2013

M.Sc.

1st Semester Examination

HUMAN PHYSIOLOGY

PAPER—PHY-102

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Unit-03

Answer all questions.

- 1. (a) Discuss the application of Poiseuille's law in physiological systems.
 - (b) In an experiment with Poiseuille's apparatus the following data were obtained.
 - (i) Volume of water flowing/sec. = 0.117 cm³ Sec⁻¹
 - (ii) Radius of the tube = 0.0514 cm.

- (iii) Length of the tube = 56.45 cm.
- (iv) Density of water = 1 gm cm^{-1}
 - (v) Height of the liquid = 34.10 cm.
- (vi) Acceleration due to gravity = 981 cm Sec-1.Calculate the viscosity of liquid in poise. 2+3

Oī

- (a) What do you mean by Newtanian and non-Newtanian fluid?
- (b) Estimate the velocity of blood producing turbulance in an artery of 2.2 an diameter, when the density and viscosity of blood are 1 gm cm⁻³ and 0.03 poise respectively.

 $2\frac{1}{2} + 2\frac{1}{2}$

- 2. (a) In conformity with Dalton's law of partial pressure, Henry's law of solubility of gases in liquid and Fick's law of diffusion, discuss the gasious $(CO_2 \& O_2)$ exchange between
 - (i) alveoli and pulmonary arterial blood and
 - (ii) arterial blood to tissue.
 - (b) Explain the lung-compliance curve and the hysteresis loop.

 $(1\frac{1}{2}+1\frac{1}{2})=2$

Or

- (a) Explain the aerodynamic theory of phonation in relation to Bernoulli energy law.
- (b) What do you mean by articulation?

3+2

- **3.** (a) Discuss the concept of open and closed system in the light of thermodynamics.
 - (b) Write the basic features of living system in reference to thermodynamics.

 $2\frac{1}{2} + 2\frac{1}{2}$

Or

- (a) What do you mean by bioluminescence?
- (b) How does bioluminescence work?

2+3

- **4.** (a) Explain the ultrasonic wave propagation in reference to Biot theory.
 - (b) How can you calculate the intensity reflection coefficient (IRC)?
 - (c) What do you mean by attenuation of sound waves? $2\frac{1}{2}+1+1\frac{1}{2}$

Or

- (a) Explain the mechanism of ultrasound drug delivery during ultrasound therapy.
- (b) Draw a polar plot beam pattern of 300 mm transducer array.
- (c) What do you mean by system beam pattern of transducer? 3+1+1

Unit-04

Answer all questions.

- 1. (a) Describe with the help of a block diagram the basic components of an EEG machine.
 - (b) Write short notes on (any one):
 - (i) Microelectrodes;
 - (ii) Montage;
 - (iii) Properties of electrode jelly.

Or

- (a) How is Faraday's law of magnetic induction responsible for electromagnetic blood flow measurement?
- (b) Explain the transit-time operating principle in case of ultrasonic flow measurement.

 $2\frac{1}{2}+2\frac{1}{2}$

- 2. (a) Write the working principle of Stow-Severinghaus sensor for determination of arterial PCO_2 .
 - (b) What is pulse oxymetry?

4+1

Or

- (a) How can you measure PO_2 in the blood with intervascular sensors in vivo.
- (b) Why is the capnography most important during anaesthesia in ICU chamber?

3+2

- **3.** (a) Discuss the mechanism of image formation from Sound in 3D ecocardiography.
 - (b) Write the importance of B-Scan.

3+2

Or

- (a) Write the description and operation of Geiger-Müller (GM) counter during radiation measurement.
- (b) What do you mean by quenching?

(2+2)+1

- **4.** (a) Mention the different transducer components with a suitable diagram.
 - (b) Classify transducer depending on transduction principle.
 - (c) Discuss the different types of pressor sensor with examples.

1+1+3

Or

- (a) How is direct digital synthesis (DDS) technique important for signal generation in advanced audiometer?
- (b) Mention the side effects and complications developed during haemodyalysis.

3+2