
Chapter 1

Introduction

1.1 Graph algorithms

One of the most important way to solve many real-world problems is graph-theoretic mod-

elling approaches. Unfortunately, it is unknown and we can’t believe that most graph-

theoretic problems, modelled from real life, have efficient algorithms as most of the general

graph-theoretic problems belong to NP-class on. But those problems are polynomially solv-

able on special class graphs such as trees or IntGs or other special type of graphs, especially

using a dynamic programming approach. Finding efficient algorithms is another powerful

way to cope with the hardness of these problems.

Graph is a mathematical tool or object consisting of two finite sets, V of vertices and E

of edges, which is denoted by G = (V,E), where each element of set E is represented by an

unordered pair of elements of set V . Usually, the graph is a representation of some problems,

using which some objectives of the problems can be solved with the help of some theoretic

algorithm(s). So, concerning some real life problems, real world entities or objects can be

denoted by vertices and relationship among the entities can be denoted by edges, where the

relationship is binary in nature. Hence, a real world (difficult) problem can thus be visualized

through its graphical representation, keeping some objective(s) of the problem to be solved.

Graphs are essential tools for understanding and solving problems in diverse disciplines.

Applications of graphs have very wide range and cannot probably be listed exhaustively.

Graphs arising out of real life problems are often very large in size and cannot be processed

without the aid of computers. Most of the practical problems which can be modelled with

the help of graph theory are found to be large graphs that are virtually impossible for

hand computation. Large number problems that hitherto were of academic interest only are

suddenly being solved by computer, and their solutions are applied to practical situations.

1

2 Chapter 1. Introduction

As is the case with all combinatorial problems, the manipulation and analysis of graphs and

subgraphs is essentially non-numerical. That is, in graph-theoretic programs it is primarily

the decision-making ability of the computer that is used rather than its ability to perform

arithmetic operations.

In literature, many types of graphs are considered. In the field of application, the perfect

graph is a very fruitful graph. In 1960s, Claude Berge introduced simplified form of perfect

graph. Since that time many classes of graphs, interesting in their own right, have been

shown to be perfect. Research, in the mean time, has proceeded along two lines:

(i) the first line of investigations includes the proof of the perfect graph theorems, studies of

critically imperfect graphs and attempts at proving the strong perfect graph conjecture, and

(ii) the second line of approach concentrates to discover mathematical and algorithmic prop-

erties of special graphs like ComGs, CorGs, InvGs, PerGs, CirGs and TraGs, to name just a

few.

1.2 Computational complexities of algorithms

An algorithm is characterized by various number of operations and some memory which is

required to compute the result depending on the size of the input. The characteristics of the

algorithm determine the meaning of complexity of the algorithm. Specifically, the complex-

ity of an algorithm is determined by counting the number of operations and memory usage

required to complete the program scales with the size of the input of the program. Techni-

cally, length in some encoding of the problem is the size of a problem instance. Measurement

of the size of a graph problem by the number of vertices enough for our purposes. Many

computer scientists have grouped various problems into the following complexity classes:

i) In the worst case P is a class of problems for which the recording time of the given al-

gorithm is some polynomial function of the size of the input. For example, if an algorithm

having an input size of 10 bits took 104 operations to calculate the result, then it is a poly-

nomial time algorithm.

ii) NP is not deterministic polynomial time class. In NP a candidate for an answer to a

problem can be expressed as a right answer or not in polynomial time.

iii) In NP, if a polynomial-time algorithm is used for construction of a polynomial-time al-

gorithm for every problem, then the problem is NP-hard.

iv) If a problem is NP-hard and also belongs to NP, then it is NP-complete i.e. NP-

complete class is the set of problems such that if any member is remained in P, then the set

P becomes the set NP. A detail discussion about NP-completeness is available in [47].

1.3. Graph theoretic definitions and notations 3

There exist a huge number of NP-complete problems in graph theory. Some instances

of NP-complete problems are p-center problem, independent set problem with maximum

weight, dominating set problem with minimum weight, etc.

Heuristics and exhaustive search can be applied to solve NP-complete problems. A heuris-

tic is an algorithm that can find all-feasible solutions, but it does not guarantee an optimal

solution. Exhaustive search always results in exact solution at the risk of infeasibility to run

it on instances of more than moderate size.

1.3 Graph theoretic definitions and notations

Here, we present some definitions of basic terms and notations relating to the graph theory

and introduce other terms when necessary. Most of the graph theoretical terminologies used

in this thesis are in conformity with those given in [9, 49]. We consider a graph G with

vertex set V and the edge set E, where |V | = n and |E| = m. Usually, the members of

V are known as vertices or nodes and these are labelled by 1, 2, . . . , n or v1, v2, . . . , vn and

E = {(u, v) : u, v ∈ V }. For an edge (u, v), the vertices u and v are known as end vertices.

For an UndG, the pairs of the set E are unordered, i.e. (u, v) = (v, u), but for a directed

graph these pairs are order pair, i.e. (u, v) 6= (v, u). For many applications there is often a

positive real number, called a cost, which is attached to each edge. Such a graph is called a

network.

If (u, v) ∈ E, then u and v are adjacent to each other, and if (u, v) 6∈ E then u, v

are called non-adjacent vertices. We denote deg(u) as the degree of the vertex u, i. e.,

deg(u) = |{v : (u, v) ∈ E}|. If v is the common end vertex of some edges, then these edges

are known as adjacent edges. The sets N(u) = {u|(u, v) ∈ E} and N [u] = N(u) ∪ {u} are

represent respectively the open and close neighborhood sets of the vertex v ∈ G. If some

edges of E contains same end nodes then these edges are known as parallel edges. If two end

nodes of an edge are same then that edge is known as loop. A vertex whose degree is zero, is

known as isolated vertex. If a graph has neither loops nor parallel edges, is known as simple

graph. If a graph allows loops and/or parallel edges/multiple edges, then it will be known

as pseudograph. We presume all graphs in our thesis as finite, simple and undirected.

If the degree of each node of a graph is zero, the it is known as Null graph or trivial graph.

In a regular graph, the degrees of all vertices are same. If each node of a simple graph is

adjacent with other nodes then this graph is known as complete graph.

If H(V ′, E′) be a graph such that V ′ ⊆ V and E′ ⊆ E, then H is called a sub-graph of

G(V,E). For any subgraph H of a graph G following results holds:

4 Chapter 1. Introduction

(i) Each graph is a sub-graph of itself; (ii) A sub-subgraph of G is a sub-graph of G;

(iii) Every node of G is a sub-graph of the same graph;

(iv) An edge with its end nodes in G is a sub-graph of G.

If H(V ′, E′) be a graph such that V ′ ⊆ V and E′ = {(u, v) ∈ E(G)| u, v ∈ V (H)}, then

H is known as an induced sub-graph of G.

x
y x
x

x
p

y x
x x

x
x x
x
x

�
��
�

1

2

3
4

5

1

2

2

3

6 6

6

4

5

A graph G

A subgraph of G

The induced subgraph G(2, 3, 4, 5, 6)

Figure 1.1: Examples of subgraphs.

Generally, Kn represents a complete graph or a clique with n nodes and is called a clique

of size n.

1

2

3

4 2

1

4

3

2

1

4

3

u
u u
u
"

"
"
"

"
"

"" uu u

uu u u
u

b
b
b
b
b
b
bb

(a) (b) (c)

Figure 1.2: (a) The graph K4, (b) is the complement of (c) and vice versa.

A finite chain of nodes and edges is known as a walk, where the chain starting and ending

with nodes only. vertices may repeat in a walk but not edges. Usually, walks are of two

types; open walk and close walk. If starting and ending nodes of a walk are same then it

is called a closed walk, otherwise it is said to be an open walk. An open walk in which no

vertices are repeated is known as a path. The number of edges in a path is called length of

that path. It is to be noted that a path contains n vertices has only n − 1 edges. A closed

path is known as a cycle.

1.3. Graph theoretic definitions and notations 5

v v
v v
v
v

c
c
c

G

v v
v v
v
v
G2

Figure 1.3: A graph and its square.

For an unweighted graph, a path between any two specified nodes contains minimum

number of edges is known as the shortest path. We use d(u, v) as the shortest distance or

distance between the nodes u and v. A path whose length just greater than the length of

the shortest path between any two specified nodes is known as the Next-to-shortest path.

If every pair of nodes of a graph are joined by at least one path, then that graph is known

as a connected graph, otherwise it is called a disconnected graph.

The eccentricity of a node v ∈ G indicates the maximum length among all the paths from

v to other nodes. Usually, eccentricity of v is denoted by e(v). We denote radius of a graph G

by radius(G), where radius(G) = infimum{e(x) : x ∈ V }. Furthermore, we set diameter of

a graph G as diameter(G), where diameter(G) = maximum{e(x) : x ∈ V } = max{d(x, y) :

x, y ∈ V }. It is to be kept in mind that radius(G) ≤ diameter(G) ≤ 2 radius(G).

A tree T is called a spanning tree of a connected graph G if T is cycle free and V (T) =

V (G).

A sub-graph H of a graph G is known to be a spanning sub-graph of G if V (H) = V (G).

In this context, we can say that a spanning tree of a graph G is also a spanning sub-graph

of G. For a spanning rooted tree T of a graph G is called a depth-first search (DFS) tree if

for every edge (x, y) ∈ E, one of the two nodes incident with the edge (x, y) is an ancestor

of some other edge in T . On the other hand T is called a (BFS)-tree if ∀ edge (x, y) ∈ E,

the difference of the levels of the two vertices incident with (x, y) is no more than 1 in T ,

where the level of a node v in T is the distance from the root to the node v. We express

diameter(T) as the diameter of T , where diameter(T) = maximum{d(x, y) : x, y ∈ V (G)}.

A spanning tree with least diameter is known as minimum diameter spanning tree.

A set S ⊆ V is called an independent set or stable set of a graph G = (V,E) if all vertices

in S are not adjacent to each other. An independent set with the maximum cardinality is

known as maximum independent set or largest independent set. The cardinality number of

6 Chapter 1. Introduction

largest independent set of G is known as stability number of G and it is expressed by α(G).

Two vertices u and v are called adjacent to each other if (u, v) ∈ E. A vertex v is

dominated by a subset D of V if v is adjacent with at least one vertex in D. A set D of G

is said to be a dominating set G if each vertex of V −D is adjacent to at least one vertex

of D. For a graph G, a dominating set D with fewest cardinality among all dominating

sets is known as minimum dominating set. A dominating set is called independent if there

is no edges between the vertices of D. A dominating set D is called total if each node of

V is adjacent to at least one node in D. On the other hand a dominating set is known as

connected if there exists at least one path between every pair of nodes in D. If a subgraph

formed by a connected dominating set of G then it will be known as connected dominating

path. A connected dominating path with minimum length is called minimum connected

dominating path. The order of a minimum cardinality dominating set in a graph is familiar

as domination number. A subset D of V is called a k-tuple dominating set of a graph G with

vertex set V and edge set E if each node of V −D is adjacent with at least k nodes in D.

We use γ×k(G) to represent k-tuple domination number which is the order of a minimum

k-tuple dominating set of G.

In weighted tree T = (VT , ET), we represent eccentricity of a node x by the symbol

eccentricity e(x), where e(x) = max {d(x, vi), for all vi ∈ VT } and d(x, vi) indicates the total

weights of the edges lie on the path between x and vi.

A center of a tree T is a node with minimum eccentricity in the same tree, i.e. if e(x) =

min{e(y), for all y ∈ V }, then x is known as the 1-center. It is to be noted that a tree is

either mono-centric or bi-centric.

The radius of a tree T is the eccentricity of a center of that tree and we denote it by ρ(T),

i.e. ρ(T) = {minx∈T e(x)}.

The length of the farthest path in a tree T is known as the diameter of the given tree i.e.

the highest eccentricity indicates the diameter. Let the weighted tree T with (n+1) vertices

and n edges. In a tree T , the Inv1C problem is a graph theoretical problem where we change

weights associated with the edges in T under some certain limitations in such a way that a

pre-specified node becomes 1-center of T .

In a graph G = (V,E) with n nodes, the average distance of G, denoted by µ(G) represents

is the average of the distances between all unordered pairs of nodes in G,

µ(G) =
2

n(n− 1)

∑
x,y∈V (G)

dG(x, y)

A spanning tree T of a graph G having minimum average distance is known as a MADST

of G.

1.4. Some special graphs and related definitions 7

1.4 Some special graphs and related definitions

In real life, many problems can be modelled using graphs with some special properties. A

graph having some special properties is called a special graph. Some important special graphs

are tree, perfect graphs, IntGs, InvGs, TolGs, PerGs, TraGs, BipGs, CirGs, circular PerGs,

circular TraGs, series-parallel graphs, CorGs, star graphs, disk graphs, asteroidal triple-free

graphs, i-triangulated graphs, ComGs, CacGs and many others.

Let S be a family of non-empty sets. Also, we assume that S is finite. Now, a UndG G

having set of vertices V and set of edges E is known to be IntG defined on S if each node of

G is formed for each member of S and two nodes are adjacent iffy their corresponding sets

in S have non-empty intersection. Usually S represents an intersection model of the IntG

G and G(S) is used to represent the Int defined on S. The characterization of IntGs can be

done by several ways and it has lots of applications on real life. Depending on the collection

of the sets S, one can define a variety of IntG classes.

Tolerance graphs (TolGs)

Suppose G = (V,E) be an UndG, where V = {u1, u2, . . . , un}. Now, G is known to be

a TolG if each node ui of V is assigned with a closed interval I1 in a family of closed

intervals I = {I1, I2, . . . , In} on a line and a tolerance t1 in a family of positive numbers

T = {t1, t2, . . . , tn} such that two nodes x and y are adjacent iffy |Ii
⋂
Ij | ≥ min(ti, tj),

where |Ii| represents the length of Ii. Usually the tolerance representation of a graph G

is denoted by pair (I, t). Furthermore, this representation (I, t) is known to bounded if

tv ≤ |Iv| for all v ∈ V . Again, a TolG is called a bounded TolG if its tolerance representation

is bounded. If we restrict all the tolerances tu to be equal to any fixed positive constant c,

then we obtained exactly the class of InvGs. If we restrict the tolerances such that tv = |Iv|

for all vertices v, then we obtain exactly the class of PerGs.

Circular-arc graphs (CirGs)

Suppose G = (V,E) be an UndG. Now, G is known to be a CirG if we create each node

of V corresponding to each arc in the set of arcs S defined on a circle such that (x, y) ∈ E

iffy the arcs corresponding to the nodes x and y have common intersection. We use S as a

circular-arc representation or circular-arc model of G. A CirG is known to a proper CirG if

there is no arc properly contains the other arcs in its representation.

8 Chapter 1. Introduction

Other graphs

Suppose G= (V,E) be an UndG. Now, G is known to be a χ-perfect if ω(GH)= χ(GH), and G

is known to be a α-perfect if α(GH)= k(GH), for all H ⊆ V , where GH is a induced subgraph

formed by the subset H of vertices and ω(G), χ(G), α(G) and k(G) represent respectively

the clique number, the chromatic number, the stability number and the clique cover of G. If

a graph is either a χ-perfect or a α-perfect then it is known to be a perfect graph.

A graph is known to be a polygon-circle graph if it is an Int of a family of polygons whose

corner points lies on a circle.

A graph G(V,E) is known to be a unit disc graph if we create each node of V corresponding

to each disc in the set of discs S defined on the Euclidean plane such that (x, y) ∈ E iffy the

discs corresponding to the nodes x and y have common intersection.

A line graph of a graph G(V,E) is an Int of a family of edges S in G, where we create each

node of the line graph corresponding to each edge in S.

If a graph can be drawn in a surface S in such a way that every pair of edges do not intersect

in that surface then it is known to be a embedded graph. An embedded graph drawn in a

plane is familiar as planar graph.

If there is no cycle of length four or more in a graph G then it is known as triangulated

graph. It is also known as CorG. Generally, there are two types of CorGs, one is strongly

CorGs and other is weakly CorGs. As their names indicate, every strongly CorG is chordal,

and every weakly CorG is chordal. Weakly CorGs are also perfect graphs.

Strongly CorGs, introduced by Farber [40], specialize CorGs in several ways. They are

characterized by several equivalent definitions utilizing chords in a cycle, removal orderings

and forbidden subgraphs.

Suppose C= u1, u2, . . . , u2k, u1 be a cycle whose length is 2k ≥ 6. We mention a chord

(ul, uk) ∈ E as an odd chord if only one among l and k is even, i.e. it provides two cycles of

even length in C. If a graph G is chordal as well as its all cycles whose lengths six or mores

contains an odd chord.

A graph G = (V,E) is known to be split the vertex set V can be partitioned into two

subset H and B among which one is stable set and other forms a clique.

Furthermore, if the set of vertices V of a graph G can be divided into two subset H and

B each be a independent set then that graph is familiar as BipG, i.e. the extremities of

each edge among which one is in H and other is in B. That BipG is usually represented by

(H,B,E).

A BipG G = (H,B,E) is known to be complete BipG if each member of H is adjacent

1.4. Some special graphs and related definitions 9

with all members of B. The complete BipG G = (H,B,E) is represented by Kl,k, where

|H| = l and |B| = k.

Some special types of graph are displayed in Figure 1.4 and Figure 1.5.

u
u

u u

u
u�

�
�

\
\
\

u
u uu

u uu

u uu
u u uu

K4,3

C6 K1,6

u u u u u u
P6

Figure 1.4: Examples of K4,3, P6, C6 and K1,6.

uu
u

u
uu
uu u

uu u
u u
u

u

(b) The Star graph

�
�
�

(a) The A-graph (c) The house graph

s ss s s ss ss
s ss s ss
s s s
s spp

T
T

(d) Caterpillar graph (Caterpillar tree)

s s s s ss s s s ss r s s r r
s s ss s s r s ss s�
�

�
�

(e) Lobster graph

t t
t t u

uu ut

t
t u
t

t
u
t
s

Q
QQ

(f) Windmill graph Wd(5, 4)

Figure 1.5: Some special types of graphs.

Let G1(V1, E1) and G2(V2, E2) be two graphs. Now, if we can define a one-one and onto

mapping g : V1 → V2) so that whenever (x1, y1) ∈ E1 then (g(x1), g(y1)) ∈ E2, then G1 and

G2 are known to be isomorphic to each other. If G1 and G2 are isomorphic to each other

then we can write G1
∼= G2.

10 Chapter 1. Introduction

A graph will be familiar as a ComG if this graph allows transitive orientation. In other

words, if we assign direction to each edge of a given UndG then the directed edges (vx, vy)

and (vy, vz) in arising directed graph implies that (vx, vz) in the same directed graph. It is

to be kept in mind that The class of ComG is a proper subclass of perfect graphs.

A graph is familiar to be a Co-graphs if it can be reduced to single node by repeatedly

complementing all connected subgraphs. PerGs is superclass of Co-graphs.

We define an undirected as a CacG if its each block is an link/edge or a cycle.

The clique graph of a graph G is symbolled by C(G) and it is defined as the IntG of the

collection of all cliques of the given G.

Some vital relations among several special class graphs are written as below.

(i) {BipGs} ⊆ {ComGs},

(ii) {split graphs} ⊆ {CorGs},

(iii) {InvGs} ⊆ {directed PatG} ⊆ {undirected PatG}

⊆ {CorGs},

(iv) {InvGs} ⊆ {strongly CorGs} ⊆ {CorGs},

(v) {cographs} ⊆ {PerGs} ⊆ {ComGs}.

1.5 The graphs under consideration

In this thesis we have consider three special types of IntGs which are InvGs, PerGs and

TraGs. All graphs considered in this work are simple, connected, undirected and finite.

1.5.1 Interval graphs

Suppose G = (V,E) be an UndG. Now, G is known to be a InvG if we create each node of

V for each interval in the set of intervals I defined on real line so that (x, y) ∈ E iffy the

intervals associated to the nodes x and y have common intersection. We use the symbol I

to represent an IR of G and G to represent an IntG of I [50]. Let I = {j1, j2, . . . , jn}, where

jz = [az, bz] for 1 ≤ z ≤ n, be the IR of the graph G, where az represents the left extremity

and bz is the right extremity of the interval iz. Without loosing the generality, we presume

the following notations [50]:

(i) each interval has both its extremities and two or more intervals do not have a same

extremely,

1.5. The graphs under consideration 11

(ii) intervals in IR and nodes in InvG are same,

(iii) our assumed InvG is connected & the array of arranged extremeties/endpoints is pro-

vided and

(iv) the intervals in I are numbered according to the ascending/growing right extremities.

If two or more intervals contain same extremities we apply the Algorithm CONVERT [82]

to convert the given intervals into the intervals with different extremities.

Here we take the weighted InvGs, i.e. for each interval j, we assign a positive weight

wj > 0.

An InvG and its interval representation are displayed in Figure 1.6.

Many researchers studied InvGs and they used this graph as the mathematical model to

solve several real life problems. A brief discussion about InvGs was found in [50, 81, 83,

84, 72, 91, 87]. To the best of our knowledge InvGs and its different subclass have lots of

applications in archeology, protein sequencing [56], works scheduling [18], macro substitution

[39], VLSI design, file arrangements [18], psychology, transportation, routing between two

points nets [52], circuit routine [79, 57], genetics, molecular biology, sociology, circuit routing

etc. An InvG and its interval representation are shown in Figure 1.6.

1
2

3

4

5 6
7

x x x
x
x

x x

�
�
��

1 2 3

4

5

7 6

Figure 1.6: An InvG and its IR.

1.5.2 Permutation graphs

Suppose G = (V , E) be an UndG , where V = {1, 2, . . ., n}, |V | = n and |E| = m. Now,

the graph G is familiar as a PerG if and only if there is a permutation π = {π(1), π(2), . . .,

12 Chapter 1. Introduction

π(n)} on the set V of nodes such that ∀ i1, i2 ∈ V , (i1, i2) ∈ E iffy

(i1 − i2)(π−1(i1)− π−1(i2)) < 0,

, where for every i1 ∈ V , π−1(i1) indicates the location of the number i1 in π [49]. Here, we

consider a connected PerG. PerGs can be displayed as a subclass of IntGs [49]. Furthermore,

PerGs are the subclass of ComGs [86]. Also, PerGs can be revealed by the MchD, in which

two horizontal parallel lines, named as top line and bottom line are exist.

,
,

,
,

,
,
,

,
,,

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

x x
xx x xx

x x
HHHH

1

2

3

5 4

6

8
7

9

Figure 1.7: A PerG and its PerD.

We place the members of V on the top line, in ascending order and for each i1 = 1, 2, . . .,

n place the permutation number π(i) on the bottom line just under the number i1 on the top

line. After then, we join two i1’s situated on the top line and on the bottom line by drawing a

line segment between them, for each i1 = 1, 2, . . . n [49]. We also label a drawn line segment

by i1 if it is drawn by joining two i1’s. Beside these, we create each node of the PerG for

each line segment in the MchD. If two line segments i1 and i2 cuts each other in the MchD

then (i1, i2) ∈ E. The converse is true also. A PerG and its corresponding permutation

representation are displayed in Figure 1.7. In the MchD π−1(i1) yields the position number

of i1 on the bottom line, for instance, π−1(4) yields the position of the number 4 on the

bottom line which is here 6th. In [7, 88], we get brief discussion about PerG.

1.5. The graphs under consideration 13

1.5.3 Circular-arc graphs

Suppose G = (V,E) be an UndG. Now, G is known to be a CirG if we create each node of V

for each arc in the set of arcs S on the circumference of a circle C such that (x, y) ∈ E iffy

the arcs corresponding to the nodes x and y have common intersection. We use the symbol

S to represent an arc representation of G and G to represent an CirG of S. CirG is a special

kind of IntG.

Suppose S = {A1, A2, . . . , An} be a collection of n arcs situated on the circumference

of a circle C. Each arc has two extremities/endpoints, the starting extremity is known as

head and the terminal extremity is known as tail, when it is travelled in clockwise manner.

We assign a positive integer to each endpoint of the arcs. These integers are called the

coordinates of the respective endpoints of the arcs. For instance, we represent each arc

Ai, i = 1, 2, . . . , n, by (hi, ti), where hi indicates the head and ti indicates the tail, starting

with a fixed point on A on the circumference of C.

CirGs have a vital role in genetic research [95], traffic planning [96], compiler design,

operation research, etc. A brief discussion about CirG was found in [64, 65, 66, 67, 85]

u
u u

uu
A1A4

A5 A2

A3

A1

A2

A5

A4

A3

Figure 1.8: A CirG and its CirD.

1.5.4 Trapezoid graphs

A TraG is a special kind of Int. This graph can be displayed by a TraD which contains two

horizontal parallel lines, one is known as top line and other is known as bottom line. In

TraD, a trapezoid Tj is represented by four corner points [aj , bj , cj , dj], where aj (called as

left endpoint) and bj(> aj) (called as right endpoint) lie on the top line and cj (called as left

endpoint) and dj(> cj) (called as right endpoint) lie on the bottom line in TraD. Suppose

T = {T1, T2, . . . , Tn}, be a collection of the n trapezoids. Let G = (V , E) be an UndG, where

|V | = n, |E| = m edges and V = {1, 2, . . ., n}. Now, G is known to be a TraG if G is a Int

of T in TraD, i.e. if we create each node j of G for each trapezoid Tj and two nodes x and

y are adjacent iffy there associative trapezoid Tx and Ty intersect each other in TraD [26].

14 Chapter 1. Introduction

It is to be kept in mind that two trapezoids Tx and Ty(> x) intersect if and only if either

(ay − bx) < 0 or (cy − dx) < 0 or both. A TraG and its corresponding TraD are displayed in

Figure 1.9.

a1 b1

c1 d1

a2 b2

c2 d2

a3 b3

c3 d3

a4 b4

c4 d4

a5 b5

c5 d5

u u u u u1 3 2 4

a6 b6

c6 d6

5

u6

Figure 1.9: A TraG and its corresponding TraD.

Here we consider a connected graph G = (V,E). Without loosing the generality of TraGs

we presume the following matters :

(i) each trapezoid has only four unique corner points

(ii) there is a one to one relation between the trapezoids in the TraD and nodes in the TraG,

(iii) we label the trapezoids in TraD T according to the increasing right end points on the

top line, i.e. T1 < T2 < T3 < · · · < Tn iffy b1 < b2 < · · · < bn.

TraGs are the superclass of PerGs and InvGs [49] and subclass of CcoGs [60]. Recognition

of a TraGs can be done in O(n2) time [62]. This graph plays a vital role in graph theory. We

first found TraGs in [24, 26]. After then it was researched deeply in [24, 26]. This graph has

several variation like circular TraG and circle TraGs [61]. Besides these a brief discussion

on TraGs are available in [22, 97, 42, 59, 48]. TraGs help us to construct model of channel

routine problem in a single-layer-per-net model. This graphs also have several applications

in VLSI design, bio-informatics, etc. [1, 26].

1.5.5 Fuzzy interval graph

In graph theory, researchers usually consider a collection of sets of intervals which are in

linear ordered to discuss about IntGs. This types of InvGs has lots of applications in real

life.

It is to be kept in mind that different collection of sets have the same Int in both cases (crisp

and fuzzy). Specially, the characterization of intersection properties of a finite collection of

intervals (real) with fuzzy numbers can be done with the help of a collection of fuzzy intervals

1.6. Motivation of the work 15

stated on a finite set. For this reason we focus our attention to fuzzy intervals having finite

support.

We consider a linearly ordered set V . It is well known that a fuzzy interval usually denoted

by the symbol τ on V is normal a swell as convex fuzzy subset of V . In other words, there is

an u ∈ V such that τ(u) = 1 and the ordering a ≤ b ≤ c implies that τ(b) ≥ τ(a)∧ τ(c). We

also consider a fuzzy number as a fuzzy interval. A fuzzy InvG is nothing but a fuzzy Int

of a set which is a finite collection of fuzzy intervals. The node set of a fuzzy InvG is crisp

according to the normality of the fuzzy intervals.

1.6 Motivation of the work

There are several sequential algorithms which are used for solving the graph theoretic prob-

lems. These algorithms are very carefully designed by researchers. Among these general

graph problems, most problems belong to NP-class and these problems can be solved poly-

nomially by some particular classes of IntGs like InvGs, PerGs, CirGs, TraGs etc. Therefore,

if any problem can be modelled on any one of InvGs, PerGs or TraGs then the problem can

be solved more efficiently, some times even optimal on sequential and parallel computing

systems. The graphs can be represented as intersections of ”lines” or ”arcs of concentric

circles” or ”trapezoid” which are the central parts of solving problems, are associated to

frequency allotments in radio networks and also for computing molecular compliances, etc.

An InvG, a PerG, a CirG and a TraG containing n nodes and m edges can be stored in the

memory of a computer using O(n) space only, instead of O(m+ n) or O(n2) or more space

for arbitrary graphs.

Inv1C problem is the variant of an inverse shortest path problem. For instance, we can

predict the movements of earthquakes by applying Inv1C concept in geologic areas. For this

purpose we separate geological areas into a number of cells. Then we create each node for

each cell and then we establish the adjacency relations between the nodes(Moser [77]).

Some well known estimations exist for computing the transmission times between the cells,

but it is very difficult to find optimal or precise values transmission time. To compute the

times required for transmitting the information between the cells it is essential to notice an

earthquake. Also, we have to estimate the times to reaching the resulting seismic perturba-

tions at different cells. We also consider that earthquakes move through the shortest paths.

This problem is similar to an inverse shortest path problem.

Inv1C problem also helps to deduce the real cost in facility location problems. For instance

let’s consider that we have a road network and there are some facilities like hospitals, fire

16 Chapter 1. Introduction

stations, banks, schools, medicine shops, post office, administrative buildings, fuel pumps,

parks, etc. Our object is to place/construct these facilities in such a way that the distances

between the facilities and the customers is minimum. Besides this sometimes we see that the

facilities are already existed and these can not be relocated as reconstruction or relocation

costs are very high. In that situation, we should modify (reconstruct) the road network

minimally so that the road construction cost is minimum as well as the distances between

the facilities and the customers is minimum do not exceed some given bounds. This is

a real example of the inverse center location problem. This problem can be applied in

modeling/planning traffic networks, to establish tolls (Dial [33]). Inverse center location

problem has also applications in various use of inverse methods in other different fields

[38, 68].

MADTs is another vital problem in graph theory. Many researchers mentioned MADTs as

minimum routing cost spanning trees. It is mostly used to design communication networks

[55]. In that case usually we construct a tree sub-network of a given network in such a way

that traversing cost or time one node to any other node is minimum.

Furthermore, above problems has lots of applications in real world like electrical networks,

telecommunications, operations research, optimizing compilers for embedded systems, VLSI

design etc.

1.7 Survey of related works of the thesis

Here we present a brief and up-to-date literature review of related works done on different

graph classes.

As shown in [16, 103, 104], the inverse problems of many combinatorial/network optimiza-

tion problems can be solved by strongly or weakly polynomial algorithms. It is observes that

if the size of combinatorial/network is large and the an optimization problem can be solved

in polynomial time, then its inverse problem can also be solved in polynomial time by similar

methodology [101]. Heuberger [54] described a brief literature review on inverse optimization

problems. In [17], Cai et al. showed that the Inv1C location problem is NP -hard on general

un-weighted directed graphs, where as the underlying center location problem can be solved

in polynomial time. Also, for a fixed non-input parameter p, Burkard et al. proved that

inverse p-median location problems is solvable in polynomial time [12]. For p = 1,, they

also designed an O(n log n) time algorithm for that problem by modifying the nodes weights

on tree networks. After then, Galavi designed an O(n) time algorithm to solve that inverse

1-median location problems [45]. Besides these, Burkard et al. proved that the time com-

1.7. Survey of related works of the thesis 17

plexity of solving the inverse 1-median problem on the plane with Manhattan/Chebyshev is

O(n log n) [12]. In [13], they also studied the same problem on a cycle by modifying the nodes

weights and unit cost. The same authors also designed an O(n2) time algorithm to solve

this problem with the help of the methods of computational geometry. After that Gassner

have designed an efficient algorithm to solve the inverse 1-maxian problem on tree networks

by modifying the edge lengths which runs in O(n log n) time [44]. In [14, 15], Burkard et

al. studied the inverse Fermat-Weber problem. They proposed a combinatorial approach

to solves the same problem in O(n log n) time for unit cost, where they presumed that the

pre-selected point which will be a 1-median in future does not concur with a given point in

the plane. In [45], Galavii proved that the 1-median on a path having positive or negative

weights stays either in one of the nodes with positive weights or stays in starting end point

or in the ending end point of the path. Using this property He solved the inverse 1-median

problem in O(n) time on a path having negative weights. Moreover, in [46], Gassner proved

that inverse version of the convex ordered median problems on general graphs belong to

NP -hard class. He also showed that this problem is NP -hard on trees, even if the weights

are all unit or for a K-centrum problem. Gassner also designed an O(n3k2) time algorithm

to solve the inverse unit-weight K-centrum problem having unit cost coefficients on a tree.

In [102], Yang and Zhang discovered a method to solve the inverse vertex center problem

on a tree in O(n2 log n) time, where they assumed that modified edge lengths always will

be positive. The same authors also proved that the inverse vertex center problem can be

solved in O(n3 log n) time on general graphs. In 2009, Alizadeh et al. solved Inv1C location

problem on trees with edge length augmentation in O(n log n) time with the help of a set

of fitted extended AVL-search trees [2]. In [3], Alizadeh et al. proved that inverse absolute

problems can be solved in O(n2) time on trees without allowing the topology and the same

problems can be solved in O(n2r) time allowing the topology.

At present, many researcher are interested to study IOPs because of its applications in

real world. A brief discussion on IOPs can be found in [37, 51, 54, 58].

Usually, the basic optimization models of network location problems are constructed to

find the best location of single or multiple new facilities like hospitals, banks, schools, etc. in

a network of demand points in such a way that a given function that based on the distance

between the facilities and clients becomes minimum. Based upon the above model, during

investigation, facilities or clients may either be putted down only at nodes or may also remains

on edges of the given network. A brief discussion and illustrations on these problems can be

found in [30, 34, 43, 63, 69, 78].

18 Chapter 1. Introduction

In 1992, Burton and Toint first studied an ISSP [11]. After then many researchers worked

independently on IOPs.

In this thesis, we have proposed following problems :

(i) an optimal algorithm to find Inv1C location problem on weighted trees (where weights

are assigned to the nodes) which runs in O(n) time, where n is the cardinality of the vertex

set V of the tree,

(ii) an O(n) time algorithm to determine Inv1C location problem on weighted InvGs, where

n is the order of the vertex set V of the InvG,

(iii) an O(n) time algorithm to obtain Inv1C location problem on weighted CirGs, where n

is the cardinality of the vertex set V of the CirG,

(iv) an optimal algorithm to compute Inv1C location problem on weighted PerGs which runs

in O(n) time, where |V | = n.,

and (v) an sequential algorithm to solve Inv1C location problem on weighted TraGs in O(n)

time, where n is the cardinality of the vertex set V of the TraG.

Usually, the problem of constructing a MADT on general graphs belongs to NP-hard class

[55]. In [5], we found a polynomial approximation time algorithm for finding MADT. So, a

question arises to us that for which particulars sub-classes of graphs, this problem can be

solved in polynomial time. In 2003, Dahlhaus et al. have designed a linear time algorithm

to construct a MADT of a given distance-hereditary graph [27]. In very recent, the same

authors [28] have proposed an O(n) time algorithm to find a MADT of an InvG. In 1997,

Barefoot et al. [6] proved that if T is a MADT of a given graph G (which is connected),

then there contains a node c ∈ T such that each path in T begins at c is induced in G. It

is still an open problem to us that is there any polynomial time algorithm to construct a

MADT of a weighted InvG, where weighted are assigned to the nodes. In 1992, Olario et al.,

have proposed an optimal parallel algorithms to form a MADT on InvGs [80]. Furthermore,

in 2013, Mondal et al. have proposed an O(n2)-time algorithm to form MADST on TraGs

[76]. The same authors [73] also, computed all pairs shortest paths between nodes of PerGs

in O(n2)-time.

Many authors mentioned MADTs of weighted graphs as minimum routing cost spanning

trees [55]. In this problem everyone try to construct a spanning tree sub-network of a graph

in such a way that one can arrive every vertex from every other vertex as fast as possible

with average cost.

In this thesis, we have designed the following algorithms

i) an efficient algorithm to form a MADT of CirG G having n nodes, which runs in O(n2)

1.8. An overview of the thesis 19

time ,

ii) an efficient algorithm to form a MADT of a fuzzy InvG G having n nodes, which runs in

O(n2) time,

iii) an efficient algorithm to form a MADT of a PerG G having n nodes, which runs in O(n2)

time.

In this thesis, we propose an optimal algorithm to determine Inv1C location problem on

weighted TraGs which runs in O(n) time, where |V | = n.

1.8 An overview of the thesis

This thesis has been organized into seven chapters. The content of each chapter is presented

briefly in the following.

Chapter 1

In this chapter, we present certain graph theoretic definitions and notations and define

some relevant special graphs. Characterization of InvGs, PerGs, CirGs, TraGs are given.

Motivation of the work also included in this chapter. Also a brief summary of total work

carried out is also given. Finally we try to present an up to date survey of related works

done on different graph classes.

Chapter 2

In 2nd chapter, we describe the Inv1C location problem on the weighted trees. Suppose T

be a tree having (n + 1) nodes and n edges associated with positive weights. In the Inv1C

problem, we change edge weights in such a way that a pre-specified node becomes the 1-

center and the modification (under certain boundary weight restrictions) cost is minimum.

Here, we design an O(n)-time algorithm to determine an Inv1C location on the weighted

trees, where n is the number of nodes.

Chapter 3

In third chapter we narrate the solution of the Inv1C location problem on the weighted (asso-

ciated with nodes) InvGs and construction of MADT on fuzzy InvGs. In an Inv1C location

problem, we modify the parameter like vertex weights of an IT TIG of the weighted InvG

G = (V,E) in such a way that the total modification cost is minimum a pre-specified node

s ∈ V becomes the 1-center of the InvG G. Here, we also represent an optimal algorithm to

obtain the solution of an Inv1C location problem on the weighted IT TIG of the weighted

InvG, where n is the cardinality of V of G under certain weight restrictions. Besides these, we

also design here an O(n)-time algorithm to compute the average distance of a graph G (with

finite number of nodes and edges). This is the average of the distances over all unordered

20 Chapter 1. Introduction

pairs of nodes. A MADST of G is a spanning tree of G having minimum average distance.

Some authors refer that tree as a MRCST. Further, we design an O(n2)-time algorithm to

determine a MADST on the fuzzy InvG, where n is the cardinality of the node set of given

graph.

Chapter 4

In this chapter, we describe the method of determination of MADT on CirGs and solution

of Inv1C location problem on the weighted CirGs. For this purpose we have construct a

MADST of G having least average distance. Such a tree is sometimes referred to as a

MRCST. Here, we design an O(n2)-time algorithm to find a MADST on CirG, where n is

the number of nodes of the graph. Also in this chapter, we present an optimal algorithm to

find an Inv1C location on the weighted tree TCIR corresponding to the weighted circular-arc

graph G = (V,E), where the node weights can be modified within certain bounds. The time

complexity of our proposed algorithm is O(n), where n is the cardinality of the node set of

the CirG G.

Chapter 5

In 5th chapter, we describe the methods of finding of a MADT on PerGs and Inv1C location

problem on weighted PerGs. Here, we design an O(n2)-time algorithm to form a MADST

on permutation graphs, where n is the cardinality of the graph. Also, in this chapter we

represent an O(n2)-time algorithm to an Inv1C on the tree TPER of the weighted PerG

G = (V,E), where the node weights can be modified under some certain restrictions. The

T-complexity of our proposed algorithm is O(n), where n is the cardinality of the node set

of the weighted PerG G.

Chapter 6

This chapter contains an optimal algorithm for determination of Inv1C location problem on

the weighted TraGs. Here, we design an O(n)-time algorithm to solve an Inv1C location on

the weighted tree TTRP of the weighted TraG G = (V,E), where we modify the node weights

can be modified under certain restrictions.

Chapter 7

In this chapter, some concluding remarks have been made. Also future scope of further

research are discussed here.

1.9 Summary

This is the introductory chapter of the thesis. Discussion about graph algorithm, compu-

tational complexities of algorithms are made here. Some graph theoretic terms are defined.

1.9. Summary 21

Also some special class of IntGs such as InvGs, PerGs, TraGs, CirGs and other graphs

are focused. Motivation of our work and the organization of the thesis is discussed in this

chapter.

22 Chapter 1. Introduction

