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3.1    Introduction 

Optomechanics is a promising candidate; the attention of the researcher has been drawn 

to it, recently. Different types of optomechanical architectures are reported in different 

experimental set up and theoretical studies such as macroscopic mirrors suspended in a 

cavity, micro-pillars suspended in a cavity, membrane placed inside a cavity, 

microtoroid, semiconductor microdisk resonator, microsphere resonator, nano-rod 

inside a cavity, cold atoms in a cavity, flying atom in a cavity etc [69, 71, 74, 128-131]. 

Here, we are interested to an OMS, where a membrane (dielectric) is placed inside two 

high-finesse, rigid and macroscopic mirrors [71]. In this system the coupling between 

mechanical membrane and e. m. degrees of freedom, is varied quadratically with 

membrane displacement. Generally, the coupling may vary with linear or square of the 

displacement. For example, OMS with photon induced tunnelling [132], single photon 

emission [133] are connected with linear coupling whereas system with strong 

dispersive coupling [71], ultra-cold atoms [134] and micro-disk resonators [135] have 

connection with quadratic coupling. Recently, in ref. [136] Brunelli et al studied the 

nonclassical states in OMS with both linear as well as quadratic coupling. There are 

advantages of quadratically coupled system over linearly coupled system as for QND 

measurements of photon and phonon [71], optical springs [137], photon transport [138], 

cooling and trapping of reflective mirror [139] and optical trapping of dielectric 

particles [140]. Motivated by the above possible utilities we have illustrated the OMS 

with quadratic coupling.  

Nonclassical states are more interesting and these are also studied in quadratic OMS 

[141-144]. Nunnenkamp et al has described phonon cooling of mechanical oscillator 

and mechanical squeezing of quadratic OMS, where cavity is driven by two beams 
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[141]. Photon statistics, bipartite entanglement between optical and mechanical mode, 

squeezing and temporal evolution of Wigner function of mechanical oscillator is 

described in absence of driving and dissipation [142]. In ref. [143] Machado et al 

theoretically established superposition of states and squeezed state of the mechanical 

oscillator. The photon antibunching in weak-coupling regime is studied by Seok and 

Wright [144]. All these studies are made with lower order and in weak coupling regime. 

 In our study, we have investigated different nonclassical effects in moderate and strong 

coupling regime. We have also studied these nonclassical effects in higher order, where 

degree of nonclassicalities is expected to be enriched. We have analyzed the system in 

two ways: First, analytically solved the system Hamiltonian in absence of driving and 

dissipation (considering quantum system as closed). Second, to account loss factor and 

driving, we have made a numerical solution.  

3.2     The Model Hamiltonian and its solution 

The model system consists of a Fabry-Perot cavity and a dielectric membrane is placed 

inside at the middle of it [71], as depicted in figure 3.1. This type of configuration may 

be called as ‘membrane-in-the-middle’ configuration. The Hamiltonian of the system is 

written as 

                                                                                                             (3.1) 

where, first part of it represents the Hamiltonian of the optical and mechanical mode, is 

described by         
        .  The resonance frequency for cavity field mode 

is represented by    and    represents the frequency of the mechanical motion.        

and       are the lowering (raising) operator corresponds to optical mode and 

mechanical mode. Second part represents the interaction part of and expressed by 
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                  .   is the strength of coupling between the optical and 

mechanical mode. Last part corresponds to driving term                  

       , where    is the real driving strength with driving strength  . 

 

Figure 3.1: Schematic diagram of the model system with ‘membrane-in-the-

middle’ configuration. 

So, the Hamiltonian of the system takes the form 

                   
                                                  (3.2) 

To consider this system Hamiltonian we have made following assumptions: First, 

theoretical study [145] and experimental evidence [146] have shown that in OMS, the 

environmental effects are negligible.  Second, at strong coupling regime the cavity loss 

rate are much smaller than optomechanical coupling strength. Third, we have analyzed 

the system Hamiltonian without driving term as some previous theoretical studies [147, 

148] have been done in absence of driving. So, the system Hamiltonian of equation 

(3.2) becomes 

                                                
                                                   (3.3) 

 

Using Heisenberg EOM, we obtain the differential equations correspond to cavity and 

mechanical modes are as follows: 

     

  
                                             

 

                                
     

  
                                                          (3.4) 



CHAPTER 3: NONCLASSICAL EFFECTS IN QUADRATICALLY COUPLED OMS 

 

42 
 

 

Using Taylor series expansion of a field operator we assume n-th order solution of the 

field modes are 

                

        
          

       
              

             
              

   
       

 

        
          

       
                  

                      

                                            
      

 
   

                                                      (3.5)         

where the parameters      and      are function of time and found out from boundary 

conditions               and               [       ].  

The time dependent coefficients      and       are given by (corresponding 

differential equations are in appendix A) 

                                              ;       
 

   
                    ; 

                              
      

     ;                   ;               ;  

                                  ;                  ;        
   

  
      .  (3.6) 

The validity of the solution is checked by using equal time commutation relation  

                                                                            . 

Using solutions of equation (3.5) and putting     , we have obtained the number 

operators for the field mode   and  , and are given by  

             

           
                     

                     
    

                    
               

            

             

           
                         

                    
             (3.7) 
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Here h.c. indicates Hermitian conjugate. In order to calculate different nonclassical 

correlation factors we consider the initial state is product of two coherent states and is 

expressed by               where    and     are the eigenkets of field modes   and 

  respectively. If the operator      operates on the composite state     it gives the 

complex eigenvalue α i.e.              where      represents the photon 

number of the optical field mode  . Similarly, we obtain phonon number      for 

mechanical mode  . 

In next sections, different nonclassical effects are discussed both in lower as well as 

higher order by using corresponding nonclassical criteria. The systems parameters are 

used here, based on different experimental optomechanical setup. The mechanical 

frequency of the membrane varies from several kHz to MHz [71, 74, 79]. The strength 

of optomechanical coupling can be order of kHz [79, 149] and near field study shows 

that its value is order of few MHz [150].  

3.3    Quadrature Squeezing  
 

In present section, we have discussed the possibility of different types of squeezing 

such as single mode squeezing, compound mode squeezing, spin squeezing, difference 

and sum squeezing and variations of different squeezing parameters with system 

parameters are also reported. 

3.3.1 Single mode squeezing 

Here we have analyzed the single mode squeezing for both the field modes via lower as 

well as higher order variations. Using equation (2.5) and (3.5), the variance of the field 

quadratures are obtained as 

              

      
  

 

 
      

    
     

    
    

          
               (3.8) 
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                                       (3.9) 

Here c.c. indicates complex conjugates. From equation (3.8) it is clear that lower order 

single mode squeezing is not possible for optical field mode as the variance of the field 

quadratures are always greater than zero point fluctuations.  

Temporal variation of the field quadratures (equation 3.9) are plotted in fig. 3.2 (a, b). 

From the variations it is clear that there is signature of mechanical squeezing. The 

degree of squeezing increases with coupling strength. From the equation (3.9), it is clear 

that the degree of squeezing is independent of the phase of the input state. 

 

         
  and       

                                             
  and       

  

        

                                                                                                                               
(a)                                                                 (b) 

Figure 3.2: Variation of the field quadrature variances       
  (solid line) and  

     
  (dashed line) with rescaled time     . The parameters are      ,       

(a)       ,       MHz  (b)          ,       GHz.  

Using equation (2.11) and (3.5), we obtain the higher order squeezing factors as 

follows: 

                                                        
      

                                                    (3.10) 

 

                      
      

    
  

 
          

                                           (3.11) 
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From equation (3.10) it is clear that higher order squeezing is not possible for optical 

mode. But for mechanical mode there is signature of higher order squeezing. To study 

the variation of the squeezing factors we plot right side of the equation (3.11) in figure 

3.3. Figure (a) displays the variation for     i.e. amplitude squared and figure (b) for 

    i.e. amplitude cube squeezing. From these it is clear that any one squeezing 

parameter is always less than zero i.e. squeezed due to expense of other. The degree of 

squeezing increases with order number. This is due to presence of the term         in 

the expression, which plays the role of amplification factor. Interestingly, it is also 

observed that time period of oscillations is shortened with order number. As order 

number increases the energy exchange decreases and hence time period of oscillations 

decreases. The degree of squeezing can also be tuned via weight factor of the initial 

state. For a given order number the squeezing factor also increases with optomechanical 

coupling strength. This can be explained as due to the presence of the term       in the 

expression of equation (3.11).  

 

     
(a)                                                             (b) 

 

Figure 3.3: Variation of squeezing factors        (solid line) and        (dashed 

line) with     for mechanical mode with       ,      ,         KHz and 

          (a)      (b)    . 
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Figure 3.4 depicts the variation of the higher order squeezing factors of the 

mechanical mode (equation 3.11) with time. This shows collapse-revival 

phenomena, the occurrence of it is explained as follows: The squeezing factors 

       contain two periodic functions of the form        and        . For a 

certain value of     , the period of energy exchange between the modes lowered, 

many oscillations occurred up-to interaction time       ,   is a positive integer. 

When the field is trapped by the nonlinearity of the membrane,        collapsed. As 

phononic interaction proceeds the patterns repeat periodically. The number of 

revival patterns increases with order number, due to the period of revival 

phenomena is steered by the factor   
  

        
. Mathematically, the term       

plays the key role for revival and envelope function       gives the main 

contribution to the collapse. 

 

 
 

Figure 3.4: Plot of        (blue solid line) and        (red dashed line) with  (ms) for   

mode with n=4,      ,      ,         KHz and         . 

3.3.2 Compound mode squeezing 
 

 

        Using equation (2.7) and (3.5) we obtain  
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                                         (3.12) 

 

             
  and        

                                        
  and        

  

     

                                                                                                                                   
(a)                                                                         (b) 

 

Figure 3.5: Variation of compound mode field quadrature       
  (solid line) and 

      
  (dashed line) with rescaled time    . The parameters are      ,       

(a)       ,       MHz (b)          ,       GHz.  

 

The right side of equation (3.12) is plotted in figure (3.5) for different coupling 

strength. From the variation it is cleared that there is a signature of compound mode 

squeezing and degree of squeezing is increased with coupling strength. Any one of the 

field quadrature is always squeezed due to cost of other. It is also shown that degree of 

compound squeezing is more as compared to single mode mechanical squeezing. The 

monotonous increase of envelop of the field quadrature is due to truncation of the 

calculations of the interaction term.  

 

 



CHAPTER 3: NONCLASSICAL EFFECTS IN QUADRATICALLY COUPLED OMS 

 

48 
 

3.3.3 Spin squeezing 

 
Using solutions of equation (3.5) and different spin squeezing operator (equation 2.16), 

we obtain variance of        and average value of    as follows: 

      
   

 

 
     

     
            

    
   

   
          

      
                  

 

      
 
  

 

 
     

     
            

      
      

             
   

   
             

 

                          
 

 
     

          
         

                                      (3.13) 

 

                                  and      

 
                                                                                             

Figure 3.6: Plot of spin squeezing factors       (solid line) and      (dashed line) with 

rescaled time     . The parameters are            ,              and 

           . 

 

Using above and equation (2.17) we have plotted the temporal variation of the 

squeezing factors      and      in figure (3.6). It is evident that any one squeezing 

factor is always less than one. So, any one spin component    or     is always squeezed 

due to energy exchange in between one another. The degree of squeezing can be tuned 

via coupling strength. 
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3.3.4 Sum and Difference squeezing 

 
In this portion we have analyzed the possibility of sum and difference squeezing in the 

present system. To study the variation of squeezing factors, we consider optical mode is 

initially coherent and mechanical mode is in vacuum state. So, the initial state is  

            . Using equation (2.9) and solutions of equation (3.5) and (3.7), we 

find the sum squeezing factors as follows: 

               
    
    

    
 

 
   

      
                                                (3.14) 

 
The right side of the above expression is not simple, if we simplify then it is evident 

that it’s function of sum of the frequency for mechanical and optical mode. So, sum of 

two frequencies can be generated via this study. 

Again, using equation (2.10) and solutions of equation (3.5) and (3.7), difference 

squeezing factors are obtained as follows:               

                                                        
    
    

    
 

 
   

   
   

                                      (3.15)        

To calculate the difference squeezing factors we have used        i.e. Hillery’s 

condition of difference squeezing [98]. Analyzing the above equation (3.15) it is clear 

that output of the difference squeezed state is a function of difference between the 

cavity and mechanical mode frequencies.                          

To study the variation of the squeezing factors, we plot the equation (3.14 and 3.15) as 

a function of normalized time in figure 3.7(a) and (b), respectively. Both the plots show 

that the envelope of the squeezing factors monotonically increase, explanation of this is 

same as for compound mode squeezing (sub-section 3.3.2). The degree of squeezing for 

both cases may be tuned by coupling strength and phase of the input state. But for same 

interaction parameters the degree of difference squeezing is almost     of sum 
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squeezing. The degree of difference squeezing is reduced due to dephasing between 

optical and mechanical mode. 

 

   
(a)                                                                   (b) 

 

Figure 3.7: Plot of (a) sum squeezing parameters     
 (blue solid line) and     

 (red 

dashed line) and (b) difference squeezing parameters     
 (blue solid line) and     

 

(red dashed line) with     for       ,         KHz and         . 

3.4     Quantum Statistics 
 

In this section, we have discussed the particle statistics for quadratically coupled OMS. 

The particle statistics are studied for both the single field mode and their inter-mode in 

following two sub-sections.  

3.4.1 Single mode statistics 

 
 

Using equation (2.22) and solutions (equation 3.5 and 3.7) we obtain the following 

expressions of antibunching factors for cavity field mode and mechanical mode. 

                                                                                                            (3.16) 

                                                                                                    

                                          
      

 
   

    
                             (3.17)      

   

From the result of equation (3.16) it is clear that antibunching factor for optical mode is 

zero. So, the photon mode shows Poissonian statistics i.e. optical mode is coherent. By 
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simplifying the equation (3.17), it is obtained that the result is always positive for a set 

of system parameters. So, phonon mode shows super-Poissonian nature i.e. phonon 

bunching. From this study, it is concluded that single mode antibunching is not possible 

for the dynamics of the present system.         

 

3.4.2 Intermodal statistics 
 

 

Using equation (2.24) and solutions (equation 3.5 and 3.7) we obtain the expression of 

       as follows: 

            
            

                      
                      

           
      

 
    

                    
      

 
              

                                                                                                (3.18) 

 

                                                                                        

             

                                                                                                                                               
        (a)                                                                        (b) 
 

Figure 3.8: Variation of compound mode antibunching factor        with rescaled time 

   with (a)          ,             ,           ,       (solid curve) 

and       (dashed curve) (b)             ,             ,           ,  

    (solid curve) and     (dashed curve). 

 

The temporal variation of equation (3.18) is depicted in figure 3.8 (a, b) for different 

weight factor of input, coupling strength and order number. The plots shown that the 
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value of        is negative i.e. the statistics is super-Poissonian. So, there is a signature 

of intermodal antibunching. Figure (a) shows the variation of        for order number 

    with cavity photon number        and        . Thus the degree of 

antibunching depends on weight of the input state. Figure (b) displays the variation of  

       for order number     and    . From this variation it is clear that degree of 

intermodal antibunching is significantly increased with order number. From the 

analysis, it is also concluded that degree of squeezing can also be tuned by coupling 

strength. 

3.5    Entanglement 

Here, we have discussed the existence of another nonclassical properties called as 

entanglement in present system. We have studied the effect both in lower order via 

Duan et al criteria and Hillery-Zubairy criteria and higher order via Hillery-Zubairy 

criteria. 

3.5.1 Lower order Entanglement 
 

We first examine the possibility of lower order entanglement via Duan et al criteria 

(equation 2.26) and solutions of equation (3.5). We find the following analytical 

expression  

                  
    

     
    

    
          

      
        

   
        

        
         

                                            (3.19) 

The equation (3.19) is plotted in figure (3.9) as a function of time for different coupling 

strength. It is clear that the value of                is negative with a periodic 

nature and its negativity is increases with coupling strength. Interestingly, the parameter 

              oscillates between non-classical to classical regions. The degree of 

nonclassicality depends on weight factor and phase of the input state. 
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(a)                                                                           (b) 

 

Figure 3.9: Variation of                with rescaled time     for       (solid 

curve) and       (dashed curve ),       (a)       ,       MHz  (b) 

         ,       GHz.   

 

Using Hillery-Zubairy criteria (equation 2.28) and solutions of equation (3.5) and (3.7), 

we obtain 

                                               
          

    
                           (3.20) 

 

                                                                                                                                    

           
                                          (a)                                                                   (b) 

             

Figure 3.10: Variation of     with rescaled time     for       (solid curve) and 

      (dashed curve),       (a)       ,       MHz  (b)          , 

      GHz.   

Figure (3.10) display the variation of     as a function of time for different coupling 

strength. The negativity of the entanglement parameter     shows the existence of 

intermodal entanglement in present system. Interestingly, the optical mode and 



CHAPTER 3: NONCLASSICAL EFFECTS IN QUADRATICALLY COUPLED OMS 

 

54 
 

mechanical mode are initially separable but these are entangled via radiation pressure 

interaction.   

3.5.2 Higher order Entanglement 

To analyze higher order entanglement in quadratically coupled OMS, we have used 

Hillery-Zubairy criteria (equation 2.30 and 2.31) and solutions of equation 3.5 and 3.7, 

to obtain the analytical expression of    
   

 and    
    

 . These are as follows: 

   
            

    
                           

    
                

                                                     
           

 
   

    
                      (3.21)                                                                                                                                         

   
         (  

    
                 

                                                     
     

 
   

    
                                   (3.22) 

                                                                                                                                      

                                                                                                                                                                 

             
    

                  (a)                                       
    

                      (b) 

 
 

Figure 3.11: Variation of    
    

 with rescaled time    for            ,  m = n = 2 

(solid curve) and m = 2, n = 3 (dashed curve) (a)             ,            

(b)           ,          . 

 

After simplification the expression     
   

 shows positive values for a set of parameters. 

But    
    

 is always negative i.e. higher-order bipartite entangled state exists for present 

system. As these criteria are sufficient to characterize non-separable state but not 
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necessary. The right side of equation (3.22) is not so simple; we plot it as function of 

time in figure (3.11), for different order number. The negativity of entanglement 

parameter increases with coupling strength and order number. If we put     in 

equation (3.22) it reduces to equation (3.20) i.e. lower order entanglement. As order 

grow the degree of entanglement increases. This is due to the presence of the term 

         in the expression, which acts as magnification factor. The graphical 

representation shows that non-separable state is in a periodic repetition. The periodicity 

of the entangled parameter is independent of the order number i.e. periodicity is same 

for all order.   

 

3.6     Numerical Solution 

In this section, we have analyzed the effect of optical loss, mechanical damping and 

driving term over nonclassical states viz. squeezing and entanglement. To account these 

we have taken master equation approach. To solve numerically we have required to 

RWA for the Hamiltonian of equation (3.2).  

Under RWA the equation (3.2) takes the form 

 

                           
                                                   (3.23) 

 

Where           is the frequency detuning between the cavity and driving field. 

The Lindblad’s master equation for the system is given by  

             
  

 
                    

 
 

 
                           

 
 

 
      

                                              (3.24) 
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   and   represent the decay rate and mechanical damping corresponds to the optical  

mode and mechanical mode, respectively and     is average thermal phonon numbers 

at temperature  , given by the formula           
   

  
     . Here, we have 

assumed average thermal cavity photon number is zero. The equation (3.24) is solved 

numerically using Fock state         as basis, where    and    indicate the photon 

and phonon numbers for the field modes   and  , respectively.  

Using equation (2.5) and (2.7), we have plotted the variances of the field quadratures 

for mechanical and compound mode as a function of cavity detuning in figure 3.12(a) 

and (b). From these it is clear that both mechanical squeezing and compound mode 

squeezing. The degree of both the squeezing increases with the coupling strength. The 

degree of squeezing can also be controlled by driving strength.  

 

     
  and       

                                                     
  and        

  

    
                                                                                                                                    

(a)                                                                (b) 
 

Figure 3.12: Plot of the variance of the field quadratures with normalised cavity 

detuning. (a)      
  (solid blue line) and       

  (solid red line) for           

;      
  (dashed blue line) and       

  (dashed red line) for           (b)       
  

(solid blue line) and        
  (solid red line) for           ;       

  (dashed blue 

line) and        
  (dashed red line) for          . The other parameters 

are           ,           ,                    and          . 
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Figure 3.13 depict the variation of entanglement parameter                as a 

function of cavity detuning for different coupling strength and it shows that degree of 

entanglement is changed slightly as coupling strength increases.  

                                             

 
                                                                          

 

Figure 3.13: Variation of                with normalised cavity detuning for 

           (red line);           (blue line). The other parameters 

are           ,            ,                    and          . 

 

3.7   Summary 

In summary, we report lower and higher-order nonclassical effects in quadratically 

coupled OMS using a set of moment based criteria for single and compound mode 

squeezing, super-Poissonian statistics, intermodal entanglement. We have illustrated 

higher-order single mode squeezing, sum squeezing, difference squeezing, higher order 

particle statistics, higher order entanglement in the present system. None of these 

nonclassical effects were turned up by previous studies.  

In the present work, the fluctuation of nonclassical effects with system parameters, such 

as optomechanical coupling strength, weight factor and phase of the input state and 

order number, are also reported, and it is observed that the degree of nonclassical 

effects can be tuned by system parameters.   
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The system Hamiltonian is solved analytically by using Heisenberg EOM for different 

field modes at moderate and strong coupling regime. Each EOM is solved by short time 

dynamics with Taylor series expansion of an operator. For strong coupling regime, the 

effects of loss factor and environmental effects are negligible. The coupling strength is 

varied in wide range of values, several kHz to GHz. 

In this study, it is observed that cavity field mode is not squeezed but mechanical mode 

is squeezed for both lower and higher order. Higher order study shows that degree of 

squeezing increases with order. Interestingly, the time period of fluctuations of 

squeezing factor decreases as order grows. Again, mechanical squeezing factors also 

show revival-collapse phenomena, due to nonlinearity of the dielectric membrane. As 

order grow number of revival pattern increases. Although, there is no signature of 

single cavity field squeezing but compound mode squeezing between cavity field mode 

and mechanical mode is observed. The analysis of sum and difference squeezing show 

that these are useful for generation of sum and difference frequency of the cavity and 

mechanical mode. Difference and sum squeezing are class of higher order squeezing 

(second order). From the temporal variation of single mode 2
nd

 order mechanical 

squeezing, sum squeezing and difference squeezing, it is observed that degree of 

squeezing is optimum for sum squeezing. So, to extract information, sum squeezing 

plays best role in present system. Temporal evolution of spin squeezed state is shown 

that it is possible either in    or in    direction; which may be useful for noise reduction 

in optical signal. 

From the analysis of the particle statistics of photon and phonon mode it is clear that 

there is no signature of single mode sub-Poissonian statistics i.e. antibunching in the 

present system. Photon statistics is Poissonian whereas phonon statistics is super-
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Poissonian in nature. But compound mode statistics shows sub-Poissonian statistics. So, 

photon-phonon antibunching is possible and degree of antibunching factor can be 

controlled via order number. 

Photon-phonon entanglement is also observed in the dynamics of the system, which is 

verified by both Duan et al and Hillery-Zubairy criteria. Higher order study shows that 

degree of entanglement increases as order grows. This study may be useful for 

macroscopic entangled state generation. 

 

 


