LIST OF FIGURES

.

Figure	Figure captions	Page
No.		Nos.
1.1	Pictorial diagram of testicular androgenesis	
1.2	Arrangement of different generation of germ cells at different stages of spermatogenic cycle at rat	
1.3	Testicular cross section at stage VII of semineferous epithelial cell cycle shows different generation of germ cells (Fig. 2 X 1000)	
1.4	Generation of reactive oxygen species in human spermatozoa. NADPH: nicotinamide adenine dinucleotide phosphate, NADH: nicotinamide adenine dinucleotide, SOD: superoxide dismutase, Cu: copper, Fe: Iron.	
1.5	Apoptotic mitochondrial pathway (signalling pathway) for the activation of caspase cascade system	
1.6	Extrinsic pathway for maintaining programme cell death	
4.1.1	Activity of testicular $\Delta 5$, 3β -HSD and 17β -HSD after cyproterone acetate treatment	
4.1.2	Effect of cyproterone acetate on testicular cholesterol level in male albino rat	
4.1.3	Catalase activity in testis, sperm pellet and prostate in CPA treated albino rat	
4.1.4	Adverse effect of cyproterone acetate on superoxide dismutase activity in testis, sperm pellet and prostate in albino rat	
4.1.5	Toxicity assessment of CPA in general in male albino rat	
4.1.6	Negative deviation in the seminiferous tubular diameter after cyproterone acetate administration to the male albino rat	
4.2.1	Rectification in the sperm acrosomal status after lycopene administration at different doses in CPA treated infertile rat	
4.2.2	Effect of different doses of lycopene on androgenic key enzyme activities to the CPA treated rat with andrological abnormalities	
4.2.3	Corrective efficacy of different doses of lycopene on the testicular cholesterol level on CPA administered infertile rat	
4.2.4	Attenuation in the serum testosterone level after the treatment with lycopene at different doses to the CPA treated infertile rat	
4.2.5	Protective efficacy of lycopene at the doses of 0.75 mg, 1.5 mg, 3.0 mg and 4.5 mg in connection to the rectification in catalase activities in testis and sperm pellet to the CPA treated rat	
4.2.6	Dose dependent remedial effect of lycopene on the peroxidase activities in sperm pellet and testis in CPA treated infertile rat	
4.2.7	Protective efficacy of lycopene at the doses of 0.75 mg, 1.5 mg, 3.0 mg and 4.5 mg in connection to the rectification in catalase activity in testis and sperm pellet to the CPA treated rat	

120		
4.2.8	Recovery in the serum protein profile after the treatment of	
	lycopene at 0.75 mg, 1.5 mg , 3.0 mg and 4.5 mg doses to the	
	CPA induced hypo-testicular activities in rat	
4.3.1	Corrective efficacy of lycopene on nuclear chromatin	
	decondensation after treatment with 15 days, 30 days and 45	
	days on CPA induced hypo-testicular dysfunction in male	
	infertile rat	
4.3.2	Rectification in the testicular $\Delta 5$, 3 β -HSD activity after lycopene	
	administration in different durations in CPA treated infertile	
	rat	
4.3.3	Correction in the testicular 17, 3β-HSD activity after lycopene	
	administration in different durations in CPA treated infertile	
	rat	
4.3.4	Rectification in the testicular cholesterol level by duration	
4.3.4		
	dependent lycopene treatment on CPA induced male infertile	
425	rat	
4.3.5	Ameliorative efficacy of lycopene on testosterone level at	
	different duration depend treatment protocol on CPA induced	
10.	male infertile rat.	
4.3.6	Duration dependent revival efficacy of lycopene on seminal	
	vascular fructose level on CPA induced male infertile rat	
4.3.7	Duration dependent ameliorative efficacy of lycopene on	
	testicular catalase activity on CPA induced male infertile rat	
4.3.8	Correction of testicular SOD activity by duration dependent	
	treatment regimen with lycopene on CPA induced male infertile	
	rat	
4.3.9	Rectification in the serum GOT and GPT activities after	
	lycopene treatment in different duration dependent regimen in	
	CPA induced male infertile rat	
4.4.1	Effect of 30 days treatment followed by cessation of lycopene	
	treatment for 15, 30 or 45 days on testicular $\Delta 5$, 3 β -HSD	
	activity in CPA treated rat	
4.4.2	Activity of 17β-HSD in testicular tissue after the treatment with	
	lycopene for 30 days followed by withdrawal of treatment for	
	15, 30 or 45 days	
4.4.3	Rectification in serum testosterone level after treatment with	
	lycopene for 30 days followed by cessation of treatment for 15,	
	30 or 45 days in CPA treated albino rats	
4.4.4	Rectification in seminal vascular fructose level after treatment	
	with lycopene for 30 days followed by cessation of treatment for	
	15, 30 or 45 days in CPA treated albino rats	
4.4.5	Testicular SOD activity after the treatment with lycopene for 30	
-11-716	days followed by withdrawal of treatment for 15, 30 or 45 days	
	in CPA treated albino rats	
4.4.6	Activity of testicular GST after 30 days of lycopene treatment	
U.F.F	followed by cessation of treatment for 15, 30 or 45 days in CPA	
	treated infertile albino rats	
1 1 7		
4.4.7	Testicular catalase activity after oral administration of lycopene	
	for 30 days followed by withdrawal of treatment for 15, 30 or 45	

	days in CPA treated infertile albino rats	
110	<i>v</i>	
4.4.8	Effect of withdrawal of lycopene treatment for 15, 30 or 45 days	
	on testicular peroxidase activity on CPA induced hypo-	
4.4.0	testicular dysfunction in male albino rat	
4.4.9	Effect of withdrawal of lycopene treatment for 15, 30 or 45 days	
	on testicular antioxidant end products levels on CPA induced	
	hypo-testicular dysfunction in male albino rat	
4.5.1	Correction in the gene expression by qRT-PCR of testicular $\Delta 5$,	
	3β-HSD after lycopene administration in CPA treated infertile	
	rat.	
4.5.2	qRT-PCR study of testicular 17β-HSD gene expression after	
	oral administration of lycopene in CPA pre-treated infertile rat	
4.5.3	Up-regulation in testicular catalase gene expression after	
	lycopene treatment in CPA pre-treated infertile albino rats	
4.5.4	Correction in the testicular SOD gene expression after lycopene	
	treatment in CPA pre-treated infertile albino rats	
4.5.5	qRT-PCR study of testicular peroxidase gene expression after	
	lycopene treatment in CPA pre-treated infertile albino rats	
4.5.6	Rectification in the gene expression of testicular Bax after	
	lycopene treatment in CPA pre-treated infertile albino rats	
4.5.7	Bcl-2 gene expression in testicular tissue after the correction in	
	expression pattern by lycopene in albino male rats	
4.5.8	Rectification in the cytochrome-c gene expression in testicular	
	tissue after oral administration of lycopene to the CPA induced	
	infertile rat	
4.5.9	Corrective efficacy of lycopene on the gene expression pattern	
	of testicular caspase 3, 8 and 9 in testicular tissue after oral	
	administration of lycopene to the CPA-induced infertile rat	
4.5.10	Western blot analysis of testicular $\Delta 5$, 3 β -HSD protein	
	expression after lycopene administration in CPA treated	
	infertile rat	
4.5.11	Ameliorative efficacy of lycopene on testicular 17β-HSD protein	
	expression on CPA treated infertile male rat	
4.5.12	Rectification in the protein expression of testicular catalase	
	after administration of lycopene in CPA pre-treated albino rats	
4.5.13	Rectification in the protein expression of testicular SOD after	
TIU I I	administration of lycopene in CPA pre-treated albino rats	
4.5.14	Western blot analysis of testicular Bax protein expression after	
77	lycopene administration in CPA pre-treated albino rat	
4.5.15	Attenuation of testicular Bcl-2 protein expression by lycopene	
-1.3.13	in CPA treated infertile male rat.	
4.5.16	Correction of testicular Bcl-2 protein expression by lycopene in	
4.3.10	CPA pre-treated infertile male rat	
1 5 17		
4.5.17	Flow cytometry analysis of viable sperm in A. Vehicle treated	
4 = 10	control, B. CPA treated rat, C. CPA+ lycopene treatment	
4.5.18	Effect of lycopene on sperm mitochondrial integrity in A.	
	vehicle treated control, B. CPA treated group and C. CPA+	
4 = 40	lycopene treated group	
4.5.19	Remedial effect of lycopene on sperm DNA breakage through	

	comet assay in A. vehicle treated control, B. CPA treated group	
	and C. CPA+ lycopene treated group	
4.5.20	Immunohistochemical study of testicular tissue for the detection	
l	of apoptosis in A. vehicle treated control, B. CPA treated group	
	and C. CPA+ lycopene treated group	
4.6.1	Direct effect of lycopene exposure on testicular $\Delta 5$, 3 β -HSD, 17	
	β-HSD activities in CPA treated infertile male rats	
4.6.2	Remedial effect of lycopene after its direct exposure to the testis	
	of CPA pre-treated infertile rats	
4.6.3	Rectification in the catalase activity after the direct exposure	
	lycopene at the dose of 1.5 mg/ 0.5 ml tween-80 CPA pre-treated	
	infertile rats	
4.6.4	Rectification in the catalase activity after the direct exposure	
	lycopene at the dose of 1.5 mg/ 0.5 ml tween-80 CPA pre-treated	
	infertile rats.	
4.6.5	In vitro study on effectiveness of lycopene on GST activity in	
	testes of the animals treated with CPA	
4.6.6	Ameliorative effect of lycopene on acid phosphatase and	
	alkaline phosphatase activities in testes after direct exposure of	
	lycopene on the testes of CPA pre-treated infertile rats	
4.7.1	Serum GOT and GPT enzyme activities after administration of	
	lycopene at the potent dose to the albino rats and its	
	comparison to the vehicle treated control	
4.7.2	Activities of hepatic and renal ALP after the administration of	
	lycopene at 1.5 mg/ 0.5 ml tween-80/ 100 g body weight to the	
	experimental rat	
4.7.3	Effect of lycopene on renal and hepatic ACP activity in albino	
	rats.	
4.7.4	Serum total protein, albumin and globulin levels after	
	treatment with lycopene at the potent dose	
4.7.5	Effect of oral administration of lycopene on urea, BUN and	
	creatinine levels in Wistar strain albino rats	
4.8.1	Diagramatic presentation of the number of spermatozoa	
	present in the vaginal swab of the female rat mated with the	
	male rats of different groups	