 that the two-parameter system of
surfaces

f(%3,2,0,6)=0 (9.2)
leads to partial differential equatxons ofthe type (9.1). The converse is also true as w1!l be seen later. In fact any
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envelope of the system (9.2) touches at each of its points a member of the system, as aresult of which one gets the
same set of values (x, y, 2, p, ) as the particular surface leading to a solution ‘ofthe differential equation. Hence we
are led to three classes of integrals of a partial differential equation of the form (9.1): |

(@) For the two-parameter system of surfaces f(x,,2, a b) 0, the integral is called a complete
integral.

(b) Ifthere exists a relation between the parameters aand b ofthe form b = ¢(a) ¢ being arbltxaxy then

the one-parameter subsystem f (x.3.2,0.8 (a))=0 of (9.2) forms its envelope and is known as the general

integral of (9.1). .
(c). Iftheenvelope of the two-parameter system of sm'faees (9 2) exists, then it also leads to a solution of

(9.1) and is termed as singular integral.

Example 9.1: Verify that z = ax + by +a+b- ab isa complete mtegxal z= px + qy + p + q pq , where aand
b are arbitrary constants. S ' ' ‘

- Show that: the envelope of all planes corresponding to complete integrals provides singular integral of the
differential equatlon and determine a general integral by finding the envelope of those planes that pass through the

origin, ,
Solution. Let f(x,y,z,a,b)=z—(ax+by+a+b—ab)=0, : 6}
giving p = a,q = b and, therefore, the( 1) is a complete integral of the differential equation
of of | o
Now -a—-.--—(x+1—b)=0 and 55:—(y+1-—a)=0 sothat @ = y+1 and b= x+1. The envelope of
" .
the two-parameter system (1) is obtained by eliminating a and b from (1) as z= (x+ l) (y+1) which is the
required singular integral.
Again, putting b = ¢(a) in(1), the one-parameter system is
f(x,y,z,a,¢(a))=z—ax—-¢(a)y~—a—-¢(a)+a¢(a)=O ' (3)
a [ 1 !
sothat  L-=-x-¢'(a)y=1-¢'(a) +$(a)+af'(a) =0 @

Since the envelope of the planes passes through the origin, so from (3) we get

—a-¢(a)+ap(a)=0 ie. ¢(a)- =>¢( )_”(T{)—
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Then from the relation(4), we get

—

X+ y2—1+ 12+a__ a2=0
(a-1) (a-1)° a-1 (a-1)

y+x | ,
Solving for a, we have a = \/% +1 andso #(a) = [—\/—;—- . Substituting the values of aand ¢(a) in(3),

we get the general integral as 7 = x+y+2\[;y‘,i;e. {x+y- z)2 =4xy.

10.  Cauchy’s Method of Characteristics
- Cauchy introduced a geometrical method of solving nonlinear partial differential eqUatioﬁs’ of the form

F(x,p,2,p,q)=0 I (10.1)

A plane through the point P(x, y, z) and having normal parallel to 7 with direction ratios (Po>Go,-1) is
uniquely specified by the set of numbers (x,, };o, Zy, Py» 9, ) - Conversely, any set of five real numbers d‘e‘ﬁnesa
plane in three-dimensional space. We call such a set of five numbers (x, , z, p, q) aplane element of the space
and a plane element (,, ¥y, 2y, Py, 4, ) satistying (10.1) is known as an integral element of the equation of the

point (x,, ,,2, ).
o Elemgntary cpne

Plane element
Fig. 1

Let us rewrite the equation (10.1) in the form
9=G(x .2, p) | (10.2y
and keep x, y,z fixed, but p to vary. The set of plane elements {xo, Yos Zos Py G (X5 Yo» 25 p)} depends on the
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single parameter p and passes through the point P. Thus, the planar elements envelope a cone with P as vertex and
this cone is called the elementary cone of the equation (10.1) at the point P.
Now consider a surface S given by the equation
z=g(x,y)

where the function g (x, y) along with its first partial derivatives w.r.t. z and y are assumed to be continuous in a

(10.3)

region R of the xy-plane. Then the tangent plane of each point of S defines a plane element

{xo,yo,g(x,y),g, (%0s30) &, (%05 ¥ )} which is called the tangent element of the surface S at the point

{xo’J’ovg(xo”.VO)} .

Thus we have the following theorem:
Theorem - 10.1: 4 surface is an integral surface of a partial differential equation if and only if at each
point its tangent element touches the elementary cone of the equation.

Now a curve with parametric equations x=x(t),y=y(t),z=2z(t) lies on the surface (10.3) if

z(t)= g{x(t), y(t)} ,forall ¢ e 1, I'being the given interval. Therefor a point A, of I determined by the

i=fy

parameter ¢, , the direction cosines of the tangent line P, R, are {x'(t, ), ' (t,), ' (¢, )} where *(%) =(9;) etc.

S

(Po»90,-1)

and this direction is perpendicular to the direction ( p,, ¢y, 1) if
Pox'(1,)+ 40 (1) +(-1)2'(6,) =0, i.e. 2'(t,) = pox'(8,) + qqy'(to) .

Hence any set

(D)2 (0),2(0), P (1) 0 (1)} (10g)
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of five real functions satisfying the condition
Z'(t)=p(t)x(t)+q(t) ¥(1) ' ' ~ ‘ (10.5)
defines astrip of the curve " atthe point (x, y,z). The stripis called an integral strip of the equation (10.1) if it
isan integral element of the equation (10.1). Thus the set of functions (10.4) isan mtegral strip if, in addition to
satisfying (10.6), it also satisfies the condition -
F{x(£),y(t),2(t), p(t),q(t)} =0Vt 1 | ” - (106)
~Ifat each point the curve [ touches a generator of the elementary cone, then the corresponding strip is

called a characteristic strip. For a point (x +dx,y+dy,z + dz) onthe tangent plane to the elementary cone we

have
dz = pdx+qdy . L S =(10.9) ¢
where p and ¢ satisfy the equation (10.1), Now differentiating (10.1) and (10.9) with respect to p, we get

OF O g and 0=ax+ay
T op

%)
Elimination of 53- between these two equations and then use of (10.9) leads to

dx dv dz
F F pF +2zF, . ‘ : (10.10)’

Thus x'(r),y'(¢),2'() are proportional to F,, F,, pF, +qF, respectively along a characteristic strip. We
choose the parameter 7 in such a way that. | | |
X(t)=F,y(t)=F,z'(t)= pF, +qF L i (10.11)

Now, since p is a function of falong a charactenstxcy strip, we have

' p ! ap,
PO)= 250+ L ()
p oq dp 0z oq .
S I ) I B
6x P+ax p( ay @162 ax e ) v (IO.]I)

Also differentiating (10.1) w.r.t. x, we get

OF | OF OFdp OF g _
o P "pox ogox

or, F +pF.+p'(t)=0.

222 ‘ Directorate of Distancc Eclucation



Module 43 : Partial Differential Equations of First Order

------------------------------------------------------------------------

Thus along a characteristic strip ¢'(¢) = —(F + pF.). Similarly, we have q'(f) = - ~(F, +qF,).
From the above discussions, it follows that for the determination of the characteristic strip, we have the
following set of five ordinary differential equations:
¥ ()= Fypy (1) = Fyp2'(1) = PF, +aF, - EEE
P (t)=-F,-pF,q()=-F,-9F,. - (10.12).

The equations (10.12) are called Cauchy s characteristic equations of the partial dxfferentlal equation (10.1).

Theorem 10.2: The function F (x, V.2, Ps q) remains constant along every chqrqc(eristic strip of the equation

F(x,y,2,p,q)=0.

Proof Along acharacteristic stnp, we have
S[F{x().y(1),2(0), ) q(f)}]

= Fx'(t)+F y(t)+Fz(t)+Fp(t)+Fq(t) | |
. =FEF,+FF, +F,(pF,+qF,)-F,(F, +pF) F, (F +qF,) (usmg 10 12)
L, : ;
sothat F(x,y,z, p,q)=constant
We have the following result as a corollary:
Corollary: If a characteristic strip contains at least one integral element of F (x,.2, p,q)=0,thenit ig an

" itegral strip of this equation. ‘
We are now in a position of solvmg Cauchy problem stated earlier. Suppose we are to fund the solutxon of

(ne equation F (x, y, 2, p,q q)=0 such thatthe mtegral surface passes throughacurve r w1th paxamemc equatxons
x=g(u),y=w(u),z=2(u). |
Then, in the solution | N
x = X(Xg» Yo» Zo> Posdorlos? ) etc. . (10.13)
of the characteristic equations (10.12), we may take the initial values of x, y,zas X, = ¢(u) yo=w(u)z,= Z(,")~
The corresponding intial values of p, and g, are obtained by the relatlons
x'(u) = p0¢'(u)+qol,u'(u) and F{(ﬁ(u),l//(u),z(u),po,qo} =0,
Substituting the values of x;, ¥, 25 Po> 90 and the appropriate value of 7, in (10.13),x,y andz canbe
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expressed in terms of two parameters u and ¢ in the form
x=X(u1),y= Y(uit),z=2= (u,'t). .
Elimination of » and ¢ from these equations leads to an equation of the form 6(x,y,2)=0, whichis the

required equation of the intégral surface of the equation < ( X, ¥,2, D, q) =0 throughthe curve 1.

Example 10.1: FInd the characteristics of the equation pg = z and determine the integral surface which passes
through the parabola x = 0, y* = z . '

Solution: Let F(x, y,z, p, q) =z~ pq =0, Then the characteristic equations are

¥(1)=F,==q,y(t)=F, ==p.z(t)= pF, +qF, =-2pq,
P'(t)=-(F +pF,)=~p,q'(t)=~(F, +4F,) =
Now the given curve is x =0, y* = z. We choose the initial values as ¥, =0,y, =u,2, =u’. Since
Zo = PoXy + 4oy » We have g, = 2u and from the given equation 2o = g—
Now the equations x'(¢) = —¢ and ¢'(¢) = —g gives dx = dg giving x=¢ +»c, , where ¢, is constant,
Similarly, from the equations 3’ (¢)=-pand p'(t)=-p,weget y= p+ ¢,, ¢, being constant. Using the initial

- U
conditions, we have ¢, = -2u,c, = 5 Hence

Xx=qg-2u,y=p+ Ld
. CHYEPT | | S
Again the conditions p'(¢) =-p and ¢'(f) = - imply that p=cse” and g =c,e™ sothatthe use of the

. u u .
- ttial conditions give ¢, = -2-,04 =2u Thus p =-2-€ "and q =2ue™’ and, therefore

x(6)=2u(e” -1),y(r) = -;i(e"’ +1)
Putting the values of p and ¢ in the characteristic equation 2'(¢) = -2 pq , we get
- Z(0)= e = z(t)=ule™ + oy = 2 (1) = ule™
since the initial condition z, =i gives ¢ =0,

Thus the required characteristics of the given équatic)n are
xO0=2( 1) ()= 5 e 1) 20wt
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From the first two relations ofthese, we get e’ = gj—ﬂ and u = %:i which when substituted in the

third characteristic leads to the required equation of the integral surface as (x + 4 y,)‘2 =16z.

11. Charpit’s Method
Based upon the considerations of compatible systems discussed in Section-8, Charpit introduced a method
of solving partial differential equations of the type ' ‘

F(x,,2,p,9)=0 | L B L B

In this method, another first-order partial differential equation e v
G(X,}’,Z,paq,a)=0 v (11.2) »

a being an arbitrary constant, is introdlku‘:hed, so that “ i
() equations(11.1)and (11.2) are solvable for p and g to give
| p=p(x,y,z,a),qzq(x,y,z,a)
and (i) theequation
dz=p(x,y,z,a)dx+q(x,y,z,a)dy ' (113)
is integrable. If we can find such a function G (x,3.2, P9, a) then the equation (1 'l‘ 3) caﬁ be solvedtohavea -
solution of the form | |
f(x,y,z,a,6)=0 o 1  ; (11.3)
‘which contains two constants aand b and this solution will then be a solution of the given eqixation (11.1).I1talso
i .flows from Section-9 that (11.3) is a complete integral of (11.1). o ‘_ B |
To find the equation (11.2) compatible with (11.1) we must have (see section-8)
o(F,G)

J=—a—(-;,—‘;-)-¢0 and [F,G]=0.
Expansion of the last equation gives the equivalent linéar partiél differential equaffbn R
R R B (o, a8}~ pP) G - (F 0k ) 70
which determines G. We can obtain a solution of this equation by ﬁndiné an integral of the subsidiary equation’ {
& dy  dz dp dg |
F,"F, pF,+aF, —(F.+pF) -(F+4F) (14
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in accordance with Theorem 5.2. The equations (11.4) are known as Charpit’s equations and they are equivalent
to the characteristic equations (10.12).

Ifthe function G(x, y,z, p,q) can be found, then the problem reduces to that of solving for pandgandto
integrate the equation (11.3). It may be noted that all equations of (11.4) are not necessary, but p or g must be
involved in the obtained solution.

Exampleﬁ 11.1: Solve the equation 2xz — px? - 2qxy+pg=0.
Solution: Let F(x,y,z, p,q) = 2xz ~ px* - 2qxy + pq=0.Then
o F,=2z-2px-2qy,F, —~—2qu =2x,F, =~x +q,F—-—2xy+p

Thus Charplt’s equations are
a _ dy dz dp__ _dz
-x*+q -2xy+p -px’ -2qu+2pq ~2z+2qp 0
sothat dg = 0 = ¢ = constant =g (say). The given equation then givesv p= ——-(—EJ—ZZ—Z) Hence ﬁom the relation
. a-x
dz = pdx +qdy,
We get.

. %) e wady

ax

d(z-ay) _ 2xdx

z—ay x*-a

o
'ntegratmg, we have Ibg(z;dy) g'xagf(x’ —a)+log, bﬂbeing const. Hence the required solution is
:~ay=b(x2-a)_ ;
i
Example 11.2: Solve the equation px +qy = z(1+ pg)?.
’ B
Solution. Let F(x, V2, p,q) = px+qy-—z(1 +pq)5 =0. Then
1 -
F.=p,F =q,F, =—-(1+pq)2 -x-—qz(l+pq) F =y~.§pz(l+pq) 7

Thus Charpit’s equations are
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& @ dz

1 T T 1
x—5q2(1+pq) 2 y-~2-p2(vl—pq) 1 px+qy-pgz(1+pg)?

dp dq

) —p{l—(1+pq)“%} ) —p{l—(l“qu)";'}

The last two equations give p_4_, p = agq ,abeing constant.
p 4

The given equation then gives g = id - Then the relation dz = pdx +qdy = cj(adx +dy)
| | , .{(.ax+}')z—azz}z- ~
leadsto |

dz=

z(adx+a$z) j
(av+y)-az}’

! ) ‘
or, J‘;(‘z -z )2 dz = z-Jadt [puting Jat =ax+y]

dz du ) :
o, =——— [Putting/= uz)
(u’-—l)2 -u
v e

o 1o 1 2 pb,l 1 -
[ntegmﬁng 1082"""'2""2 +‘iu(u2 "‘1)2 +—2-log{u_+(u2 -1)2}‘-: consmt:b)say

Putti "=£‘=ax+yth . lution is
g¥=T= T ¢ required solution is

ax+y
logz+—3

{(ax+y)+(ax+.y—-az)%}

| +1og{(ax+y)+(ax+y—~/;z)%} =b
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Some special cases :
Charpit’s method can easily be applied to solve some special types of nonlinear partial (;Jiiﬁ‘e’re'nt‘ial equations
of the first order as shown below:
(@) Equations involving only pandgq
Ifthe given equation is of the type ‘
F(p,q)=0 (11.5)

then Charpit’s equations (11.4) give

F, F, pF,+qF, 0 o : g

An obvious solution of this equation is p = const. = a, say. Then the given equation (11.5) gives the value of
g in the form ¢ =¢(a)= const. Hence the equation dz = pdx+qdy = adx + ¢(a)dy leads to the solution
z=ax+¢(a)y+b, where b is another constant, -

It is to be noted that in the above dp = 0 hasbeen chosen as the second _e;quation. However, sometimes it is
more convenient to use the equation dg = 0 as the second equation for which ¢ = const.
Example 11.3: Solve the equation pP+q=pq
Solution, Let ( P, q) = p+4q - pq =0.Then Charpit’s equation§ are

& _dy ___dy  _dp_dg
I-¢g I-p p+gq-pg 0 0

a v
so that p = const. = g, say and then the given equation produces ¢ = Py Thus the equation dz.= pdy + gdy

. a 3 * . * . " a 3
gives dz = adx + P dy which, on integration, leads to the desired solutionas z = ax + 217 +b,where bis

constant,
(b) Equations which do not involve independent variables x and y
Inthis case, the equations are of the form - \
F(z,p.q)=0 ’ (11.6}
and then teh Charpit’s equations are S | !
& &y dp_, dg

F, K, pF+gF, -pF, -gF

The last two relations, on integration, gives p =aq,a being constant. This, with the use of the equation
(11.6) gives the expressions for pand q. The complete integrating the equation dz = pdx + qdy .
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Example 11.4: Solve p?z? +¢* =1.
Solution. Let F(z, p,q) = p’z* + ¢’ ~1=0.Then Charpit’s equations are

dx _dy _ dz dp _ dq

2p2*  2q 2(pzz2 +q2) - 2pz -2p'qz

The last two relations give p = ag, where a is constant. Hence the use of the given equation leads to

B3

2,2

a 1 :
p T e o om——ttat q 2% e — 14 - . h
4] and EEE so that from the equation dz = pdx + qdy , we have

adx+dy

dz =""/;;—" 1.1 Ja*z* +1 dz = adx+dy

Integrating, the required solution is
1
az(a’z* +1)+log {az-&-(azz2 +1)2 } =2a(ax+y+b)

where b is constant.

(¢) Separable equations
If a partial differential equation F (x, , 2, p,q) =0 can be written in the form

F(xy,2,p,9)=8(xp)-v(»q)=0 a7
then it is said to be separable. Here Charpit’s equations are
gx~ B dy _ dz _ dp _ dq
6, v, pPh,—av, b -V,
o, 4,

It is seen that the first and the fourth equations produce an ordinary differential equation ", + 4 =Y ie.
P
¢,dp + ¢,dx = 0 inxand p and the solution of this equation can be obtained in the form ¢(x, p) =const.= a, say,
so that ¢ (¥,q) = a. Then we proceed asin the general theory.
Example 11.5: Solve the equation p’ y(l +x° ) =gx’.

Solution. In this case we can write the equation in the form

F(x,y,z,p,q)=—7—~—,;=0#¢(x,P)—W(y,Q)=0
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2 2 e diiad. L b
P {l+x ] ’ .
Where ¢(x, P) = '"(—7——) ) y(y, q) = -;% . Thus using Charpit’s equation as above, we derive the ordinary
X : : :
p’ ( 1+ xz)
differential equation ¢,dp + ¢.dx = 0 leading to ¢(x, p) = const. = g, say. Hence ‘“‘;’:““““ =a= ; . s0 that

B

Vax

p= N and ¢ = ay . Then from the equation dz = pdx +qdy , we get
* SR : -, . ; .

‘ xdx
dz =+a. + ayd;
T Y

Integrating, the desired solution is
1
z=Ja(l+x* ) +=ay’ +b

where 4 is constant,

(d) Clairaut’s equations

Ifa first-order partial differential equation F'(x,y,z2, p, ) =0 can be written in the form -

then it is said to be in Clairaut’s form. Here Charpit’s equations are
dx dy dz _dp daq .

x+f,,*y+j;—px+qy+pfp+q)fi 0 0. V .
‘hat p=a,q=b,whereaand b are constants. Putting these values of p andqm thé given equation, we get its
nplete integral as z = ax + by + fla,b).
t:xample 11.6 : Find the complete integral of the equation.

- paz=p(xq+p*)+q* (yp+q?)

. 4 4
Solution. We can write the given equation in the form Z = px+qy + £ pqq

which is in Clairaut’s forv1 and,

‘ 4 4
: , a’ +b . : N
therefore, the complete integral is z = ax + by + pre -, Where g and b are arbitrary constants.
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12. Jacobi’s Method
Jacobi’s method of solving first-order partial differential equations
- F(x,9,2,p,q)=0 S
lies on the fact that if there exists a relation pe v
u(x,y,2)=0 , , . (122)
between X, ¥,z then on substituting

(12.1)

= Uy 4 U, : . ; : (12.3)

i

A ou . L . , L
where ¥, == ,(i=1,2,3), into (12.1), we get a partial differential of the type

‘ f(x y,‘z,ul,uzk,dj)‘r—vOV o ’(1'2.4)
in which the new dependent variable u does not appears. |
In this method, we are to introduce two first-order partial differential equations of the type i
g(x,y,z,u,,uz,u3,a)=O,h(x,y,z,u,,u2,u3,b)-—0 | - (12.5)
cuch that SN VDRV RUPS ST FIREIN SNV S TR
() equations(12.4)and (12.5) are sovable for u,,u,,u, and
(i) theequation S o :
du = ,dx + udy + uydlz - | (12.6)
is integrable. Pt T T
| Since (12.4) and (12.5) must be mutually compatible, we have
[/.]=0,[g.h]=0.[hf]=0
-w the equation [ f,g] =0 gives
a(f.8) o(f.8)  a(/.8)
G(x u,) 0(y,u2) 6(2 u3)
e L Eeg Bp, B agl o, 55
which has subsidiary equations |
de _dy dz _du _du, _du
=T . - 127

fo fu fo —f S, L
And two solutions of (12.7) containing u,,u, and u; serve the puxpose of equatlons ( 12 5) provxded that the
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compatibility conditions are satisfied. Then solving (12.4)and (12.5) for w,, u, and Uy and putting these values in

(12.6), the required solution is obtained after i integration.

Jacobi’s method is more advantageous than Charpit’s method in the sense that it can be generalised to any

number of variables. Thus, in order to solve the partial differential equation.

S (%% x X, Uy Uyynestd, ) = 0

where u, = %,(1’ =1,2,...,,n), the auxiliary equation is
du,
T T

du, du,

— no

g _dv,  _
fo S

n

which involves n~ 1 arbitrary constants. Solving these equations for u,(i=12,..,

the equation
du = Z udx,
i=l
the solution containing n arbitrary constants.

Example 12.1: Solve the equation p2x + 4%y = 7 by Jacobi’s method.
. ; ,

. . =M
Solution. Putting 7 " 94 "

in the given equation, we get
[y, zu,uy,u))=ulx+uly-ulz =0
Jacobi’s equations (12.7) are

& _dy  dz dul _du, _dy,
ux 2,y 2wz -ul -ul -ul

i he firstand the fourth equations give

dx  2duy, a
~ +——u—~~0::»xu, =4, je u = ;,abeingconstant. g
! .

(12.8)

(12.9)

n), we determine u by integrating

M

b
Also the second and fifth equations produce in a similar way 4, = \/; , where b is another constant. Then trom

a+b

(1), we have u, =

Thus from the relation du = u,dx +u,dy + u,dz, we get
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du =\[§dx+\/-3—dy+1/a+bdz
x y z

which, on integration leads to

u=2Jax +2,/by +2,J(a+b)z +2c

where 2¢ is constant. Hence the required solution s # (x, y,2) =0 i.e. Vax +by +J(a+b)z+c=0,

Module 43 : Partial Differential Equations of First Order

14. Solutions of Partial Differential Equations Satisfying Given Conditions
Suppose we are to détermine the éQhaﬁonS of sm’fdées satisfying the partiéﬂ differential equation
F(x,9,2,p,q) =0 a4
subject to some conditions like passing through a given curve or circumscribing a given surface and to derive one
complete integral from the other. ; | o o 1 B

First we consider the solution of (14.1) and determine the integral surface passing through agivencurve [
with parametric equations x = x(t‘) Y= y(t), z= z(t) ,t being parémeter. Thenit is either R

(a) aparticular case of the complete integral ‘

f(x,,2,a,6)=0 (14.2)
which is obtained by giving particular valuestoaor b;or, -

(b) the envelope of a one-parameter subsystem of (14.2),i.e.a particular case of the general integral
corresponding to (14.2); or,

(c) theenvelope of the two-parameter system (14.2).

It is unlikely that the solution falls into categories (a) or (c);.FSo we consider the case (b) only.

Suppose a surface S passes through the curve [". Thenat its every point, the envelope of Sistouched by a
member of its subsystem. Let the curve T is touched at a point P on it by S, , a member of the subsystem and
since S, touches Sat P, italso touches [" at P. Thus S is the envelope of a one-parameter subsystem of (14.2}.
each member of which touches the curve, provided such a subsystem exists. Let us suppose that the subsystem is
made up of those members of the family (14.2) which touch the curve T". Then the points of intersection of the
surface (14.2) and the curve T~ are obtained by the equation ,

r{x(e).y(t).2(e),ab}=0 | (14.3)

in terms of the parameter . The curve T touches the surfaqg (14.2) prqvigied @h’e eqqation (14.3) haa wo cqual
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roots, i.e. the equations (14.3) and

-g;[f{x(t),y(t),z(t),a,b}]=0 | | (144)
have a common root, the condition for which is obtained by eliminating ¢ between (14.3) and ( 14.4)in the forrh

w(a,b)=0 | . (14.3)
which can be factorised to give '

b=y (a),b=y,(a),.., | (14.6)

each of which being a one-parameter sub system. The envelope of these one-parameter subsystems give the

solution of the problem.

Example 14.1: Find a complete integral of the equation p’x +qy = z and hence find the solution of an integral
surface of which the line y =1, x + z = 0 isa generator.
Solution. Let F(x,y,z, p,q) =z - p’q-qy =0. Then Charpit’s equations are
dx=£Z= e =dp=£1£ -
-2px -q -2p’x-qy p'+p O

: 1
— 2
the last equation of which gives g = const. = a, say. So the given equation leads to p = ( _z_az) . Thus, from the
x
eqilation d= = pdx +qdy , we have
!
dz =(Z“"»”)2 dx +ady =
X _ SR ( 77— ay)§ x

d(z-ay) dx
i i
-i b

the integration of which gives (z- ay)%, =x2+4+b2 16 (x+ay-z+ b)2 = 4bx which is the complete integral, b

being c’onstant'. .

Now the parametric equations of the given Iine are x =1,y —1,z = —t . The intersection of this line with the
above equationis (2¢+a + b)2 =4bt,ie. 4 +4ab+(a +,b)f = 0 which has equal roots if a* = (a + b)zrf,i.e.
b = -2qa (neglecting p = (). Hence the one-parameter subsystem is ‘

(x+ay—:':—-2a)2 = —8ax, or az(y—2)2 +2a{x(y+4)~z’(y+z)} +(x=z) =0

which hasthe envelope {x(y+4)—z(y+2)}’ =(y-2)} (x-2)’. ie. p=2(y~2).
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The function z dzfined by this equation is the solution of the problem.
Next let us consider the case of finding one complete integral from the other. For this, we suppose that (14.2)

ie. f(x,,2,a,b) =0 is the complete integral. We now show that there also exists another relation of the form
g(x,y,2,¢,d)=0 | (14.7)
involving two ai bitrary constants ¢ and d and this is also a complete integral. On this surface (14.7) we choose a
curve [ whose equations contain constants as mdependent parameters and then the envelope ofthe one-parameter
subsystem of (14.2) touchmg the curve [ is found out. Smce thls solution contams two arbxtra:y constants, so tlus

_isalsoacomplete mtegral of the glven equanon

Example 14, % Show that the equatlon xpq + yq = 1 has complete mtegrals (@ (z +b) = 4(ax +y) and (b)
dx(z + c) & y +x* and deduce (b) from (a).
Solution. Considerthe curve y =0,x=d (z + c) on the surface (b). The intersection of this curve with (a) is
(2+6) —4ad (z+b)+4ad (b-c)=0 which has equal roots if a’d® =ad(b-c), i.e. if ad=0, or
b=c+ad. |
Since the envelope of the subsystem for 4 = ¢ does not depend on ¢ and d, so this cannot be desired one.
So the required subsystem has equation N
(z+c+ad)’ =4(ax+y), ie. d’a® +2a{d(z+c)-2x} +(rz+c)2 —4y=0
which has the envelope o - o
{d(z+c)-2 } {(Z+C) 4y}d2,1e dx(z+c) d2y+x
Lastly, we give a sketch of the procedure to obtain an integral surface cxrcmnscr;ibing a given surface. Two

surfaces circumscribe each other if they touch along a given curve. For example, a coincoid

)
/]

Fig.3
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and its enveloping cylinder touch along a curve. It is to be noted that this curve needs not be a plane curve.
Suppose now that the partial differential equation (14.1): F(x,y,z, p,q) =0 has a complete integral
(14.2). f ( XV, 2,4, b) 0.Our objectisto find an integral surface of (14. 1) which circumscribes the surface

v (x,2)=0 (14.8)
by the use of (14 2) Suppose the surface “ B : o
| Eu(xyz)=0 S - | (14 9)

is of the requlred kind. Then thxs fallsi mto exther of the category (a) (b)or(c) hsted above Owing to frequent
occurrence, we consider the possibility of (b). Since E is the envelope of a one-parameter subsystem Sof(14.2),
so it is touched at each of its pomts and m pamcular ateach point Pof [ by amember S, of S. Now S touches
> atPasit touches Eat P. Thus the equatxon (14.9) represents the equatlon ofa set of surfaces (14. 2) whlch

touch the surface (14.8).
Letus now find the surface (14.2) which touch £ and see whether they provide a solution to the problem.

The surface (14.2) touches the surface (14.9) provided that the equations (14.2), (14.8) and

*/{ l/{y “(///:‘ | | o | (14.10)‘

are consistent. The condition for this is the eliminant of x,, z from these four equatlons of the type.
x(@b)=0. ; (14.11)
This equation can be factof{sed fnto asetof relations of the form S
b=x(a).b=x,(a),. (412

cach of which defines a subsystem of (14.2) whose members touch (14.8). The points of contact lie on the surface
wiwse equation is obtained by eliminating a and b from (14.10) and (14.12). The intersection of this surface with
3. isthe curve I . Then each of the relations (14.12) defines a subsystem whose envelope E touches the surfice

2. alongthe curve [".
Example 14.3: Show that the integral surface of the equation 2¢ ( zZ—px-— qy) =1+¢° whichis circumscribed
about the paraboloid 2x = y? + z? is the enveloping cylinder which touches it along its section by the plane

y+1=0.

I+¢°
Solution. The equation 2¢(z— px ~ qy), =1+¢* canbe written in Clarauit’s form: Z = pX+qy + *':;qi which

has the complete integral

236 Directorate of Distance Ldycation



....................................................... Verererenennern. Module 43 : Partial Differential Equations of First Order

2 .
Let f(x,y,z):ax+by+1;bb -2z=0 and y(x,y,z) =2x - y* —z* =0. Then using the equation (14.10)

we get

a b -1 b 1

— — T —— y__,_.._..z_-_—_._

2 2y =2z
~ Eliminating x between the equations f (x, y,2) =0 and t//(x »,2)=0,wehave

aby* +2b2y+abz ~2bz+b* +1=0.
Substituting the values of y and z in this equation, it follows that

(6-a)(p?+1)=0 , | |
so that the relation b = a gives a subsystem whose envelope is a surface of the required kind. The envelope of the
system {2(x +y)+1}a’ ~2az+1=0is 2> =2(x+y)=1. The surface 2x = y* +2z* touches this envelope

where (y+1)’ =0, ie. y+1=0.

Exercises

1. Fomulaic the partial differential equations by ehmmatmg arbltrary constants or ﬁmcuons from the followmg

® g—(ax+y) +b; Ans. px+qy = q |

(i) f(x+y+z,x +y' -z ) 0; Ans. (y+z)p (x+z)q x=y.

(ii) (x+a)(y+b) Ans. pg=2z.
| @) a’ +by’ +2% =1;Ans. z(px+qy) z -1 |

\)) (x—a) +(y=b)’ +2* =1;Ans. z (l+p +q*)=1.

) z=w+f(F4r)iAms 2 oyiagropy.

(i) z=x+y+f(xp)i Ans. px—qy=x-y

(viii) z=/f(x-y);Ans. p+g=0.
2. Findthe general integrals of the linear partial differential equations:

® ply+zx)—q(x+yz =x,~2—y}2;Ans.f 22+y2—zz,xy+z =0,
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@ z(pr-qv)=y'-x;Ans. f(x* +y +2%,59)=0,
@ px(x+y)=qy(x+y)-(x-p)(2x+2y+z);Ans. f{(x+y)(x+y+z),2}=0.

(iv) ;»:(xéj+3yz)p’-—y(3xz-o-yz‘)q=2‘z(y2 ) Ans. f{ ,z(x +y )} O.‘

) S p-wg=x(z-2y);Ans. f(2* +yz,x" +y')=0.
(vi) pcos(x+y)=qsin(x+y.)=z; B
Ans, f[{cos (x+})+sin (x+y)}e’”‘,tan{—;—(x+y)+%—}z'ﬁJ =0,
3. Findthe iutegral surface of the linear partial differential equation =~
x(yz +z)p~y(x2 +z)q =(x2 —yz)z
~ whichco: uamsthesu*alg,htlme x+y 0,z=1. [Ans f(x +yz,x° +y ) 0] o
4. Findthe iutepral surface of the differential equation | ’
2y{z=3)p+(2x-z)gq=y(2x+3)
which passes through the circle z = 0,x* + y? = 2x. [Ans x*+y?-2x=1z -42]
S. Fmd the genual mtegml ofthe dlﬁ‘erentxal equatxon :
o ?Ay I)p+(z 2x° )q 2(x yz) o
and also ilie particular integral which passes through the line R
x=1y= O[Ans x?+yt—xz - y+z 1-0}
0. Find the general integral of the equation (x - y) p+(y-z- x)q z andequatxonofthemtegxal surface of

this equation v:k:ich passes through the circle x? + y =1l,z=1.

Ans. x+y+z,'x"y+ =0,z" xX+y+z x+y+z—2 + x=y+z){x-y+z-2z")=0 )
' z° .

7. Findthsc:iice which is orthogonal to the one-parameter system z = cxy(xk2 +y° ) and which passesthrough
the hyperbola x* -y’ =a?,2=0.

[Az;ii. (x2 +y’+4z7° )(x2 -y )2-= at ('x2+ yz)]
8.  Findacos. lete integral of the pmtiéi differential éciuatidn ( pi+q’ )x = gz and deduce the suiutiors which
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passes through the curve x =0,z =4y .

[Ans. 22 =a*x’ +(ay+b)2 ,(2y—- 2 )2 = 4(zx2 +y? ):l
9.  Show that the integral surface of the equation z(yl - q')=2(px+ pq) which passes througim the line
x=lLy=hz+k hasequation’(y——kx)2 =z’ {(1 +h )x-—l}., |
10. Show that the differential equation 2xz + ¢* = x(xp + yp) has acqmplete integral z +a’x = axy + bx* and
 deduce that x( y+ex?= 4(2 —-d.x’ )) is also a complete integfal. | -
11.  Show that the integral surface of th’e/:‘equat\ion Zy(l +p? ) = pq which is circumscribed about the cone
x? + 27 = y? hasthe equation x* = ’ (4y2 +4x+ 1)_
12, Find the completc integral of the differential equation (y + 2q)° = 2* (1+ p” +4" ) circumscribed about the
surface x> —z* =2y .

[Ans. (x- a)2 +y +2t = 2by,(y2 +4y+ 22 )2 - 8$c’2y2j]
13.  Show that the equations xp — yg = x,x*p +q = xz arecompatible and find their solution.

[Ans. f(z-xxy)= O]

14. Determine the characteristics of the equation z = p? — ¢* and find the integral surface which passes through
the parabola 4z +x* =0,y =0. ,

[Ahs‘. x=2u (2 - ), y= 22u (1 e ), 7= —uze'z’::;(x —\/iy)z +4z= O]
15. Find the solution of the equation 2z = ( pi+q’ )( p—x)(g - y) which passes through the x-axis, -

[Ans. 2z=y(4x- 3y)]
16. Solve the following equations by Charpit’s or Jacobi’s method;

@ pxrpg= PQ;[A‘ns. 2az =_(ax+y)’2 + Zb]
o sl o]

(@) z-px—qv=p° +q2;[Ans. z=ax+by+a2+b2]
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(iv) P’ +,q2.~2px-2q+l;erns. (a?+l)é=b+%uz+%um
o1

. ' ~5(a2+;)10g{u+ (u2 +a2—1)}}, where u=ax+y]. |

VKR px:PZ;[AnS- Z=i—[x2i{x\/x2+4a +alog(x+\/m)}+ay+b]

o) Z=‘-‘Pq;[Ans. ’2~/E’:-I=ax+y+b] |

09 (pra)(pee)-i=0; A 1=l fares) 0]
(viii) p-*(qy+z)2_;[Ans. yz=ax+z\/;y‘+b]

O Px?'*p4‘+qy;'y2=0;[Ans. (z-a)(y+a) =be’ |
® (p'+q)x = pz;[Ans. z= b;cf’a%,]
0D (7 +q)y=ga Ans. (x+b)' 4y =ar?]

i) 2° = pCPO’;[Ans. z=bx" y%]

: : - ax b g
“(5&iii)**2‘(ffi+px+qy)=p?y;[Ans; z =~7_+~—-——'~]' o

ooy 4y
. . y -’
(xiy) Pq =1;| Ans. Z:ax+“+bJ
; T ‘

1
(xv) (R-ifq)(ﬂz~«px-=qy)=l;[Ans, z=ax+by+;1_b_:"
(xvi) ZP‘J’=P+¢1;[Ans. 22 =2(a+l)(x‘+—z)+bJ
a
(vi) PG+ 5Ty =x’q’(x2+y2);[Ans. z=‘;'(x’+y")%‘+(y2-a’)% +5]

)
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M. Sc. Course
- in - .
Applied Mathematics wnth Oceanology i
and |
Computer Programming

i PART |
Paper-1V ‘, Group-B
Module No. - ‘ |
Partial Differential Equations of Second Order

1. Introduction:
In thlS module we shall con31der prehnnnary dlseusstons of second order parnal dlﬁ'erentlal equatlon along

4w1th some hxgher order equatmns with constant coefficients. In fact three mam types of second ord P
differential equations, called elhptlc, paxabohc and hyperbohc equations, are of tremendous use ﬁ'om the apphcanons

point of view and need broad discussions. As a result, these are elaborated in the followmg three chapters

2.  Origin of Second-Order Equations

Consider a function z of independent variables x and y defined by 5
=f@Wrgm+w P e
where fand g are arbitrary and each of u, v, wisa functlon of x and y.

We use the symbols
i

- 2 2 2 :
0z 9z ¥z _ Pz _ ¥z 9z - @.2)

é:;’qzé;’r- 0x’? e dxdy  Oyox = EN

Differentiating both sides of (2:1) w.r.t. x and y partially, we get
p=f'(u)ux+g;(v)v,+wx, -
g=f(wu,+g (v)v, +w,

respectively, so that ‘ ’
r=f7(w)ul+g” (v)vi+ £ (w)u, + g'(v)vxx +S»QX,,\ |

p:
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$=S" (s, + 8" (V)vy, + f (), + 8 (V)v, +w,,

t=f"(u )u +g"(v)vi+ [ (@)u,, +g’(v I, +w,
Eliminating the four arbitrary quantities S8, f” and g” from the above five equations, we obtain

p=w, u v, 0 0
q-w, u, v, 0 0
2 2
Fr=w, u, v, u v [=0 23
S=Wy Uy Vy, uU, VY, =
2 2 o
t-w, u, v, u, v,

Thisisan equatibn involving only the derivatives p, ¢, r, s,  and known functions of x and yandis, therefore,
asecond-order partial differential equation. Expanding the determinant on the left side of (2.3) in terms of elements
in the first column, an equation of the form

Rr+Ss+Tt+Pp+Qq W
lxs obtamed in whxch eachof R, S T,P, Q and W isa functlon ofx and . Thus (2 l)isa solutlon of the second—order

@ 4)

pamal dxfferennal equatxon (2 4) ’
Example-Z l If z= f (r2 - y) +g (x2 + y) where f and g are arbxtrary functxons prove that

82 10z 9z

PRl e
* Solution. We have | | -
LAPWIREN ST N E ey e (e)
R NS e R I
g.;.f. = £ (5= p) g7 (5 +y).
| ,nus_,g;__%% =2f"(x*-y)+ hx’f”(x—-y)+2g’(x2 +y)ﬂ‘L4x2g”(x2 +y)

| ~%[2xf’(x2 -y)+ 2xg'(x2 +y)]

= 4x? [f"(x—-y)+g"(x2 -—y)]
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S =4x .
ox’ xox oy’
3.  Linear Partial Differential Equations in Two Independent Variables and with Constant Coeffiients

Consider a differential operator of the form

F(D,D)= ZECUU‘ - | | | G.1)

J ,,_0 ;
where D = %’ D= 5; and the coefficients ¢, are constants. Then an equation of the type

F(D,D)z=f (%) o 62
is called a linear partial differential equation in two 1ndependent vanables x and v w1th constant coefﬁcxents
The most general solution, that is, the solution containing the exact number of arbitratory functions of the
corresponding linear homogeneous equation | ‘ | ; |
F(D,D')z=0 A (3.3)
is called the complementary function of the equation (3.2) and any other solution of (3. 2) is its particular integral.
Thus if u be the complementary function and z, be a particular integral of (3.2) so that F(D,D’)u =0 and

F(D,D")z = f(x.y), then F(D, D' )(u+z)=F(D,D)u+(F,D)z, ;éF(D, D’)z,=f{(x,y), showing that

u+zisa general integral of (3.2).

Alsoif u, (i = -1,2,..., n), ben solutxons of the n-th order linear homogeneous partial dxfferentnal equatnon

F (D, D’)z =0, then Zl C,u,, where C's are arbitrary constants, isalsoa soluble of the equation. For, then we

have,

n "

F(D,D’)(Cu,)=C,F(D,D')u, and F(D,D’) Y u, =3 F(D,D’)u,
r=l r=}
for any set of functions and consequently, it follows that

F(D,D’ EC,u,—ZCF (D,D’)u, =0,

r=|

ie. ‘Zcr u, isasolutionof F(D,D’)z=0.

r=1

The linear differential operators can be classified into two types :
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(@) F(D,D’) isreducible ifit can be expressed as the product of linear factors of the form @D+ BD’ +y,

where o, # and ¥ are constants.

. Forexample, the differential operator p* ~3D2D’~ DD'* = D"* = 6D* - 4DD’ = 2D +11D 451 -6
is reducible as it can be expressed in the form (D + D'~ 1)(D+ D’ =3)(D- D’ - 2).
b F (D, D) is irreducible if it cannnot be written as the product of linear factors.

For example, the differential operator D2’ + D’* - 7 isirreducible.
Rules for finding complementary functions. ‘
I. _ Reducible Operator with non-repeated linear factors
) Theorem - 3.1: For reducible operator (D D’), the order of the linear factors is unimportant,

Proof Smce for reducible operator, we have
- (a,D+ ,B,D’+y,)(agD+,6;D’+ys) |
=a,0,D'+(a,f,+0,8)DD'+ 8,07 +(ay, + ay,)D
| +(By, + By, )D +7,y,
~(@D+BD+r)@DeBD ).
~ ' sowecan write (D, D’) =f~]'"],(a,D +B.D+y,)

r=]

Theorem -3.2: Ifa,D+f,D’+y, bealinear factor of F(D, D’) and ¢, (z) is anarbltrary function of
the smgle variable af thena solution of the equation F (D, D’)z = 0 isgivenby

Zu-exp( ,J (,Bx ,y),

provided that . # 0,

a] (ﬂx Q, )partiallywithrespecttoxandy,we

r

Proof. Differentiating the expression u, = exp(

getrespectivey

%{JW (Bx-a,y)

r

Du, = —L-u, +8, exp(—
a

and D', = ~a, exp[wg—"—)c»’(ﬂ,x ~a,y)
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sothat (@, D+ B.D’ +7,)u, =0 and hence by Theorem 3.1, we have

F(D,D')u, = {H(a_(D +B.D +y, )}(af,D +B.D' +y,)u, =0.
Theorem 3.3: If 8,0’ +¥,,(B, #0), beafactorof F(D,D’) and ¢, (¢) isanarbitrary function of the
single variable £, then |

oo 22}

is a solution of the equation F (D,D’)z =0.
Proof. The proof follows immediately along the same lines as in Theorem -3.9. :
Example-3.1 : Solve the equation (D* + 30D’ +3DD" + D™ ~4D* ~8DD'~ 4D +3D+3D')z = 0.
Solution. The equation can be written in factorised form as |
(D+D'-1)(D+D’'-3)(D+D’)z=0.
Hence by Theorem-3.2, the solution is
z=e'g (x—y)+e¥p, (x-y)+ e, (x-y).
Example-3.2 : Solve the equation (5D + 2D +3)(2D"+3)z=0.

Solution By Theorem-3.2 and 3.3, the required solutionis

Reducible operator with repeated factors
For repeateu actors of the form (@, D+ B,D" +7, ) (k >1,) of the dlﬁ'erentlal operator F (D D), the
<olution corresponding to a factor of that type can be obtained by applylng Theorems 3 2 and 33 For cxample if
k=2, then for the solution of the equation
(aD+,8D’+y,) =0, | (34)
Weput (@,D+B.D'+7,)z= Zto get (a D+,B D'+y,)Z= 0 and his solution, byTheon.m-Z& 2 is

r

Z= exp(—-%—) (Bx- ay) provided a,#O.
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- Thus we have,

o, ,95+y,z=exp[—lf—’f)¢, (x-a.) - (35)
x y a, ’

J(ﬁxa)

ie. ap+Pg=-yz+ eXP(

Lagrange’s auxiliary equations are then
dc _dy _ dz

“ b %]¢ (Be-a)

»

¥, z+ exp(—-

the first two of which leads, on integration, to B.x—a,y=cosntant = <, sa’y.j

des © g

a, 1
penn( <22 o c)

d; ), (¢ '

which, on integration, gives the solution -
l V.x
I=— t L
z {(D (c x c }exp( o )
Hence the solution of (3.5) and, therefore, if (3.4) is
Y,
{‘(¢ (,Bx o v)+u/ (ﬂx -,y }exp[ - J

” where ¢ and l//, are arbmary ﬁmctxons ;
o The above result can easily be generalxsed by the method of mductxon and therefoxe we have thu tollowma-
theorem: v
Theorem-3.4: If (@.D+B.D'+y,) (a, # 0), bea factor of F (D D’) and the functions 9,9, . 9,

are arbitrary, then a solution of £ (D, D)z =0 is exp( )ZX‘ B (ﬁ x-a, )

s=1

Similarly, the generatlisation of Theorem-3.3 givenas following :
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Theorem-3.5:If (8,.D"+7,)" ,(B, #0), beafactorof F (D, D’) and the function ¥, , ¥, ,....¥, are

arbitrary, thena solution of F (D,D’)z=0is exp(-— %)2 7y, (Bx).

Example-3.3 : Solve the equation (2D +3D’ - 5) (D’ - 3)z=0.

s=l

Solution. Using Theorem-3.4 and 3.5, the required solution is

5 Y
z=¢? {(D, (3x-2y)+x¢,(3x~ 2y)} +e¥ {l//, (x)+xy, (x)+x*w; (x)}

III. Irreducible operator

Ifthe operator F (Dk, D) is irreducible, then it may not always be posSiblé to find a solution Confainixig full
number of arbitrary functions. However, it is possible to obtain solutions containing arbitrary constants as many as
we desire. Before discussions of dealing with such a case we note the following proposition :

Proposition-3.1: F(D,D’)e™*” = F (a,b)e™*”, where aand bare constants.

Proof. Since the operator F (D, D’) is made up of terms of the type C,D’D" and D’ (e“’*”y ) =q'e*"”
and D" (e"””y ) = b*e“*™ we have (C,’ D'D’” )(e“””’ ) = C,‘a’b‘e“‘*"y sothat F (D, D’)e™*” = F (a, b)e™?.

This proves the proposition.
| Now to find the complementary function of the equation F(D, D”)z = 0 we first split the opefator F (D, D)
into factors. The reducible factors are treated by the methods discussed in I and Il above. For irreducible factors,
we note by the above proposition that ¢=*» isasolution of the equation F (D, D’)z = 0, provided F(a,5)=0.
llence

z= Z C,exp(a,x+b,y) , | (3.6)

where a,,b, and ¢, are constants, is also asolutionof F (D, D)z =0, provided that F(a,,b,)=0.
Itis to be noted that the series (3.6) may not be finite. In case of infinite series, it is to be uniformly convergent

for a solution of the equation.
Example-3.4 : Solve (D~2D’ +3)(D* -3D'+5)z =0.

Solution, The required solution s 2 = e”"¢(2x + y)+ Y ce”™™, where a -3b, +5=0.
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Rules for finding particular integrals
For the equation (3.2), that is

F(D,D')z= f(x,)

the particular integral is
| _
Pl.=——— f(x,y). , o : '
F(o,0)” ) , 3.7)

We shall consider the following cases to find the particular integral for different forms of the function f(x,).

L f(x,p)isa polynomial inxandy

Let f X,y 2 a,x*y', where k, | are positive constants or zero and a, are constants. Here if m be the

highest powerofx, then
1

“ om0
and { F(D/ D)}~l is expanded by binomial theorem retaining upto the term n, the highest power of 'y. The particular
integral is obtamed by integrating the obtained expresion for m times.
Example~3 5:Solvethe equatlon (D+ D’) z=x"+xy+y’.
Solution. The complementary functionis u = ¢, (x - y) + x 4, (x -y).

2
The Pl.is z, ='('B:1—5’—")T'(“x2+xy+y )-é;(l-;—%) ~(x2 +xy+y2) e

] 2D’ 3D”
— -
D D

.](x2 +xy+y)
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Hence the complete solution of the given equationisz=u+z, i.e.

z=¢ (x-y)+x¢,(x-y).

HL  f(x,y)=e>"

1 ax+by 1 eax+by 1 artby _ 1 a.uby

. (78] R ...._.._..____._I_.e = PREE————— -
Since by proposition-3.1, F(D,D’) F(a,b) S0 F(D, D')e F (a,b)

provided

F(a,b)#0.
Example-3.6 : Solve (D’ =7DD"* -6D"*)z = ™.
Solution. The given equation can be written as v
(D+D')(D+2D") (D~ 3D’ Yz =€ o
The complementary functionis u = @, (x - )+, (2x y)+ ¢, (3x + y) and the partxcular mtegral is

z = 1 2x+y
' D*-7DD? -6D"
= ] 2x+y
2-7-2.17-6.1
- “_l___ €2x+y

15°

Hense the required solution is z = u + 5 = ¢, (x y)+e, (2x- y) + ¢3 (Bx+y)+ T-z-ez”’ :

MI. f(x,y)=sin (ax + by) or cos (ax + by)
Suppose F (D, D’)=¢(D*, DD’, D" ). Then we have
- 9(D br’, D" )sin (ax +by) = ¢(-a’,~ab,~b*)sin (ax + by)

sothat
1
g, = ] by)= +b
P F(D,D’)Sm(ax+ ) ¢(D2 DD’ Dlz)sm(ax )
sin(ax +by)

= ¢(—a pry -—b ) provlded F(a, b) ¢‘(_é2’fab’;b‘2)%(v)'

Similarly, for f(x, y) = cos (ax + by),
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cos(ax +by)

Pl.=
¢ (—az, —ab,-b’

) , provided F(a,b) = ¢(~a2, ~-ab,~b’ ) #0.

Example-3.7 : Solve the euqation (D’ +5DD’ +5D%)z = cos (3x — 2y).

Solution. We can write the given equation in the form

(D+5+\/- )(D+5\/- ]z=cos,(3x—2y)'

5+2\/§x—y)+¢2(5~2‘/§x

Thus the complementary functionis # = ¢, ( - y) and the particular integral is

= ! 5 cos(3x~2y)=-wcos(3x~2y)‘

Ty ~5-3.(-2)-5-(-2) 1

Hence the required solutionis z = u +z,, i.e.

S S0 T Y.

IV. F(a,b)=0

If #(a, b) =0, the above methods fail. In sucha case, (bD - aD’) is a factor of F(D, D’) and, therefore,
we can write F(D D')=(bD~- aD’)G(D D’) where G(D,D’)# 0.

Suppose (bD ~aD’)z = f(ax+by), ie. bp-aq = f(ax+by). Then Lagrange’s auxiliary equations are

dx _dy _ dz
b -ua  flax+by)

, , v ‘ dc dz
The first two relations give ax + by = const. = ¢,say. Thus the first and third relations, viz. B ‘“”f © gives

z= %f (¢) == 1 (ax + by). Hence the particular integral is now

(S8 R

———-——-———f(ax+by)=E (DD) Sf(ax+by)= (xa’,b)¢(ax+by)

where ¢ (ax + by) is obtained after integration of f(ax + by) and it is supposed that G (a,b)# 0.
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Next consider the relation F (D, D’)=(bD~aD’)G (D, D’). Differentiating w.r.t. D, we get
F'(D,D’)=bG(D,D’)+(bD-aD’)G’(D,D’)

x
F(a,b)

sothat F’(a,b)=bG(a,b). Thus P.I.= ¢ (ax +by).
Generally, if F(a,b)= 0, we write
F(D,D")= (D-——b‘iD') G(D, D’),bprovided G(a,b)#0.

Then,

Pl= F(DD,)f(ax +by)=

Example-3.8 : Solve the equation 27~ 5s +2¢ = Ssin(2x+ y)
Solution. The given equation s (2D* =5DD’+2D"?)z = 5sin(2x + y)
~ ie.(2D- D’)(D 2D')z =5sin(2x+y) |
Thus the complementary functionis u = ¢, (x +2y)+4¢, (2x +y)
Here F(D,D’)=(2D*-5DD’+2D") sothat F(2,1)=2-2"-5-2:1+2-1° =0
Now F’(D,D’)=4D~5D’ sothat F’(2,1) - 3. Hence the pén’cicular integralis

5 ,
z,=5 0 1){--cos 2x+y}=-;;~xcos(‘2x+y)"

5x
Thus the required solution s z = u +z,, i.e. 2= (x+2y)+ ¢, (2x+ y)- = °os (2x+y)

V. Let f(x,y)=e“""¥(x,y). Inthiscase, it is easy to find that

1 ax+by -
F(D,D’){e V(x’y)}'F(ma D'+b) v(®y).

Example-3.9: Solve D(D-2D')(D+ D)z = e (x* +4)*).
Solution. The complementary functionis u = ¢, (g) + ¢, (2x +y)+¢,(x-y).
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The particular integral is

1

x+2y .2 ,2
D(D-20")(D+D)° (*+257)

1
(D+1)(D+1-2D"-4)(D+1+ D’ +2)
1
(D+1)(D-2D"=3)(D+ D’ +3)

=__1_ X+2y l ( D+D’) 2 2
3 Toepe T )

o L X¥2y

(x2+2y2)

- e:+2y

(x* +257)

: YR Y Sy N2 N
ey ! )[ _D+D' D*+2DD'+D ...J(x2'+4y2)

"3 (1+D)3-D+2D’ 3 9

1 o, 1 D‘—‘ZD")“'(Z , 2x 8y 10)
= - 1- 4y 2 22 Y
9° (1+D)( 3 )T T

- ’ 2 _ ’ 22 . -
__ Ly, 1 (|, D-2D" D'-4DD'+4D7 (x2+4y2,__2£~§2r_+_1_(_)_]
9 1+D 3 o 9’_ :

= —~—;ae“2y7(1'— D %D”T‘..’)(x”f’ +4)7 -8y +,_59_8J |

= -—ée"”’ (xz +4y? —Syf:,—é-g-s;fof 2)
Hence the general solution of the given equationis
z2=¢,(y)+ ¢, (2x+y)+ ¢ (x- y)"i;'lf ¥ (9x* +36)y% ~18x~T2y+76).

Example-3.10 : Solve (3D2 -2D"*+D- I)z =3¢ sin(x + y)

3D*-2D*+ D-1

Solution. The complementary functionis # = Y, C,e***”, where 34> - 2b* +a, ~1=0.
r=l
The particular integral is
1 vy s
z, = 3¢* sin(x+ )
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= 3" . ! . sin(x+ y)
3(D+1) =2(D'+1) +(D+1)-1
1 .
,___3 x+y .
e+ p—ap 1 Pt Y)
1

- 3ex+y

e

x+y

7D -4D’
_1D+4D" .
491)2 16D

=gt 7D+4D’
T () -16(-1

sin(x+ y)

x+y

(x+y)

2‘) sin(x+ y) |

Be.\"l-y

(7TD+4D")sin(x+y)=- o cos(x+y)
Thus the required solution is
_:S: ax+l)y x+ycos(x+y)
el g 2

where 3a’ +a, ~1=0.

Example-3.11 : Solve (D + DD’ - 6D’2)z x? sin (x+ 2y) o
Solution. The given equationis (D —2D’)(D+ 3D’)z x*sin (x + 2 y) |
The complementary function is u = ¢, (2x + y)+ ¢, (3x - y)

Nothing that sin (x +2y) = Ime'®*?, we get the particular integral as

| 1 e (my)}

(D-2D")(D+3D)

-

z, =Im

x+2y) 1 " :x2 .
(D+i-2D"-4i)(D+i+3D' -6i)

=Imle

i{x+2y) 1 x‘z v
(D-2D"-3i)(D+3D'+7i)"

=Im|e

Directorate of Distance Education ’ - 253



Module 44 : Partial Differential Equations of Second Order ......................ccccvvvveeecuevvneevinvvnnveniinens

—1 i(x+2y) 1 - D+3D" 2.1
=Im| —e"" 1+ \
7i (D=2p"-3i) 7i
1 e ! D+3D" D*+6DD'+9D” ),
=mj et - - ‘ SR RS
| 7i D-2D"-3i 7i 49
] 1 i(x+2y) 1 ( ) e 2
=Im| —t2 DD
|7 D=2 -3i 717 49)

U e, D=2D'Y'( 5 2i 2
=Im| —evV 7 - X t—x-—
21 3i 7 49

1 [ a2 20 2 2xi 2 2
=—Imje" T N ANt~
21 7 49 3 7 9
= —2% Im _{cos (x+2v)+isin(x+2y)} {(xz —%él)v%ﬂ
:—zl—l-lm {(,\-3 m%)Si'](fv,+ 2y)-—§~)~:—cos(t+2y)} |
Thus the required solutioni is
z=¢,(2x+y)+ ¢, (Sx;y)+—‘2%{(x"— %)sin(x«FQy)-—%C‘os(x + 2y)}.’“

V1. General method
[t the function f(x, y)) is not of above discussed form or even the above methods fail, then we adopt the

following procedure to find the particular integral

o) )
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Let us consider the equation (D=mD")z= f(x,y), ie.p—mq=f(x,),so that Lagrange’s subsidiary

equations are

dx dy dz
1 -m f(xy)
The first two relations lead to y + mx = constant = ¢, say and the equations
ax _ dz
1 f(xy)
give z = ff(x,y)dx = J‘f(x,c—- mx)dx.
Thus '
1
z, = f(x,y)=ff(x,c—mx)dx

D-mD’

in which we have to replace cby y + mx after integration.

If the given equation is of the form F (D, D’) = f (x,y), where
F(D,D")=(D-mD’)(D-m,D")..(D-m,D’), thenthepm‘txcularmtegral

I |
il (D~—m,D')(D—mZD')...(D-m,,D')f (x5)

is evaluated by the repeated application of the above method..

, 4x
Example-3.12 : Solve (D2 —-4D 2) =7'%z’1 :

‘olution. The complementary functions u = @, (2x + y)+ @, (2x - y).

ue particular integral is

z = ! Y
' (D+2D)(D-2D' )W\ Y X

_ 1 /_[ kx __c-22x &
D+2D (c Zx) X

[as correspondmgto (D 2D’ )z 0 y+2x c]
1 : 2 2c c 2|, -
= - LANCAPN
D+2D'j{ 6‘—2x+(c’--2x)2 x? x}
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1 2 ¢
= 1 -2x)+ +—+21
D+ 2D’{ og(c x) c-2x x ng}

y+2x+y+2x
x

+210gx}

_ (replaqing cbyy+2x)

c’+4x ' +4x
lo +2x)+ + +2logxdx
I{ g(c x) ¢’ +2x x gx}

[corresponding to (D+2D’)z=0,y-2x=c’]

’

f{log ‘+2x)+2- ,02 +E~+4+210gx}dt
X

c +2x

f{log (¢+2x)+6-— +£—+2logx}dr
x

c +2x
=xlog(c’+2x)- j—-—~——dx+6x—:21—c log(c’+2x)+c’logx +2xlog x - 2x

= xlog(c’+2x)- f%%%;f-dx 4x-—-;-c'log(c’+ 2x)+c’log x +2xlog x

= xlog(c’ + 2x)~x+%'c’ log(c’+2x)+ 4x-—%c’log(c"+ 2x)+c’logx+2xlogx
= xlog(c’+2x)+(c’ +2x)log x +3x

~=xlogy+ ylogx+3£ (replacing ¢’ by y - 2x)

Hence the required solution is
z=¢, (2x+ y)+¢,(2x-y)+xlogy+ylogx+3x.
4. Homogeneous Equations with Variable Coefficients : Cauchy - Euler Equations.
Sometimes it is possible to reduce a partial differential equation with variable coefficients into an equation

with constant coefficients by suitable transformations. One such type is a homogeneous partial dif’t"emntial equation,
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valled Cauchy-Euler equation, of the form F (xD,yD’)z = f(x,). Here to find the solution, we put

x=e" y=¢', e u=logx,v=1logy.

‘o J ., 0 d 0
Then,if p=—, Q' = —, E.._,g'g._,wehave

Bx'D 8y9 du v
DZE..a..z_ EQK.’._a_z.av laZ exD 0

ox Jdydx dvox xou’

D2_=—2_Z_‘ (182)___}‘22__+la(82J
“Toxr  ox\xou x* 0u xodx\du

10z 1 9%z
=..—5-52~+;—au2,te(xD) =6(6-1)

so that, in general, (xD)" = 6(6-1)(6-2)..(6 -m+1).

Similarly, (yD’)' = 6’ (6’ ~1)(6" = 2)...(6" —n+1),
Substituting these into the given equation, we get an equation with constant coefficeints and solution can be

found by the method discussed in Section-3.

Example-4.i : Solve the equation

0’z 0’z A
dF AR +_y2"a'37’"=(x2+y2)2
Solution.
,_ 0 ,_0 ,_3d
b= ' ou v

letx=e",y=¢" D~§
then (xD)’ = 0(6-1),(xD)(yD") = 66", (yD)’ =6’ (6" -1) and the given equation reducesto
{o(6-1)+66"+6( -1}z eyt -

or, (9+9’)(0+6'-—1)z=(e +é )/2
Here the complementary functionis u, = @, (v—u)+e"@, (v-u)

ife' u = f, (%) +x f, ({”]
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and the particular integral is

- 1 ' 2u
i (a+9')(9+9'~1)(e *e

_ : 1 e 2(v-u) %
“(6+o)e+e-1)° [1+]

1 1 (n=2)u+2v "(2" 1) (n-4)u+4v
(0+¢9')(9+9'-1)[e H 1 TR e

e™ 1 . '
=— [1+~nez( "’+...]
n -n 2

2v )'/2

e™ [1 +e2t7) ]%
n(n-1)
,(ez" + e”)%
n(n-1)
(2 +5)"
n(n-1)
Thus the complete solution of the given equation is
w2+ )
z= f( )%—xfz(i)) ( n(n'-y—l)) .

5. Classification of Second Order Partial Differential Equations. Canonical Forms.

Let us consider partial differential equations of the form _
Rr+Ss+Tt+ f(x,y,2,p,q)=0 | ‘ (5.
where ' ‘
0’z 0’z 0’z
and each of R, S, T'is a continuous function of x and Y possessing continous partial derivatives of as hlgh order as

necessary with respect to x and y.

258 ‘ Directorate of Distunce Educgtion



.............................................................

Module 44 : Partial Differential Equations of Second Order

A second order partial differential equation which is linear with respect to the second order derivatives is said
to be a quasi-linear partial differential equation.
We now proceed to show that by suitable change of mdependent variable the equation (5.1) can be transformed

into one of three canonical forms which can be easily integrated. The equation (5.1) is said to be hyperbolic,

parabolic or elliptic according as §? —4RT >0,58* —4RT =0 or §? -4 RT 2 0.at a point (x,, ¥,) withina
domain Q. Ifthisis true for all points within the domain Q, then the equation is hyperbolic, parabolic or elliptic in
Q. Canonical (or normal) form:

In order to reduce the equation (5.1) into canonical form, let us introduce transformations

E=&(x,y),n=n(x,y) | (5.2

where £ and 77 are supposed to be continuously differentiable and the Jacobian

ém) |5 <
xy) |m m,

Also we write the dependent variable £ in the transformed space instead of z.

J = =&n, ¢, #0. (5.3)

Now

_9z_000F 0607 _
p"‘a ’aéa 8773 ;{§x+;}]”x’

Similarly, ¢ = {;¢, +$,7,-
Also

82
e

=

(é:‘é + ; ”.r) {{.f;xz + 2({:}5:”: + r;r]”xz +§f§u’ +;y;”xx'
0’z
Sllnllarly, §= —é;é—- = é’ffgxfy + {{y) (é:qu + gy”x ) + rm”x”y + Cgéxy + ;r]”xy

and t" y -—§§:§2+2{“§ ”y+ w”y"';(f +{ ’7»/

Substitutions of the above values of p, g, 7, s and 7 in (5.1) lead to the following form :

A(EE )G +2B(E0 &,y )en + A (01, ) = F (E:1:606,) G4
where ‘

A(u,v)= Ru® + Suv+Tv?,
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B(u,,}vi,uz,vz)z Ruu, -%-—;—S(u‘v2 + v, )+ Tvy,, (5.5)

F(Em6.608,) =~ e (RE+SE, +TE, )+, (R, +Smy, +Tn, )+ £(E0.8 60ty
Itis easy to verify that
B (&6 mom, ) - A(£.8,) A(n,.m,) = (S ~4RT)2. (5.6)
- There are the following three different cases : -
Case . 52 —4RT > 0.
If S?~4RT >0, then RA? + SA+T =0, called characteristic equation, has two real and distinct roots 4,
and 4,, say. We choose & and 7 in such a way that £, = AL, 1, = A1,
dy  dé

Now the equation f; - A4S, =0 gives &_dy _de so that é"'(x, y)= constant and

1 <4 0

) ,
sz + 4 (x,y)=0. | (5.7a)

Similarly, we have 7 (x, y) = constant and

ay
,y)=0 Vi
—+ (xy)— ‘ (5.7b)

Let the solutions of the equations (5.7a, b) be
&= fi(xy)n=f(xy) 59

Now it follows that

A(E& )= RE +SEL, +TE = £ (RA + 544 T) =0,
Similarly 4(77,.7,) = 0. Thus (5.6) shows that B = (2 -4RT)J? > 0.
Hence the equation (5.4) reduce to the form

o =0(6m.8.808,) | | | (5.9)

which is the required canonical form of hyperbolic partial differential equation.

CaseIl. §2_4RT =0
In this case the equation 42 4+ S1+ T = 0 has equal roots A, A; say. Let us take & = fi(x,y), where

/; (x,y)=const., as a solution of the equation
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dx
Noting that 4(&,,£,)= RE} +S¢.6,+T¢ =4, (RA*+SA+T)=0 and §* -4RT =0,
We have from (5.6) that B=0. However, 4(n,.7,)# 0, otherwise 7 will depend on . Then the equation
(5.4) leads to | - | -
Con =V (Eam8o8es8y) o | | (5.10)
This is the canonical forms of parabolic partial differential @uati;)n.
Note : In the above, the function 7 (x, y) can be chosen arbitrarily provided that the Jacobian J of the

transformation does not vanish.

Case IIL. §? - 4RT <0. N
Here the roots 4, and A, of the equation RA* + SA+T =0 are complex and so & and 77 are complex

conjugate. Weput E = +if,n= af——i,B sothat @ = —;—(fwy),ﬂ = %(n-—{). Then

¢ _1 (9“ 85) 9¢ _ (35 39’) I (3’¢+3’§J

& 200a 3B)on 2\9a 9B 8&37) 4\ 90’ 9p?
Itis easily seen that A (fx 'Sy ) = A (7},, ny) =0 and, therefore, from (4.6) B><0.
Thus the equation (5.4) reduces to _
%+9—§~ 2(@B.¢.8usls): | (.11)
which is the canonical form of elliptic partial differential equation.
Example-5.1 : Reduce the equation
Jéyr—(x2 —yz)s-xyt+ py—gqx= 2(::2 —-yz)
into canonical form and hence solve it. |
Solution. Bere R= xy,S-—-(x -y }T—-—xy £(x,9,2,8,9)= py—gx- ’Z.(x -y \}
Since S? - 4RT = (x2 - yz) +4x’y? = (x2 + yz) > 0, so the given equation is of hyperbolic type.
Let £ = &(x,y),n=n(x, y) and the dependent variable is ¢ inthe transformed space. Transforming the

given equation in new variables, we have
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(ka@ﬂdﬁémmﬂgﬁAmm) =F(&1.6.6:.4,) M)

where 4, Band F are obtained from (5.5) as
A(u,v) = xy® = (x* = v = xy”
B(f;,fy,nx,ny) =xy &, --;-(xz =y )&m, +En)-xvém, | @
F(&me.8ns,)= —[(; e, ~(x-1)¢, 08, }+ 6, P = (- y)m, - 2vm, )
e+ Gn)y=(68, +6m, ) x-2(x* - *)]

Now consider the equation RA*+SA+7T =0, i.e. xyA? —~<x2 - yz)/i —-xy=0 whose roots are

X y ~
A = ; s Az = “;' We, therefore, have

Q+—~=O, -‘Q-—Z=0
dc x
; 2,42 R = x? 2 =7
whose solutions are x? + 3% = const. and o const- Wechoose & (x, y)=x"+ %, 7(x, y) = =, so that
x

é:x =2x’§y=2y’§xx=2"f =0’§yy=25
y 1 2y 1
= - == = sy , =O.
77;; xz ’7_v x 77 3 77)/ x2 77)0’

Iffollows from (2) that A4(£,.£,) = xy-4x" =(x* = %) 4xy— 1y 4? = 0 and

' 2
Anon) =9 Le=(s" =) (-2 - L=

X X
1 ‘ 1 1 (P+p)
(ft,fv,nv,n ) (Zx)(—xl)-«—z—(ﬂ*yz)(Zx-;-—Zy.%J—xy-Zy;:_L_Tl.

X

and F(f’lf(;, Cy)= =4 (w-2-xp-2)+¢, {xy g—Ji+(x - %—xy-o} |

+({¢-2x-{”vx) (;{ 2y+¢, - )x 2(x*-)?)

= 2(:«:2 —yz)
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g Sy
x
and hence
0,  nt-l :
agan“(ﬂzﬁ)?' | €))

This is the required canonical form of the given equation.

Integration of (3), first w.r.t. 7 and & then W.rt. 4’ leads to

&,
= (€) ()

so that the solulion of the given equation is

2 +y2 P4
DL oty

Yy
Y41
x

ie z=-xy+y, (x’ + y’)+ v, (2)
x
Example-5.2 : Reduce the equation
2 e 12 et
x'r=2xys+y't-xp+3yg=8-—.
x

into canonical form and hence solve it.

SQlution. Here R =x2,8 = =2xp,T =y, f(x, 1,2, p,q)=-xp+3yq --8-%.
Since §? - 4RT = 4x’y? —4-x*-y? = 0, sothe givenequation is of parabolic type.

Now, the equation R2A% +SA+T =0, ie. x’A% - 2xyA + y? =0 givesequalroots 4,4 = % Then from

d ;
the equation 2{* +'§ =0, we get the solution as xy = const. Therefore, we take £(x,y)=xy. We choose:
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77(%)’)‘—"‘;}“~ Thus
é:x y9(C :Y7é:<,rzo5§xy=1’(-;y=0
Y 1 2y 1
=T Dy = e = 5y ==, =0,

Hence A(fx,fy)= REI+SEL +TE =5y ~2xy. y-x+ 32 %2 =0

) . 2
A(ﬂx’ﬁ)»): !(7/5 +S77x77)’+T77; :x2.%—2@‘(—%).14-}'2'_}7:12;—:4”2
X X X b 4 X
N R P [ AR TE%Y) (R ENEA N
X220y . x2 2 x x2 X

Lo

F(c:,rz,é,é,\,,)z—[gf(xz-c—zxy-uyz-o)+;,,(x2.;§i+2xy.;2.+yz.o)
Y 1) 8y
-X- - ot |43 x+C o= |—aZ
* (;:y 2 xz) y(;f **4 x) x}

= ——8-—2{,’ +2 = -8n¢, +87.

x x

Thus the required canonical form of th - given equation is
4772/;7777 = HSI} gr/ + 977

' 2. 2
ie. é’m) +;7“(:711 = ;—

o 2 2
Let {, = Z, so that this equation is trz isformedto Z, +=Z =<
' ! "n" n

2
This is a linear differential equation wi. 1 integrating factor e'[ . n* and so the solution of this equation is
1
G =Z= 1'*'”7;754 (£)

Integrating again, we get

=0 ()4, (0)
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Thus the solution of the given equatio. is
./ X
z= 2~ -—@ (xy)+ o, (xy).
D 4

Example-5.3 : Reduce the equation

x LW
e =z
e'z, e’z

to canonice:.: form. '
Solution. ticre R=¢*,S=0,T=¢ f(%y,2,p.9)=~2.
S ST —4RT =—4e™ <.

Thus the given equation is of elliptic t. ve.
Nowthe ecuation RA2 +SA+T=( i€ 4?2+’ =0 gives A = ie * . The characteristic equations

are
dy | = dy &
Zoje? =0und —-+ie? =0
2 X ' 2 .1
ie. ¢ -ie?=0andedy—¢?2=0

¥ _x P4 X
whose solutivasare ¢ 2 —iz 2 =cc sts.and e 2 +ie 2 =consts. We take

y

v X y
2 —je 2 and N(x y)=e? +ie

X

E(x,y)=e 2 |

Introducirn; the second transformatic 1 £ = +iff and 77 = —if3, wehave
-2 .3
a@=¢?and f=e?

Proceeding cxactly along the same li esas given in Examples 5.1 and 5.2 we find that

Met)=4(nm,)=0,

. 111
B(fx’i‘)y?ﬁ,ﬁ’ny>=z+z_—5
’ _x -y A Y
F(f,ﬁ,z,éﬂ,é):—[(f {ex : \-—%i)e 2 +e’%e 2}+§” {e‘(i—ie 2+e’%e ’)}-4

1., 1 1
=Z{‘*Q ”;Ca "»‘B‘;ﬂ:}
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Thus the required canonical form of the given equation is

1 1(0%¢ 9%¢ 1
2y 4(80: aﬁz) 4( Y-z (_E{”J

¢ 32( 1
oa’ gt 4= “{ ﬂ(”'

6.  Solution of Linear Hyperbolic Zguations (Riemann’s Method)

or,

Consider the Linear hyperbolic partial differential equation

9’z dz . 0z
8x8y+ §;+ba +ez= f(x,y)
or, :L(z)=f(x,y) _ 6.1
‘ , .
where L = 8i8y+a%+bé%+c

and each of a, b, c is a function of x and y having continuous first order derivatives with respect to.x and . Suppose

w is another function of x and y having continuous first order partial derivatives. Now it follows than
w oz __ai‘&_i(wé%)..i 29
oxdy oxdy dy\ dx) ax\ dy

Jz 0 ,
U (l*a*;'\" z*a—;(aw) = 5‘;(0#2’)

oz J,

wb 2 4 —(bw) = —(i vz

% zax(w) ay( vz)
Thenitis evident from these relations that

;. . aU ";V o .
wL (z)-zL (w)= 5;—+%; 6.2)

where
itw 9 o

axay ox 7 @) 5 Y

L (w)= ~ (bw)+cw,

U= awz-—z~a—z—,V =bwz + w§~z—
oy ox
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The operator L' defined by (6.3) is known as adjoint operator of L and the equation (6.2) is called the
Lagrarge identity. If 7' = L, then the operator L is self-adjoint operator. ‘

Y

Fig. 1

Now consideracurve I' and p(&,7) apointonthexy - plane and let ABbe anare of ", Draw P4 and PB

parallel to the x and y-axes interesting I at the points 4 and B respectively. Also suppose that 3 be the area
enclosed by the contour 4BPA. Then by Green’s theorem
. oUu oV
L{z)-zL dedy = ||| —+— |dx
[[lvete)=2 £ ()])ancs I Y sy

(Udy—de)+j:Udy—dex | (6.4)

B Sy

= [ Udy-Vvdx)=

ABPA

7 ¢ 0z e ow 19
Now = 92 e = [ 2| bw—== |dv+ [ == (zw)ax
;{de 1(bwz‘+wax)dx iz[,w ax) +£ax( )d

_ o -2 i), Lo

so that

267

Directorate of Distance Education



Module 44 : Partial Differential Equations of Second Order ..

+.g [WL (z)-2L (w) dx ‘b’] by using (6.4)

7 ow . ow
= [ZW]A + ';’ z(bw——a—;)dx—fz(aw—s)—,—)dy

B

8

B
f z(ady - bdz +fz[z~————dy+w-a—z-dx)
. y dy 0z

+Lf[wL (2)- z;L' (w)]dxdy.

6.5)
Let us choose the arbitrary function w(x, y) in sucha way that
) L (w)=0 throughout the xy - plane,
ow
1 — = p(x, =n,
@ 5-=b(x)when y=7
. OW |
@ 5= a(x,y) when x = £ (6.6)
x P vy & N ’
and (iv) w=1lwhen x=£,y=7 Cl s ,
Such a function w is called Green’s function or Riemann-Green’s function.
Thus, noting that L(z) = /(x, y), we have from (6.5)
B
[z]p = [zw] '[wz (ady- b dx) +J-(z-———dy+ g:: dxj
+Hw(x,y)dxdy 6.7)
3

0z E . '
Then, if the values of z and 3y e given on the curve 4B, the value of z at any point P can be obtained from

6.7).

0z
On the other hand, if the values of zand =— dy are prescribed on the curve, then we reawrite the equation (6.7)

inthe foxm

[2], =[2w], fwz(ady bdx)+f(z~dx+wg—;-dy],

+” wf (x, y)dﬁcdy (6.8)
>
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Adding (6.7) and (6.8) and then d1v1dmg by 2, we obtain
[z]p:-;—{[zw] } fwz ady bdx ——[w(a; y—-_a_z.dx]

ox

—f (—-dx——*dy) fXIWf(x,y)dxdy 6.9)

: 4
Hence the solution of equation (6.1) at any pointin 3, is obtained in terms of the given values of 2 '35 T
dz
ay alongacurve I' by by means of either of the formulas (6.7), (6.8) or (6. 9).

Example-6.1 : Construct the adjoint of the differential equation L(z)=¢’z,,_z, - z,.
Solution. Let w be a func:ion of x and ¢ having continuous first order partial derivatives. Then we have

(5555l

ox

w(az Ow ) _ a( az) (aw)
and Y52 7H G2 T o) oo

Thenif we define L' (w):

cw —w,, then

1"
wlL(z)-zL (w)= we'z, —wz, —zc’w, + 2w,

o] 22
Ix ox ox | ot

ot ot
_ou v | |
T ox ot
2 0z ow ow 0z «_ 2 2 az
= e g V=z——w—. L=sc¢'——-—
where U =¢ (wax ax) d za wat Th c

F ey is the adjoint operator of L.
Since [ = L, so L is self-adjoint operator. ’

0’z ‘
Example-6.2 : Prove that for the equation 5‘*‘8’"4' z=0, the Green’s function is given by
w(x,y,&.1)= {\/ x- k/ n } where J, (z) is the Bessel furiction of the first kind of order zero

2 _
Proof. The given equationis L(z)= 5—(:;-'— +1z=0andits adjoint equation is (e.f. equation (6.3))
xXoy
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2
E(w)=jzri+

such that

1
oxdy 4

—w=0,

() L' (w)=0 throughout the xy - plane.

(ii) _8_»1:0 ony=mn,

ax‘

@@ —=—=0onx=¢,

and (iv)w=1at (£,7).

Now, if

My

1

L] (x—é‘)(y—ﬂ)}"x‘f;'ﬁ'yff”'?ﬁ

-J, { (x-f)(y—??)}' :

1 I
4 Jx-&)y-n)

= = s‘l)(y—n) [\/(x“f)l(}"ﬂ)-/f{\/(x-f)(yf n)}u, {,/(x-—f)(y’-— 7“)}] |

g

= 0 throughout the xy-plane. Also it is easy to verify that all the conditjons @),
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(iii) and (#v) are satisfied by w=J, { (x=€)(y- 77)} Hence the given functiion J, { (x=&)y- 77)} isthe

Green’s function of the given equation.
Exercise

1. Show that if f and ¢ are arbitrary functions of their respective arguments, then

_ . . Fu  Fu_ 1 Fu o
u=f(x+iay-vt)+g(x—iay-vt) is a solution of 53 + 5 o’ where is satisfied by where

,-,azza’z 2z - 1 ,
2. Verifythatthe partal differertal cquation 57 =57 = 2 issatisfiedby 2= —o(r- x)+¢'(y-x), where

¢ isanarbitrary function. .
. . u Fu _
3. Ifus=f(x+iy)+g(x~iy), wherefand gare arbitrary functions, show that -5 + Fea 0.

4,  Solvethe following equations :

9’z o 1
) é;—f——é;j—:x—~y{AnS.z=¢l(x+y)+¢2(x—y)+zx(x—y)2:l
9’z 0z _ 2 axtby . 2 2 . _n
(i) 5—2--5~=2y-x Ans.z=2¢,e' " 4 x*y,wherea, —=b, =0
X' dy -
9’z 9’z in

. il )
@) 3 +axay Ay’

=¢" {Ans.z =g, (x+y)+ 0, (x-2y)+ %xeny}

2 2x+y

@) ’_"“4S+4f=e”y{Ans.z=¢; (2x+}’)+x¢z(2x+J’)+‘;‘x e }
' . 10 ./,
V) rts-6t= ycosx[AnS.z =¢,(3x-y)+9, (2x+y)+smx—xqosx+—§—sm(2x+y)}

' 2 x3
i) r+3s+2t=x+y[Ans,z=¢l(x-y)+¢2(2x,y)+_’f§2’____3__}

A .
(vii) r=s =sinxcosZy[Ans.z =¢,(y)+9, (x+y)+—;~sin(x+ 2y)-—6—sm(x-2y)}

Directorate of Distance Education 271



Module 44 : Partial Differential Equations of Second Or@er ...

83 83 aB X+ ! . . 1 x+
(vm) —‘*2"*3angy 45}5*6 2’[Ans.z=¢,(x~i—y)+¢2(x—2y)+—3—xe z”:l

(x) (D*-7DD’'-6D" )z =sin(x+2y)+e**

[Ans.z=¢,(x—-y)+¢2(3x+y)+¢3(2x~y)—-:/,!-5—cos(x+2y)-flie"*’:}
‘&) (D*-7DDr- 6D )z = cos(x+y) + (¥’ +xy+y)
[Ans.2= 0, (5~ )+ 6, (25— »)+ 6, (35-+ )+

%xcos(x y)+f7§2-x +g—x5(1+21y)+512xy +;xy}

dz 9z 8“2’
(xi) —8—;3+55;é; P = xsin(3x - 2y){"~¢,(

+¢zk(5+\/§

2

" ]

x—y)+xsin (3x-2y)+ 4cos(3x~—2y)J

Iy §i£+§_z.+§_z;—x2 .
(xn)v EYEI ay~ Y

[Ans. z= Z c,e™ 4+ —3—;—6(x° —6x’ +15x* +180x’y) wherea? +a, +5, = O-l

(wiil) (D=2D"+5)(D* + D’ +3)z =sin(2x+3y)
[Ans.; = e (2x+y)+ ¢ e +m{7sm 2x+3y)~19cos(2x+3y)}:’
where a7 +b,+3=0

’z 9z

(xiv)v ax28 a—;—Zz—e ¥cos3x+e"sin2y

{:Ans. z=) c,e" M~ 1-15 ¢’ cos3x é— e*(cos2y +3sin 2y)}

where a’b, +b5* -2 = O]
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() (D+D’-1)(D+D’=3)(D+D’)z=e"""cos (2x-)
{Ans z=e'g (x-y)+e o, (x-y)+ 8, (x~y)- 110 xey+d {sm (2x - y)+2cos(2x - y) }}

5. Solvethe following equationé:
@) (xDD'-y*D"*=3xD+2yD’)z = o[Ansz 8, (%) + ¥'¢, (x)]

() (¥*D*+xyDD’-2y’D’* —xD~ 6yD’)z 0 [Ansz ¢|( )+¢z(xy)]

(x
G ( 3 zDszz 2 3D2D'3)2—0 [Ans z=¢(x)+0,(» )+y¢3(x)+jx¢4(J’)',"¢s(x}’)]
{x

(iv) {x*D? 2xyDD’+y2D'2-—n(xD+yD’)+n}z x? +xy+x

: ;
{Ansz X¢, +x ¢2(§) xn+§ ’"2(: 3)]

) (xZD2 2xyDD’ + 3yzD'2 +xD- 3yD’)z = —x?ysin (logx ) |

Ans.z= ¢‘ x* y +¢2( )—-é%xzy{étcos(logx2)+7sin(logx2)}:|

1

2 2 ”? ’ 1 2’_ -
i) - (x xyDD’ ~2y*D"* + xD - 2yD) og(x) 5

I 1
Ans.z= ¢] xy +¢2( ) —i(logx)zlogy+-ilogx.logyJ

*+y

xy

(vii) (xzyDzD,_xyzDD;z —-xp? +y2D’2)z =

} 33
[Ansz x¢1 +J’¢z( )+¢3(xy)‘x6x;} ]
(

(viii) (x*D* - 4xyDD’+4 y:D" +6yD’)z x*y*

1
Ans.z = ¢, x* y +x¢2(x y)+—3—6xy :l

(x) (x*D*- 4y2D"2 4yD’-—1)z-xylogy
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[Ans.z =D c,x" Y ~ 12125 x*y? (3510gy 24),wherea? -4b? —q —1= O]

(1 1 Lo, 1, 1.1,
) (;{Dz “TD)2=(*TD 2 —;;D ) (Hmts Putu = 5 y= 5 )
[Ans.z =g, (x2 +y2)+¢2 (x2 -yz)].
6.  Solve the following equatins by reducing them into canonical form :

o 1
) yr+(x’+y)s+xt=0[Ans.z=f,(x—y)+;:—;f2(x2—yz):,
(i) 3r+10s+31=0{Ans.z=f,(3x-—y)+f2(y-_-;—)]
@) (D’ +2DD’ + D*)z=0[Ans.z=(x+y)f,(x-y)+ £, (x-)]
(#v) (D2 +2DD’ + D’z)z =0 [Ans z=(x+y) fi(x=y)+ £, (x- y)]
v) (p? ~2sinx DD’ - cos? xD"?)z=0[Ans.z= f;(y-cosx+x)+ f, (y-cosx~x)]
7. Reduce the following equations into canonical form :

@ z, +x z;y = O[Ans. ¢ ion (é’ ;e ¢ ,7),,, hyperbolicifn <0

3—15 ¢, =0, ellipticifx> 0]

if) (sin2 x D* +sin2x DD’ + cos? xD’z) [Ans {l -e¥r ‘f’};,m =sin™ (e""f)-{f,parabolic]

gaa + é‘ﬂﬁ +

1 o
(i) (D*+2DD"+4D* +2D+3D")z=0 [Ans.g“m, e ==3(¢at 2J§{ﬂ),paraboth

(V) Y'z,-x'2,=0x>0,p>0 [Ans 2( ){;,, ng; +&¢, =0, hyperbolic]
z _ 09z 9z az 0z [ 1 8 . J
4— 45—t — =2 |Ans.{,, =—( ——,hyperbolic
) ox’ " oxdy oy ox ay S 3 2 9* VP

@) {(14x°) D" +(14)*) D +xD + yD'}z=0 [Ans. ¢, +¢5 = 0,elliptic ]
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8.  Construct the adjoints of the following differential equations :
) ‘ L(z)=z,+z, [Ans. L(w)= w;, +w,,, L is self-adjoint]
G L(zj=2z,-2 [Ans L (w) =w, + w,] | |
(iify L(z)= Az, +Bz,, +cz,, + Dz, +Ez, + Fz,where eachof 4, B, C, D, Eand Fisa function of x and

yonly.

oxdy ¥ 5)72—

l:Ans. £ ()= 2 (aw)+ ®_(Bu)+ 2 (cW)-i(Dw)-é‘?-(Ew)W]

9.  Prove that for the equation

a2z+ 2 §E+§—Z— =0
oxdy x+y\odx Ody ’

the Riemann-Green’s function is given by
() 2+ (€ -n)(x-9)+ 2¢)
&+ny

Hence find the solution of the differential equation which satisfies the conditions z =0, %_ 3x} ony=x.

ox

| W(xuy;ésb)

e () -
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M.Sc. Course
~ in )
Applied Mathematics with Oceanology
| | and |
Computer Programming

PARTI

Paper-IV : - | ‘ Group-B
Module No. - 45 "
ELLIPTICEQUATIONS

1. Introduction ; ;
We have seen in Module-44 that second order linear partial differential equations can be classified into three
types, viz. elliptic, parabolic and hyperbolic. In thxs module, we shall consider elliptic equation in the form of

Laplace and Poison equation, as these are frequently occur in practical situations.

2. Occurrence of Laplace and Poisson Equations
As mentioned above, the frequence occurence of Laplace and Poisson equations, we illustrate some branches
about this - ,
(@) Gravitation : The force of attraction / ata point inside or outside the gravitating matter éan be -
expressed in terms of a potential function Uas F = V. In empty U satisfies Laplace’s equatlon
V2U =0 while ata point inside the matter, it satisfies Poisson’s equation V2{/ = =—47p, p being the
density of the matter. _
(b) Irrotational motion of an ideal liquid : The velocity v of an ideal liquid for irrotational motioncan be
expressed in terms of a potential function ¢ in the form y = — ¢ ¢ intheabsence of source, sink etc.
and this function ¢ satisfies Laplace’s equation V¢ = 0,
(¢) Torsion broblem in solid mechanics : In the case of torsion problems of cylindrical bars in solid
mechanics, the stress function 7 satisfies Poisson’s euqation of the form V3 = -2,

(d  Steadv currents : The conduction current vector 7 can be derived from a notential function & bv



---------------

©
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the formula 7 = ~o¥ y, o being thie conductivity. This function satisfies the equation ¥ (o ¥y ) =0

‘as V7. = 0 sothat for constant conductivity, this reduces to Laplace equation Vi =0.

Steady flow of heat : If there is steady heat flow, then the temperature T satisfies the equation
v. (rcﬁ? T) £0,x being the thermal conductivity. Thus, for constant «, T satisfies Laplace equation

VT =0. .

3. Boundary Value Problems :
Suppose that for a given problem the function Uis tobe determined such that U satisfies either Laplace or
Poisson equation in a bounded region ¥ and also satisfies some conditions on the surface S enclosing V. Any such

problem in which we require such a function is called boundary value problerh (BVP) for Laplace or Poisson

equation. In general, there are two main types of BVPs associated with the names of Dirichlet and Neumann.

(@

(b)

Directorate of Distance Education

Dirichlet problme:
By the interior Diirchlet problem we mean-Let fbe a continuous function prescribed on the boundary

S of a bounded region V. Then the problem is to determine a function U (x, y, z) which satisfies
Laplace’s equation V2 = 0 atall points within ¥ and the condition U (x, y,z) =fon .

On the other hand, if we are to determine U (x,, ) such that V2 = 0 outside the region Vand
U(x,y,z)=fonS, thenthe problem is called exterior Dirichlet problem.

Dirichlet problem is also known as first boundary value problem.

Neumann problem : _
By the interior Neumann problem we mean — Let fbe a continuous function prescribed on the

boundary S of a bounded region V. Then the problem is to determine a function U (x, y, 2) which

ou
satisfies Laplace’s equation V?U = ( atany point within ¥ and the normal derivative -é;' = f onS.

_ aU 5
Ina similar way, if U (x, y,2) is such that V?U =0 outside Vand M = f onS, then we have gxterior

Neumann problem.

Neumann problem is also called second boundary value problem.

In addition to the above two main boundary value problems, there exists another boundary value
problem, called Churchill or mixed or third boundary value problem given below.
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(c) Churchlll problem :
By the interior (extenor) Churchill we mean— Let fbe acontinous function prescribed on the boundary

S of a bounded region ¥ Then the problem is to determine a function U (x, y, z) which satisfies

Laplace equatnon V’U 0 at all points within (outsxde) V and g——-+(k +1)U f (k being a

constant) at every point of S.
In the above, we have stated boundary value problems for Laplace’s equation. The same can be

formulated for Poisson’s equation.
4. Some Mathematncsl Results :
5 Let us recall some mathematlcal results whxch are of much use in our dxscussxon in the sequel f ‘
’ Suppose z isaclosed regular region bounded by a closed surface S. Let U and V'be two functlons of XY,z
and c contmuous m V +S together with their first order partial derlvatlves Inaddition, Vhas second order partial

derivatives in V+S. Then using Gauss’ divergence theorem -

'UV'FdT:jF-ndS
v 4 Ky ’
,.,,;._:byputtihg F=UVY, weget _
,JHV'(WV‘)dr= HUVV-MS‘
e, jﬂUv Va’r+”VU vy dr——jj’U——-dS - o @

This isknow as Green s first identity.

Onthe other hand, if the function also possesses continuous second order partxal denvatxves inV+ S, then

mtexchangmg ¢ and ¥ in(4, l) we have
([ vy [y v dve ;;V,g;;cs | 42
| Shotraciing (4.2) from (4.1) we get
oy . 0of
Mevv-yvom=fle%-v 2l @

- This is known as Green’s second identity.

5.  HarmonicF unctiyon :
Afunction U(x, y, z) is said to be harmonic ata point (x, y, z) if it possesses continuous second orderpartial
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derivatives and satisfies Laplace’s equation v2{/ = ¢ throughout seme neighbourhood of that point. Uis harmonic

ina domain or open corttinuum, ifit is harmonic at all points in that domain. It is said to be harmonic in a closed

region, if {/is continuous at all interior points of the region.

Afunction U (x, ,2) 1ssa1dtobereggaratmﬁm§y1frU r Zi] 2 6alyf r Balz/' are bounded forsuﬁicxently

larger, where r? = x* + y* + 2. Ifafun function is harmonic in an unbounded region, then it must be regularat infinity.

Some properties of harmonic function :
Theorem 4.1 : If a harmonic function vanishes at a]l points on the boundary, thenitis 1dent1callv Zero cverywhere

Proof. Suppose the function U (x, , z) is harmonicina region 7 so that v2[/ = ¢ in 7. Then by the given
condition U= 0 on the surface S of 7. Now putting ¥ = Uin Green’s first identity (4.2) we get

mUv Udr+ ﬂj(vu) dr= I U~——dS

Using the conditions y2y/ = ¢ in z and U=0onS, it follows that
[[[(vuy ar=o0.
14 -
which is satisfied provided YU =0 in r,ie. U=const.in 7, Since Uiscontinuousin 7 +§ and U=0on

S, wemust have U=o1in r.
N . . . ... eu | .
Theorem 4.2 : Ifa function Uisharmonicin 7 and its normal derivative -a—; vanishes at all points on the

boundary Sof 7, then Uis constantin 7.
Proof. The proof is left as an exercise.

Theorem 4.3 ; Dirichlet problem for a bounded region possesses a unique solution.
Proof. If possible, suppose that U, and U, be two solutions for the interior Dirichlet problem Then

VU, =V, =0 inr and U, =V, fonSLetU U ~U, sothat y2{/ = 0 in 7 and U=0onS, Then
by Theorem 4.1, U=00n 7+ § i.e. U, =U, on 7+ S . Thus Dirichlet mtenorproblemhasaumquc solution.

Similarly, Dirichlet exterior problem also possesses a unique solutxon

Theorem 4.4 : Neumann problem fora bounded region either possesses a umque solution or solutions

differing from one another by a constant,
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Proof. Suppose U, and U, be two different solutions of Neumann problem. Then V?U, =V?U, =0in

8U, _oU, U N
and — " ““a—‘"f onS.Let U =U, ~U, sothat V’U =0 mrand-a—- =0 on S. Hence by Theorem 4.2,

U= constantin 7 + S, ;

Ifthe constant is zero, the U, ~U, =U =0, i.e. U, =, inz+S. Thus, the solution is unique. On the other
hand, for non-zero constant, U, =U, +const. i.e. solutlons differ by constant,
Sphemcal mean :

Let P (x,y, z) be any point in a bounded region 7 enclosed by a closed surface S. Also, suppose that 3 be
a sphere with centre at P and readius r such that 3 liesentirely within 7. We define a function defined P (x,y, z)

and continuous in 7, Then the spherical mean of Uis defined by
N " 2 .
7 [JU (@4 =(e-) +(r-3) + (¢ -) (5.1)

U(r)= 47:1

where Q(£,7,¢) isa variable pointon ¥ andd s is the surface element of integration.

X .
’ _ Fig. 3.1
Taking the origin at P, we have
& =x+rsin¢9cos¢ " —y+’rsin<95in¢,§ = z+rcosf,

Since Uis contmuous on 3,{J isalsoa contmuous functlon ofr on some interval 0 < r < R, becausc

r)_—--HU(Q)smedﬁdgf— (” !fsmaded;é U(Q).

- #u0 Gml
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and Q — P as y — 0 sothat U(r)—-)U(P) Hence Uis continuous in os;-gR
Theorem 4.5 : (Mean value theorem for harmonic function). Let a function U be harmonic inaregion r and

U(x,y,2) beagiven pointinz . Also suppose that 3 is a sphere with centre at P and radius r such that ¥ lies
entirelyin 7. Then |

U(P)=0 r)=————- ﬂU (Q)dZ
Proof. Since U is harmonic in 7 , so its spherical mean U (r) is continuous and is given by

")—”—— ﬁU(Q)dZ=-— T Tuen¢)sino-doas

7 42060

r T 2r )
dU(’)z__l. (Ufg‘r+U”n,+U¢4’,)sin9-21€d¢

47 420 6%
(U, sinBcosg +U, sinOsing +U, cos 6)sin6-dod¢

Since the normal 7 on ¥ has direction cosines sin @ cos ¢,sin #sin g,cos 8, we have

ff.g- yp— ﬂVU ar sm9d9d¢[ VU—-IU +]U +kU¢]
47” jVU A dS
W J’j‘v VU dr

47" m'Vszt 0.

r

Thus Uis constant, the continuity of Uatr =0, therefore, proves the result . 2)
Dirichlet principle

Theorem 4.6 : Let fbe a continuous function prescribed on the boundary Sof a bounded region 7, Then
among all functions Uthat satisfy the Dirichlet condition U=fon S, the lowest energy defined by
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(V)= l j j ﬂVder

is attained by a harmonic function satisfying U =fon S ; ,
Proof. Let Vbe the unique harmonic function and # be a function satisfying respectlvely the Dirichlet
condition ¥=fon S and W=0onS.Put U = V- W, Then

E(U):E(V-W):%jjﬂv(V—W){zdr=%j’jj(|7V[’-2VV-VW+]7W}’)dr
=-;—J:JIIVVisz+%[fﬂVW{2dT“J;j vv.vw

=E(V)+EW)- [[[vv-vw dr
Now considering {/ — W and I — V' in Green’s first identity (5.1) we have

mvx/ VW dr = HW—-—-—-dS IHWVszr

so that from (5.3), it follows that

EU)=E(V)+E(W)- J’J’W dS+mWV2Vdr

Since W=0onSand y2y = ¢ in 7, we get
E(U)= E(V)+E(W)2E(V)

which completes the proof,

5. Solution of Two-dimensional Laplace’s Equation (Separation of Variable Method)
I Cartesian coordinates (x, y) :
To solve two-dimensional Laplace’s equation in Cartesianvc'oord'inates given by

62U o°U | i
CSEtTEs0 | | B X))

@2
we put U(x,y)= X (x)r(y) | | - (52)
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in(5.1)and get
1d’X 14
YTy 5 =k - (5.3)

where x is separation constant. Then we have the following cases :

Case(i): Let k = p* >0, pbeingreq. Thus (5.3) gives

ax L., Y .,
ZZ _p’X=0and 57-PY=0
o F dy’

whose solutions are

X(x)=ce” +c,e™ and Y(y)=c,cos py+c,sin py, |
_ where ¢,,6,,¢; and ¢, are constants. Hence by using (5.2), the solution of the Laplace’s equation (5.1) is
U(xy)= (c,e”“ + cze““")(c3 cos py+c,sinpy) n (59
Case (i) : Let £ =0 so that (5.3) leads to
£x_, 4T g
Ay
whose solutions are
X(x)=¢x+e,Y(y)=cxy+c
Thus the solution of (5.1) is
U(x)=(Ex+cs)(c,y+¢)
Case (iii) : Let k = - p? < 0. Then proceeding as in case (i), the solution of (5.1) is obtained as
U(x,y)=(c, cos px +c,ysin px)(cue”‘ +ee™). (5.6)
Inall the above cases, the constants ¢;,¢,, . ¢,, are determined by the use of boundary condiﬁoné. We now
illustrate the above results by some specific problems. |

Dirichlet interior problem for a rectangle

Yl\
y=b
‘ U=0
u v Fig.3.2
x =0 x=a
U=f(x) .

Directorate of Distance E/dzc%tion 283



Module 45 : Elliptic Equations

............ EA e R R R L L R R T T T T ey

Dirichlet interior problem for a rectangle is defined as follows: To solve Laplace’s equation
o’U U
P — —é—y-z— =0
at any point interior to the rectangle 0 < x < q, 0 < y < b subjectto other boundary conditions
U(x6)=U(0,7)=U(a,y)=0,U(x0)= f(x)
in which the function f(x) is supposed to be expan51ble inF ouner since series.
Now consider the solution (5.4). Using the bounda.ry condmons and noting that c3 cos py +c, sin py =0,
simply we get
¢ +¢,=0,ce” +c,e """ =0
leadingtoc, =¢, =0 so that U , y)——O isthe only non-trivial solution. Thus, the solution (5.4) is ruled out.
- Itiseasy to see that the solution (5.5) also yields the non-trivial solution. So this solution cannot be accepted

Therefore, the only possible solution is given by (5.6). Here the boundary condition U (a, y) =0 gives

sin pa=0,iep= . ,(n=1,2,...). Hence the possible non-trivial solution s given by using superposition principle,

as

Zsm—-—-—-—[ "/ +Be %].

n=l

Again, the boundary condition U (x, 5) =0 gives . .

mr% ’
4,6 B "o =05 B, = -4,
e’"” a'
so that :
& 4 x| n#(y-b) nzt(y;b)
U(x,y):nzﬂe‘m%-sm " [CXP{—*;—*-}*GXP{ET—— _
n7(y-b)
ie. U(x,y)= gc sin = smh{ - }

where ¢, =24 ¢"/. Finally, the non-homogeneous boundary condition U (x,0) = f (x) nges
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Zc sinm nh(—f-’ﬁé) 7 (%)

n=l

which is a half-range Fourier since series so that

c sxnh(-i’i’-’?-]=—jf( )sin =~

Thus the required solution of the given Dirichlet interior pmbiem is

U(x,y)= Zc sm( )nh{M} | | (5.7

a
where

c =~w—;————— jf(x)smw—-dx

n .
asmh——o
a

(CR))

Neumann interior problem for a rectangle.

For this problem, the boundary conditions of Dmchlet s interior problem aretobe replaced by

U,(0.9)=U,(a,5) =T, () =0U, (xb)= /()
By arguing as in the preceding problem, it can be easily verified that the only suitable solution of Laplaoe s

equation is given by (5.4), i.e.
U (x,y)=(c, cos px +c, sin px)(c3e"’ +c,e” )

Now the boundary conditions U, (0, y) 0 and U, (a, y) O give respecnvely c, = 0 and sin pa =0,

/)—"7 n=0,1,n,...). Thus, we have U (%, )= COS“""(AeM/ Bem/)

where .4 =c,c,, B = ¢,c,. The boundary condition U (x,O) 0 gwesB A. The defining 24 = =4 and

using the superposition prmmple we obtain .

U(x,y)= i A, cosmcoshﬁz—}—)
a

n=l

Finally, the boundary condition U, (x,b) = f(x) gives

nrwx nnbh
A et — nh......__...
S(x)= E 7 cos —sinh—
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which is the half-range Fourier cosine series, so that

nrb 2%

A, -—-sinh—— == I S (x)cos
Hence, the solution of Neumann interior problem for a rectangle is
U(x,y)=4,+ Z A,- cos——a— -cosh—= mry (5.9
n=l : . .
where 4, is arbitrary and
2
4, = ff x)cos-———-dx
nrrsinh 222 °
a
U U

‘Example 5.1 : Consider the Cauchy problem for the Laplace eqﬁaﬁon e + -5y—— = 0, subjectto U(x, 0)
, x

=0,U,(x,0)= %sin nx, where n is a positive integer. Show that its solutionis U (x, y) = zl—z-sinh ny-sinnx.
Solution. It can be réadily seen ihat the s'olkutionlbf thé Laplace equation consistent with the given boundary
conditions is - e | ‘
C U(n)=(qoosprrcsinpr)(ce” tee ™).
The condition U (x, 0) = 0 gives ¢, = —¢; so that

U(x,y)=(Acos px+ Bsin px)sinh py

Also using the condition U, ( x, O) = -1- sin nx, wehave
. 1,
p(Acos px + Bsin px)=—sin px, forallx.
: n . i

1 1
So, it follows that p4 =0, pB = - and p=nleadingto 4=0,B= e

Hence the required solution is
U(x,y)= —l—z.sin nxsin A ny.
n
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. 2 2 , . .
Example5.2¢ Salve Laplace’s equation %—g{ + %ylzj = 0, in the semi-infinite region x 20,0 < y <1 subject

to the boundary cosiditions
U, (0,5)=U, (%,0)=0,U(x1) =/ (x).
Solution. Solution of the Laplace’s equation consistent with the given conditions is given by

U(x,y)=(c,cos px+c,sin px)(cge”" +c,e” )

Fig. 3.3

The condition U, (0, ) =0 gives ¢, =0 while the condition U, (x,0) leadsto ¢; —¢, =0,ie. ¢, =¢;.

Thus
- U(x,y)=Acos pxcosh py

where 4 =2¢c,. ' .
Now, since all real positive values of p are permissible, so the general solution of the Laplace’s equation

subject to the first two given boundary conditons is

U(x,y) = 'fA(p)cos pxcosh pydp

0

where A(p) is an arbitrary function of p. Putting y =1, we get

®

f(x)= IA('p)cos pxcoshpdp

0
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Using the Fourier cosine integral formula, we have

A(p)coshp = ;zr-?f(.f)coshpfdf ‘

so that
2 % ’
A(p)= h p&d
(P)= ooy [/ (©)cosh oz s
and hence

2 h %
| U(x,y)=;!W{Jf(§)coshpfd§}dp.

[In particular, if we take

,0<x<1
0,x>1

/(%)=

Then -

sin p

J'f(f)cos pédé = jcos pédé =
0 0

andso’

UV, = —
' ('x‘y) 2 pcosh p

2 fcos px-cosh py-sin p dp
Example 5.3 : In the theory of elasticity, the stress function U, in the problem of torsion of a beam satisfies
the Poisson '
—a—g-+§-—(-2]—'=—2, 0<x<1,0<sy<l1
ox~ Oy
with the boundary conditions U= 0 on sidesx=0,x=1,y=0, y=1. Find the stress function.

Solution. Let us assume the solution in the form
U=V+Ww
where Vis a particular solution of the Poisson equation while # represents the solution of the homogeneous

Laplace equation, i.e.
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In general, ¥ is assumed in the form
V(x,p)=a+bx+cy+ds’ +exy+ f°
so that 2d +2f=-2. Taking /=0, we have d= —1 The remaining coefficients can be chosen arbxtranly Thus,
we have

v (x,y)=x-x

which satisfies the boundary conditions V=0 on the sides x=0andx=1.

Now to find Wﬁom
o'W oW
oy

satisfying
w(0,y)=-V(0,y)=0,
w(Ly)=-V(Ly)=0,
W(x,0)= -V (x,0)= xt—x,
W(x,1)=-W(x,1)=x"-x,

=0,0<x<1,0<y<1

it can be easily seen that the solution is given by

W (x,y)=(c, cos px+c,sin px)(c3 coshpy+c,sinhpy)
The condition # (0, y) 0 gives ¢, = 0 while the condition # (1, y) =0 leadsto
sin p=0,ie.p=nm,(n= 1, 2,...). Thus, by the superposmon principle, we have

W(x,y)= O}Sin(nﬂx) {a, cosh(nzy)+b, sinh(mry)}.

0

Again, using the non-homogeneous boundary conditions W (x, 0) =W(x1)= x* —x, wehave

X' —x= ian sin(nzx)

n=|

and x* - x = isin(mrx){an cosh(nz)+b, sinh (7 )}

n=}
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so that the first relation leads to

a,= 2;[()5 mx)sm(mrx)dx n‘:r {( 1) -l}

8 ...

-——.if nisodd

=4 nr
0,if niseven

while the second relation gives

i
a,cosh(nx)+b, sinh(nz)=2 J'(xz —x)sin(nzx)dx = a,
0

and, therefore,
1-cosh(nr)
"™ sinh (nr)
Hence

W(x,y)= i%{cosh (nzy)sinh (nr)+sinh(nz y)-sinh (n7y)cosh (mrv)}

n=]

2 a,sin{nrx), 5 :
’g”sﬁh‘f_nz‘r‘)‘)‘{S‘“h'?”(l—y)+slnh(nny)}

8 sin{nzx ) . :
= -;”Wﬂifh—(n%—)f{sxnhm(l ~ ) +sinh(nzy)}

LA sin(Zn-—l)n'x si n-1)z(l1-y)+si n-1)x
) n‘;(anl)’sinh(zn—l)n{ oh(2n 1) (1=)-+sinh (2n-1) 7}

Thus the required solution of the given Poisson equation is

U(x,_?z)=vV+W . Z;(zn s;r;(‘:;hg:x " {sinh(Zn—l)n'(l-—y)+sin_h(v2n—.1) n‘y}.

IL.  Plane polar coordinates (r,6):
In plane polar coordinates (r,8), the Laplace equation is

2 2 .
FU 1aU 10U, 6.10)

or* ror r?oe?
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To solve this equation by separation of variable technique, we put

U(r,8)=R(R)©(6)

in(5.11) and get (5.12)
}_( 2dzf+ é@}___ dz(:)—k(say) " .{5.13)
R\ ar dr ® do ,
. where kis separation constant. Then, we havé the following cases :
Case(i): Let k= p* >0 wherepisreal. In this case, we have from (5.13)
r2%§+ Z’f - p*R=0 and %;g+p2®=0
whose solutions are
R(r)=cr" +c,r™" and ©(0)=c;cos pf+c, sin p@
respectively, so that the solution of (5.11) is given by using (5.12) as
U(r,9)=(c1r" +c2r"’)(c3 cos pé +c, sin pb) S - (5.149)
Case (ii) : Let k=0. Then from (5.13) we get o o
2
EERELS
having solutions R(r) = cslrr +¢, ©(6) = ¢,0 + ¢, respectively, so that the solution of G.11)is
U(r,0)=(csInr +¢5)(c,0+¢)- ‘ | (5.15)
(iif) : Let k = —p* < 0. Here the equations (5.13) give |
rz%z-—lz—e--l r g§+ R=0 and Z;?— 0=0
whose soiutions are

R(r)=c,cos(p lnr) +¢ sin(plhr),@(&) =c,e” +c, e

Thus the solution of (5.11) is '
Let us now illustrate the above results by some specific problems,

Interior Dirichlet problem for a circle

Here the problem is to determine a function U in terms of its value on the boundary r = a suchthat {/is
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single-valued and continuous within and onthe circular region and satisfies the two-dimensional Laplace’s equation

(5.1 for 0<r<a,0<6 <27 subject to the boundary condition U (a,0) = f(8),0<8 < 27,/ (6) beinga

‘continuous function of g,

Since the function U is single-valued, so it must satisfy the periodicity condition

U(r,0+27)=U(r,0),0 <6 <2x. Now, noting that » = 0 is a point of the domain of definition, $o In(r) is

undefined and, therefore, the solutions (5.15) and (5.16) are ruled out and the solution (5.14) is to be taken into

account. Also the periodicity condition gives

292

¢y cos pf +c¢, sin pf = c, cosp(27r+9)+c4 sinp(27r+¢9)
o, ¢ [cosé’-cosp(zﬂ +9)]—-c4 [sin p(27 +6)-sin p@] =0
o, sinpx [c3 sin( p6 + pz)—c, cos( pé + pﬂ)] =0

or, sinpr=0

~p=n(n=0,12,..)

Hence, from (5.14), we get by superposition principle,

U(r,0)=3(c,r"+ Dy")(4, cosn0+ B,sinng) N .17
n=} P
Since the solution must be finite at 7 = 0, so D, =0 and we can write the above solution in the form
U(r,&):-;-ao+Z(ancosn9+bnsinn6)r” o o (5.18)
n=|

nn?

where a, =24, a, = 4,c,,b, = B,c,,(n>0). The solution (5.18) is a full range Fourier series.

Now the boundary condition U (a,8) = £(8) gives
F(8)= ao +Z(a cosné +b, sinnd)a"
1 27
a==[f(r)dz.a,=
r 0

(5.19)

Directorate of Distance Edycation



Module 45 : Elliptic Equations

Thus the solution (6.18) can be written as
U(r,9) =—1—2jf(x) —l-[i)" cosn(x;ﬁ) dy
Ty 2\a

Let us now put

c= ) (a) "cosn(y - 0) and S—Z(;J”sinn(x-e)

n=l

. (" )ef(z-e)
%9 a [ I i(2-6) :I
c+is= A2 er—<landie <1
Z{ } 1- r JuaL 4 ; l ,

g ,

Equating real parts, we have

_S(r) e (r/a)cos(z-6)-(r*/a*)
c—g(;) cosn( 9)—1—(2"/“)°°S(2’“0)+(r2/a2)

Hence the required unique solution of Dirichlet interior problem is obtainéd from (5.20) as

j (a-r*) f(2)

—2arcos(y—0)+r

U(r,0)=

sdy.r<a (5.21)

NIH

This is known as Poisson’s integral formula for a circle.
Exterior Dirichlet problem for a circle. |

In this case the problem is to find the value of the function Uat any poiht exterior of the circle r = asatisfying
Luplace’s equation (5.11) for r > a,0 < 6 < 27 and the boundary condition U (a,8) = f(6),0< 6 <2, where
f(6) isacontinuous function of Qand Us bounded as r — .

Hére the solution is given by (5.14). Notihg that U must be bounded as » — %, we take the solution as

n=1

U(r, 8)——-ao+Z(a cosnf +b, sinnd)r™"

where

nZIr n2ﬂ

=',1;? (2Mz.a,== jf(x)cosnz dz,b,=— ff(z sinny-dy

-
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Then, proceeding exactly along the same lines as in the interior Disichlet problem,

we obtain

U(ro)=- [ (r*-a’)/ ()
o r’~2arcos(y-6)+a

sdy,r>a. ’ .(5.22)

Interior Neumann problem for a circle

The problem is to determine a function U (,6) at any point interior to the circle 7= satisfying Laplace’s

. .. oU oUu o
equation (5.11) for 0<r<a,0<8 <27 and the boundary condition . = . = g(9) on r = a, where

2(0),0<8 <2z, isacontinuous functionof g,
Here the solution of the equation (5. 11)in confonhity with the problem, as in the case of interior Dirichlet

problem is taken in the form

U(r,0)= %a" + Zw: (a, cosnd+b, sinnd)r" ‘ : (5.23)
nel o » =

g
Thus at the boundary r = q, where e =8 (9) we have

g(6)= i (a,cosn@+b, sin nf)na"!

n=}

which s a full range Fourier series in g (&) and, therefore,

2x

e Jg(z)cosnz,dz,b,, =;;;3;ifg(g)sinnzdz .
U(r,&)z-l—ao+?g(x){i(i)"-—icosn(z—-é)}dz e
’ 2 b mi\a/ nw
N(:)wﬁwé’putv | _
c=§;§;(—g~) cosn(y-6) and s=§%(§} sinn(‘g-e) |
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so that
c+is=.‘.’_21{f_elu—ﬂ)} = _ﬁln{l_ief(pa)}
o nia n a

Equating real parts on both sides, we have

c=--§;ln{(a2 -2arcos(x~‘9)+r2)/a_(2}

Hence the required solution of the interior Neumann problem is obtained from (5.28) as
1 a % r rrl ,
U(r,6')=§ao—§; !ln{l-chos(x—&)+-‘;2~}~g(z)dx. | (5.29)

Note : The exterior Neumann problem can similarly be formulated.
Example 5.4 : For an infinitely long conducting cylinder of radius @, with its axis coincidence with its axis

coincident with the z-axis, the voltage U (r, ) obeys the Laplace’s equation

2 2 PRSP 1
U 1U 10U _h0sr<w,05052m
or‘ ror r° 08

Find the voltage U (r,8) for r 2 aif imU (,0) =0 subject to the condition 66U = —I-Uo sin36 atr=a.

Solution. The solution of the Laplace’s equation in conformity with the given problem is

U(r,0)= i p"(a, cosnb+b, sinnb)

n=|

Using the condition %g- = 1 U, sin36 atr=a,wehave "
r a

=Y na™"'(a,cosnd +b,sinng)= -;—Uo sin36, forall g,

n=d

3
Uya

sothat a, =0 foralln, b, =0 forall %3 and b, =~ 3

Hence the required solution of the given problem is

Uy(aY
U(r,0)=—-§9-(—-) sin36,a<r <.

r

Directorate of Distance Education A - 295



Module 45 : EIDHC EGUALIONS ...........vvoeeeveeererersseseseseesississosnsseseissessessssisssssestesesseessssessssomses s sasessons

Example 5.5 : Solve the partial differential equation

U 18U 10U

2 St t3 2 2

or‘ ror r°oo
subject to the conditions

6U
6r

=0,

=0 atr=aq,

and %(;]—:U H-l-%é-z—’-'UwsinB as r—» oo,

Solution : Let U (r,6) = R(r)©(6). Then the given Laplace equation gives

I

(d’R dR) 1d°0 _
R

ar? dr | ®d02 (saY)
so that ; |
d’R dR d’e
e r - R=0md 2 40 =0
T Ty " "

whose solutions are : R(r)=a,r" +b,™" and ©(8)=c,cosnd+d,sinnb, so that the solution of

 Laplace’s equation can be written as

U(r,6)= i r" (A, cosnd + B, sin nf)+ ir"" (C, cosnf+ D, sinnb)
n=l nal
provided » # . If =0, then the solution is
U(r,0)=(CyInr+D,)( 40+ B,).

Thus the solution of the given equation

U(r, 8) (C,Inr+D, )(A09+B +Zr (A4,cosnf + B smn¢9)+Zr "(C, cosnf + D, sin nf)

n=1 n=l
Now

.5 (A0<9+B )+an” '(4, cosné + B, sinnd) an"’ '(C, cosn6 + D, sin nb)

=l nel

: ouU
so that to satisfy the condition at infinity, viz. 5 = U, cos8, wemusthave 4, =U,, 4, =0(n=2) and
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B, =0. Also, the condition —aa—U- =( atr=agives
r

—q&(AOB +B,)+U,cosf - i na™"(C,cosnf + D, sin n6) forall 6, implying and
a .

nwl
C,=0,C, =a’U,,C, =0(n22) and D, =0.

Hence the required solution of the given problem is
a’ -
U(r,8)=k0+U,r|1+— |cosf.
r ‘

Example 5.6 : Find the steady state temperature distribution in a semi-circular plate of radius a, insulated on
both the faces with its curved boundary kept at a constant temperature Uy and its bounding diameter kept at zero

temperature.

Solution. In the steady state, the tempefamre Uis ihdepéndent oftime and satisfies Laplace’s ecjiiation

PU 10U, 15U

ol ror r o
The given boundary conditions are
U(a,0)=U,,U(r,0)= U(r,7)=0.
The appropriate solution of the above equation in conformity with the givexi problem is
U(r,0)=(cr +c,r™* )(e; cos p8 +¢, sin p9),
p? being the separation constant. o .
From the boundary condition U (7, 0) =0, we have ¢, =0 and the condition U (r,7) =0 gives sin px =0,
i.e. p=n (neglecting the trivial solution). Also, noting that Umust be finite at» =0, so ¢, =0. Hence the solution for
U, by superf)OSition principle is of the form
U(r,0)= i A" sinnf

n=}
Finally, the condition U (a,8) = U, gives
Uy, = ZA,,a" sin n@

n=1
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s al, ... .
leading to 4, 4" =2—q‘ifsinm9d5= - ,if nisodd
o 0,if niseven.

4U0 . . o .
Hence 4, = p— ifnisoddand 4, = 0if nis even.

Thus the required solution of the given problem is

U(r,0)=% 5 1(1)"sinne= 4, Z(/“) - siné?n—-l)@

W pcoda B\ QA F/ 2 2n-—

I Spherical polarcoordinates (r,8):
Assummg axial symmetry about the polar axis s 6=0s0 that U ( r,0, ¢) is mdependent of ¢ and Laplace’s
equation in spherical polar coordinatesis

LT y
o & ) smooe 20 )" (5.30)

To solve this equation, by separation of variables techmque we put
U(r, 0) R(r)@(é?)
and get
1 d( ,dR 1 d de
il = 0 — =k
R dr ( dr ) Osind dﬁ( sin dﬁ) (say)

where k is separation constant, Taking k=n (n +1 ), we have

2p
2aR+2r~aé~r1g~—n(n-f-l)R 0

1 d de
| —— ] §i + +1)®=0
and sin&d&[sn d@) n(n+1)

. d de
ie. dﬂ{(l p)d#}m(nu)@:o
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where u = cos 8. The solutions of the above equations are
B
R(r)=A-r"+-5 and @(9) CE(K)+DQ.(4)

where P, ( ;t) and Q, ( ,u) are Legendre functlons of the ﬁrst kmd and second kmd respectlvely Hence the

solutlon of (S 30) w1th the use of superposmon pnncxple, is

U(r,6)= Z(A’ ) )[ P(cos‘Q)»fD,,Q,,(cos"B)].’ - - (5.31)

n=l
Example 5.6 : If Uis aharmonic function which s zeroon the cone @ = ¢ and takes the vah_1e Z a,r" on
the cone 4 = g, show that, when o <6 < 5, o
= P,(cos8)Q, (cosa) P,(cosa)Q, (cos9)
U= Z a,r"
P, (cos B)Q, (cosa)- P,(cosa)Q, (cos B) |

Solution. We consider the solution (5.31). Since U must be finite atr=0,so0 B, = 0.

n=0

Hence, we can write

u(r, 0)= r"[a,P (cos9)+ann(0089)]

n

The conditions U(r 0)=0,U(r,p)=) a,r" give

i r"[a,P,(cosa)+b,0, (cosa)]=0

n=0

r" ]:a,,P,, (cos B)+b,0, (cos /)’)] = i a,r"

n=0

Ms

and

[}
(=3

n

leading to , }
a,P, (cosa)+b,0,(cosa)=0
and a,P,(cos B)+b,0,(cos f)=«,
So that

. b P (cosar) . a,0,(cosa)

bu=" “0, 0, (cosa) and @ """ P,(cos B)Q, (cosa)- P,(cosa)Q, (cos )
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Hence the required solution of the harmonic equation is

o o] B(e030)0, (c058)- P (cos)0, co56)
vro)=2e, {P (cos )0, (cos)- 1, (cosa)Q, (°°Sﬂ)}

Example 5.7: Determine the potentlal ofa grounded conductmg sphere of xadlus aina umfonn field defined

_?_(rzé_QJ+__l__.§_(SI Bég) 0,0SrSd,O<9<7r,
or or ) sin@ 66 06 '

with boundary conditions U (a,8) =0 and U —> ~E,rcos 8 as r - o,
Solution. The solution of the given equation in conformity with the given conditions is
U(r.6)= Z(Anr" + f:, ')R,”(cos 8)
n=0 r ‘

The condition U' — —E rcos 6 as r — o gives

iA,,r”P (c0s8) = ~E,yrcosé, forall g,

nu

Thus 4, =~Ey, 4, =0 forall » 1, Hence

U(r,0)=- 0rc059+z P, (cos8).

The boundary condition U (r,6) = 0 gives

0=-F acos49+z

n=0 Q@

P, (cos#).

+l"

Multiplying both sides by P, (cos&).sin & and integrating between the limits 0 to 7, we get

Eya J‘ R (cos8) P, (cosf)sinfdd = alf:l f P,(cos@).P, (cos8)-sinbdé
0 n=l 0 i

Using the orthogonal property of Legendre pélynomials, viz.

2
Y/ if
I (cos6) P, (cos@)sm@de'— 2m+1l nEm,
i 0Oif n#m
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We get

B, 2
E ajP (cos)- P, (cos@)sin 0d¢9 = 2m+1

- But, accordmg to the above orthogonal property, the left hand side vanishes for all m except for m=1.Thus

2 B 2
E,a- =—l. ,i.e.B =Ea’.
A+l @ 2041 °'aA
Hence the required potential is

3
cosé.

U(r,0)=—E,rcosf + E;’?

6.  Solution of Three-dimensional Laplace’s Equation (Separation of Variable Method) :
. Cartesian Coordinates (x, ,2): |

In Cartesian coordinates (x, y, z), the Laplace’s equation is

2,292 0 | (6.1)
ox* oy Oz
To solve this equation by separation of variable technique, we put
U(xy.2)=X(x)7(»)Z(2) - | 62
in(6.1) and get

Ty 1L L gy 63
Y&t ZdP X df | | _(‘)
A2 being separation constant. Then we have

dX

leading to the solution X (x) = ¢, cos 4,x +¢, sin 4x.

Again, from (6.3), we get
1d*Z2 14y
PR O i

where A is separation constant, from which it follows that

dY | pyoand S2-RZ=0.

a’y dz 2
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where 4] = A% + 4} These equations have solutions
Y(y)=c;cos &,y +c,sin Ay and Z(z)= ¢; cosh 4,z + ¢ sinh 4,z
Hence the general solution of the equation (6.1) is _ _
U (x,5,2) = (c, cos Ax+c, sin 4x)(c; cos A,y + ¢, sin Ly)(cscosh Az +¢gsinh 4,z).  (6.4)

Example 6.1: Show that U = where k is constant, is a solution of Laplace’s equation

=
Solution. We have U = k — = _k
= ‘\/{(x-x’)z +(y~~y')2 +(z—z’)2}
‘ ' 2 ’ ’ ' __" nN2
Then—a—(]-::——wanda?:— k 3+3k(x xs)
ox !r ~r| ox = r| 'r -7
OU_ k[ k-¥)  pU & k(z-z)
- o N _ ’
Similarly, » 7] =T and = - + -
3k{(x=x'Y +(y—y'V +(z=2')}
Hence v2y/ = ——3% {(x ¥) +(=y) +(e Z)}=0

Ir - r'[3 ]r - r'[s
Example 6.2 : Find the potential Uin a rectangular box defined by 0 < x < 4,0 < y<b,0<z<c, ifthe
potential is zero on all sides and the bottom, while U= f(x, y) on the top z = ¢ of the box.

Solution. The potential function U (x, y, z) in the rectnagular box satisfies

Laplace equation
o'U U 8
P oy’ %

the Bo'undary conditions for the given problem being
U(0,y,z)=U(a,y,z) =0,
U(x,0,z)=U(x,b,z) =0,
U(x,»,0)=0,U(x,y,c)= f(xy)

inwhich f (x, ) is assumed to be expansible in double Fourier series.

=0,

The general solution of the Laplace’s equation is given by (6.4).
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Now the boundary conditions U (0, y, z) = 0 and U (a, y, 2) = 0 give respectively ¢, =0 and
A =m%/ (m=1,2,...). Also the conditions U (x,0,2) =0 and U (x, b, z) = 0 lead respectively to ¢, =0 and

A=n % (n=1,2,...). Also the condition U (x, , 0)=0 gives ¢, = 0. Further, we note that

M e
R=+X=x (_;2_+.’_'?)=,1;”(say),

b
2 2
so that 4, =7r,‘,m +%2— = A

Thus, by the use of superposition principle, the solution for Uis.

x,y,z) iic sm( )sin( b )smh( ) ‘ : o ‘(6.4)

m=l n=l

Now the boundary condition U (x, y, c) f (x, )

o)~ E i 22 o

. m=l n=l

which is a double Fourier sine series, so that

“ xx) . [(nmy
¢, sinh(4,,c)= I! (x,y)sm( ,]'sm( - )dxdy.

0

Hence the required potential is given by (6.4) where c,, is obtained from the above integral. '
II.  Cylindrical coordinates (7,6,z):

Laplace’ sequatlon in three-dimensional cylmdncal coordmates (r o, z) is given by
sU 1oU 10U U . R
e e —— =0, 6.5
or’ ror 1’ 00* 8t o v ©3)
U(r.8,2)=R(r)®(0)Z(z) | . 6.6)
Substituting this in (6.5) we get | -

(d’ ldRJ 1 d’0 1d°Z _

+—— |+ = .
7 ra e dr Z &t ©.7
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Assume’—ZI--(-I-—Z~5Z-‘—-m2 and-é—jg? = nz,‘i.e
d’Z d’ 29 =
..;Z.T_mzz-—o and 25—2-+n ©=0

2 2
ﬂ+-l—g£+[m2 —-ﬁz—) =0

-
whose solution is
R(r)=cJ, (mr)+cY, (mr).
‘Hence the most géneral solution of the equation (6.5) is l
U(r,0,z)={cJ,(mr)+c,?, (mr)}(c, cosn +c, cosnd) (ce™ +cee™ ) (6.8)

Example 6.3 : Find the potential Uinside the cylinder 07 <a,00<27,0<z<h, ifthe pofential on

R 2
the top z= h and on the lateral surface r = a is held at zero, while on the base z = 0,U =U, ( 1- i‘;), where U,

is constant.
Solution. In this case, the potential Uis single-valued and satisfies Laplace’s equation (6.5). The boundary

conditions are

) 2
U(r.0,h)=0,U(a,8,2)=0,U(r,6,0)=U, [1--"-2-).

a

Now consider the general solution (6.8). Since Y, (mr) -« as r — 0, so ¢, = 0.

2

Also, the face z =0 has the potential U, [1 - 2—2-) , afunction independent of @, threfore, the potential U

must be independent of g inside the cylinder and this is possible provided n = 0. Hence, the general solytion of
Laplace’s equation for the given problem is of the form
U(r,z)=J, (mr)(Ae’": +Be™ )

Now the boundary condition U (r,8,4) = 0 gives
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emh

Ae™ +Be™™ =0,ie.B=-A4-—;
e

so that
U(r,z)=CJ,(mr)sinhm(z- h), where C =24/e™™
The boundary condition U= 0 on the lateral surface = a shows that J, (ma) = 0 which has thely many
positiveroots £,, say,sothat &, =ma, ie. m= £ p'/ a. Thus the solution of Laplace equation takes ihe form

U(r,z)= iApJ0 (¢, r/a)sinh{fp(z - h)/a}.

p=l
)

: L
Again the condition U(r,z)=U, (1 “;?) atz=0implies

U0(1—§;)=i/1p sinh{~¢ h/a}-J, (¢, r/a) | |

p=l
which is a Fourier-Bessel series. Multiplying both sides by nJ, (Vf » %) and then integrating with respect to

r between the limits 0 to a we get

Uﬂl-%}%(@ VALE gAl,sinh{-—;p %}:jr.zo(gq%)./o (¢, 7 )ar

Using the orthogonal property of Bessel function, viz.

aZ

ifx J, (ax)J, (a J.x)dx =12
0

I (@) ifi=j
0,ifi# j |

where @, and «, are roots of J, (x) =0, we get

UOZI(]—-:;E-JrJO (fq %)dr =32—2-iApSinh{__§p %}"sz (é’p,) :

p=l

.
- a Si“h(‘_fp h/a)- J‘(l a* )rJﬂ <§P %) r

0
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Noting the relations fx Jo (x) dx =xJ,(x) and fx %J, (x)dx = x* J,(x), we obtain after integrating by
varts |
4U,J,(¢£,)

T EAT

Noting the recourrence relation J,_, (x)+J,,, (x)--——J (x), we have by putting n=1,x=¢, and

keeping in mind that J, (gp) =0,J, (fp) =2J, (fp )/f,, and, thgrefore,

Y- 8UJ,(£,)
? fsmh(-—f h/a)Jz( ¢)

Hence the required solution for the potential function is

( r/a)smh{f (z- h)/a}
U(r,z)= 8U§; £\, Jsinh (-2, Wa)

111 ‘Spherical polar coordinates (r,6’,¢):

In this case, the Laplace equation is

( GUJ% I a( ngazf}_ L 2U_, . | o
o\ o) sin6o6" 26 ) snToagr " 6.9)
To solve this equation, we put U(r,6,¢)=R(r)F(6,4) in (6.9) we get

1d{,0U 1 0 oF 1 8*F

- =— —| sinf— |+—— =-n(n+1), 6.10

Rdr[ Gr) FsinH{aB(sm aa) sin® a¢?} (n+1), say (610)
(n+1) being a separation parameter. So we have

1.d( ,0U

Rdr( 5 )+n(n+l)R 0 | | (6.10)

1 (o oF\ 1 &F |

—— - sin0 % |+ ——2 o pne DN F =0 (6.1

sinﬁ{aé?(sm 'ae) sm@@gﬁ} n(n+1) 61D

Solution of the equation (6.10) is

R(r)=cr"+ czrf("+')
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For the solution of (6.11) we take F (9,¢»)=®(0)<D(¢) so that
sind | d d® 1 d’® ~
-—@—{dg( me-@—)+n(n+1)sm 6. @} —-5-2—;;=m2, say - (6.12)

m? being another separation constant. Then we have

sme{ d ( 6-%?—)+n(n+l)sm 6- @}

0 |46

2
ie. (1- y)g;@-zygg+{n(n+1)-7}@ 0 (putting cos6 = /1)

d d’o
ag’
Solutions of these equations are given by
@ ()=, P (1) +c,Qr (1) and ©(g) = c; cosmp +c, sinmg,

for —1< pu <1, respectively, where P,,"* and Q" are associated Legendre functions of the first and second

kind: Since Q" has a singularity at 8 = 0, so we take ¢, =0.
Hence the general solution of the Laplace’s equation (6.9) is

U(r,6,¢)= ZZ(qr ) )(B cosmg + B, sinmg)P," (cos6), C O (6.12)

m=0 n=0
where B, =c,¢, B, =c,c;and 067w
In particular, for the axisymmetric case, the general solution is independent of ¢ and we have

0) =i2(¢:f" o )P”' (cos6). | - (6.13)

m=0 n=0

Interior Dirichlet problem for a sphere:
“The problem is to find the value of the function U at any point interior of the sphere r = a such the

VU =0,0<r<a,0<0<7,0<¢<2x and U(r,6,4)=f(6.4)
Since r = 0 is a point within the sphere r = a, so we must have ¢,=0.

Thus from (6.12), we have

U(r.6,¢)= i ir" [4,, cosmg + B,,, sin mg) Pl (cos6),. 6. 14

m=0 n=0
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4,,»B,, being new constants after adjustment. Using the boundary condition U (r,6,¢) = f (0 ¢) we get

U(6,¢)= ZZa ,,,,,cosm¢+Bm,,smm¢]Pn”’(y) | - (6.15)

m=0 n=0
where it is assumed that U (6.9) is expansible in series of associated Legendre functxon Multlp!ymg both

sides of (6.15) by B," (u)cosmg¢ and then integrating w.r.t. # between—1 to 1 and ¢ between 0 to 27, we
have |

2z 1

[[r@sp: (#)cosm¢d,ud¢

e

so that

2n+1)(n—m)1*= ‘
.~;44”7=(2;a"zr(izn+nl;-!) ] SO eosmpdpdg. 6.16)

Similarly, mutliplying both sides of (6.15) by P" (4)sinmg and then integrating with respect to 1 from -1

oland ¢ from0to 27, we obtain

2n+)(n-m)1% . . : .
S om0 (upsinmp s e

m

Using (6.16) and (6.17) in (6.14), it follows that the required solution is

U(r,0.4 =51__”2:2(2}1“)(11 m)! (a) 5

=0 n=0 (m+n)’

1 27

jff(r;,;g)Pn"' () B (1) cos my -cos ma +sin my-sinmn|dndy.. .

-1 0

7 pi=0 n=0 (m+n)'

1 27

J-J.f(ry X)E (cos,y)P"’ (cosn)cosm(y—n)dndy. 6.18)

-1 0
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7. Potential Due to a Continuous Distribution
Consider the function U given by |

U 7)== L

= ey - =7 oD

where ¢ is a constant and (x', ', 2") are the coordinates of a fixed point.

2
é—-=——-—-———-———~q(x x) tc.andaU—- q(x x)+3q(x x) etc.,

o Jr-rf & |-rf -t

it is readily seen that v2{/ = 0 SO that (7. 1) is a solution of Laplace’s equation except éossibly at the point
(x',',2') whereitis undefined. The function Uiscalled potential function.

The function U given by (7.1) is a possible form for the electrostatic potentlal corresponding to a space
which, apart from the isolated point (x V2 ) isempty of electric charge ¢. By a simple superposition procedure.
We see that for n charges ¢;,(i =1,2,...7);

U(xyz)= Y (1.2)

is the solution of Laplace’s equation corresponding to n charges g, situated at points 7,,(i =1,2,..., n).
Inreality, we usually deal with continuous distributions of charge instead of point charges or dipoles. Fora
~ continuous distribution of charge filling a region V of space, the corresponding form of the potential function Uis

givenby

U(r)= IM | | (13)

=71
where p(r ) denotes the charge density at the point 7.
Similarly, it can be shown that the solutxon of Laplace’s equation corresponding toa continuous distribution

of charges of density o ona'surface Sis
(7.4)

Itis to be noted that the results (7.3) and (7 .4) also hold good for continuous distribution of magnetic poies

or gravitational masses.
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Potential of a double lager

Suppose a charge — be placed

at O(x,»,z') and a charge +q at
O'(x' +Ax', y' + Ay z'+ Az') where
Q' (= AL) is very small, If q is very
largeand A7 is very small such that the

o)
O(72)  (yryar, Y+, 7, A7)

product gAL (= ) is finite, then such a ‘ (-9)

pair forms a doublet or dipole and the :

direction of the vector é@' iscalled the

axis of the doublet.

| Now, 1fPQ =rand PQ' =r + Ar, then the potential at P due to this doublet is

U=Iim[ 2 -g-:}=limg—ééH-l—-r(Ax’—g-+Ay'£~;+Az'—a-7J(—l-J+...}.—-l-]

M r+Ar r | a0 AL |4 o oz' )\ r r
. A 0 Ay 8 A 81 ) ) 0 1)
=limgALl | —— 422 = 22 0 |[1] | h—+m—+n—| =] "
wso HAL ox' AL& AL 62')(1‘) J ,u( o T o' & 62’)(r
. o1
Le. U(x,py,z)= p—| ~ |, , 7.5
—" 1 0s

where 2 = ] 2., m, 2, n, 2 and (hsmy,n,) are the direction cosines of 00’ and sy, isan element
on ar Mgy Ty

ot doublet, 11 is called the moment of the doublet. , o
Now let us consider two surfaces S sand S’ atasmall distance A7 apart and the charges be distributed
thereon in such a way that the negative charges lie on the surface § and positive charges on ', the axis of the
Charges being everywhere normal to both the surface and is directed from the negative to positive charges. Passing
tothe limitas AZ — 0, we obtain the double layer as a combination of two single layers with oppbsite charges at

a very small distance from one another. The potential U of all such charges distributed on the double layer is

obtained in a similar process as above
-8 (1 : -
Ulx,y,2)= |u—=| - |ds"
(x.5.2) Sf"an (r) )
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where p is the moment of the double I&yer
The result (7.6) is also true for magnetic poles and mass dxstnbutxon
Representation of harmonic function as the sum of potentlals

of a simple and double layers.
Let Vbe any regular region and P(x,,z) be any interior point.
, 1
In Green’s second identity (4.3), we put ¢ = U and ¥ = where

= PQ and Q(x',y’,z') being a point in V. Since P is interior to
¥, so this identity cannot be applied to the whole region V. So, we

surround P by a small sphere 3 with P as centre and radius ¢.

. ,
For the resulting region V', we have by noting that > is harmonic

iny .
‘where gy isan element of normal to the boundary of ¥ pointing outward from 7 so thaton ¥, ithas the
direction Qppdsite to that of .

Now, we have

o(1 0 ¢ 01
;U.é;[-;sz—mgU(lla?*‘m]g;*—nl @}(:sz

=j‘u{1|..1._qr_+m] 1 or n._l_.‘?f_]dz
r r

= I Ur—d ,f udQ (where 4@ is the solid angle subtended atPby dy)
z

=U(P') [dQ=4xU(P') [where P'is 2]

—> 47U (P) as € = 0.
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Agam o)

’ PESMI-—dE (where Mis theupperboundof—-'—

=M -1~jaiz=3-—1-.4zrg2 =47Be —>0as &0,
&‘Z £

Hence, proceeding to the limitas & —» 0, we obtain from (7.7)

1
- Vj;VZUdV = J{U%G)—-}%ﬂ}ds +47U (P) (1.8)
Nowif Uis harmonic in ¥, i.e. if v2{/ = ¢ in ¥, then (7.8) gives
1ou
U(P)= Sji’-i;@idSJr Sj(—-%)-é%(-:—)dS | 1.9)

Comparing (7.9) with (7.4) and (7.6) we see that the first term on the right hand side of (7.9) represents the

1 oU
potential of a surface distribution of charges on S of density — ar on while the second term is the potential of a

U
double layer on S of moment [ - Z;J Hence every regular harmonic function can be represented as the sum of

potentials due to a simple surface distribution of charges and due to a double layer on the surface.

Exercise

U U
By separating the variables, show that the equation o 3 txT PY =0 has solutions of the form

Aexp(xnZ +iny), where A and n are constants. Deduce that functions of the form
A , rax) . [ rzxy
U(x,y)=) A exp| ——= |-sin| =——= |, x>0,y >0,
(07)=24 p( ~ ] ( . ) y
where 4,s are constants, are plane harmonic functinos satisfying the conditioins U (x,0) = 0,U (x,a)=0

and U(x,y) -0 as x — o,

2. Athinrectangular homogeneous thermally conducted plate occupies the region 0 < x < 4,0 < y < b. The

edgey=0is held at temperature 7 (x—a), where T'is a constant and the other edges are maintained at 0%,

312 ' Directorate of Distance Egyjcation



Module 45 : Elliptic Equations

.................................................................................................................

The other faces are insulated and there is no heat source or sink inside the plate. Find the steady state

temperature inside the plate.

8Ta*> & Cosech{(2n+l)7tb/a} g (2n+1)7x sinih (2n+1)(j—b)7t

[Ans U(x,y)= = Z

poor (2n+ l)3 a a

3. Solvethe Laplace’s equation satisfying the boundary conditions
U(0,5)=U(x,0)=U(x,b)=0,U,(a,y)=Tsin’
[Ans U(x,y)= ﬂzlsech(nna) nh(—’ﬂ-’—c—)ssilri3 (QH
T a2 . b a
4. Letf(x)and g (x)beanalyticand U, (x, y) be the solution of the Cauchy problem described by

- +-5y—--0 subject to U (x,0) = F(x), 6U§;c,0) (x)

and let U, (x, ) be the solution of the above partial differential equation subject to

zy
o

o U

oU (x,0 . ' | . .
U(x,J’)=f(x),*—*C:(}‘y)‘c—-‘)‘ = g(x)+-’1;smnx. Show that U, (x,) U, (x,y)=;;smnx'smhny.
2
5. Let U{r,0) satisfies the equation il{ +1 EBaU +—1-2— 3; = 0 within the region of the plane bounded by
¥ ror r

V4
r=a,r=5b60=0and €= % Its value along the boundary r = a is 9(‘2‘—9) and along the other

boundaries it is zero.

Show that

Z (r/b)" ? --(b/r)w2 sin(4n- 2)0

7 (afb)" (bla)"™"  (2n-1)

6.  Alongcircularcylinder is made of two halves, the upper half-surface is at temperature 7, while the lower half
" is attemperature T,. Find the steady-state distribution of temperature inside the cylinder.

2(T; - T)Z 2""sin(2n-=1)¢9}Z

1
[AHS.U(I’,G) = "2'(7; +T2) - (272—1)02”_’
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S : 2 2 ‘
7. Solvethepartialdifferentialequation é——({-+l§2+i 0 ({ = 0 subject to the conditions Y =0atr=q
a’ ror r*de or

and 2I—J--->Ucos¢9 ——?E-—)-Usin&as r—> 0,
or r 00

8. Athermally conductmg solid, bounded by two concentric spheres of radii a and b (a <b), issuch that the
internal boundary is kept at temperature f; (6) and the outer boundary at £, (6). Find the state temperature

in the solid.

R n+l n+l n+|bn+) Cbn .D Fl
[Ans U(r,0)= Z(A"r + MJP (cos@),where 4, = S ‘;M fbfl B, = b"’(“ ] @)

- -a
n=0 o

2n+1 2n+1

f 5(0)p, (cos 8)sin6d9

and €, = ff (H)p,, (cos8)sin6d6, D, =

9. Find the steady state temperature dxstrxbutxon In a semi-circular plate of radlus ainsulated on both the faces

w ith its curved boundary keptata constanttem perature T,and its bounding diameter kept at zero temperature.

[m U(r 9)_ §2n+1(~)msin(2n+1)é]

10.  Inasolid sphere of radius a, the surface is maintained at the temperature given by

o kcos9,0$¢9,<_%
f(9)=9

0,—<f<rm
2
Prove that the steady state temperature within the solid is

U (r,0)= /{ B (1) +L ( )p( )+ ( ) P (u )-_.-( )41’(;1)4- }

where u=cosé _
11. Find the electrostatic potential U for the spherical shell bounded by the concentric sphere

r=a,r =b(0<a<b) ifthe inner and outer surface are kept at potentials Viand ¥, (V, #1;).
ab [ (1 1) (1 1Y
Ans. U(r)=2Ldp[=_L1lip (L 1)L
[ns (?‘) b-—a{'(r b] 2(0 r)}}

314 ’ Directorate of Distance Educgtion



........................ teereressessesssasesesesssesssessseasessacsesenseersesssesssssssnessrennnsnseennrs Module 45 : Elliptic Equations

12. Show that in cylindrical coordinates _(r,9,z), Laplace’s euquation has solution of the form

R(r)exp(tmz tind), where R(r) is a solution of the Besseel’s equation

2 ' 2
d—R+lé£+(m2 —f—)R =0.

2

If the solution tends to zero as z —» wo and is finite when r =0, show that in the usual notations of Bessel
function, the appropriate solutions are made uia ofterms of the form J, (mr) exp(¥mz ting).

13.  Asolid right circular cylinder is bounded by the surface p = a,z = *h, the system of coordinates being
(r,6,z). Find the steady temperature U (r, z) at an internal point (r.6,z) iftU=0onr=a,U=T,onz=
hand U=T,onz=-h. |

ke {T2 (e'f"("”) ;é“é,(z—h))_ 7; (efn(z;h) _ e-{,,(nh) )} »

2
Ans.U(r,z)=— Z
¢} (r Z) a pr énJ] (g.na)(ezfnh _e—thh)

| &, being the roots of J, (¢, ) 0 o
14.  Ahomogeneous thermally conductmg cylinder occupies theregion 0<r<q,0<60<27,0<z<4, where
(r, o, z) are cylinderical coordinates. The topz=h and the lateral surface r = g are held at 0°C while the
 base z=0Oisheldat 100°C. Assuming that there are no sources of heat within the cylinder, find the steady
temperature distribution within the cylinder. C ‘

J,(& r/a)sinh{&, (z-h)/a}
| )

+6n bemg the roots of the equation

Jo(£a)=0]
15. In the theory of elasticity, the stress function U (x, y) in the problem of torsion, satisfies the Poisson’s
o’U U ' . .\ _ _ o
equation —-+— =2,0< x <4,0< y <5, with the boundary conditions U=0onx=0,4and y=0,

5. Find the stress function U (x, y).

) (2n -Drx

Ans.U (% - 4+ S s P L) s L nh(zn-})g‘}
)= ;(2n 1)’ sinh { 4 ; 4 }
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Paper-1V

M.Sc. Course
- in
Applied Mathematics with Oceanology
and
- Computer Programming
PARTI
: : Group—B
Module No. - 46
PARABOLIC EQUATIONS

1. Introduction :

The diffusion phenomena like conduction of heat in solids, diffusion in isotropic media, diffusion of vomcny,

slowing down of neutrons in matter etc. are all govemed by parabolxc equatlon of the form

or
kVZT = —
P | _ (1.1)

where £ is constant. The equation (1-1) is known as diffusion or heat conduction equation. In this unit,

we consider various properties and solution of parabolic equation.

2. Occurrence of Diffusion Equation

~ Wenow illustrate some examples regarding occurrence of diffusion equation in various fields.

(@)

Conduction of heat in solids : If T'(r, f) be the temperature atapoint ina homogeneous i 1sotrop1c elastic

solid, then the rate of heat flow per unit area across a plane is

__or o |
q o Q.1

0 .
where k is thermal conductivity of the solid and the operator n denotes the differentiation in the

direction of the normal to the plane. Now if the solid does not undergo radioactive decay or absorbing
radiation or if there is no generation or absorption of heat due to chemical reaction, then flow of heat is

governed by the equation

pcg;J?.(k\“?T) - (2.2)



................

®)

- ©

e

©
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where p is the density and cis the spemﬁc heat. In particular, for constant conductivity &, equation

(2.2) reduces to
or |
=kV°T ‘ 2.3

where x = x/pc.
Diffusion in isotropic media : If ¢ be the concentration of the diffusing substance, then the diffusion

current vector J is governed by Fick’s law of' diffusion J = -D V¢, Dbeing the diffusion coefficient.
The equation of continuity for the diffusing substance is givenby

c = éc =
61‘ +V. J O L. -é—= (DVC)
and for constant diffusion coefficient o o
de ‘ ‘
= DV2 . - 4
o , o (24)

Diffusion of vortlclty For the motion of a viscous ﬂmd of densxty p and kmetw viscosity v, the

~ vorticity i satisfies diffusion equation

=V 2
- TR @

Conducting media : In the case of pmpagatxon of long waves in a good conductor, the electric field
vector ; satisfies the equation of the form

6E
=uV’E - : ; 2.6
o 2.6)

where v =c?/4 nou,c is the velocity of light in free space, o is the conductivity and p is the
permeability.
Slowing down of neutrons in matter : Under certain conditions, the transport equation for slowing
down of neutrons can be reduced to the form
ox _ d’x |
06 o’
where 7(z,0) is the number of neutrons per unit time which reachageand T (2, 0) represents the

—+T(2,6)

number of neutrons produced per unit time per unit volume.

3. Boundary and Initial Conditions
To solve problems involving diffusion equation, we require specification of boundary and intial conditions.
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There are mainly three types of boundary conditions given as follows:

(@

)

©

Dirichlet Condition : In this case, the temperature T'is prescribed over the surface, i.e. T = f(F,¢)
on the boundary, where G(F,?) is some prescribed function, which may sometimes be function of
position r only, or a function of time ¢ only ora constant. In particular, if G(7,¢) =0, thenitiscalleda
homogeneous boundary condition. .

o or , _oT

Neumann Condition : Here the heat flux -én— is pnes’cribed onthe b’ou’ndary,‘whem *é; isthe normal
- : v

derivative, i.e. 5= g(7.t ) onthe boundary In partxcular, if g(r 1) =0, thenwe have insulated

boundary condition. ,\ ,’
Robin’s Condition : Ifa linear combination of the temperature and its normal derivative is prescribed

ontheboundary ie. 1fk—a-;+hT =G(F.1), wherekandhareconstants thenthxscondmomscallod

Robm s condmon Intis case, the boundary surface dissipates heat by convection. Usmg Newton’s
law of cooling which states that the rate of heat transferred from the body to the surroundings is

proportional to the difference of temperature between the body and the surroundings so that we have

oT
k—= h(T T ) T bemg the temperature of the surroundings. In pamcular for homogeneous

on

: or
boundary condition, we have & ™ +hT =0.

- Inaddition to the above boundary conditions, the initial condition s to be prescribed to solve the diffusion

Squation,

4. - Elementary Solution of Diffusion Equation:
Consider the one-dimensional diffusion equation

OT or

k—=—,—0<x<%0,t>0 ' . “4.1)
ox” Ot : ‘
Now, putting
1 2 . '
T(xt)=—mmexp{-(x~¢) 4k}, ‘, e

318
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so-that

o, 1 {(X*i)z‘ 1 }exp{"(x"’:)z/4h}

o Jarkt | 4k’ 2nkt

ou Do U8 ol (o=

o arkt | 4k> 2
where £ is éreal constant, we seée that (4.2) is é solution of the equation (4.1). The function (4.2), called the
~ kernel, is the elementary / or the fundamentary solution of @“.1) for —o < x < oo This kernel is an analytic function
of x and ¢ for £0 and it is positive for all x. It may be noted that 77— ( as ]xl -~ 00,
To get an insight into the solution (4.2) of the equanon (4 1), we consuier the cquanon foran mﬁmte region
—0 < x <0 subjected to an initial temperature f(x), i.e. T (x, 0), f (x).

Let T(x,t) = X (x)6(t) so that from (4.1), we have

1d*°X 1do ‘
LI Sy @3
X a koa ; @3

where 2 isaseparation constant.
Now the solution for 0 is g = ce*#, For A >0, then 6 and, therefore, T grows exponentially with time and

this is unrealistic from the physical point of view. Thus we assume that f (x) — 0 as |x| — 0 and Ir €2 t)l <M
as |x| — «. Hence, for T'(x, f) to remain bounded, 4 must be neggti\ie and, therefore, we take 1=/ so that
O() = ce™". | o
Again from (4.3) we have
Lax
X dx’

whose solutionis X (x) = ¢, cos ux + ¢, sin ux.

+12X =0

Thus the solution of the equation (4.1) is
T(x,t;4)= (Acosyx+Bsin;¢x)e"“‘ !
where 4 = cc,, B = cc, arbitrary constants. Now, it is to be noted that f{x) i, in general, non-periodic and
so we may consider Fourier integral instead of Fourier series. Also, 4 and B being arbitrary, we may consider them
as functions of . Moreover, as we have no bounda:y condition which limit our choice of 4, we are to comsider

all possible values. Thus, by the principle of superposition, it follows that the solutionof (4.]) is
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T(x,t)= jT(x,t;y)d,u = f[A(,u)cos px+ B(p)sin px Je ™ dy ' 4.4)
0 0
The boundary condition T (x,0) = f(x) gives

F(x)= I[A(u)cos px+ B(w)sin px [dp | 4.5)

Now, using the Fourier integral theorem, viz.

7= ?f(y)cosu(w)dy}m
we get = %T[éosﬂx ?f(y)cosyydvfsin/zx T[f(y)sin,uydy:]kd,u’

puting 4(4) = | [70)eosindy, B() =2 Tr()simmyay, 46)
we see from (4.5) that from (4.5) that
T(x0)=/(x f[ [ 7(v)cos p(x- y)dy]

Thus from.(4.4), the required solution for T'(x, £) is

7 (x1) %IU 7 () cos (- y)a)z]e"‘"z'd,u

ie. T(x,1)=% °]'f(_y)[g:i'e'/c,ﬂr cos,u(x-—y)d#Jaj’,

where, we have assumed that the order of integration is interchangeble.
“ Using the result

j.e". cos(2bz)dz ~~—-—— -
0

we get by putting z = yv/kr and 2b = f:—y—,b being real,
Jxt

“ kit -)d = \/7-; ’—}(x-yj2/4h
(;fe cos;z(x»,y) U _—-—-——ng, ~
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so that the solution (4.7) can be expressed as

T(x.t)= m._ j f(y)etr gy, (4.8)

Particular Case
As a particular case of the above result, we suppose that the initial temperature is constant, say T;, within the

region a<x<b and zero outside this region, i.e.

1)+

Then the solution (4.8) reduces to

T,,a<x<b
0,outside theregion

T(x,t)= \[m I =) /‘"“

(b-x)/ﬁ'; 1 ' X-y
== e“’”d{ (Putting— - =¢’)

& ek

i.e.T(x,t)=%[erf(3m) erf(mn e - '(4;9)

{b-x)/ Akt 2 (a-x)/Nak .
- dé

5. Solution of Diffusion Equation in One-dimension (separation of Variables Method)
I.  Cartesian Coordinate

In Cartesian coordinates, the solution of the one-dimensional diffusion equation

or o’T
=k 5.1
is given by separation of variable method as
T(x,t):(Acos,ux+Bsin/1x)e”“‘z’ (5.2)

(vide section-4), where — pz is separation constant and 4, Bare arbitrary constants.
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Example 5.1 : A conducting bar of uniform cross-section lies along the x-axis with ends at x=0 and x=L. It
is kept at temperature 0° and its lateral surface is insulated. There are no heat sources in the bar. The end x =0 is
kept at 0° and heat is suddenly applied at the end x = L so that there is a constant flux Q,atx=L.Find tﬁe
temperature distribution in the bar for > 0. '

Solution : The given initial value problem isto solve the diffusion equation

or o |
ot
subject to the initial-condition T(x,0)=0,0< x < L and boundary conditions

T(0,¢)= O,%Y:(L,t) = Q, fors > 0.
Now; prior to applying heat suddenly at the end x = L when 1> 0, the heat flow in the bar must be independent
of time. Hence the temperature 7 (x, ¢) consists of two parts, viz. a steady part T,(x) and an unsteady part

T, (x,1), say, i.e. T(x,t)= T,(x)+T,(x,1).
. . . .. d’Ts .
For steady state condition, the differential equation is o =0 and the boundary conditions are

| dTs S . e .
1, =0 at x=0 and —— =0, atx= L. Using these conditions, the solution of the above differential equation is

dx
T, (x ) =Qyx.
“To find the solution for the unsteady part 7, (x,t), we are to solve the equation
oT, 0T,
=kt
o O

subject to the initial condition T, (x,0)=7(x,0)=T, (x) =-0x,0<x<L and boundary conditions :

T, (L,t) T (L) OT.(Lt) ,
"( )=' ( ) - ( )=0 for >0. Now the solution of the above

7, (0)=T(0.) -7, (0)=0,

Ox Ox Ox
equation subject to the boundary condition 7, (0,¢) = 0 is 7, (x,#) = Be™*" sin yx, - 1* being separation constant.
oT, (L,t) (2n+1)7

The boundary condition T =0 gives cosuL =0 so that 4 = YR where n=0, 1, 2, ... Thus
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dE,  (on+]
T, (x.t)= ZBe 4 sm( ﬂx].
nal 2L
The initial condition 7, (x,0) = Q% gives
-0, (x)= i B, sin(zn +1 ztx)
n=0 2L

nx J and integrating between 0 to L and then noting that

L. 2m+1
Multiplying both sides by oL

LJ- : (2n+l ) . (2m+1 ) Eﬂ{i,m=n
B, sin zx |-sin wx |dx=9{ 2
g .\ 2L 2L

Om=#n

we get on integration by parts on the left hand side

Qo( )()

_ 8(_1)n+l LQ
(2n+ 1)2 e

or,

Hence the réquired solution of the given problemis

LQ (- )’“‘ (2n+l) 7| (2n+1 )
T(x, X+ 0 fAe——t—— 3 xsin x|
( ) QO g (2 + 1) 4L2 2L i
o . or T ., .. .
Example 5.2 : Solve the diffusion equation a rel satisfying the boundary contion T=0atx=0 and

x = 1 and the initial condition

2x,0$xs-1—
T(x,0)= | 2
2(1—~x),—i_<_x.<_1.

Solution ; The general solution of the given equation is

T(x,t)=(Acos ux+ Bsin px)e™,
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~u* being separation constant and 4, B are arbitrary constants. Using the boundary conditions we get

A=0,sin = 0,i.e. 4 = nz. Thus, by superposition, we have
T(x,t)= Z B,,e“"z"z’ sin (nzx).
n=|

The given initial conditions lead to

= 2 )‘T(x,O)sin (nmx)dx

0

B

n

%! ! ‘ 8 nw
=2(2 jxsin(mrx)dx+2 f(l—x)sin(mzx)aix = sin(—)
; 7 nr 2

Hence the required solution is

T(x,t)= -7% i ;lz—sin(ng-)sin (nrx) e,

n=|

II.  Plane polar coordinates
Here the diffusion equation is
k(éﬂl’+l§1]=éi ,
ot r or OF e (5.3)
where =T (r, f)
Letusput 7(r,t) = R(r)©(r) in(5.3) so that we have

R

—+

('R _14R) 1do_
dar’ r dr
—u’ being separation constant. Then it follows that
| do
A A P R=0and 2 ko0
g # T 0and G a

whose solutions are R(r) = c,J, (ur)+c,¥, (ur) and 6(t) = c,e™"". Thus the required solution of the
equation (5.3) is
T(r,t)={AJ,(ur)+BY, (;zr)}‘e"“‘z’ | (5.4)

where 4 =c,cy, B =c,c,.
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62T 1or 10T,

Example 5.3 : If T(r, f) satisfies the diffusion equanbn P —a—r— = T in 0 € r < a,t > 0 and satisfies

the initial condition T(r,O)'= f(r),0<r < a and the boundary condition %]-: + AT =0 atr=a,t>0, show that
" .

r—-zw fe" Jo;r) u ujau
R ey d O

where &,,(n=1,2,...), are the roots of the equation #J, (af)=¢J,(ag).

Solution. Noting that ¥, (¢r) is infinite at =0 so that we have to discard this solution, we get from (5.4),
T(rt)=AJy(Er)e™" |

where —¢ is separation constant. The boundary condition gives
&y (a)+hJy(Ea)=0,ie.&J, (éa)=¢J,(4a)-

Let the roots of this equation be &,&,,... Then, by superposition,

T(r,t)= i AJ, (fnr)e"‘"‘:‘
n=\
The initial condition T (r, 0)=f(r) gives
£(r)=2 Ao (&r)
n=l

Multiplying both sides by r J, (&,) and integrating both sides with respect » between 0 to a, we have

ajrf(r)./o (&,r)dr= i}A,, ‘i[r Jo (&) o (&) dr
Since

(), () - L[ (8e)+ (6] form =

0 0, form#n

it follows that

aj‘rf(r)Jo (&,r)dr = %azAn [Jg (&a)+ ! (&,a)]

Q
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and, therefore,

KiG +§§)J: (&) ff ()5 (&) .

Thus the regired solution is

T(r t)= yzz(hz 52)-/2(5 )J'ufr u)Jy (¢, u)du

n=|

{l.  Spherical polar coordinates
One-dimensional diffusion equation inspherical polar coordinates is
k(ﬂ : GT} x (5.5)
ot ror ot
where T=T(r, 1).

Putting T(r,t) = R(r)@(t) in (5.5) we get

1fo'R 20R)_1d0__ , , ,

Rl r Y %0 a@r M, separation const.
so that

O’R 28R o,

5 +=—+’R=0 —t 1°kf =0

ot or and dar #

whose solutions are R(r)=c¢, cos (ur)+c,sin ( pr) and G(t) = cae"“‘z’ and, hence, the solution of the
equation (5.5) is
T(r.,t)={Acos (ur)+ Bsin(ur)}e (5.6)
where 4 =cc;, B=c,c,.
Example 5.4: A homoegenous solid sphere of radius a has the initial temperature distribution /(r),0<s <a,
where r is the distance measured from the centre. The surface temmraﬁre is maintained at 0°. Show that the

temperature T (r, f) in the sphere is a solution of
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T L(oT 20T
t or‘ ror

and the temperature in the sphere for #> 0 is given by

I(r1) =%§B,, sin(nz 7/, )

whee ¢? is constant and

a

B, =;2,- jrf(r)sin(mr r/a)dr

0

Solution. Let T'(r,) = 1y (7,t). Then the given equation reduces to
- ,

oU ,dU , | P |
5= C7

and the corresponding initial condition is U(r,0)=r f(r),0<7 <a and boundary conditions are
U(0,1)=U(a,t)=0,t>0.
To solve the equation (5.7), we put U (r,t) =V (r)6(t) so that (5.7) gives

1dv_1do__ . (say), separation const

val coar 1 SR '
so that

dv

?+y2V =0 and %9‘*'#2029 =0
whose solutions are ¥ () =, cos(ur) + ¢, sin(ur) and 6(¢) = e, Thus
U(r,t)={Acos(ur)+ Bsin (yr)} e M
where 4 =c,c;, B = c,c;. The boundary condition U(0,H)=0 gives A = 0 while that U (a, /=0 leads to
sin(ua) =0, sothat pa=nm, ie. p= n:r/a, isn=1,2,.. o

Hence, by superposition,

U(r,t)= i B, sin (mz' %)e-,.z,zclz/az
n=1 ‘
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Using the initial condition U (r, 0) =r f(r), we have

rf(r)::iBn sin(mt%)

n=l

which is a half-range Fourier series of rf(r) and, therefore

2 a
=2 i r A
B, 2] rf (r)sin (mr/0)dr. | (5.8)
Hence the solution of the given problem is

T(r,t) = l i Bn sin (_’Z{gi}'-n’rr’c’z/a’
r

o a
where B, is given by (5.8).
6.  Solution of Diffusion Equation in Two-dimensicns (Separation of Variable Method)
L. Cartesian coordiﬁates |

The diffusion equation in two-dimensional Cartesian coordinates (x, y) is

( o'T azr) or
k +

o) o 6.1)
Let 7(x,y,1) =X (x)Y (¥)Q(¢). Then from (5.9) we have
__1.d2)2(+_1_12_2)::‘__1___c_1£=_#z, say (6.1)
Xad Yad kot o
where 4? is separation constant. Then 8(r) = 4e™".
Again from (6.2) it follows that
' ‘I—‘C‘Qz‘(‘ = *(‘1‘ dz}z, “‘2] =-a’, say
X Y dy ’
o being separation constant. These equations ha?e solutions
X (x)= Acos(ax)+ Bsin(ax) and Y (y)=c cos(By)+c,sin(By) 6.1

respectively, where B2 = y4? — r?, Thus the general solution of the equation (5.1) is
T(x,y,t)={4cos(ax)+ Bsin(ax)} {Ccos(By)+ Dsin (By)} i 63)

where we have put C =4, and D= A4c,.

328 ’ Directorate of Distance Education



Module 46 : Parabolic Equations

.................................................................................................................

Example 6.1: The edges x =0, a and y = b of the rectangle 0 x<a,0< y < b are maintained at zero
temperature while the temperature along the edge y = 0 is made to vary according to the rule T'(x, 0, #) = f(x)
0< x < a,t > 0. Ifthe initial temperature in the rectangle is zero, find the temperature at any subsequent time rand

deduce that the steady state temperature is

2 - sinh[nr(b-y)/a] e .
a4 sinh(nnb/a) sin(n7 x/a) aff(u)sm(mru/a)du

Solution : The given initial boundary value problem is to solve the diffusion equation

k(éngzg}ézwiﬂﬁnos)cSa,os;zsb 6.4)
ox® Oy ot

subject to the initial condition T'(x,y,0)=0,(0<x<4,0<y<b) and boundary conditions
T(0,3,0)=T(a,y,t)=T(x,b,t)=0 and T (x,0,t) = f (x),0s x < a,t >0.

Now prior to applying heat at the edge y =0, the heat flow within the rectangle is independent of time

(steady-state condition). So let us put
T(x,y,t)=T, (x,0)+T, (x,3:1)
where T, (x, y) is the steady partand 7, (x, »,t) is the unsteady part of the temperature.
It is obvious from (6.4) that T, (x, ) satisfies the Laplace’s equation

T oT

a;+-5y-zi=o, 0<x<a,0sy<h (6.5)
subject to the boundry conditions
T,(0,y)=T,(a,y)=T.(xb)=0and T,(x,0)= f(x),0< x<a. (6.6)

To solve the equation (6.5), we put 7, (x, ¥) = X (x) Y (¥), so that
1 d*X 1dY )

Xad rar

1* being separation constant. then we have
d? dY ,

—"-'dx{ +4'X =0 and -‘;y-y—#’Y=0-
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whose solutions are X (x)=c,cos(ux)+c,sin(ux) and Y(y)=c,cosh(uy)+c,sinh(uy)
respectively. Hence '
T, (% y) = {c, cos(ux) +c,sin(ux)} {c, cosh (uy) +ec, sinh(uy)}. (6.7)
The first three boundary conditions of (6.6) give ¢, = 0,sin(ua)=0

_cosh(ub)

and ¢, cosh(ub)+c, sinh (ub)=0. Thus ua = nrz, ie. u=n%,(n=l,2,...) and ¢, = Sinh (ub)

Thus, the solution (6.7) reduces to the form

T (5.)= 3 4, sin /) i {2 (5]

n=}

‘The last boundary condition of (6.6) gives
f(x)=>_4,sinh(nr b/a) sin(nz x/a)
n=l
which is Fourier sine series. Thus

4, sinh(nrb/a) = 22; }f(x)sin(mr x/a)dsx.

Thus, the steady-state solution T, (x, y) is given by

T, (x,y)= %i Sml;i;?r(,:;/};))/ ) sin(n7 x/a) :f S (u)sin(nzufa)du (6.8)

n=l

Next let us consider the unstaedy part T, (x, y,) which satisfies the diffusion equation

o'T, T, T,
k o "ot |5 1 0sx<a0sysh, (6.9)

the initial condition 7;, (x, y,0) = -T, (x, ») and the boundary conditions
T,(0,5.1)=T,(a,p,t) =T, (x,0,) =T, (x,b,t) = 0, > 0,

Proceeding along the same lines as in Section -6, we find that the solution of the equation (6.8) is

T,(x,yt)={Acos(ax)+ Bsin (ax)}{Ccos(By)+ Dsin’(ﬂy)} PG
where a,f8 are separation constants with 42 =a’+ p*. Now the boundary conditions give

A=0,a=prfa,c=0,f=qn/b wherep=1,2,..andq = 1,2, .... Thus
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T, (%)= A, sin(pz x/a)sin(gz y/b)- eakxz(f;ﬁ_:’] ‘ (6.10)
7 4 ' ;
The intial éqndition gives
~T.(x,y)= ; Zq: A, sin( pr x/a)sin(g7 y/b)
which is double Foureir sine series so that |
4, —-——%;f;[TS (x,y)sin‘(pﬂ x/a)sin(pn.y/b)dxdy. , , | (6.11)

Hence the required solution of the given problemis -
T(x,y,t)=T,(xy)+T,(x.1:1¢)
where T, (x, ) is given by (6.8) and T, (¥, ,t) by (6.10) with 4, as gwen in (6 11)
[I.  Plane polar coordinates. - S
To solve diffusion equation

k{a’r 17 1az:rJ _or

Sttt 2
\or* ror r°o@ ot

6.12)
in plane polar coordinates (r,8), weput T (r,6,t) = R(r)2(6)T (¢). Then this equation gives

ld2R+L_‘!B.+_1_£_Q___._=_,, ‘
Rdr Rrdr rQd6* kT dt (sepa‘a ion const.)

Then T (t) = Ee™*' | Also, we have

1d’R 1dR 1d v .~
[R = + T dr 2) a-ggg-:/lg,say, (separation const.)
so that
iR dR ( , A 49 »
so.= ~Z_|R= +A°0=0
adr +( 'rz)R 0and Zg de’ ¢

which have solutions R(r) = AJ, (sr)+ BY, (ur) and Q(8)=c, cos()ﬂ) +¢, sin(A0) respectively.
. Thus, the solution of the equation (6.12) is :
T(r,0,t)={AJ, (ur)+ BY, (ur)}{Ccos(18)+ Dsin(28)} e+ @1
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where C=¢E and D =,E.

Example 6.2: Find the temperature in a long cylindrical region bounded by the planes »# = 4,8 =0 and
¢ = x whichare maintained at zero temperature and its initial temperature is f (r, 6).

Solution. Consider the solution (6.13) of the diffusion equation (6.12). Since 7'must be finite at » =0 where
Y, (r) is undefined, so we must put B=0. Also, the boundary conditions 7=0at ¢ = ¢ and 7 give C=0and
sindz =0, ie. A=n(n=1,2,...) and the condition at = a leads to J, (u4a) =0 which hasroots ,a, i,a,...

Thus by using the principle of superposition, we have the solution

0

(r:0.0)=2"%" 4,,J,(1,r)-sin(ng) e (6.14)

m=l n=|

Again, the initial condition gives

eoeo

(r, 6) ZZ J,, (,umr)sm(n9)

m=1 n=l
Multiplying both sides by rJ, (44,r)sin(p6) and performing double integration w.r.t. r and g for

0<r<a,0<8 <r resectively, we have

n

j rf y,,r)sm(p@)drd&
0

0

m=l n=|

:iiAMJ‘rJ (1 W, ( ,u,,,r){jsm(p&)sm(nﬁ)d@}d | 6.15)
Noting that |

2

a a ) _
I (), )= 2 1) o =
Q

Ofor k#m
and
¥ | Zforp=n
sin(p6)sin(n6)do =2 "7
0 : Oforp#n
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we get from (6.15)

ax 2
”r f(r,6)J, (u,r)sin(nd)drdé =£§-J: (#n9) 4y m
(13

0

so that
- _____..__.__szz Gl I jr f(r, 0)J ( ymr)sm(ng)dr dé (6.16)
Hence the required solution of the given problem is obtained from (6.14) and (6.16) as
4 & & B,,J, (4,r)sin(nd) - S
T(r,0,t)=—% Bim tn
(r d ;”Z‘ Jz (,uma) : (6.17)

where B, ,, = j r £ (r,0), (1,r)sin(n8)dr de.
4]

D vy

I[lI. Spherical p‘olér coordinates with axial symmetry
The diffusion equation in spherical polar coordinates with axial symmetry is given by

1a(rz—a—T—)+ 1 ﬁ(sine—a—z)—l?—z
2\ o) smo oo\ 00) ko (6.13)

where Tis a function of r,@ and . Putting T(r,6,t) = R(r) Q(8)T (t) in (6.18), we get

%i(,2§£)+ 5 1 '}——fi——(sin9dg)-——l—£—-~/12, say
R dr dr) r’sin@ Qd@ do

where _3? is separation constant. Then 7 (1) = Ee~**", Also we have from this relation

ld( dR) + At =- I —i(sinézg)—n(nﬂ)

Rdr\ dr ‘Qsm9 deo

where n(r+1) is sepration constant. Then we have

'R 2 dR n(n+1)
dR 2B R=0
dr’ Y { r’ } (6-19)
1 d 0 '
and Smedg(51n9d9)+n(n+l)g-—-0 (6.20)

1
To solve the equation (6.19), we put R ( r) = ( Ar)'E S ( r)‘ Then it is easily seen that the equatiou reduices i
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whose solutionis S(r)=AJ | (4r)+BY , (Ar) sothat
n+s 4z » )

R(r)=(ar): {A:Jm% (), ().r)}

Again, putting cos @ = u in(6.20), we have
d 2\ dS
— 1= )—=t+n(n+1)O=0
{0-)2 L enta

du

which has the solution Q(6) = 4P, (1) + BQ, (1) where P, ( #) and Q, () are Legendre functions of
the first and second kind respectively. Thus the solution of the equation (6.18) ‘isvgivep by superposition as

T(r,6,t)= nzj;()w)'% [A,,JM% (Ar)+ B,;i’;% ().r)]x

x[C,P, (cos8)+ D,Q, (sin 9)] e, (6.21)
Example 6.3 : Determine the temperature in a sphere of radius a when its surface is at zero temperature and

its initial temperature is f'(r,8).

Solution. Since Y N ar) and Q, (cose) are unbounded atr=0and 6 = % respectxvely, SO we must
2 .

B=0and D = 0.Also the boundary condition T(a 6,t) =0 leads to J (ga) 0. Let &a Aa,... be

the roots of this equation. Then the solution (6.21) can be rewritten in the form

W 0

i
(r0.0)=D"> 4, (A7) T | (Asr) B, (cosg) e 6.22)
n+-2-

m=l n=i

- Applying the initial condition T(r,é?, 0)= f(r,0) weget

ZZ()“ r):4,,J i (&”V)R,(COSG)

m=l n=l
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Multiplying both sides by 7, (cos 6)d (cos8) and integrating between ~1 to +1, we have

j'f r,0) P, (cos@)d (cosd) = ZZ( mr) %A,,,m.l“% (/’Lmr)x ;i{li,v(coeé)'ﬂ (eosé)d(cosﬁ)

© o m=l nwl

ff(r 6) P, (cos8)d (cos8) = ZZ-———-(,{ r) zA e (,1 r) | (6.23)

m=1 nsl

where we have used the orthogonal property of Legendre functions, viz.

Jk=n

2
jP (cos@ ) B, (cos8)d (cos6) = 2n+1"
0,k#n

Again, multiplying both sides of (6.23) by r%J | (,%jr) and integrating w.r.t.  between 0 to a, we have
n+-2—

‘i[r%J'H ! (,ljr)[jj; f(r,0) P,(cos)d (cos@)]dr

a

©  ® 2 N ‘

m=1§2n+1( m) ’ """QrJ,H%(l,mr)JM% (/117‘) r
=A (A, )_% '__%.-_v,_a___.J/Z (}’ a)for ‘m

n,m \m o+l 2 . ! _]

2n+1 (Am )

sothat A =25 7. )j [y (AR O)drdu

Thus the required solution of the given probiem is

® & (2n+l)

I(ro)= Z:,,Z 2J'21(/1 ) 2J ('1 r)B, (u)e™™

N|u

a
where B j’
0

jlr

Note : In section 5 and 6, we have considered solution one and two-dlmentlonsal dxﬁ'usxon equatxon in

' 1(’1 r)B,(u)f (r,0)drduand y=cos€.

different system of coordinates by the method of separation of variables. Three-dlmensmnal cases canalso be

dealt with along the same lines.
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7. Maximum-Minimum Principle and its Consequences
Maximum-Minimum Principle

Theorem 7.1 : Suppose the solution T'(x, f) of the diffusion equation
k— === ' (7.1)

be continuous for 0< x < ,0 < < T, where (> 0) is a fixed time. Then T attains its maximum and

minimum values at time #=0 or at the end pointsx =0 and x= L at some time in the interval <7 < 7.

Proof,

N
I’

0 T I

Consider the givenregion 6 < x < 1,0 <# < T, inthe (x, ) plane. Then 7'(x, /) is given by the dark horizontal
and vertical lines, the darken portion of the boundary being denoted by I'. Noting that heat flows from higher to

lwer temperature, we expect that the témperatu.re T'(x, 1) in the shaded region attains its maximum on [, To
muve this, we assume the contrary, that is, we can find a point (x,,#,) which is either an interior point 4 or an
upper boundary point 8 such that 7' (x,,4,) >Lu.b. of T'(x, ) on T", Define an auxiliary function y (x.1) by
(%)= T(x,1)-e(t ~1,)
where ¢ > ( isconstant. Since y (x,,, ) = T(x,,2,) which exceeds by some definite the greatestvalue of
T(x,HonT, wé canchoose e so small that ¥ (%,,7, ) > max .y (x,¢) on I, Thus y (x,) attains its maximum

noton I', sayat 4 or B,.

At this maximum point, we have
v _dw . - T oT
—=<0,—4~—~>0 ~—=<0,—>0
P Fkd so that W Py
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2
which is a contradiction that £ %J% = _85_ at this point. Thus the maximum principle is proved.
Similarly, the minimum principle can be proved.
Consequences :

1. Theorem - 7.2 (Uniqueness Theorem) : Let T (x, #) be a solution of the diffusion equation

o’T oT . ‘
k—=-— 0<x<L,0<t<T ' - 7.2
& ot * (7.2

subject to the initial condition 7' (x, 0)=f(x) and the boundary conditions T (0, ) =g (1), T(L, ) =h (1),
wherg Ax), g(f) and h(¢) are continuous functions on their domains of definitions. Then the sc;lutior; T (x, ) must
be unique. |

Proof. If possible, suppose that 7, (x,) and T, (x,) be two solutions of (7.2) both of which satisfy the give
initial and boundary conditions. Then v(x,#) =T, (x,t)-T,(x,t) isalsoa solution of (7.2) and is a continuous
function of xand £. Also v(x,0)=0in 0 x < L and v(0,#) =v(L,#)=01in 0<s < T Thus ‘uy(x,t) satisfies
the conditions of maximum-minimum principle and hence v(x,#)=0 for 0S x< L,0<¢<T, sothat T; (x.t)=
T,(x,t), which shows that the equation (7.2) admits a unique solution.

2. Theorem 7.3 (Stability Property) : The solution 7'(x, #) of (7.2) subject to the conditions of Theorem-7.2
depends continuously on the initial and boundary conditions. |

The proofis omitted.

Exercise
I.  Solve the one-dimensional diffusion equation in the region 0 < x < 7,¢ 2 0 subject to the conditions

) T=0ifx=0, r forallt>0

Jc,OSxS—;Z
P T=< fort=0
7r——x,£$x.<_7t

i)  Tremains finite as t — oo,
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[AnsTxt)— }: sm(nx)sm(my) -,,,,z]

n=t N

2. Auniform rod of length L whose surface is thermally insulted is initially at temperature T = 7. At time #=0,
one end is suddenly cooled to 7= 0 and subsequently maintained at this temperature, the other end remains
thermally insulated. Find the temperature distribution 7'(x, £).

{Ans T(x f) - 47;) Z n( 2’21; 1 Iﬁ)e~k(2n-%L)z”Zl]

I/ 2n 1

3. Find the solution of the one-dimensional diffusion equation satisfying the initial condition
T(x,0)=x(a-x),0<x<a, the regularity condition that T'is bounded as ¢ —» oo and the boundary condition

0 0
=T O’ =—T7 ,
5 T (0.0)==T(a) forall 0.

[Ans T(x t)--—ﬂ’--—4a2 Z 1 cos(mrx/a) ‘e * “ :}

V4 n=even

4. A cirularcylinderofmdius a has its surface keptata constanttem perature T,. If the initial temperature is
zero throughout the cylinder, prove that for £~0
T(rf)=T, {1-——2 Jo(6r) e }
pecll 9 A (f a) ,
where &,,(n=1,2,3,...) are the roots of the equation J, (£a) =0
A conducting bar of uniform cross-section lies along the x-axis, with its ends at x=0 and x=/. The lateral
-eisinsulted and there are no heat sources within the body. The ends are also insulated. The initial temperature
is Ix — x2,0 < x <. Find the temperature in the bar for £>0.
[Ans. Same as Exercise Problem-3 witha =]
6. Thefacesx=0,x=aofa finite slab are maintained at zero temperature. The initial distribution of temperature

inthe slabis given by T (x,0) = /(x),0 < x < a. Determine the temperature at subsequent times.
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n=l

S (T n’r’t 27 . (nx _
l:Ans. T(xt)=) 4, sm(-—;x)exp{—-k-——a—z——} where 4, =~ !f(x)sm (—a—x)dx} =

2
7. Show that the solution of the equation %Zt: = %;— satisfying the conditions :
@ T-o>0ast—>om, |
() T =0forx=0andx=a forall¢>0,

(i) 7=xwhent=0and0<x<a

L 2aa (D)7 (mrx) n*r’t
- T ’t —_—— PR At K .
is T(x.1) . Z sin - exp =

n=) n
o . O o*'T 1T . _ . s o
8.  Solve the diffusion equation > =k e + 2-5;- subject to (i) r =0, Tis finite, t 20, (i) r=a,T= 0,

>0, (iit) T =—7-£’w(a2 —rz),t =0
4p
where are T,k and u constants.

‘:Ans. T(r,t)= 27}:12 ?; Jg,ﬁ"(;/c;) exp(—kﬁ,f t/a* ):!

9. Iff(x)is bounded for all real values of x, show that

I (x.1)= 7217"‘1??.0[ £ (€)exp{~(x-2) [akt}ae

. 2
is a solution of %7,—: =k %‘; such that 7' (x,0) =f(x)

e () ne
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M.Sc. Course
in
Applied Mathematics with Oceanology
and
Computer Programming

PARTI |
Paper-IV Group-B
Module No. - 47
HYPERBOLIC EQUATIONS

ooooooooooooooooooo

1.  Introduction:

In this unit we shall consider hyperbalic equation of the type

QU U U 10U
+ + —
't ok & o

which is also called wave equation. If we assume a solution of this equation of the form
U(x,y,2,t) = f(x,p,2)e*™

v the function f'(x, y,z) must satisfy the equation
(V*+k*)f=0

This is known as Helmholtz's equation or space form of the wave equation.

2. Occurrence of Wave Equation

Let us indicate some situations in physics and engineering in which the wave equation is involved.

(a) Transversevibrations of a string. If a string of uniform linear density p be stretched to a uniform terzsion
T'and the string coireidos with the x-axis in the equilibrium position, then for slight disturbance from this position, of

the string, the transverse displacement y(x, t) satisfies the wave equation
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where ¢ =T/ p and y(a,t)=0 forall f at any fixed point x=a.
(b) Longitudinal vibrations of a bar. Supposc a uniform elastic bar of uniform cross-section with its axis lying
along the direction of x-axis be stressed such that each point of a typical cross-section of the bar takes the same
displacement & (x, t) . Then ¢ satisfies the wave equation

¢ _19%¢

oxt  c? ot
when ¢? = E/ p, E being the Young's modulus and P is the density of the material of the bar.

(¢) Transverse vibration of the membrane. Consider a thin elastic membrane of uniform density & be
stretched to a tension 7' and the membrane comcxdes with the xy-plane in the equilibrium position. Then the :

transverse displacement z(x, ,¢) of any point (¥, y) attime is given, for small transverse vibrations of the

membrane, by the two-dimensional wave equation

axt oyt o
where c is the wave velocity defined by ¢* = T'/o -
(d) Sound waves in space. Consider sound waves in a passage and suppose that the velocity of the gas ata
point (x,y,z) attime ¢ be givenby V' = (u,v,w) and p, p denote the pressure and density at that point. For
11, -ational motion of the gas, we have ¥V = —Ag . Thenthe potential function ¢ satisfies the wave equation

12%
V2¢=,2__é__

where ¢? = (dp/d p),, the suffix zero indicating that the quantity is to be vvaluated at the state of equilibrium.
(e) Elastic waves in solids. Suppose V' = (u,v,w) denote the displacement vector ata point (x, y,z) ofthe

particle at time ¢ of the elastic solid. Then, writing ¥ = Vg + Vxy , itisseen that both ¢ and each component of

w satisfy wave equation.
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(®  Electromagnetic wave. Let it be the magnetic field and be the electric field. Then, if we take H=VxA4,

E= —lgfi—V;ﬁ,theMaxwell'sequaﬁons
c ot
’V:E=4ﬂp,V.H=O’VxE=_.I_.a_.f.I_ V x H_i’i .1.._6_@
c o’ ¢ cot

are identica]ly satisfied, provided that ¢ satisfy the eqnations

These equations, in the absence of charges o or currents, reduce to the wave equations, ¢ denoting the velocity of
light. '
3. Transverse beratlons ofa Tlghtly Stretched Elastxc Stnng o
Suppose astring, such as a vislin or piano stnng, is in equilibrium and extends along the positive x-axis with

one end 0 taken as the origin and isstretched to a tension 7T'in this direction. Let the string be disturbed from thlS
position by some small transverse impulse so that every particle of the string executes transverse vxbratxon and the
transverse displacements of all points in the vibrating plane are at right angles to the undisturbed position, Thus the
wave set up is transverse causing a flow of energy.-We make the following assumptions:
() Thestringis perfectly elastic and flexible as a result of which it supports only tension and there is no bending
or shearing force; ‘
(i) The density (mass per unit length) £ isuniform;
(i) The tension T'is sufficiently large so that the effect of gravity can be neglected or the string is suppose to
vibrate on a smooth horizontal plane. Moreover, it is also supposed that there is no damping and, therefore, the
string executes free vibration; '

| (iv) The motion is entirely transverse and the transverse displacement at any point atany time ¢, is so small that

the angle which tangent to the curve at time trnakes with the posmve x~ax15 is also small. Thus Tis independent of

x and is, therefore, the same throughout the string. We also assume that Tis independent of time. Hence Tis

constant,
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\ 4
y

0 «x ‘1"0 Ax ,Q0~ T; 'x‘

Fig. 3.1

Fig.3.2

Consider a section of the string as shown in Fig. 3.2. Suppose the points £, and (), of the string be at
distancesx and x + Ax from its one end 0 which we take as the origin and these points have ﬁansverse displaoements.
P,P =y and Q,Q = y + Ay respectively at time ¢, where it is supposed that y is a differentiable function of x and
t.Letarc PQ = As and the angles which the tangents at P and Q make with the positive x-axis are zand fand
these angles are small, Then the equation of transverse motion of the elenﬁéﬁi PQ 1s - l.

2
pAsg—t%}—=Tsinﬂ—Tsina

Now, nothing that @ and fare small, we have

%

sing ~tana ~| — | =¢@(x,t),sa

e [ax) plnt).sey

and ﬂzsinﬂztanﬂz(gz-\ =¢(x+Ax,1), say
ax}x+Ax

Hence from (3.1) we get by dividing throughout by Ax,

_@_Z_Z‘_A_S=T.¢(x+Ax,t)-¢(x,t)
' Ax Ax

and proceeding to the limitas Ax — 0, it follows that

'y ds a(ayj
2.2
Pad & ax\ox
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2
Since g% = |1+ (%) ~ 1, so the required equation of motion for transverse vibration of a string is given from

" (3.2)as
o’y 1 8%y ‘ v
ST AL ISP 4 33
o ¢ ax? 3-3)

as the dimension of the wave velocity. y is called the deflection of the string in the xy-plane.

=

where ¢ = \|T/p

4.  Solution of one-dimensional Wave Equation
We now proceed to find the solution of the one-dimensional wave equation (3.3) by various methods. In the
sequal, we shall consider the function U (x,¢) in place of y(x,t) i.e.

FU_ 18U

LIl 4.1
orr ¢ al @b

L Solution by canonical reduction

Let us choose the characteristic lines & =x+ct,n=x-ct,sothat

Qﬁf_z_a_‘{.éi+§_‘£.<’_’1___( 0,9 )U

o o8& ox on ox \o& on

. oU o 0
andsirmlarly,‘é;’:c 5;;‘5; U.

. 2

ou (o oaY U _ [ o 6]
oV 2.9 o= =-Z U

Also P (6§+677] U and Py ¢ (64‘ on

Substituting these in (4.1), we have

U
0%on

whose solutionis U = ¢(&)+y (), ¢ and v being arbitrary. Thus the solution of the equation (4.1) isgiven by

U(x,t)=¢(x+ct)+y(x—ct) (4.2)
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It follows that for an arbitrary real parameter &,

U(x,t)=g{k(x+ct)}+y {k(x~ct)} (4.3)
is also a solution of (4.1). Further, it may be verified that if = kc , then

U (x,t) = g (e +wt) +y (ko - wt) Y

satisfies the wave equation (4.1). The quantity kx + wt is called the phase for the right travelling waveand x +ct
are the characteristics of the one-dimensional wave equation.

II.  ‘D’Alembert’s solution - Initial value problem

Consider the Cauchy type initial value problem described by

2U _ 48

axz ‘gt'z‘",—w<x<W,t20 . P R T e B . (4.5) .

subject to the initial conditions
U(x,0)=77(x) and -a-t"(x,o)zl)(x) v o , ‘(4-6)

where the curve on which the initial values 77(x) and v(x) are prescribed is the x-axis. It is also assumed that the

functions 7(x) and v(x) are twice continuously differentiable.

Now if y(x,¢) be the transverse displacement of a point of the string for any x and , then 7 (x) and v(x)

are the prescribed values of the initial displacement and velocity respectively. Since the solution of the equation
(4.5) is given by (4.2), we have

#(x)+w(x)=n(x) and C{#'(x)-v'(x)} =v(x) 4.7

so that the second relation of (4.7) leads to
#(x)-w(x)= Jo(¢)d¢
0

This, along with the first relation of (4.7) give

¢(x)=%'7(x)+5_!;;[“(4)d4 and y/(x)=:12-77(x)-—zlc-]u(4;)d§
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Hence the solution (4.2) of the wave equation (4.5) is given by

x+Q{ .

U(x 1)= {n(x+ct)+77(x ct)}+:2—; Iv({)d{ | : (4.8)

X—ct

This is known as D’ Alembert’s solution of the one-dimensional wave equation.

If the string be released from rest so that v ( x) =0 , then the equation (4.8) becomes
U(x,t)= {r;(x+ct)+77(x ~ct)} (4.9)

Hence the subsequent displacement of the string is produced by two pulses of shape U= —é—ry (x)each
moving with velocity ¢, one to the right and the other to the left.
» We now establish some corollaries of D’ Alembert’s formula.
(1) Domain of dependence: The value of Uat (x,,7, ) is debermined by the restriction of initial functions
77(x) and v(x) in the interval [x, —cty, x, + ct,] on the x-axis, the end-points of which are cut out by the

characteristics : x - X, = *c(/ - ¢, ) through the point (x,,#, ).

The Characteristic triangle A(x,,7,) is defined to be the triangle in R x R? havmg vertices 4, (x, - cto,O)
By (%, +¢1,,0) and P(x,,8,).
Forevery (x,,t,) € A(x,,1,) wehave
[x et x + et < [x, = cty, %, +ct,]
A(x,0) < Axy,1,)
where u(x,,/,) is to be determined by the values of 77(x) and v(x) on [x, - ct,, x, +et .

(2) Domain of influence: The point (x,, O) on the x-axis influences the value of  at (x,1) in the wedge-

shaped region
I(xo)={(x,8) 1%, —ct <x < xy +ctyt >0}

Forany
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P,(x,,t,) € I'(xo)’A(xhtl)nl(xo)¢¢
B (x,1) e (%), A(x.0)NI (%) =¢.
III. Riemann -Volterra Solution

Putting y = ¢t , the equation (4.1) reduces to

U U ‘ Co
-Ex_z_=5y—2_ : (4.10)
Let us assume

~(4.11)

U=n(x,y) and %I: =v(x,y) onthestripC
n
and I, the projection of C on the xy-plane, is a curve whose equationis U (x,y) =0.

Let us now find the value of the wave function U (x, y) at anya pomt P with coordinates (¥, 7). Thenthe

characteristics of (4.10) through P are

xty=X+y (4.12)
P(%,y)
A C
v
n
0 —X
Fig.3.3
2 a2

Let the first line of C intersects the curve C at the pointA while that the second line at B. Putting L = P - 57

and noting that L is self-adjoint with respect to the Green’s function /¥, we have
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frse-voma- ({3230 ) 5% oo

K (Wzt_f__yéfz) 0 (UQV_V._WQEJ}M),

H
Mt.-...,

ax\ & ) ax\ oy oy
= J’[ucos(n,x)+véos‘(n,y)]ds (4.13)
U ow oW ou
h — U= and V=U—-W— 4.14
e e U ¥y o @19

and C’ denotes the closed path 4PBA enclosing the area X . Noting that the Green’s function W satisfies the
conditions

@ LW =0
(i) gz:OonAPandBP
on

and (iii) W =1 at the point P,
we see that these conditions are automatically satisfied if we take =1,

Again, since LU =0, we have from (4.13)

(Phi +BJ; }[————cos(n x)——éy—cos(n y)st 0 4.15)

Now, along the characteristic 24 having the equéitionux‘:y =Xy ,wehave
cos(r,x) = 008, ) = . d =2t =2y

so that

P4

I[%;cos(n,x)—mcos(n y):l j(-——-dx ———a.‘y) .U,

Similarly, along the characteristic PB:x+ y = ¥ + 7, we have
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1 - 1 .

cos(n,x)=—,  y) = ==, ds = —\2dx = 2

(n,x) J.z_cos(n y) 5 dy
so that

U, .\ 8U

~=—cos(m,x)———cos(n,y)ds =~ f(-—-dx ——-dy) -U

[ty vt ,,
Hence from (4.15), it follows that

U, =-;-(UA+UB)~-;— 'f[%x(—]-cos(n,x)—%j-cos(n,y)]ds , o (4.16)

AB

is the solution of the Cauchy problem.
As for example, if we have U =7 (x), %g— = v(x) ony=0and Pis the point (, y), then the coordinates

of the points 4 and B are respectively (x + »,0) and (x~,0). Thus U, =7(x+y) and U, =n(x-y)and

x+y

f[%%”s("’ )»———-cos(n,y)} ds=- [v(¢)dg

AB x-y

Hence in terms of the original variables x and t, the required solution is obtained from (4.16) as

X+t

U(x,t)== {r;(x+ct)+77(x ct)}+—2L fv(p)dp | | @.17)

x-ct

Fxample 4.2: Solve the Cauchy problem, described by the inhomogeneous wave equation

52U 62
at2 2 = f(x t)
. o . oU
subject to the initial conditions U (x,0) = 7(x) and 5 v(x) at(x,0).
Solution. Proceeding exactly along the same lines as described above by introducing an extra term _U f ( X, y) dk&)} ,
z

it is easy to see the solution of the given pmbiem is

U ()=t {n(s+er)+n(e- a)}+~“f'u(;)d¢_—-'j”f F(&.7)dedx.

x-c! 0 x—cl
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IV. Solution by separation of variables.

To solve the one-dimensional wave equation

BZU czil—]--oo<x<oot>0 4.18
a ort’ (@18)

by the method of separation of variables, we put U (x,1)=X(x)T(t) in(4.18) and get

1d°X 1 & | )
Y e =czT dt{=K,aseparation§onstant. 4.19)

Case (i) : Let K = 2* > 0. Then from (4.19), we have

2 da’r
_‘ix_/},..},)( Ocﬂd?“CZZT 0
whose solutions are X (x) = Ce* + Cpe” and T (t) C,e™ +C e'”’”
sothat U (x,£)=(Ce™ +Cze'**)(c 4 e""”) | ” (4.20)

is the solution of the wave equation (4.18).

Case (ii) : Let K = 0. Then (4.19) gives X (yx)‘= Csx+Cy, T (t) = Cyt + Cy and, therefore, the solution of the

wave equation (4.18) is

U(56)=(Cr+ C,)(C+G,) R @
“ase (iii) : Let £ =-1? < 0. Then from the equation (4.19), we have

X (x)=Cycos Ax+C,sin Ax, T (t) = C,, coscAt +C,, sincit
leading to the solution of (4.18) as

U(x.t)=(C; cos Ax +C,y sin Ax)(C,, coscAt + C,y sincAr) o | 4.22)

Example 4.3. Astrmg of Iength Lisreleased from restin the posmon of y f (x) SHow that the total energy of

the string is ——L—Zn A} ,where 4, == I I (x sin (nzx)dx and 7'is the tension in the string,

n=l

If the mid-point of a string is pulled aside through a small distance and then released, show that inthe
subsequent motion the fundamental mode (i.e. n=1) conmbutes ;§~ of the total energy.
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o'y _ 0%
or’

The boundary conditionsare : y(0,¢) = y(L,t)=0

The initial conditionsare : y(x,0)= f(x) and %(x, 0) =0
Using the separation Qf variables method we first consider the solution of the type (4.20), viz. »
y(x.t)=(Ce™ +Cye™ )(Cye™ + Ce™) | . @)
The given boun{iary conditions thenleadto C, + C, = 0 and Cje** +C,e™*" =0 sothat C, =C, =0 and
thus we have the trivial solution. Therefore, the solution (4.23) is not acceptable.
| Néxt consider the solution of the form (4.21), viz. | |
g(x,)=(Csx+C,)(C,t +Cy) e o o (4.24)
Using the boundary conditions we have C; =0 and C;L+C, =0 i.e.,C=0s0 that y(x; t) =0, atrivial solution
and hence the solution (4.24) is also omitted. '

Lastly, we consider the solution (4.22), viz

y(x,1) =(C, cos Ax +C,y sin Ax)(C,, coscAt + C,, sincis) o (4.25)

The boundary conditions give C, =0,sin AL =0, i.e. '7~=N77/L,(n”=1,2,...) L
Hence y(x,z)=3in_’21’[’ﬁ(Acos CnL’n+Bsin crzrt)

 where 4=C,C,, and B=C,,C,,.

Als?;;:‘the initial condition Qf__(é’f;_?) =0 showsthat B=0.
t

Thus using the superposition principle, we have the solution

y(x,t)= Z A, si.n%{cos%ﬂ | E o (4.25)
n=l
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Againthe initial condition y(x,0) = 1 (x) gives

f(x)= ZA,, sin 22

n=l]

which is half-range Fourier sine series. Hence
24 . nrx
4, =1—If(x)s1n~z—dx E 4.27)
0 . ' .

Hence the solution of the above equation is given by (4.26) where 4, is obtamed ﬁom 4. 27)
VL. Uniqueness of solution

Let us consider the forced vibration of a string of length L described by the wave eguation

2 2 ' ' s
%—g——czgij F(xt)O<x<Lt>0 , (4.28)

where ¢’ (x)-T,/p(x) and p(x) is the density of the material of the string. The initial conditions are

: U(xO) n(%). 6U(x O)

=v(x)
and the boundary conditions are
U01)=£(0).U(L1)=2(0).

How. if possible, we dssume that the above initial boundary value problem admits two solutions U, and U, for

<T Tbemg fixed. Then ifweput u =U, - U, itreadily follows that

2
%;——-c 2’2‘ 0,0<x<Lt>0 (4.29)

subject to the initial conditions

and boundary conditions
u(0,t)=0,u(L,t)=0
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Multiplying both sides of (4.29) by p %t-‘- and then integrating the results w.r.t. x from 0 to L and w.r.t. f from O to

T, we have

“%3{p(x)[§—"—%—’f’—g]z+n[-a-—“—g%@}z}dx . ‘

T Iau(L z)au(z; t)d 7 Iau(o t) augt)wt)d _0

(4.30)

The first two mteg]als in (4.30) represent the difference in the total energy (v1de Example4.3)at times 7and 0. On
the other hand, the last two integrals represent the work done by the y-components of the tensile force at the ends
of the string. Itisclearthat - ‘

ou(0, t) ou(L, t) 6u(x,0)
ox ot ox
Thus we have from (4.30)

;J{p (x)[?_’%Z)j]2+n[§y_%Q]z}dx=o | ;- - @31)

This shows that if the string has no energy initially (¢ = 0), then the energy remains to be zero if no work is done.

Since p(x)> 0 and 7 >0, so the integral in (4.31) can never be negative. Hence, assuming that the integrand is

continuous, it must identically be zero, so that farany r < T, we have

u(x,)

5 =0 for0<r<T and O<x< L

ie. u(x,r)=constant.

But u(x,0)=0 and so u(x,7)=0 for 7<T. Since 7 is arbitrary, it follows that u(x,)=0, i.c.

U, (x,t) =U,(x,t) forany t. Thus the given equation has a unique solution.
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Self Assessment Questions

 Atightly stretched homogeneous string of length L, withits fixedendsat x = 0 and x = L ,executes transverse

vibrations. Motion s started with zero initial velocity by displacing the string into the form f(x)=asin’ 7x.

Find the deflection at any time .

U 10U

By separating the variables, show that the one-dimensional wave equation = — has a solution of

ox* ¢t ot

the form Aexp ( tinx + z’ct) , where 4 and » are constants, Hence show that function of the form

nrct . nmct) . nmx
U(x,t)= Z(A,, cos + B, sin ]sm-—-—-—-—
n \ a ) a a

where 4, and B, are constants, satisfy the wave equation and the boundary conditions U (0,£)=0,
U(a,t)=0 forallt.

. o , .U 1Y o R
Find the solution of the radio equation o LC ~é;2— when a periodic e.m.f. 4cos pr isapplied at the
end x =0 of'the line, 4 being constant,

[:Ans.U(x,t) = Acos(pt - p\/ZEx):’

Atightly stretched string with fixed end point x = 0 and x = L isinitially in a position given by

@ U=Uysin*(zx/L),0sxs L

o [Ans. U(x,t)= }I U, [ 3sin(zx/L)cos (et / 1)=sin(37x/ L)cos(3zct/ L)]]

@ U=wpx(L-x),0sx<L

354

8ull & 1 . (2n+Dax  (2n+1)7et
[Ans. U(x,t)= > §(2n+1)3sm( L) cos( L)

24X L
——~—,0<x<-—2—

@) U=f(x)where f(x)= 2/’;:

-—E-(L—x),-zl,i<x_<L.
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[Ans. U(x,t)= %’;—i‘sin(n m/2)cos(nctx/L)sin(nxx/ L)]
5. Use D’Alembert’s solution to ﬁnd,the’ deﬂectioﬁ U (x, t) “of a viprating string of a unit length having fixed
ends with zero initial velocity and initial deﬂecti_on atany time £:
® f(x)=a(x-x") .
[Ans. U(x,t)= ax(l —-x? ~302(? )] ‘
® /(x)=ar(1-%)

{Ans U(x,t) = a(x2 + czt2 j-xa ~.—‘3xc?‘t2 )}

o’'U  ,0%U )
6.  Solve the initial-boundary value problem described by Y =c? e x>0,t>0, given that
U(x,0)=0 ang,O) 0,x>0 and U(0,¢) =sint,#>0.
0,x <ct
Ans. U(x,t)=1 ,
s (x ) sm(l——i),x>ct
c
o*U 52U

7. Solve the initial value problem described by , given that U(x,O) 5 and

or? ox’

o’ L,o'U
_.__2_..»._..c -—-—z——:e o
ot ox

[Ans. U(x,t)=5+x" +~;—:czt" +£;(e“" = _2e* )] ,

2 2 '
8.~ Solve the initial value problem described by %—t-l—]-—c %__({: xe', given that U(x,0)=sinx and
x
ang 0)_ =0. [Ans U(x, t) sin x. cosct+(xt+x)(e -1)- xte’]
t
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GREEN’S FUNCTION

------

INTRODUCTION

Itis well known in the theory of non-homogeneous ordinary differential thation that the solution of the

: d d ; ,
equation Lu(x) =f(x), when L = = { p ( x ) Zx—} is the Sturm-Liouville operator and p(x) (>0) and q(x) are real-
valued functions of x, subject to given boundary conditions at the end points x =a, bof a giveninterval [a, b}, can
be obtained in the form of an integral as
U(x)= [G(x&)r(£)d¢
where G(x,£) known as Green s function, satisfies the equation
| LG(x,&)=6(x-¢),
O(x- £) being the Dirac-delta function.
The above concept can be extended to partial differential equation. Let us consider the equation

L {uX)} =£(X) (1.1)

where L is some linear partial differential operator in three independent variables x, ¥, zand X is a vector in three-
dimensional space. Then Green’s G (X; o) satisfies the equation

L{G(X;a)}=6(X -a) I (1.2)
which reads, on expansion ,
L{G(xy.5&m,8)} = 8(x-&)6(y-1)8(x~2) (1.3)
Here G (x; o) represents the effect at the point X due to a source or delta function inputata.

We shall restrict our discussions for the solution of Laplace s equation by means of Green s function.



Module 48 : Green s Function
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MODULE - 48
GREEN’S FUNCTION

§ 1. Introduction

It is well known in the theory of non-homogeneous ordinary differential equation
that the solution of the equation Lu(x) = f(x),A where L = £ {p(z) £} — g(z) is the Sturm-
Liouville operator and p(x) (> 0) and q(x) are real-valued functions of x, subject to given
boundary conditions at the end points x = a, b of a given interval [a, b}, can be ‘obtained »

in the form of an integral as
. . .
U@ = [ G o€

where G(x, &), known as Green’s function, satisfies the equation
LG(x, §) = é(z - §),
d(z — &) being the Dirac-delta function.
The above concept can be extended to partial differential equation. Let us consider
the equation
L{u(X)} = f(X) (1.1)
where L is some linear partial differential opéra’tor in three independent variables x, y, z
and X is a vector in three—dimen‘sional space. The;x Green's G(X; «) satisfies the equation
L{G(X;a)} = 6(X - a) (12)
which reads, on expansion ‘
L{G(z,y, 2§ 1.Q)} = 8(z = €)é(y —m)d(z ~¢) - (13)
Here G(X; «) represents the effect at the point X due’ to a source or delta fﬁnctibn input
at a. |

We shall restrict our discussions for the solution of Laplece"s equation by means

of Green’s function.
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§ 2. Green’s Function for Dirichlet Problem.

Let us first construct Green'’s function for the interior Dirichlet problem, in other
words, we like to find u such that w2u = 0 inside a finitely bounded region V enclosed by
a sufficiently smooth surface Sandu =fon S

Consider a point P € V and suppose OP =r. Let us construct & small sphere
with centre at P and radius e. Take another pbint Qin V' =V-X, or on the boundary §’

of V - £ such that 00 = r’ and

We also suppose that the functions u and u’ are twice continuously differentiable in V and

Fig - 6.1

have first order partial derivatives on S. Then by Green’s theorem, we have

/// UVU“UVUdU“//S,(u-a;'{- 'g:)ds (22)

where n is the outward drawn unit vector normal to ds. Then since 7%u = %' = 0 within

V' =V — T, we have from (2.2)
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L) (i)

//s[”%(lrjr'l)'lr—lr'lgg ds+/‘/«7{u§rz(lr—l-r'l) ’ ;;-lrzgu}d =0 (?-3)

Now, if Q lies on o, then 4 =1 .2 ("—:1—7“), and also do = € sin #dfd¢.

Moreover, on o

u(r') = u(r) +. r.Vu

and so &(r') =

.+-
Thus / [ ) 2 < ) o= [[ [u(r)+o(c)].§5.czsin0d9d¢
= u(r) ] [, sin 0dfde + ofc)
= y(r) /:; /010 sin9d0d¢+0(§) |

= 47ril(r) + o(e) (2.4)

and

//], 1 /|8n (') do = // [——— (r) +o(e) }a sin 0dfd¢ = o (¢) . (1)

Substituting (2.4) and (2.5) into (2.3) and proceeding to the limit as ¢ — 0, we get

“) = g //[Ir 7im ) =g (prqu)]ds' | ®

Thus if u and 2% are given on the boundary S of V, then the valuc of u can be obtained at

any interior point of V.
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In a similar way, we may consider exterior problem. For such a case, we take the region
to be bounded by the surface S, a small sphere o surrounding the point P and S, a spherc

with center at the origin O and large radius R (Fig. 6.2).

Fig- 6.2

Then considering outward drawn normals as indicated in the figure and proceeding as above

we get

4rru(r +//[ T,wn (r')y - (’)an( ,,)}d+//[}1zgu(')+ )]d3+o(e)-0.

3)
Assuming that Hu and R%u are finite as & — 0o and letting ¢ — 0 as R — oo in the above,
we sec that the equation (2.6) is also true for exterior Dirichlet problem.
It ié seen that to obtain solution of Dirichlet problem, it is necessary to know the values of

u and §%. But we now show that this is not so if we introduce G (r;7) defined by

1
N o ’
G(r,r)_-H(r’r)-}.'T'—'TJI (4)
where 7' = (2,3, 2') and the function H(r,r’) satisfies the relations
52 9 92 ) o
(8w’2 + e + 62’2) H(r, )= 0’ withinV y (5)
and H(r,r')+ o 0 onS. - (8)

7]
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now proceeding along the same lines as in the case of derivation of the equation (2.6), it is

easy to show that
u(r) = Zl; /,/ {G(‘r, T,)gn"}_ (r') - ’“("")%g'(ﬂ r')|ds (7)

Noting from (2.7) and the second relation of (2.8), it is, therefore, seen that the solution of

Dirichlet problem is given by

u(r) =~ | / u(r')%g(r, )ds (8)

The function G(r, ) is known as Greens function of the first kind for V.

3. An important result.
Consider a sphere with center at the origin O and radius a. Since
- —2 0 219 o 8

v (2) =V (1) and V() =& (3) + ks (2) + et ()
in spherical polar coordinates (r,6, ¢), we have

'OV () dv= [V (L).Eds
rov () dv=gv(;)
= jsf = (%) ds

2 = —4r

= —dna
So that
V2 (1) = —4x8 (r)

where 6 (r) is the Dirac-delta function.
4. Some properties of Greens Function

1. Green,s function G(r,T) has the symmetric property

Proof.

Let us define Greens function G(r,r) by the formula (2.7), viz.

G(r,r')y = H(r,r") + !7:1;;]
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Fig.- 6.3

where H(r,r) is harmonic in V. Then

VG = V2 (i) = —dnd (r - ") (by(3.1))

Let r; and r; be the position vectors of P, and P; respectively and r l?e that} of a ‘\fari’able
point Q. Assume u = G (ry,7') = H (ry, ") + Fx_-l-?TI | |
and u’=G(r2,r’)=H(r2,r’)+]r—’—[ |

-] '

so that G (r,7') = G (r3,7') = 0 on S and V3G (ry,7') = —4n6 (1, = 1), V3G (rg,7') =

—47d (1o — 7). | : ,,

Then from Greens theorem

‘j}f(uvzu’ - u'V2u)dv = 167: (u%‘f - u’g—z) ds

we get

Iy (G (r1,7") V2G (rg,7) = G (19, 7") V3G (ry, 7)) dv = g [G (r1, 1) %€ (ra, ") = G (ra,7) 8 (ry, )] ds
or,

—-47r$1f (G (r1,7")0(re = 1') = G (re,7") 3 (ry — 1)]dv = 0

Using the property of Dirac-delta function, we have G(ry,r;) = G(rs, ), that is Greens

function is symmetric.

II. If G be continuous and % be discontinuous at r, then gi 1 I %% = —4mn where ¢ i3 the
o

s

surface of a small sphere & “of radius €.

Proof. We have V2G (r,r') = —4nd (1. — 1) so that
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éFV’G(‘I". ") dy - -47r£176(7' - ') dy v —4
or, lim [T VG (r,1') dy = ~ 4 |
or, 31_{:31! $da m ~4n

8. Solutlon of Dirichlet problem for some particular cases

1. Half-apace (asmi-infinite apace)

Suppose the half apace be given by 0 € # < 00, ~00 < Y <00, =% < & < o0 Jtlsouraim

42

v

v | PXp)
Fig-4.1

to find the solutions of the Laplaces equation V% = 0 within 20 subjact to umf(y,2)
m y=0and n — 0 a8 r w BT+ YT L7 = o0, by means of Greens function G(r,r) which
ratirfler the wlatlon’a: | | |

(1) Glrr") = H(r, ') + = |

(i) (s + ofim + fim) H(r ) m O ln 3 2 0

(1l) G(r,r) m Qona = 0,

where 7 = (2,y, 2) and r = (z,y, z) are the points P and Q reapect!vély and p Is the paint
P the image point of P in x=0, Then, noting that PQ = PQ, Q being the point on QwO,’
we fuwe by using (1) and (i) |r = 1| = |p = 7| 80 that H (p, ') = -v‘;,;lm.

383



Module 48 : Green s Function

A A A
v

Hence

1 1
Cr=rl 7|

G (r,7")

Thus the required solution is obtained from (2.10) and (5.1) as

u(r) = ——Zl;‘-gu (0) &G (r,1")ds

=___1_°9°9 ’ /[__6“{ 1 - _ ‘1 : }] ot !

4in ——!)0 “joo f(y 2 ) Oz’ \/(:r:-:c')z+(y—y’)2+(z~z’)2 \/(w+w/)2+(y+yl)2+(z+z/)2 ) :v’=0dJ dZ

ie., ‘ ‘
o0 o0

xT r f f(y,. Zl) ] 7 N\

— : dy'dz (10)

] et

u(r) = -
11. Circular disc

Let P(r,8) and Q(r',6') be two points within the disc having position vectors r and r

P/

reséectively aﬁd P/ :97;3;6) be the iﬁ?érsé poiht of P w1th réépcct to ihe disc. ’We cdhstruét
the Greens function (/(r,r) defined by '

G(r,r")y = H(r,r") +In ;—;—_1-;-,—|

where H(r,r') =1n (r, %—Q)

Now, P'Q? = 0Q? + OP? — QOQ.OP' cos (6 — 9)

=77+ ‘;‘; —-27"'%605(9’ —8)

So that '-2%92—’ e 27! cos (6" — 6)
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and hence H (r,r') = 31n {5%’&'3 + a2 — 2rr' cos (¢ — 9)}.
It is easily seen that V2H = 0. Also G= ln'-';'};g and so G = 0 on the circle r=a.

Since PQ? = % + % — 2rr’ cos (6" — ), we have

G = %1 { a2+4r2r'2 [a3 =271/ cos(6’—0)

rer2—2rr! cos(6’ —6)

So that on the circle 7 = a

9G - 2_a2
(%ng) H=a (dr r=a a{a’—2a:cosc(|9’—-9)+r2)'
Thus from (2.10), the required solution is

a? -r2 7 £ (6 do o
N \11)
ma J a? — 2arcos (8" — 0) + 12

u(r,0) =
111. Sphere
In this case our problem is to determine the function u (r,6, ¢) satisfying Viu=00<r<

- P/

0,0 <9 <0< ¢ < 2r subject to u(a,b, ¢)=f(6,9).
Let us define Greens function G(r,r) by

G(r,r') = H(r,r") + ];:1—,7

where H(r,r) satisfies the conditions

(& + &+ &) H(r, 1) =0

and G(r,r’) = H(r.,7") +

= r’l = 0 on the surface r = a of the sphere.

Let P(r,0,¢) be a point within the sphere and P be the inverse point of P with respect
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to the sphere so that if OP=r then r = OP = %3 Now if () be any variable point on th:
surface of the sphere, then from the similar triangles OQP and OQP we have

JRIe] ’:: = %, i.e., PQI = EP,QI, Where O(g, = p,

Noting that this relation is valid for all points on the surface r = a, we get

N e 1 — —_—
H(T,T')-—-— r,P;Q;/ - T‘P‘ir,’ - r

It may be easily verified that this form of H (7, 7) satisfies Laplaces equation. Let Q (', ¢, ¢')

@
2
f,-r—r’{

be a variable point inside the sphere. If Q lies on the surface of the sphere, say at Q, then

P __r

P'Q u’

Thus Greens function for the present

JOVANNEENS | a/r 1 T
Gr)=pm -2l =%-4
3 :24‘-—1‘

where PQ=R and PQ = R. it is seen that G=0 on the surface r = a of the sphere.
Now R? =72 + 72 — 271/ cos§ and R? = —§+T Qﬁ;r’cos9

where cos 6 = cos 6 cos ¢ + sin #sin &’ cos (¢ — ¢'). Thus

8G _ 3G _ 1 8R a/r B8R’ 1 SR a) R® 18R
o T o T “Rigw T RT T = ES{RBT'“(?) Rar/]
= [RE - (8) BRE] (B=£8=1)
- TR {Rdr (r) R dr’] (H PQ
So that

¢ — 1 - o r? _a?

(F’I)r‘za = - [Tﬂ‘ {(a ~rcosf) — L (a : ‘cosﬂ)}]rlza

2 2

- ri-a
a(r?+u?—2ur cos 6)/2

Thus the solution of the interior Dirichlet problem for a sphere is obtained from (2.10) as

o' ¢
( g ¢) 4"“ (7'2+a2{-(2afc2)s9)3/2ds, _
ie.,
2 _ 42 T 2m ! &) sin 8
u(r b, ¢) = M f(#.¢')sin 3/2d0’d¢’ .
am 6'=0 ¢/=0 (r? + a2 - 2ar cos6) N

ds' = a®sin0'd6'd¢’. The equation (5.3) is known as Poisson integral formula. In a similar
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way, the solution of exterior Dirichlet problem can be obtained in the form

(T2 - 0'2) ” i f(g’ ¢I)81n9/ ' dg'd(ﬁ’ ’ (13)

a
u(r6,¢) = ——— 3+ 0 — 2ar cos )"

, o= o¢' o (
where the function u is harmonic outside the sphere (thus imply'i'né""?feg‘mar‘ity at infinity)’

and assumes the boundary values f (6,4).

6. Greens function for Neumann problem

Let us now proceed to see whether there exists a function similar to Greens function which
can solve Laplaces equation for Neumann problem. We consider the case of a bounded
region and follow the analogy of the work of section-2. We wish to eliminate u(r) from

under the integral sign in

u(r) = & [ [ 2 - w () & ()]s
by means of '
0=z [H (r,) 82 —u () &H (r, r’)]ds

~ in order th@t u(r) may be expressed in terms of the boundary values of its normal derivative
alone. This can be done if it is possible to find H(r,r), harmonic in V, and having a normal
derivative which is the negatwe of that of . But this is impossible, because by Gausss
theorem on the integral of the norma.l denva,txve,
jg‘"-,‘;% (’—T-:l-;[) ds = —4m; | B
On the other hand, if H(r,r) is harmonic in V, then
[&H (r, ") ds =0.
We, therefore, demand that the normal derlvatxve of H (r, r) shall differ from that of — T—_f ‘
by a constant, and this will serve our perpose | ' '
The function defined by -
G(r,r')=H(r,7) + ],—_1;71

if it exists is known as the Greens function of the second kind for V. in terms of this -
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function, we obtain the following expression for u(r) by adding the last two equations :

u (r)=£7;/8/(:%u (r")YG (r,r")ds + Z%/S/u(r') ds (14)

Thus u(r) is obtained in terms of its normal derivatives except for an additive constant,
which is all that could be expected, since u(r) is determined by its normal derivatives onlyto.

within an additive constant,.

; Exercise
1. Show that the solution of the Laplace’s equation in the upper half-plane defined by
¥ 2 0,—00 < 7 < 0o by using Green’s function method, subject to the condition u=f(x)
on y=0 is
uey) =¥ ] Glej,
2. Use the method of images to show that the harmonic Green’s function for the half-space
z220is
G =5 (2-4).
where 12 = (z — 2')? + (y = /)2 + (2 — 2’)? and 12 = (z — TP+ (y—y) + (z+ )2

3. Show that G(r,7’')=G(r, ') for Green’s function of the second kind,

4. Show the formula

u(n6,9) =& [1#.¢) [2+Llog (s 2)] ds

where f (¢, ¢') is any continuous function such that I f(¢,¢)ds = 0andcos® = cosb. cos '+
. R Rl :

sinf. sin ¢’ cos (¢ — ¢') solves the Neumann problem for the sphere.
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