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The figures in the margin indicate full marks.
Candidates are required to give their answers
in their own words as far as practicable.
Illustrate the answers wherever necessary.

iy
Unit - I
f (Riemann Integration)

[Marks 19]

' 1. Answer any fwo questions 2x2

/ (a) A function f'is defined on [1, 3] by f(x) = [x%].

‘ 3
| Evaluate [ /() ds.
1

5 ;
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(2)
_(b) If a function f": [a, b] — R be integrable on
[a, b] and f(x)=0 for all xe[a,b], then

b
prove that jfZO. 2 o

a

(¢) If f be defined on [-2, 2] by

f(x)‘=3.7c2 cos-:—2+21tsinx—n2, x#0
=0,x=0,

then show that fis integrable on [-2, 2].

2
Evaluate [ f. 1+1
2 -—2 :
: e -
2. Answer any one question : 5x1
(@ If f:R—R is continuous and ¢ > 0, define

x+c
g:R>R by gx)= [ f()dr. Show that
g(x) is differentiable on R and find g'(x).
- 4+1

‘b
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| (b) State Bonnet’s form of second mean value
theorem of integral calculus. Hence establish

b

Isinxz glm0<a<b<oc, 2+3

B
/ 3. Answer any one question : 10x1
(@) (1) State and prove Darboux theorem. 5

() If a function f': [a, b] — R be integrable on
[a, b] then prove that the function F

defined by F(x)= [ f(0dt, x<[a, b]

is differentiable at any point ¢ €[a, 5] at
which f'is continuous and F(c) = ftc)= 5

>
(b) (i) If a function f: [a, b] >R be integrable on
[a, b] then prove that | /| is integrable on
[a, b]. Is the converse true? 4+1
(i) Define Riemann sum for a function f. A
function f'is defined on [0, 1] by
f(x) = 1, if x is rational
= (), if x is irrational.
| :
A
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Using Riemann sums, show that £ is not

integrable on [0, 1]. 1+4
Unit - II
[Improper Integrals]
[Marks 11]
4. Answer any three questions : 2x3
(@) Prove that T'(n+1)=nI'(n),n>0. 2
(b) Using p test, show that I dx is
1 X(1+x )
convergent.
p—I
(c) Using comparison test, show that I—dx is .
+Xx g
convergent if p> 0 and is divergent if p<0.
“
(d) State Dirichlet test for the convergence of an
improper integral. Z
/2 m
(e) Show that I dx is convergent iff
o sin” x
n<l+m. Z 5
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5. Answer any one quéstion : 5x1

Examine the convergence of the integrable

1
. logx
i

(ii) jxm—le_"dx
0

Unit - I

[Uniform convergence of sequence
and series of functions]

[Marks 16]

6. Answer any three questions : 2x3

(a) If a sequence of function {f,(x)} be uniformly

convergent on D < R, then prove that the limit
function f'is bounded on D. 2

(b) If £(x) = x", x€[0,1], show that the sequence

of functions {f,} is not uniformly convergent on
[0, 1]. 2
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(6)

(c) State Weierstrass M-test for the uniform
convergence of a series of function. 2

\ cosnx
d) Find Lt :
@ Hoz n(n+1)

(e) If D be a finite subset of R and a sequence
{f,} of real valued functions on D converges
pointwise to £, then prove that {f } converges
uniformly to fon D. 2

7. Answer any one question : 101

(a) (i) State and prove Cauchy criterion for the
uniform convergence of sequence of
functions. 5

(@) If {f,} be a sequence of function defined

2

on [0, 1] by f,(x)=nxe™™ , show that
the sequence {f,} is not uniformly
convergent on [0, 1]. o]

(b) @ Let DcR and for each neN,
f»:D — R is a continuous function on D.

If the series Z f, be uniformly convergent

on D then prove that the sum function S is
continuous on D. L
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1

i) Show that the series R e )
@ Zn3+n4x2

uniformly convergent for all real x. If s(x)
be the sum function, verify that s(x) is
obtained by term-by-term differentiation.

6
Unit - IV
[Fourier Series]
[Marks 7]
8. Answer any one question : | 2x1
(a) Is i sin nx is a Fourier Series or not? Justify.

1 n

(b) State Dirichlet’s conditions for convergence of a
Fourier series.

9. Answer any one question : 5x%1

(@) Let f:[-n,n]—> R be continuous except for at
most a finite number of jumps and is periodic
of period 2n then prove that

[ Turn Over |

423/7/49-2325



(870)

& |,:,M

- 5. eV
Z=:a,,+bk)sn:[tf (x)dx

where a, and b, are the Fourier co-efficients of )

T
f () defined by a, = 1 [f@)cosnidt, n20
T
T

1 +7
= — [ f()sinmt dt,
T
-%

for n>1,
5

(b) Obtain Fourier series representation of f in
[-m, ] where f(x) =x Vxe[-n, ] and hence

deduce that 1—l+1——1—+...=£.
Bl 4 s
Unit -V

[Power Series]

[Marks 7]
10. Answer any one question : 2x1

(@) Let f(x) be the sum of a power series Za,x"
on (—R, R) where R>0. If f(x)+f—x)=0
Vxe(—R,R). Prove that a , =0 for all even
positive integer. .

]
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(b) Find the interval of convergent of the power

i z (_ )n+l (x+1)

11. Answer any one question : , 5x1

(@) Let ) a,x" be a power series with radius of
n

conv'ergence R (>0). Let f(x) be sum of the
series on (—R, R) then prove that S(x) is
continuous on (R, R).

(b) Assume the power series

1 1_'_1:‘_._13 4+135(,

+..
(52 S 2 24 S

obtain the power series expansion of sin~'x and
hence deduce

1 1 1.3.5
—— - +
23 245 24.6.7

=l
2
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