2018

2nd Semester

PHYSICS

(Honours)

PAPER—C3P

(Practical)

Full Marks: 20

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer one questions.

1. Determine the capacitance of a given capacitor using an ac source of low frequency (~ 50 Hz)

(a) Theory

(b) Circuit diagram and its implementation

(c) Table for V_R, V_C data for fixed R and a fixed frequency (at least five voltages).

3

2

(d)	Drawing of V _C ~ I curve.	3	
(e)	Determination of capacitance from graph.	1	
(f)	Accuracy	1	
10.770.00.070	etermine an unknown low resistance u tentiometer.	sing	
(a)	Theory	3	
(b)	Circuit diagram and its implementation	2	
(c)	Table for null points for at least three different w	rires. 2×3	
(d)	Calculation of r	2	
(e)	Accuracy	1	
(f)	Discussion	1	
Determine unknown low resistance using Carey Foster's Bridge.			
(a)	Theory	3	
(b)	Circuit diagram and its implementation	2	
(c)	Table for determining resistance per unit lengt for at least four sets.	h (ρ) 4	
(d)	Table for determining unknown resistance (R) follows four sets.	or at 4	
(e)	Calculation	1	
(f)	Accuracy	1	

3.

4.	Ver	ify the Thvenin and Norton theorems		
	(a)	Statement of the theorems	2	
	(b)	Circuit diagram and its implementation	2	
	(c)	$V_L \sim I_L$ (load voltage and load current) data for at six loads.	О	
	(d)	Draw two separate graphs for two theorems	2+2	
	(e)	Verification summary table	1	
5.	Ver	ify the Superposition theorem	×	
	(a)	Theory	3	
	(b)	Circuit diagram and its implementation	2	
	(c)	Date for voltage (v) and current (I) when one	source	
		is switched on alternatively and both source switched on (Two times each)	es are 2×3	
	(d)	Calculation	2	
	(e)	Verification table and accuracy	2	
6. Verify Maximum power transfer theorem				
	(a)	Theory	3	
	(b)	Circuit diagram and its implementation	2	
1	(c)	Data for $V_L \sim I_L$ or $V_L \sim R_L$ at least for 10 di loads.	fferent 5	
	(d)	Draw of P _L ~ R _L graph	3	

	(e) Conclusion and accuracy	2	
7.	Determine the resistance of a given galvanometer follow Thomson's method.	<i>r</i> ing	
	(a) Theory	3	
	(b) Circuit diagram and its implementation	2	
	(c) Table for the value of the P, Q and R resistation and null point detection.	nce 8	
13	(d) Calculation and accuracy	2	
8.	3. Study the variation of magnetic field strength (B) along the axis of a solenoid.		
	(a) Theory	3	
	(b) Circuit diagram and its implementation	2	
	(c) Measure B along the axis of the given solenoid for fixed current (at least 10 positions)	ra 5	
	(d) Plot variation of B along the axis	3	
	(e) Determine $\frac{dB}{dx}$ at two ending points and two m	nid	
	points.	2	
9.	Determine self-inductance of a coil by Anderson's brid (DC balance to be made by the examiner)	lge	
	(a) Theory	3	

	ı	
	(b) Circuit diagram and its implementation	2
	(c) Data for variation of 'r' with at least five differen	nt
	capacitors.	5
	1	
	(d) Drawing graph $\frac{1}{c} \sim r$.)
		3
	(e) Calculation of 'L' from graph.	27
200	s assign ICP circuit	
	10. Study the response curve of a series LCR circuit.	•
	(a) Theory	3
	(b) Circuit diagram and its implementation	2
	(c) Data for current Vs. frequency graph (at least	10
30	frequencies)	5
	(d) Draw graph (I ~ f) to show resonance point and b	and
	width	2
	(e) Determination of impedance at resonance, quafactor and Band width.	ality 3
	waxon = wwwit	and
	11. Study the response curve of a parallel LCR circuit	and
	determine its antiresonance frequency	
	(a) Theory	3
	(b) Circuit diagram and its implementation	2
	c Common Vs impedance graph (at least	st 10
,	(c) Data for frequency voi 22-1	5
	пеционовој	

(d) Drawing of frequency Vs.	impedance	graph
------------------------------	-----------	-------

3

(e) Determine antiresonance frequency and quality factor.

,

LNB-02, Viba-Voce-03