List of figures

Figure 1.1: Typical structures of novolac and resole resin

Figure 1.2: Chemical structures of some typical azo-dye colorants

Figure 1.3: Reductive-cleavage of Direct Red 28 using an azo-reductase enzyme

Figure 1.4: Schematic diagram of nanoparticles (NPs) synthesis (top-town and bottom-up methods)

Figure 2.1 The structures of target novolac-based polymeric networks

Figure 2.2. Reaction mechanism of crosslinking of novolac epoxy resin with ethylenediamine.

Figure 2.3 ¹H NMR spectrum of 2.1

Figure 2.4 ¹H NMR spectrum of 2.2

Figure 2.5 ¹³C NMR spectrum of 2.2

Figure 2.6 FTIR spectra of (a) 2.3 (b) 2.4

Figure 2.7 Solid state ¹³C NMR spectra of (a) 2.3 and (b) 2.4

Figure 2.8 Scanning electron micrograph of 2.3

Figure 2.9 Scanning electron micrograph of 2.4

Figure 2.10 Traces of thermogravimetric analysis (TGA / DTG) of (a) network polymer **2.3** and (b) network polymer **2.4** (Heating rate of 10° C/min under nitrogen flow (100 ml/min)).

Figure 2.11 Swelling studies of polymer networks 2.3 and 2.4.

Figure 2.12. Size distributions of the network powders 2.3 and 2.4

Figure 2.13. UV-vis spectral changes of the solutions of (a) MO (7.64×10^{-5} M), (b) OG (2.21×10^{-4} M) and (c) OII (3.06×10^{-4} M) as a function of adsorption time for **2.4**; (pH 7.20, different time intervals, 25°C).

Figure 2.14. The effect of adsorption time on MO adsorption capacity of 2.4

Figure 2.15. The effect of adsorption time on OII adsorption capacity of 2.4

Figure 2.16. Effect of pH on the azo dye adsorption capacity of **2.3** and **2.4** (a, d: pH = 2.30; b, e : pH = 7.20; c, f: pH = 10.96; t = 48h; T= 298 K); MO adsorption ($C_0 = 7.64 \times 10^{-5}$ M).

Figure 2.17. Effect of pH on the azo dye adsorption capacity of **2.3** and **2.4** (a, d: pH = 2.30; b, e: pH = 7.20; c, f: pH = 10.96; t = 48h; T= 298 K); OII adsorption ($C_0 = 3.06 \times 10^{-4}$ M).

Figure 2.18. Effect of pH on the azo dye adsorption capacity of **2.3** and **2.4** (a, d: pH = 2.30; b, e: pH = 7.20; c, f: pH = 10.96; t = 48h; T= 298 K); OG adsorption ($C_0 = 2.21 \times 10^{-4}$ M).

Figure 2.19. Freundlich isotherms for the adsorption of MO onto **2.3** at (a) pH 2.30 (- \bullet -) and (b) pH 7.20 (- ∇ -) at 25°C

Figure 2.20. Freundlich isotherms for the adsorption of MO onto **2.4** at (a) pH 2.30 and (b) pH 7.0 at 25°C

Figure 2.21. Freundlich isotherms for the adsorption of OII onto **2.3** at (a) pH 2.30 and (b) pH 7.20 at 25°C

Figure 2.22. Freundlich isotherms for the adsorption of OII onto **2.4** at (a) pH 2.30 and (b) pH 7.20 at 25°C

Figure 2.23. Freundlich isotherms for the adsorption of OG onto **2.3** at (a) pH 2.30 and (b) pH 7.0 at 25°C

Figure 2.24. Freundlich isotherms for the adsorption of OG onto **2.4** at (a) pH 2.30 and (b) pH 7.0 at 25°C

Figure 2.25 A proposed mechanism of adsorption: chemical interactions occurring within the network adsorbents

Figure 2.26 Azo dye (MO) adsorption for 48h onto network polymer matrix associated with visual color change

Figure 3.1. Iron(III) loaded novolac-based networks 3.1 and 3.2

Figure 3.2 FTIR spectrum of 3.1

Figure 3.3 FTIR spectrum of 3.2

Figure 3.4 The XRD pattern of 3.2

Figure 3.5 The effect of adsorption time on azo-dye adsorption of **3.1** and **3.2** at pH = 7.20 (a) MO adsorption ($C_0 = 50 \text{ mg } L^{-1}$; 1.52 x 10⁻⁴M); (b) OG adsorption ($C_0 = 150 \text{ mg } L^{-1}$; 3.31 x 10⁻⁴M).

Figure 3.6 Azo dye adsorption capacity of **3.1** and **3.2** (pH = 7.20; t = 48h; T= 298 K); (a) MO adsorption (C₀ = 50 mg L⁻¹; 1.52 x 10⁻⁴M); (b) OG adsorption (C₀ = 150 mg L⁻¹; 3.31 x 10⁻⁴M)

Figure 3.7 Color changes of MO and OG solutions before and 48 h after adsorption onto 3.1 and 3.2 at pH = 7.20

Figure 3.8 Photographs of sorbents on adsorption of MO and OG after 48h

Figure 3.9 Freundlich isotherms for the adsorption of MO onto (a) **3.1** and (b) **3.2** [pH 7.20, temperature: 25°C]

Figure 3.10 Freundlich isotherms for the adsorption of OG onto (a) 3.1 and (b) 3.2 [pH 7.20, temperature: 25° C]

Figure 3.11 Desorption of MO and OG from dye loaded networks in water at pH = 12.0 (A) MO loaded **3.1** (B) OG loaded **3.1**(C) MO loaded **3.2** and (D) OG loaded **3.2**

Figure 3.12 A proposed mechanism of adsorption-desorption of azo dye pollutants onto the hybrid sorbents

Figure 4.1. 3-aminopyridine rich novolac-based network 4.1

Figure 4.2 FTIR spectrum of 4.1

Figure 4.3 solid state ¹³C NMR spectrum of 4.1

Figure 4.4 FESEM images of 4.1.

Figure 4.5 TGA Thermograme of 4.1

Figure 4.6 TGA Thermograme of 4.1

Figure 4.7. UV-vis spectral changes of the solutions of (a) MO (1.82×10^{-4} M; pH 7.20), (b) O II (4.28×10^{-4} M; pH 10.96) and (c) OG (3.31×10^{-4} M; pH 2.30) as a function of adsorption time for **4.1**; (temperature: 25° C).

Figure 4.8 Time profile for azo-dye adsorption on **4.1** at different pH (a) MO adsorption ($C_0 = 60 \text{ mg } L^{-1}$; 1.82 x 10⁻⁴M); (b) O II adsorption ($C_0 = 150 \text{ mg } L^{-1}$; 4.28 x 10⁻⁴M); (c) OG adsorption ($C_0 = 150 \text{ mg } L^{-1}$; 3.31 x 10⁻⁴M.

Figure 4.9 Effect of solution pH on the adsorption capacity of **4.1** for 48h of contact time [MO adsorption ($C_0 = 60 \text{ mg } \text{L}^{-1}$; 1.82 x 10⁻⁴M); O II adsorption ($C_0 = 150 \text{ mg } \text{L}^{-1}$; 4.28 x 10⁻⁴M); OG adsorption ($C_0 = 150 \text{ mg } \text{L}^{-1}$; 3.31 x 10⁻⁴M); 25°C].

Figure 4.10 The fittings of adsorption isotherm data to Freundlich model for the adsorption of MO onto **4.1** at (a) pH 2.30, (b) pH 7.20 and (c) pH 10.96 at 25° C

Figure 4.11 The fittings of adsorption isotherm data to Freundlich model for the adsorption of OII onto **4.1** at (a) pH 2.30, (b) pH 7.20 and (c) pH 10.96 at 25° C

Figure 4.12 The fittings of adsorption isotherm data to Freundlich model for the adsorption of OG onto **4.1** at (a) pH 2.30, (b) pH 7.20 and (c) pH 10.96 at 25° C

Figure 4.13 Photo showing color change of **4.1** on adsorption of azo dyes for 48h.

Figure 4.14 Photo image of adsorptive separation of azo dyes using sorbent **4.1** (a) MO adsorption ($C_0 = 60 \text{ mg } \text{L}^{-1}$; pH 7.20) (b) O II adsorption ($C_0 = 150 \text{ mg } \text{L}^{-1}$; pH 10.96) (c) OG adsorption ($C_0 = 150 \text{ mg } \text{L}^{-1}$; pH 2.30); 25°C.

Figure 4.15 A proposed mechanism of adsorption: Attractive interactions (electrostatic attraction, hydrogen bonds and π - π stacking) occurring within the network polymer matrix.

Figure 5.1 The structures of fuctionalized novolac resin 5.1 and its hybrid with AgNPs 5.3

Figure 5.2. FTIR spectrum of 5.1

Figure 5.3. ¹H NMR spectrum of 5.1

Figure 5.4. Digital optical images showing color of the solutions of (a) **5.2** and (b) **5.3** in DMSO-water (20:1, v/v) ([AgNO₃] = 6.38 mM).

Figure 5.5. UV-vis spectra of (a) 5.2 and (b) 5.3 in DMSO-water (20:1, v/v) ([AgNO₃] = 6.38 mM).

Figure 5.6. TEM image and corresponding histogram of 5.3

Figure 5.7. Images showing inhibitory zones of **5.3** hybrid against (a) *Staphylococcus aureus* (b) *Bacillus subtilis* and (c) *Escherichia coli* on agar plates.

Figure 5.8. Growth curves of representative pathogenic microorganisms exposed to (a) 5.1 and (b) 5.3. Amount of hybrid 5.3 used in this assay as the obtained MIC values.

Figure 5.9. Bar graph showing the effect of **5.3** and **5.1** on the release of cytoplasmic material. The bacteria were incubated with a fixed concentration (4.0 μ L) at 30°C for 12 h. The change in the absorbance at 260 nm was monitored. Data are the mean of triplicates ± S.E.