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2.1 Introduction 

COM, a branch of quantum optics, is too much interesting and has fundamental insight. 

It has also been attracting the researcher in last few decades both in theoretical 

illustration and experimental works. It lies in the intermediary between quantum and 

classical mechanics and also provides the practical ground to note quantum jumps of a 

mechanical system.  In an optomechanical system (OMS) electromechanical degrees of 

freedom and macroscopic or mesoscopic mechanical objects are coupled via radiation 

pressure interaction.  

 In 1970, A. Ashkin first demonstrated that motion of the dielectric balls can be speeded 

up and trapped via radiation-pressure force [41]. Followed by this result, a lot of works 

have been performed such as realization of optical tweezers, gravitational wave 

detectors [42, 43]. Light-matter interaction is mainly two types – non-resonant and 

resonant. Generally, non-resonant interactions are wavelength independent, so this 

provides the ground for optomechanical interactions for a wide regime – microwave to 

optical range. On the other hand, resonant interaction gives the possibility of enhanced 

interaction but it is restricted by narrow span of wavelengths. COM exploits the finest 

by fulfilling resonant enhancement via resonant structure rather than the internal 

structure of the used material. This would be an example, optical resonator with a 

sequence of narrow resonances. Indeed, a lot of designs can acquire optomechanical 

control in high-Q resonators via radiation pressure interaction. The designs range from 

centimetre size macroscopic mirror to nano-meter structures (    atoms).  

Braginsky and Manukin, first experimentally established optomechanical effects at 

microwave domain in 1967 [44].  A. Dorsel et al established radiation-pressure induced 



CHAPTER 2: REVIEW OF OPTICAL AND OPTOMECHANICAL SYSTEMS AND NONCLASSICAL EFFECTS 

 

16 
 

effect at optical regime in 1983 [45]. In connection to these, the heating or cooling 

effect of the mechanical motion is possible. This is due to finite delay in time between 

the response of optical field and mechanical motion (details of the cooling effect is 

discussed in next section 2.4). In that context, the researchers realized basic quantum 

optical effects on mechanical detection (such as standard quantum limit) and how the 

interaction can create nonclassical states in optical field. 

2.2 Optical and Optomechanical systems 

 

Optical microcavity, optical microresonator, microdisks, microring, microtoroids all are 

interesting and promising candidates to study different nonlinear and nonclassical 

effects. For example, optical WGM micro-toroidal resonators can confine and trap light 

in small volume of space by means of total internal reflection around the perimeter of 

the dielectric-air confluence. These characteristics enrich nonlinear interaction and also 

intensity of light.  

During 1990s, cavity OMSs were started to analyze theoretically via quantum 

nondemolition (QND) estimation, squeezing of light etc. Followed by these, a lot of 

theoretical investigation and experimental work have been done in different OMSs [46-

51]. In different experimental technique, a large variety of optomechanical set up have 

been demonstrated, such as suspended macroscopic mirrors/ micro-pillars/ micro-

mirrors in a cavity, mechanical membrane placed inside a cavity, hybrid OMSs, 

semiconductor micro-disk resonator, double-disk micro-resonator, near-field coupled 

nano-mechanical oscillator, optical microsphere resonator, membrane in a 

superconducting microwave circuit, photonic crystals patterned into nano-beams, cold 

atoms in a cavity etc [52, 53]. In this work, we have studied OMS, cavity inside 
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membrane in chapter 3 and two-cavity system in chapter 4. In chapter 5, we have 

studied optical system with two micro-cavities. Figure 2.1 shows typical micro-cavity 

and OMS set up. 

                                   

(a) (b) 

Figure 2.1: Schematic representation of (a) WGM micro-cavity (b) OMS set up with 

external driving. 

 

2.3 Optical and Mechanical resonators 

From the previous discussion, it is clear different types of optical and optomechanical 

configurations are possible. Here, we have resumed the basic properties of optical 

cavities and mechanical resonators. 

2.3.1 Optical resonator 

We consider a Fabry-Perot etalon or resonator which consists of two high reflective 

mirrors. The angular frequency for   th mode is given by             , where   is 

the separation between two mirrors. For single mode the frequency is denoted by    . 

The FSR (free spectral range) or the difference between two longitudinal successive 

resonance frequencies is given by             . The optical finesse measures the 

mean of round-trips of a photon before leaving the cavity            . The quality 

factor is         , where   denotes the total decay rate of the cavity. Generally, total 
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Driving 

Laser  

Mechanical 

resonator 
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loss rate has two distinct parts:         ,    refers intrinsic loss rate and     is the 

decay rate associated with external coupling [53].  

If the cavity field is characterized by operator    , then according to input-output 

formalism, the expression of the output field from the resonator is given by  

                                                                                                                     (2.1) 

The steady state cavity photon number is given by  

                                                   
    

      
        

  
    

      

 

   
                         (2.2) 

where   denotes the input power of the laser with frequency    and   indicates 

frequency detuning between the cavity and the laser field.  

The reflection amplitude from the cavity is given by  

                                              
       

      
 

            

            
                                                 (2.3) 

From the above equation (2.3), the probability of reflection      can be calculated. The 

expression of      can define three distinct regimes. First, under coupling           - 

the intrinsic decay rate is larger. This condition is not suitable as it provides an effective 

loss. Second, critical coupling          - at resonance       this condition leads 

to     . This indicates that input power is either totally transmitted through 2
nd

 mirror 

or dissipated in the cavity. Third, over coupling          - the external coupling is 

larger. For this case        , which imply that without any absorption pump photons 

emerge from the resonator (quantum limited detection).   

 

2.3.2 Mechanical resonator 

The vibrational modes of a system can be obtained by solving the EOM under suitable 

boundary conditions.  
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The EOM of a harmonic oscillator with the global amplitude      and effective mass 

     is given by [54, 55]  

                                         
      

     
     

  
   

                                    (2.4) 

where         indicates sum of all forces (external force, thermal Langevin force etc) 

acting on the oscillator. The frequency of mechanical vibration is    and mechanical 

damping rate is    . These are related to mechanical Q factor through the relation    

     .  

The quantum mechanical analysis of the mechanical oscillator forms the Hamiltonian as 

follows: 

                                                           
 

 
                                                       (2.5) 

Here,       denote creation (annihilation) of phonon field mode and related with 

position and momentum operators as 

                                        
                        

                             (2.6) 

Where                  is zero-point fluctuation amplitude of the oscillator.  

The spreading of the field co-ordinate in ground state      
           , here      

implies vacuum state of the mechanical mode. The average value of the phonon number 

is given by           .  

To illustrate the effect of dissipation, we consider the oscillator is linked to a high 

temperature bath. The phonon number governed by the following equation 

                                                 
   

  
                                                               (2.7) 

The initial state of the oscillator is the ground state i.e. at             . The time 

dependence of the mean phonon number is given by                     . Using this 

expression, the mean thermal phonon number can be obtained as               , 
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which measures the thermal decoherence.  High Q cavity and low-temperature bath is 

required to achieve low decoherence. For Fock state      basis, the change of the 

population is expressed by quantum master equation. The decoherence rate [56] is 

given by                      , which implies that higher Fock state shows 

higher rate of decoherence. 

 

2.4 Basic cavity optomechanics   

We have discussed basic COM via optomechanical coupling and radiation pressure 

interaction between mechanical and optical mode. The mechanism of cavity cooling 

also has been discussed. 

 

  2.4.1 Radiation pressure & optomechanical coupling 

Here, we describe radiation pressure which couples the optical field with the 

mechanical oscillator. It arises due to transfer of momentum of the optical field to the 

oscillator and which corresponds to the Poynting vector. In a Febry-Perot resonator the 

momentum transfer by single photon is      (  is wavelength of photon). The 

corresponding force due to radiation-pressure is 

                             
   

 
                                                                      (2.8) 

Force due to one cavity photon is        . The frequency pull factor         , 

denotes the change of frequency with position. The mean value of the photon number 

is            . 

Generally, optomechanical coupling arises due to following cases: direct momentum 

transfer (Febry-Perot cavity with movable mirror, micro-toroids), optical near field 

effects (nano systems in the evanescent field of a cavity), dispersive cavity frequency 

shift (membrane inside a resonator) [52, 53, 57, 58]. 
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For an uncoupled system the Hamiltonian reads as 

                                                
                                                               (2.9) 

The resonance frequency is modified via mechanical displacement as 

                                                      
   

  
                                                (2.10) 

For simplicity, we restrict up-to linear term and re-define frequency change per 

displacement as    
   

  
. After modulation, the Hamiltonian of cavity part 

becomes                             . So, the interaction part of Hamiltonian is 

                                                 
                                                    (2.11) 

Here, the optomechanical vacuum coupling strength (in terms of frequency) is     

      .This quantifies interaction between a single phonon and a photon. 

The force due to radiation-pressure can also be written as (function of     ) 

    
      

   
  

   

    

        

If the interaction part is linearized by means of              i.e. the optical field is 

expressed as sum of coherent amplitude     and small fluctuation part      . The equation 

(2.11) takes the form 

           
   

                                                        (2.12) 

Here,          termed as effective coupling strength. Another interesting 

condition     , termed as strong-coupling regime. Experimentally it is challenging to 

reach the regime. At this regime, different quantum nonlinear effects become 

observable. 

Depending on cavity detuning, three distinct regimes are possible w.r.t. the interaction.  

First, Resonance condition      : at this interaction part is same as in equation (2.12). 
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It is clear that             , which provides an amount of phase shift of the optical 

field and this condition turns up in detection of optomechanical displacement. This 

Hamiltonian also is viewed as achieving quantum non-demolition (QND) detection [59-

61] of the light field amplitude quadrature           . Second, blue-detuned 

regime        : employing RWA it is obtained that non-resonant terms are 

dominant. So, interaction Hamiltonian takes the form                     . If the 

dissipation is absent, the energies are conserved in both the mode. There is an 

exponential growth of energy, which is interpreted as amplification or anti-damping. 

This is useful for parametric amplification [62]. If the dissipation is low, this may 

generate a dynamical instability and that provides self-induced oscillations of the 

mechanical system. Third, red-detuned regime        : where two oscillators 

(cavity field and mechanical field) having same frequency (nearly) and interchange 

quanta. So, non resonant terms                   should be omitted and interaction part 

becomes                     which refers as beam-splitter interaction. This condition 

is related to opto-mechanical cooling (thermal phonons transfer to cold photon mode) 

[63]. 

 

         2.4.2 Cavity Cooling 

Due to interaction of radiation pressure the cavity length changes, which lead to change 

in optical field phase and intensity. This provides two main effects. First, optical spring 

effect – optically influenced change in the frequency of the mirror oscillation that can 

provide a considerable reinforcing of its effective frequency. From the expression of 

mean phonon number              , it is evident that for constant temperature,      

reduces as    increases. So, the system can attain quantum regime (reduction of the 



CHAPTER 2: REVIEW OF OPTICAL AND OPTOMECHANICAL SYSTEMS AND NONCLASSICAL EFFECTS 

 

23 
 

temperature is not required). Second, cold damping or optical damping – the optical 

field seems like a viscous fluid that resist the motion of the mirror and it leads to 

cooling of center-of-mass motion. In absence of the optical field, the mirror is coupled 

to the temperature bath, dissipatively. When optical field is present, an extra damping 

channel is required to consider. So, the energy (center-of-mass) equation becomes [52, 

53] 

                                   
 

  
                                                             (2.13) 

Where      
        

       
 , is the optomechanical decay rate. As mechanical frequency is 

lower than optical frequency, so at low temperature       coupling of the optical 

field with reservoir, is more effective. In steady state, the expression of energy is given 

by                  . So, effective temperature is  

                                               
  

       
 

  

    
                                                      (2.14) 

So, controlling optomechanical coupling and hence      , the effective temperature can 

be lowered. Alternatively, the line-width widens and area of the displacement spectrum 

is reduced (figure 2.2 a), which leads to cooling effect. 

                        
(a)                                                                      (b) 

 

Figure 2.2: (a) spreading of decay line width (b) work done leads to cooling and heating  

  

Cooling Heating 
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The above classical derivation is not exact in some cases and can’t anticipate cooling 

limits [64, 65]. So, quantum mechanical analysis is required for exact cooling. There 

are several approaches such as quantum noise approach for weak coupling regime, 

covariance approach both for weak as well as strong coupling regime [66]. In 2006, 

three research groups reported radiation pressure cooling in different OMS such as 

micromirrors [67, 68] and microtoroids [69]. Cooling in resolved sideband regime 

realized in 2008 [70]. At the same time, few experimental demonstrations were done 

based on dynamical back-action process for cooling (temperature is order of few K or 

mK) [50, 67, 71].  Recently, ground state cooling of the mechanical motion was 

realized by several groups both in microwave domain [72, 73] and optical domain [74-

76]. In 2013, Liu et al proposed the dynamical process of cooling in strong coupling 

[77]. Figure 2.2 b indicates the cooling when work is done by mechanical system and 

for heating, work is done by optical field. 

In connection, typical scales of COMs experimental parameters are epitomized in Table 

2.1 as follows:  

References Membrane 

frequency 

(Hz) 

      

Coupling 

strength 

(Hz) 

      

Mass (m) 

of  

mechanica

l system 

(gm) 

Cavity 

decay 

rate(Hz) 

     

Mechanical 

damping 

(Hz) 

     
 

Quality 

factor 

Q 

O. Arcizet  

et al. [68] 
8.2 10

5 1.2 1.9 10
- 4

 1 10
6
 81 10

4
 

D. Kleckner  

et al. [78] 
9.7 10

3
 2.2 10

1
 1.1 10

- 7
 4.7 10

5
 1.3 10

- 2
 10

6
 

J. Thompson 

et al. [71] 
1.3 10

5
 5 10

1
 4 10

- 8
 5 10

5
 1.2 10

- 1
 10

6
 

E. Verhagen 

et al. [76] 
7.8 10

7
 3.4 10

3
 1.9 10

- 9
 7.1 10

6
 3.4 10

3
 10

4
 

J. Chan  

et al. [74] 
3.9 10

9
 9 10

5
 3.1 10

- 13
 5 10

8
 3.9 10

4
 10

5
 

K. Murch  

et al. [79] 
4.2 10

4
 6 10

5
 4 10 

- 19
 6.6 10

5
 1 10

3
 10

3
 

                     Table 2.1: Experimental parameters for different COMs setup 
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2.5 Quasi Probability distribution 

An important counterpart is visualization for simulation of quantum states (QS). 

Visualization indicates how the density matrices or state vectors transform with time. 

Generally, one can be minded that it is the plot of expectation values of a particular 

operator. The expectation values are calculated from probability distribution (PD). The 

PD of Fock basis gives the occupation probability of discrete states. The phase-space 

PD-like-functions give the full description of QS. These are termed as quasi-PD 

functions. The PD for these functions is negative. The negativity indicates that the state 

is nonclassical.  

For mixed state the density operator is written as 

                                             
                                                                         (2.15) 

where     is the probability of      state. In terms of number states,     is     

                                                                                                                (2.16) 

where the matrix element       is             . The diagonal elements      represent the 

probabilities of finding of the   photons in a field. Another way to represent     in terms 

of coherent states as 

                                                                                                                 (2.17) 

where the weight function      is termed as Glauber-Sudarshan   function [39, 80, 

81]. The right side of the equation (2.17) represents diagonal form of      and      is 

analogous with statistical phase-space distribution. Here, the variables of the phase-

space are real and imaginary values of  . As    is Hermitian,      is real. Also        

          . The states for which      is no more singular than   function or 

positive are termed as classical. But for the states for which      is highly singular than 

  function or negative are, nonclassical. Other important quasi-PD functions are 
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Wigner function [15], Husimi Q-function [82] etc. The negativity of Wigner and P-

functions give the signature of nonclassicality. The zeros of Husimi Q-function 

correspond to nonclassical behaviour. In the next section, we define different 

nonclassical effects and their quantifying criteria. Details of the quasi-PD functions 

with possible applications can be found in reference [83].     

 

2.6 Nonclassical effects 

 

The theoretical idea of nonclassical state was originated from the evolutions of 

Gaussian wavepackets by Schrodinger, Kennard and Darwin (1926-27), via prototypes 

of squeezed states [84]. The first experimental evidence of nonclassical state was 

demonstrated by R. Slusher group [85], in atomic sodium vapour (1985). Using these 

ideas, possibility of various types of nonclassical effects is reported in different optical 

system, both theoretically and experimentally [21, 24, 86-91]. These are quadrature 

squeezing, phase squeezing, spin squeezing, polarisation squeezing, antibunching, 

intermodal entanglement, EPR steering, Bell states, negativity of Wigner function and 

Q-function etc. These are quantified by logarithmic negativity, Fano factor, Mandel Q 

factor, different inequalities etc. In this work, we have analyzed different nonclassical 

effects which are described in chapter 3, 4 and 5, respectively.   

2.6.1 Squeezing 

Squeezing is defined as quantum mechanical fluctuation of quadratures. Any quadrature 

is less noisy than a vacuum or coherent state. Squeezed states have applications in 

phase estimation [92], quantum imaging [93], weak force detection [94], GEO600 

detector [95] and LIGO detector [96] etc.  
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(a)                                                                                     (b) 

 

Figure 2.3: Uncertainties of (a) coherent state (b) squeezed state 

2.6.1.1 Types of squeezing 

Different types of squeezed states are theoretically reported and experimentally 

observed for different optical and optomechanical systems with potential applications. 

These are quadrature squeezing, two mode squeezing, amplitude squared and cube 

squeezing, phase squeezing, difference and sum squeezing, n-th order single field mode 

squeezing and spin squeezing etc. We introduce the inequalities of different types of 

squeezing, in next subsection.  

2.6.1.2 Inequalities of squeezing: 

The two quadratures    and   ,  express the real (electric) and the imaginary 

(magnetic) parts of  an e. m. field, respectively. The quadrature operators follow the 

commutation relation         
 

 
  , where C-number. Using the uncertainty relation 

the variance of the quadratures obey the following relation 

                                                            
        

   
 

  
                                   (2.4) 

where       
      

       
 . The field quadrature is said to be squeezed if 

 

                                                            
   

 

 
                                                (2.5)    
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For single field mode, quadrature operators are    
          

 
   and     

          

  
. If 

the variance of the field quadratures obeys following condition, the quadrature is 

squeezed [97] 

                                                             
 

 
            

  
 

 
                                (2.6) 

 The operators for compound field modes (a, c) are  

                                   
                     

   
  ,       

                     

    
             (2.7) 

The condition for squeezing is 

                                                          
  

 

 
   ,         

  
 

 
                                  (2.8) 

For sum-squeezing the    and   have the form [98] 

 

   
 

 
                     ,    

 

  
                     ,              

The sum squeezing is possible in the    direction if      
   with      . 

We define the squeezing factor as  

                                                     
       

   
 

 
                                           (2.9) 

For difference squeezed states [64] the operators are 

   
 

 
                     ,       

 

  
                     ,                                                   

The difference squeezing is possible along the    direction if     
   with        

 The squeezing factor are introduced here 

                                               
       

   
 

 
                                              (2.10) 

For n-th order single field mode squeezing, operators are [99] 

   
 

 
              ,    

 

  
              ,                             

 The squeezing is possible in the    direction if          where 

                                                   
   

 

 
                                                (2.11)   
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 Luks et al. criterion [100] of single mode principal squeezing is                   

and normal squeezing is                      where          . 

We define the above two relations as follows: 

                                                                                                    (2.12) 

                                                                                                 (2.13) 

 Similarly, criteria for compound field mode [101, 102] are       
               

     

and       
                

   respectively, where           and          

     . The above two relations are defined as 

                                              
               

                                   (2.14) 

                                               
                

                               (2.15)                                                 

Using ideas of second quantization and Schwinger-Bosonic representation [103], 

different spin operators are expressed in terms of two field modes        and      are 

as follows:    
 

 
        ,    

 

  
        ,    

 

 
          where        

and       . The spin components satisfy the commutation relation                 

where      implies Levi-civita symbol. So, any pair of spin component follow the 

uncertainty relation       
        

   
 

 
    

  where      
     

       
  is the 

variance along    direction. So, the conditions for spin squeezing along     and    are 

                                              
   

 

 
       ,       

 
  

 

 
                                (2.16) 

We define the squeezing factors are as follows 

 

                                       
        
 

 
      

   ;       
      

 
 

 

 
      

                                 (2.17)     

Using these criteria, we have investigated different types of squeezing, in chapter 3, 4 

and 5.                        
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2.6.2 Antibunching 

 

Particle statistics are generally of three types. These are super-Poissonian, Poissonian 

and sub- Poissonian. First two statistics can be explained via classical wave theory.  

Last one, sub-Poissonian statistics has no classical explanation, corresponds to 

antibunching. Antibunching phenomenon is associated with the emission of single 

photon. For secured communication single photon source is one of the basic 

requirements [23, 104]. First experimental evidence [8] of single photon source was 

performed by HBT (H. Brown and R. Twiss) experiment. The experimental idea is 

based on intensity correlation (second-order correlation). The intensity correlation 

function is expressed by        
            

              
 . For different cases the values of the 

correlation function with zero time delay       are as follows: for antibunched 

light          , random or coherent         and bunched or chaotic light        

 . Figure 2.4 depicts the variation of the spacing of photon for three distinct cases. In 

next subsection, we have discussed the inequalities of lower order as well as higher 

order antibunching.  

 

 

Figure 2.4: Photon stream comparison of (a) antibunching (b) coherent (c) bunched 

light. 

a 

b 

c 
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2.6.2.1 Inequalities of Antibunching 

Lower order particle statistics is quantified via Mandel’s Q parameter [105, 106] and it 

is defined as 

                                                      
  

   
                                                          (2.18) 

 where n implies particle number       and             . The factor 

        and     are related to sub-Poissonian (antibunching), Poissonian 

(coherent) and super- Poissonian (bunching) statistics, respectively. So, from expression 

(2.18), the criteria for single field mode is defined as      where 

                                                                                                     (2.19) 

Similarly, for compound field mode the parameter       with 

                                                                                          (2.20) 

 Lee criteria [107], for higher-order antibunching is expressed via factorial moment of 

the number operator, the inequality is given by 

                                                        
       

        
     

                                   (2.21) 

where    is the number operator for a mode,  -th order factorial moment of it is given 

by    
             

    ,     are integers    ≥ m ≥1). For m = 1 the above criterion is 

reduced to     
         

     . The condition for  -th order antibunching is 

 

                                                                
         

                               (2.22)                                     

   
            measures   photons of the mode at a fixed point in space-time 

coordinate. The inequality indicates the probability of the detection of a single photon 

pulse is greater than from two photons in a bunch and so on. This typical feature is 

important for quantum cryptography. For   = 1, the condition corresponds to lower 
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order while  ≥ 2 is implies higher-order. Again, for compound mode ab the criterion is 

expressed by the following inequality [107] 

                                
     

      
     

        
   

    
   

                           (2.23) 

with    ≥ m ≥1. For m = 1 the above condition becomes 

   
      

        
      

      

 We define, the antibunching factor for  -th order compound field mode as 

                                       
      

        
      

                              (2.24) 

 

2.6.3 Entanglement, EPR Steering and Bell states  

Quantum entanglement is one of the fundamental aspects in the field of quantum optics. 

In quantum computation entangled state plays the key role. Entangled state means non-

separable state and essentially non-classical. When multi particles are connected 

together or interact physically in such a manner that wave function of the system can’t 

factorized into the product of individual particle wave function. If      denotes the total 

system wave function then it follows                         . Similarly, in case of 

mixed state the density matrix has the form         
 

    
    . This has potential 

advantages in QIP via dense coding, teleportation, quantum cryptography [26, 108, 

109]. Another two multi particle correlations are steerable state and Bell state. Einstein, 

Podolosky, and Rosen (1935) made a question about completeness of quantum 

formalism [5]. To realize the quantum formalism many efforts have been taken via 

different types of quantum nonlocality. Such nonlocalities are Bell nonlocality, EPR 

steering and entanglement. The idea of EPR steering was explained by Schrodinger in 

1935 as a generalisation of EPR-paradox [110]. It explains remote manipulation of 

quantum state. Bell states are maximally entangled state. Wener established that all 
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entangled or non-separable states are not Bell non-local [111]. The relationship between 

three correlations was introduced by H. Wiseman et al [112, 113]. Entangled state is 

superset of EPR Steerable state and Bell state is subset of steerable state (figure 2.5).  In 

next section, we introduce different inseparability criteria and using these criteria the 

possibilities of nonclassicalities are discussed chapter 3, 4 and 5. 

 

Figure 2.5: Representations of entangled, steerable and Bell state 

 

2.6.3.1 The inequalities of two mode quantum entanglement 

There are a number of inseparability criteria to characterize entangled states, which are 

sufficient but not necessary. First, to find the existence of entanglement for two field 

mode state, we use Duan et al [114] formula which is derived an inequality interms of 

the linear combination of position and momentum. This can be expressed in terms of 

moments of raising (lowering) operators between two field modes as              

 . 

                               
                     

  
    and   

                     

   
               (2.25) 

The condition defined as       

                                                                                                         (2.26) 

Entangled state 

SSSSS Steerable state 

Bell state 
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Second, Hillery-Zubairy inseparability criteria [115, 116] are expressed via moments of 

the field operators. For seperable state the criteria for two field modes       are 

       
 

        and                    where    ,    are the number operators 

corresponds to the field modes. 

So, the conditions for two mode entanglement in lower order are defined as       

and   
    . These two named as Hillery-Zubairy criterion 1 and Hillery-Zubairy 

criterion 2, respectively. 

                                                         
           

      
                                         (2.27) 

                                                       
    

          

        
                                          (2.28) 

Higher order study has also importance, in which degree of nonclassicality is expected 

to be enhanced. The criteria for higher order studies are as follows: Hillery-Zubairy 

criteria [115, 116] are one which is sufficient to characterize higher-order entanglement.  

Starting from the expressions of the quadratic operators                  and 

                   and applying uncertainty relation and Schwarz inequality 

Hillery and Zubairy formulated that the states to be non-separable if             

              
 

  . Similarly for the operators                   and    

                they established that the product state would be non-separable if  

                         
 

  where   and   are non-zero positive integers. For 

product state choice of the integers      satisfy the condition       .    
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                        (2.30) 

                                                
         

               

             
                          (2.31) 

Agarwal and Biswas established two inequalities [117] regarding two-mode separable 

states by introducing higher-order correlation between the momentum and position 

coordinates. First, using a group of operators (angular momentum operators)    

 

 
         ,    

 

  
          ,    

 

 
           and uncertainty relation 

       
 

 
        and also taking partial transpose, they established following relation 

for separable states                                                

                                                          
 
 

For two mode non-separable state the condition is        . 

   where                                                    

                                                          
 
    (2.32)              

Second, using a group of operators     
 

 
         ,    

 

  
          , 

   
 

 
             satisfying         algebra and uncertainty relation they 

established the following inequality for separable states 

                                              

                                               

            
 
 

For two mode non-separable state the condition is        . 
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Where                                                    

                                                          
 
    (2.33)  

2.6.3.2 The Inequalities of three and four mode 

entanglement 

To examine the possibilities of three and four field mode entanglement, we have used 

Li et al moment based criteria [118]. Using group of operators               and 

                 and Schwarz inequality, Li et al formulated the 

condition                   
 
 for tri-modal entanglement. Again, for the set of 

operators               and                   and Schwarz inequality, Li 

et al formulated another condition                       . The violations of above 

inequalities imply the signature of tri-modal entanglement. We recall the two relations 

as  

                                                      
 
                                         (2.34) 

                                                                                                (2.35) 

    and     give the signature of entanglement. We rename equation (2.34) and 

(2.35) as Li et al criterion 1 and 2. 

Again, Li et al formulated the inequality for four field modes [118], which is given 

by                            . The violation of the inequality implies the 

possibility of four field mode entanglement. We define this as  

                                                                                                    (2.36) 
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Four-mode entangled state exists if      . We have analyzed three and four field 

mode entanglement in chapter 4, using above inequalities. 

2.6.3.3 Inequalities of EPR steering and Bell states 

There are several inequalities for EPR steering: Reid criteria using uncertainty principle 

[119], Walborn criteria using an entropic formulation [120], Cavalcanti et al criteria 

using moment based inequalities [121]. Violations of steering inequalities investigated 

theoretically and obseved experimentally, recently [122-127]. The Cavalcanti et al 

criteria for two modes EPR-steerable state is 

        
   

 
    

      
    

 

 
   

The violation of the inequality signifies the possibility of EPR-steering. For two remote 

observer, Alice and Bob, share a pair of nonseparable particle if Alice measures mode 

   and Bob measures mode    then violation of the inequality signifies that Bob would 

be able to steer Alice or vice versa. Using this inequality we define a correlation 

function      which gives the signature of EPR-steering when         

                                                    
   

 
    

      
    

 

 
                                (2.37)                     

Similarly, for Bell states [6, 7] the codition is        , where     

                                                  
   

 
     

    
 

 
    

    
 

 
                        (2.38) 

In chapter 5, we have analyzed above two correlations in PT-symmetric micro-cavity 

system and stated possible utility. 


