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ABSTRACT
In this work, we study the existence, uniquenessamtinuity of solution to tock price
equation of CEV model with stochastic volatility fixed fractional Brown motion.
Besides, we show a Monte Carlo simulation basetherdiscretization method to price
the European option.
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1. Introduction

Empirical evidences have shown that the volatiifymarket is not constant and its
behavior is stochastic [1,2]. Many scholars paidrdions to the stochastic volatility (SV,
for short) models which mainly include two situaitso On the one hand, some studies use
the functions of some stochastic process to desdthie volatility®l. On the other hand,
some scholars introduce an additional Brown mot@moharacter the stochastic parts of
financial models. In this paper, we focus on thepgd case.

Hull and White in [4] introduced the SV models whiwere also developed by
many scholars. Models in the category of “stoclcasblatility” were first systematically
studied by [5,6,7] with numerical methods. Speeific Monte Carlo simulation was
adopted by [5,6], while Wiggins proposed that tinéte¢ difference method be adopted in
solving the corresponding PDEs for pricing finahdierivatives, such as optidAs

The theoretical development of SV models was intced in [8] where the authors
studied the equation

{dS(t): rSt)dt +vE)St)dB, ¢ )+ oSt)d ¢) )
dv(t) =k (@-v(t))d + 0o, (v(t))dB, ¢)

whose stochastic parts added a Levy prode$s,t>0} . Here r, o,«,6,0and o,

are constants (t) andB,(t) are standard Brown motions with assumption that
B,(t),B,(t) and J(t) are mutually independent. The existence and unigse of a
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strong solution to (1) were studied. Later, somfe estimates were proved of (1) [9].

Unfortunately, all the SV model mentioned abovedraracted by Brown motion in
which the increments follow the independent norstritiute. Many scholars argue that
the returns of risky assets have long-range depeederoperties which are expressed by
increment of financial models. Regardless of thgedelence in financial modeling, using
Brown motion to express the stochastic parts mag Bame serious disadvantages [10].

Recently, scholars have paid their attentionsdotional Brown motion, and used it
to character the stochastic parts of risky assetdets, because the increments of
fractional Brown motion have the self-similaritydalong-range dependence properties.
We refer the reader to [11] for the motivation amferences concerning the study of
fractional Brown motion.

In this paper, we use Mixed fractional Brown motigmfbm) which is a linear
combination of Brown motion and fractional Brown tima to driven the following stock
price equation of CEV model

dS(t) = rS(t)dt +VE)SE) avs ¢), )
where the variance proce$g1), t =0} driven by another mfbm satisfies

dv(t) = B(vt))dt +o (v )M, ¢), 3)

dM* @M ()= p(d™ +A%d). (4)

Here M/ (t) and M} (t) are two mfbm processes whose concept and relative

conclusions will be given later is the (constant) interest rate. The main goahif
work is to investigate the existence, uniqueness e@wntinuity of solutions to the
dynamic model (2)-(4). The existence and uniquerassfollowed in Section 2. In
Section 3, the continuity of solution to the dynamiodel (2)-(4) is studied. European
option is priced using discrete type of (2)-(4) &hointe-Carlo simulation.

2. The existence and uniqueness
LetA andH be positive constantd>0,H 0(0,1). A mixed fractional Brownian motion

with parameterd andH is a linear combination of standard Brownian motiand
fractional Brownian motion,

M =AB(t)+B" (1),
where {B(1), t =0} is a Brownian motion{B"(1), t=0} is an independerfBm of the

Hurst parametes [*4,
We give the following lemmas with respectrtdBm which are used to prove our
main results (for details, see [12]).

Lemma 2.1. A mfBm satisfy the following conditions
1. The paths ofM" are continuous and;' =0.

2. E[M']1=0andg[M ] = 2%t +t*", for anyt = 0.
3. The increments ofv " are stationary.

Lemma 2.2. Suppose thatM' =AB +B"is a mfBm process. Then, the path of the
process is y-Holder continuous such that<0.50H .
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Lemma 2.3. AmfBm process withH 0(0.75, 1)has long-range dependence.

Lemma 24. Let M be a mfBm process with Hurst parameterf](0.75,1) and
A0OR, then M and AB, are locally equivalent.
According to Lemma 2.4M" is equivalent toAB,. This process is suitable to

display the random part of the financial model.

In this section, we prove the existence and unigserof solution for the mixed
Heston model. To do this, we extend the ideal6f for mixed stochastic differential
equation.

Definition 2.1. For anys<t, supposeC([s t]) denotes the Banach space of continuous
functions equipped with the supremum norm we debgjtef ||, , f OC([st]) with

I flke=sup{|f¢)lssr<t}.
The space of Holder continuous functions of oggler 0 is denoted byC”([s t]) and its
norm is

|| f]st,A=sup f(u)_f(v)l,SSV<u<t}.

lu-v

Theorem 2.1. The volatility equation of the mixed CEV model hasunique positive
solution v, where tJ[0,T) andT =inf{t >0| X, =0} .

Proof: First, we confirm the existence of solution folekant equation. In order to do,
we define Y° =v,and Y® =Y“ (w) inductively as follows

YO =+ [ B+ [ ()M (5)
Therefore

B[y -] = E[\ [LAYS) =AY H)ds+ [ a(%") —a(¥“)dm !
We know that (a+b)" <2"*(@" +b"),s0

e -% |1 <28, YY) -ﬂ(\(‘k'”)dsr] +26| [} (") - oY )M !
Using the Holder inequality, one derives

e[ A0) - B0y 1< Bl A - A0 Flds <, [ YO =Y s (7)

1.

1. ©)

Here M, is the Lipschitz coefficients related to the. Next we pay attention to
2

E[U;U(Yt(k)) -o(Y*)dMf| 1. Using the Ito lemma , we obtain

1< (A2t | AYE) - A< )| Tds

< A2+t M [ E Y - <Y s,

t _
B[, o) - oY )dm

(8)
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The integral w.r.t. the Wiener proce$s(1), t =0} is understood as the Ito integral, while
that w.r.t. the proces$B, (1), t =0} as Wick integral. Now, putting together (6), (&hd
(8), we have
EVO? -y 1< M [ B Y - Y| ds, ©)
whereM =2tM, +2(A% +t*' )M,
Next we pay attention tg = E[[Y,* —v0|2] . Taking k=0 in (5), one obtains

t t 2 t 2

h = El|[; Ads+ [, otvd | 1= E Avat+ [ otvoam?| 1.
Now we use (a+b)" <2""(@" +b") and Ito lemma to obtain

h < 2°E[ B(v,) T+2(A°t +t*)Ef|o(v,)[ T s Mt ,
where the constanM, depends ond, C, T, E[A(Y,)[] and E[|a(Y,)|']. Accordingly,
by induction onk we obtain
MzM ktk+l

(k+1)!

. 2
h., = E[|Yt(k 1) _Yt(k)| 1<

k
Thus, the sequencé,,, =h +> (h,,—h)is absolutely convergent with the,norm.

i=0
Hence, the existence is proved.
We now show that the solution of (8 unique. Suppose/(t,w) and Z(t,w)

satisfy (3), Y(0,w)=Y andz(0,w)=Z. Therefore,
E[lY(tw)-Z(t,w)F]= E[IY—Z+f;l3(Y(S,w))—,3(Z(S,w))dSJff;U(Y(S,w))—U(Z Gw)M ]

We may use Young's inequality to obtain
ElY(tw)-Z(tw)f]

<361V -2 F1+3[ [, B 5.0 - R o) 1+ E( Lot son-o@sonm! ) 1

(10)
Following the similar proof of (7) and (8), we i
e[, ACY(s ) - A(2(s @)ds) T<tM, [ Ell V(s.6) - 2(5.0) F s, (1)
E[(f;a(Y(a W) - o(Z(s,w)dm " )2 < (N2 +t2H'1)M2_[; E[Y (s,w)-Z (s,w) } ]c5.. (12)

Substituting (11) and (12) into (10) and letting = 3tM, + 3(A*> +t** )M, yeild
E[|Y(t,w)-Z(t,w) f]1< 3E[Y -2 |2]+M_[;E[|Y(s,a))—z G.w)f k.
Using Gronwall inequality, we have
EY(t,w)-Z(@t,w)f]1<3E[Y-Z flexpiAt}.
The uniqueness of solution can be proved using
Y =Y(0,w)=Z(0,w)=2Z.
Consequently, the theorem is proved.
Next, we will derive L estimate for the solution of the volatility equatiander
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appropriate hypotheses on the functions @pfand o in which the restriction are

weaker than that present in [10].

Assumption 1. There exists a positive functioh(t) JL, ([0, T]), such that for anyxOR,
max{| B(x) |.lo &) [}s M ¢)(E [x [.

Lemma 2.1. Assume that Assumption 1 holds, and et 0 be fixed. Then for any
positive constantC =C(x,T, p), we have

Eq.[sup|X ¢t)"]sC. 13}
t0,T]

Proof: Let 7, =inf{t>0,| \(t) |> N}. Since

vt Or,) =, + j;D B(v(s))ds+ j;D ow(s)dM " .
Using Young’ s inequality, we have for any>2 that

V()" <37 (v, P +A +A), (14)

tOry p tOry p
where A :UO B(v(s))ds( A :UO o((s))dM!'| . Now, we computeA and A, .
Using Holder inequality, and lettifg,..| = max{| x|, |, |}, we have
tOry P tOry .
E[A] < H sup UO ,u(v(s))ds‘ J<E[sup[ "M () ¥ K|f @
t0o,T] to,T]

Note that for anys0O[0,t Oz, ], |v(s)k N . Therefore,

E[A] < H sup jf M ()[1+ N|” cs]. (15)
t0[0,T]
Following similar proof which was performed for {14ve obtain
Es [Al<Hsup [ M) [1+ N[ ], (16)
' tpo,117°

whereg, . = max{o,, o,} . Substituting (15) and (16) into (14), and letting
C, =E]lv, 1+ E[sup_[OTM O x| ¢ FE [Sup_[OT M (3] N[ o,
t00,T] to,T]

we obtain
supEg; [vtOr, )" 1< 37C,, p=2. a7

t[0,T]

Letting N - «, by Fatou’s lemma one finds that
supEg ; [vt)" 1< ¥7C,p22. (18)

t000,T]
Second, we prove that (13) still holds for amy p < 2.Using Cuachy inequality,
obtains

ElMO|" T <EMY[? < [i}é‘% E[|v(t)|2”]}2 : (19)
Note thatp = 2, and using (18) obtains
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Es VO 1<C(S, T, p) -
Becauset0[0,T] is arbitrary, (13) is proved whegr p< 2.
Finally, if 0< p<1, note that
VO = MO Lo VO ey SV Fops VO] g -
Further we have
VOI < VO™ gy +21 VO #1.
Hence it follows from the cas@< p<1
supE[vt)’]<CW,.T.p)+1.

t00,T]
This completes the proof of the lemma
By following the proof of Theorem 2.1 and Lemmathi Stock price equation can
prove the following lemma.

Lemma 2.2. Stock price equation of CEV model has a uniquetiwni In the case that
B and o() satisfies Assumption 1, then

SupE[St)1=C,.S,.T.p).

t[0,T]

3. Continuity
In this section, we are going to discuss the coitiinto Stock price equation of CEV
model.

Theorem 3.1. Stock price process of CEV modgq 1), t =0} is continuous.
Proof: Note that for ang<s<t<T,

S(t) - S(s) = j‘ LS(s)ds + L‘v(s)S(s)“dMSH .
Using Holder inequality
Sty - S(9)|" < 2A, + 2 A, §20

where A, :U: ,u(a(s))S(s)dsr, A, :‘ J:U(U(S))S(S)dw(s)‘4- It follows by Cauchy inequality,

U; S(S)dsr < (Lt|S(S)|2 dS)2 . Therefore

erA] <[ 8] 43091 <" J'|9 3097 <[ud ' [[jg 3] 437,
Using Cauchy inequality again, we obtain
ZISEPRIEESER
It follows by (19) that

E[A] | C?|t-o. (21)
Now we pay attention t& A,] . Using Cauchy inequality, we obtain

ZISEE(NCEEEVENEEETIE

1%
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We may use Ito lemma and Holder inequality to &gy
eral < ([ Eus g9 ps) <[ VA9 TES3 s .
It follows by (13) and (19) that

E[A] <C?|t-5". (22)
Substituting (21) and (22) into (20),yeilds
E[ls) -(9)|' 1= C?t-o" . (23)

Therefore, the theorem is proved.

4. Option pricing
In this section, we consider the following Europeah option with
terminal payoff= max§ T »K }.
Here K is the strike price andS(T) is the terminal price of the underlying asset
following extended Heston model

ds(t) =rS)dt +\VE)SE)B! ¢), (24)
dv(t) = K (@-v(t))dt + o,V () BY (), (25)
dB! (t)eB! ()= pd®, 6]2

which is special case of model (1.1)-(1.3) if
A=0, BU() =KE-V), T(v(t) =T,V -
From the risk-neutral valuation principle, the priaf European call option at time can
be written as
c(t, S(t)) = exp{-r (T —t)}Eg [max{T) -KJ] ,
Now we are going to describe the time discrétizaof the SDE (24)-(25). First
the time interval [0,T] is divided intoN time steps, witiat=T/N and t, =nAt,

n=0,1,2;-- N. Let{S} and{v} be approximation of gt} and\?} at time levelt,
respectively. The implementation of discretizatiorf24) and (25) produces

S..=S +ISAt +v,SABM S(0)=S,, (27)
Voo = Vo +6(0 = v, AL + 0V, AB v(0)=V,, (28)

where At = t,, - t,, OB =B/(t,.)-B!'(t,) and AB* =B} (t,.,)-B} (t,).
Since the closed-form solution for the extendedtétesnodel has not been found
yet, we consider the numerical computations ingkigtion. Thus, for European call

M
&, (t,S(t)) = exp{-r (T —t)}ﬁZmax{S‘f’ -K,0}, (29)
k=1
where S is the kth simulation of S;,.
Example 1. If «=0,0,=0, the value of European call has the closed form

c(t, S(t)) = S(t)®(d,) — K exp{-r (T —t)}P(d,) , (30)
where
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1
IN(S(T)) = In(K) +r (T —t) + v (T* —t*')
= ,7\/ (TZH _tZH)Z ) dz =d1_\j OCFZH _tZH) .
0

Here we compare the value of European call obtaiséty Scheme (27)-(29) with (30).
Consider an European call with parametefs=1, t=0.5, r=0.05, S(t)=110,

K =100, v,=0.3,4=0andH =0.5. Let M {100, 200,300,-- ,1000C, the curve of the

European call is plotted in Figl withN=20. From the Figl, we see that
¢, (t,S(t)) converges toc(t,S(t)) as M - « . Let S[{90,91,--,150}, Fig2 shows

accurate approximations for large numbevs (Here we setM =2000C) and the

relationship between asset price and the values of European call.

d,

[
™ — Precision value from (4.7)
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Figure 1: European call for different value a

— Precision value from (4.7)
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Figure 2: European call for different value o

The next example shows the effect on values of fi@an call is obvious by the
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volatility equation.

Example 2. Here the parameters for European call arel,t=0.5,r=0.05,
S(t)=110 , K=100 , v,=03 , A=0 , H=05, M=20000 and N=20 . Let
610{0.05,0.1,0.15,-- ,0.5C, Fig3 reports the relationship betweeh and the values of
European call witk =1, g, =0.1. Further, the value of European call computed28) (
for different value ofg, is plotted in Fig 4.The relationship between ttedues of
European call ands, showed an U - shaped curve.

- - Simulation value using (4.6) .-'.. o e o
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Figure 3. European call for different value of
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Figure 4: European call for different value af,
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