2019

B.Sc.

2nd Semester Examination COMPUTER SCIENCE (Honours)

Paper - C4T

(Discrete Structure)

Full Marks: 60 Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any ten questions.	10×2
(a) Define master theorem.	2
(b) Define Planar Graphs.	2
(c) Define De Morgan's law.	2
(d) Write, principle of inclusion and exclusion.	2
(e) Prove that $3n^2 + 2n + 5 = 0(n^2)$.	2

(f)	Define Ω (Big-omega) notation in comple	xity.
(g)	Define generating function.	2
(h)	Write down basic characteristics of an Algorithm.	
(i)	Define cut set and cut vertex.	2
(j)	Define Euler graph.	2
(k)	Give an example of a relation which a Ref and Transitive but not symmetric.	lexive 2
(1)	Define Adjacency matrix of a graph.	2
(m)	Define symmetric difference between two with an example.	sets 2
(n)	Prove that number of odd degree vertices graph is always even.	s in a
(o)	Define Bijective mapping with an example.	2
Ans	swer any four questions.	4×5
(a)	Define Tautology and Contradiction. Using table prove that,	Truth
	$(p \to q) \land (r \to q) \equiv (p \lor r) \to q$	2+3

(b) Using Mathematical induction prove that:

$$2^n < |n|$$
 for $n \ge 4$.

5

(c) For any three arbitrary sets A, B, C, prove that

(i)
$$A-(B\cup C)=(A-B)\cap (A-C)$$

(ii)
$$(A \cap B) \cap (A - B) = \phi$$

21/2+21/2

(d) If R be a relation in the set of integers Z defined by

$$R = \{(x, y) : x \in z, y \in z,$$

(x-y) is divisible by 6

Prove that R is an equivalence relation.

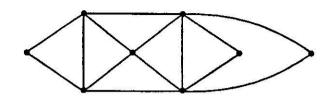
5

(e) Solve the following recurrence relation.

$$a_r - 3a_{r-1} + 3a_{r-2} - a_{r-3} = 0$$

5

given that, $a_0 = 2$, $a_1 = 1$, $a_2 = 1$.



Answer any two questions:

2×10

- (a) Prove that in a simple graph with n vertices and K components can not have more than (n-k)(n-k+1)/2 edges. Prove that E = I + 2n, where E is the external path length, I is the internal path length and n is the nodes having two children.
 - (b) (i) Find asymptotic relation for the recurrence relation using Master theorem

$$T(n) = 2T(n/2) + n^2$$

(ii) Find the asymptotic using substitution method:

$$T(n) = 6T(n/3) + 2n-1,$$

$$T(n)=2$$
 for $n=1$

- (c) (i) Prove that a tree with n vertices contains (n-1) edges.
 - (ii) Define graph isomorphism with an example.
 - (iii) Prove that a connected graph contains an Eulerian trail, but not an Eulerian circuit, if and only if it has exactly two vertices of odd degree.

 5+2+3
- (d) (i) Solve the recurrence realtion using generating function:

$$a_r - 5a_{r-1} + 6a_{r-2} = 2^r + r$$
; $a_0 = 1$, $a_1 = 1$

(ii) 900 students appeared for two papers in Mathematics. 740 students passed in paper-I and 650 students in paper-II. If 625 students passed in both, find the number of students who failed in both.