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5.1 Introduction 

The idea of parity-time-symmetry (   symmetry) is very interesting as well as 

important to discuss different optical and optomechanical quantum phenomena. In last 

few decades, the attentiveness of the researcher has been taken by it. Bender and 

Boettcher [167] first gave the concept about it in 1998. They have shown that a non-

Hermitian Hamiltonian possesses real eigenvalues if the Hamiltonian obeys 

   symmetry. Generally, Hermitian Hamiltonian has real eigenvalues and wave-

functions are orthogonal. On the other hand, non-Hermitian Hamiltonian possesses 

complex eigenvalues and wave-functions are biorthogonal. For a wave-function, the 

quantitative measure of biorthogonality with respect to orthogonality is called as phase 

rigidity. The    symmetry of a Hamiltonian indicates          i.e. the 

Hamiltonian commutes with joint combination of unitary parity     operator and anti-

unitary time reversal   ) operator.  

The idea of      symmetry begins with a mathematical ground but it has been 

experimentally demonstrated and also theoretically analyzed in different optical 

systems with potential applications and it also opens a new platform to study different 

quantum mechanical aspects. The different optomechanical or optical effects are 

studied via     symmetry such as non-reciprocal propagation of light [168], lasing 

action based on polarisation [169], OMIT in micro-resonators [170], topological energy 

transfer [171], sensitivity enhancement [172], slow light [173] etc. It is also explored 

via different advanced topics in physics such as electronic LCR circuit [174], 

metamaterials [175], acoustics [176], quantum electrodynamics [177] etc. 
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The    symmetric system is analyzed in this chapter is an OQS. The OQSs have 

connection with environment and are associated with loss and gain. This type of system 

experiences a phase transition – unbroken    symmetry phase with real eigenvalues 

to broken    symmetry phase with complex eigenvalues. The non-analytical 

transition point is known as EP. At this point    symmetry is spontaneously broken. 

Different optical phenomenons are changed significantly during the transition.  

The affect of    symmetry theory on different nonclassicalities has not been 

extensively studied till now. Enhancement photon blockade effect was theoretically 

studied by Li et al [178] in recent past, via    symmetry theory.  Here we have 

explored different nonclassical features such as single and compound mode squeezing, 

intermodal entanglement and EPR steering, in the context of    symmetry theory. 

We have also discussed how the degree of nonclassicalities is influenced by 

   symmetry phase transition.   

5.2   Model Hamiltonian 

 
The model system has two micro-cavities [178] as depicted in figure 5.1. One micro-

cavity is passive, with total loss rate    . The total loss rate is based on two losses – 

external coupling loss and intrinsic loss. This cavity contains optical Kerr medium (3
rd

 

order nonlinear susceptibility). Other micro-cavity is active, with actual loss rate     . 

The actual loss rate is sum of round-trip energy gain rate and intrinsic rate. The value of 

the loss rate     may be negative (gain) positive (loss), depending on the rate of round-

trip energy gain. Depending upon gain-to-loss ratio, the present system shows two 

possible arrangements (i) passive-passive cavity system (PPCS) -     and     both are 

positive (ii) passive-active cavity system (PACS) -       is positive and     is negative. 
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The PACS is known as    symmetric system. The two micro-cavities are coupled 

through photon tunnelling strength    . The tunnelling rate depends on the separation 

between the two micro-cavities. The Hamiltonian of the system is   

                                                                                                                  (5.1) 

The total Hamiltonian contains four parts. First part present Hamiltonian of both 

passive and active cavity with resonance frequencies      and    , respectively. 

      
    and        

    are the destruction (creation) operators for passive and active 

field modes, respectively. Second part represents interaction via photon tunnelling 

between the cavities. Third one is due to passive nonlinear Kerr medium (strength   ) 

placed inside the cavity. Last part indicates driving term with strength   and driving 

frequency     . The details of all the parts are as follows: 
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Figure 5.1: Schematic diagram of the model system 
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For a coupled WGM micro-toroidal resonator set up, one is designed from silica 

material without gain-medium and dopants i.e. passive loss where the electric field 

contain third-order nonlinear interaction term. Another micro-toroid is fabricated from 

silica doped with Er
3+

 ions, used as active resonator. One can achieve 1550 nm band in 

active micro-toroidal system via optical gain by using pump laser of 1460 nm 

wavelength (for optical pumping of Er
3+ 

ions). The evanescent coupling in between two 

micro-toroid systems is at 1550 nm band but no coupling is possible for 1460 nm band. 

There is no similar resonance line of 1460 nm. So, pump laser input is incorporated 

with the active micro-toroid only [179]. 

The different system parameters are as follows: In a passive microtoroid system loss 

rate is          MHz and coupling quality factor is         . The loss rate can 

also be tuned by changing taper-resonator gap. In active microtoroid system the gain 

rate is           MHz. The photon tunnelling strength between two microtoroids 

is          MHz. For silica glass material the Kerr nonlinear strength is          

MHz. The gain-to-loss ratio varies from    to    [180 -185] and also references there 

in.  

5.3   Details of parity-time-symmetry theory 

The detail of    symmetry mechanism [178] of the present system is illustrated as 

follows: In absence of driving and weak Kerr nonlinear strength. The Hamiltonian 

becomes  
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After diagonalization the above Hamiltonian and some tedious calculations the 

eigenvalues are obtained as 

   
 

 
          

     
 

  
 

 
                 

     
 

 
 

 

From the above expressions of     , it is clear that eigenfrequencies are determined by 

cavity resonance frequencies, cavity loss and gain rates and photon tunnelling rate. The 

eigenvalues are real if the imaginary part of     vanishes. The values of    are real 

when          ,        and    
  

 
 . The relation        indicates the 

balanced loss and gain,             specify the same resonance frequencies. In 

this case the eigenvalues become       
 

 
       

 
 . So,    symmetry super-

modes are spatially separated by   
 

 
       

   , from both sides of the     . 

When     
  

 
 , the two super-modes merge into the frequency     . For the case 

of    
  

 
 , the values     are complex and the system is in    symmetry broken 

phase. At this phase, one of two super-modes successively disappears due to absorption 

and at the same time other undergoes amplification.  When     
  

 
 , the system is in 

unbroken phase. So,    
  

 
 is known as exceptional point (EP) or transition point. 

5.4 Analytical Solutions  

 
 For simplicity, we consider the Hamiltonian in absence of driving term. So, system 

Hamiltonian takes the form 

            
   

 
   

         
   

 
   

        
             

    
          (5.2) 
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The Heisenberg EOM corresponds to passive and active cavity field modes are given by  

               
   
 
                  

      
      

                                               
   

 
                                                 (5.3) 

 We assume the solutions of the above equations (5.3) are  

                          
      

                 
      

    

     
                   

      
         

       
     

                                                               
      

               (5.4)               

   and    are the function of time and also depend on loss rate, gain rate, photon 

tunneling rate, nonlinear strength and frequency. These are found out from boundary 

condition               and         for          and         for 

        (corresponding equations are in appendix C). These are as follows: 
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                                           (5.5) 

Where                
    

 
 

    

 
  

 

To check the sustainability of the solutions we have employed equal time commutation 

relation                  . To calculate different nonclassical correlation factors, we 

assume initial state as the product of coherent states. So, initial state             

where      and      are the eigenkets of passive cavity field operator    and active 

cavity field operator    respectively. The operator       operates on the product state, it 

results complex eigenvalue      . 

 

5.5 Numerical Solutions 
 

To account the presence of driving term we have used Lindblad’s master equation. The 

equation is given by 

                                                                                                                         (5.6) 

Where                     ;       is expresses by the following relation 

           

      
  
 
   

                         
  
 
  
                      

with    is the loss rate or gain rate of the cavity field modes and   
  is thermal photon 

number.   

In rotating frame at the driving field frequency   , the Hamiltonian of the system is 

transformed by                 
      

       and it takes the following form 

                     
         

          
    

        
    

      
        (5.7) 
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Where           is frequency detuning between cavity field and driving field. To 

obtain numerical solution we consider initial state as Fock state basis               

where    and     are the cavity photon numbers of the passive and active field mode, 

respectively. For generality, we assume both the cavity field mode have same detuning 

i.e.           and average thermal photon number is zero i.e.   
    . 

5.6    Quadrature Squeezing 

We illustrate the possibilities of different types of squeezing effects by using both 

analytical and numerical solutions. The dependence of squeezing factors on different 

system parameters are reported for both single and compound field mode, in detail. 

5.6.1 Single mode Squeezing 

 

We examine the possibility of single mode squeezing by using quadrature operators 

(equation 2.6) and solutions of equation (5.4). The variance of the field quadratures are 

obtained as follows: 

 
      

 

      
   

 

 
     

       
       

         
  

     
       

     
       

    
     

      
       

       
 

    
      

         

        
     

   
   

                 
         

   
 

                                                                                                                       

                                        
      

 

      
   

 

 
     

       
                                  (5.9)                             

Equation (5.8) and (5.9) correspond to quadrature variance of passive and active cavity 

field mode, respectively. From these, it is clear that squeezing is possible for passive 

cavity field mode. For active cavity field mode there is no signature of squeezing. 
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Temporal variation of the field quadratures of equation (5.8), is depicted in figure 5.2 

(a-c) with different gain-to-loss ratio, photon tunnelling strength.  

      
 
 and        

 
                           

 
 and        

 
                         

 
 and        

 
 

 
(a)                                         (b)                                            (c) 

Figure 5.2: Variation of the variance of the field quadratures       
 
 (solid line) and  

      
 
 (dashed line) with normalised time   . The parameters are       ,        

(blue) ;       ,        (red) (a)         ,            (b)         , 

           (c)         ,           .   

 

Figure 5.2(a) corresponds to broken    symmetry regime (passive-active system) 

whereas figure 5.2(b) and (c) represent the variation for PPCS and PACS at unbroken 

   symmetry regime. The degree of squeezing is pronounced at unbroken phase as 

compared to broken phase.  

To study higher order single mode squeezing effect in present system we use higher 

order field quadrature operators (equation 2.11) and solutions of the field operators of 

equation (5.4). For simplicity, here we have studied amplitude squared squeezing and 

obtained the following analytic expression of the squeezing factors.  

 
  
  
  

 

 
     

          
      

         
         

          
    

    
    

     
      

         
        

       
       

    

    
        

         
        

        
    

    
     

         
        

       
      

    

    
        

         
        

    
     

     
 

    
   

   
     

      
       

     
         

         

       
   

       
   

         
   

       
   

      
    

    
   

   
       

            
   

                               



CHAPTER 5: NONCLASSICALITIES IN PT-SYMMETRIC COUPLED MICRO-CAVITIES 
 

105 
 

Figure 5.2(a-d) displays the time evolution of the amplitude squared squeezing factors 

for different photon tunnelling strength and gain-to-loss ratio. The variation of 

squeezing factors of PACS at broken    symmetry regime is shown in figure 5.2(a). 

The same variation is presented in figure 5.2(b) and (c) correspond to PPCS and PACS 

at EP, respectively. Figure 5.2(d) depict the same at unbroken    symmetry regime 

for PACS. Here one field quadrature is always squeezed due to expense of other 

quadrature. The negativity of the field quadrature increases with photon tunnelling 

strength. The degree of amplitude squared squeezing is more pronounced as compared 

to lower order squeezing. 

 

                     

(a) (b) 

 

                                

          (c)                                                                      (d) 

 

Figure 5.3: Variation of amplitude squared squeezing factors    (solid line) and    

(dashed line) with    . The parameters are        ,         (a)          , 

           (b)         ,            (c)         ,            and (d) 

        ,           . 
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5.6.2 Compound mode squeezing 

 

Using solutions of equation (5.4) and compound mode quadrature (equation 2.7 and 

2.8), we obtain the expression of the variance of the field quadratures as follows: 
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(a)                                                     (b)                                               (c) 
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                        (d)                                                      (e)                                               (f) 

 

Figure 5.4: Variation of         
 
 (solid line) and          

 
 (dashed line) with 

normalised time   . The parameters are       ,        (blue) ;       ,        

(red) (a)         ,            (b)         ,             (c)         , 

          (d)         ,            (e)         ,           

(f)         ,           . 
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From inspection of equation (5.11), it is observed that squeezing is possible for passive 

and active cavity inter field mode. To study the fluctuation of field quadratures, we plot 

the right side of equation (5.11) as a function of normalised time    in figure 5.4 (a-f). 

Figure 5.4(a) and (b) represent the quadrature variation for PPCS and PACS at broken 

regime. The same variation is depicted in figure 5.4(c-d) and 5.4(e-f) correspond to 

transition point (i.e. EP) and at unbroken regime. The degree of squeezing is enriched 

significantly when the system is at unbroken phase. From the above expression, it is 

clear that degree of squeezing can also be manipulated by changing phase of the input 

state.  

 

5.6.3 Principal and Normal squeezing 
 

We examine the possibility of single mode squeezing via principal and normal 

squeezing. We derive the analytical expressions for principal and normal squeezing 

factors for both the passive and active cavity field mode by using equation (2.12) and 

(2.13) and solutions of equation (5.4).  

                 
      

            
     

   
   

                 
  

       
   

                                                                                                           (5.12) 

               
      

             
     

   
   

                 
  

                                                                                                   
   

                           (5.13) 

                                                     and                                                  (5.14)     

  Equation (5.12) and (5.13) are plotted in figure 5.5 (a) and (b), respectively. The 

negativity of        indicates the possibility of principal squeezing of the field 

mode    . The degree of nonclassicality is slightly higher for PACS. Again, the 

temporal variation of normal squeezing factor shows that        positive up-to    

     . If the value of    increases further the value of        is negative. This gives the 
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signature of normal squeezing. The negative value of normal squeezing factor is small 

for            and increases when gain-to-loss ratio becomes            . From 

equation (5.14) it is clear that both principal and normal squeezing is not possible for 

active cavity field mode. This is also well established via quadrature squeezing (in sub-

section 5.6.1). 

          
 

(a) (b)  

                                          

Figure 5.5: Plot of (a)        with normalised time    for           (red line), 

          (blue line),            (blue dot-dashed line) and            (red 

dot-dashed line) (b)        with normalised time    for            (blue line), 

          (red line),            (blue dot-dashed line) and            (red 

dot-dashed line). The other parameters are        ,       ,          . 

 

The analytic expressions of passive-active compound mode squeezing factors          

and          are obtained by using equation (2.14) and (2.15) and solutions of 

equation (5.4) as follows 

           
      

            
     

   
   

                 
  

        
   

        
        

                                                                   (5.15) 

           
      

             
     

   
   

                 
  

                                                         
   

        
        

                         (5.16) 

The time evolution of squeezing factors          and          are depicted in figure 

5.6 (a, b). The negative regions of            indicate the signature of compound mode 



CHAPTER 5: NONCLASSICALITIES IN PT-SYMMETRIC COUPLED MICRO-CAVITIES 
 

109 
 

principal squeezing. The degree of squeezing is more for PACS and it is also increases 

with gain-to-loss ratio. From figure 5.6(b), it is clear that compound mode normal 

squeezing is not possible for passive-passive cavity configuration. The normal 

squeezing factor          is negative for normalised time         . These variations 

are similar to single field mode but the degree of both the squeezing is enhanced for 

compound field mode.                                                         

            
 

(a) (b)    

                                       

Figure 5.6: Plot of (a)           with normalised time    for           (red line),  

          (blue line),            (blue dot-dashed line) and            (red 

dot-dashed line) (b)          with normalised time    for            (blue line), 

          (red line),            (blue dot-dashed line) and            (red 

dot-dashed line). The other parameters are                       . 

To study the effect of driving term, we have numerically worked out the system 

Hamiltonian by using master equation approach and studied the quadrature variation 

with different system parameters. Figure 5.7 (a) and (b) display the varation of the 

variance of the field quadratures with normalised cavity detuning for gain-to-loss ratio 

          and            . It is observed that degree of squeezing is enhanced 

for PACS which is also same for analytical results. The degree of squeezing also 

depends on photon tunnelling strength between the cavities. The quadrature variation 

with nonlinear strength is depicted in figure 5.7 (c), at zero cavity detuning. The 
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squeezing effect attains maximum value when normalised nonlinear strength is nearly 

equal to 0.1, which is well satisfied by experimental system of micro-toroid setup with 

silica glass material [186].  
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(a)                                                                                   (b) 
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  and        

 
 

         
                                                                                                                                        

                    (c)                                                                      (d)                                                                                

Figure 5.7: Variation of       
 
  and        

 
 with (a-b) cavity detuning       for 

different values of normalised photon tunnelling strength      . The gain-to-loss 

ratio            and            (c) nonlinear strength      for different values 

of gain-to-loss ratio       ,         and          (d) normalized photon tunnelling 

strength       for different values of      ,        and          . The 

normalised driving strength is          . 
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Figure 5.7 (d) represents the variation as a function of normalised photon tunnelling 

strength at resonance. The optimum squeezing is possible for           and beyond 

that region degree of squeezing is decreases monotonically. 
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                             (a)                                                                               (b)                          
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                               (c)                                                                        (d)                                    
 

Figure 5.8: Variation of         
 
 and          

 
 with (a) cavity detuning       for 

different values of photon tunnelling strength      and             (b) nonlinear 

strength       for         and            (c) nonlinear strength       for 

        and             (d) normalised photon tunnelling strength       for 

different values of     ,        and          . The normalised driving strength 

is          . 
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The quadrature variations of compound field mode as a functions of system parameters 

are shown in figure 5.8 (a-d), in presence of cavity driving term. Figure 5.8(a) displays 

the variation with cavity detuning for PACS. The fluctuation of the field quadratures 

attains maximum around        i.e. at resonance condition. The fluctuation of the 

field quadrature gradually decays when cavity detuning is far away from resonance. 

Figure 5.8(b) and (c) shows the fluctuation as a function of normalised Kerr nonlinear 

strength for PPCS and PACS. The degree of squeezing is significantly enhanced for 

PACS. The quadrature variation with photon tunnelling strength is depicted in figure 

5.8(d). The variation is same as single mode squeezing.   

  

5.7   Intermodal entanglement 

Here, we have analyzed lower as well as higher order entanglement between two cavity 

field modes. How the degree of entanglement influenced at EP, is also reported.  

   5.7.1 Lower order entanglement 

To illustrate the possibility of lower order squeezing by two inseparability criteria, 

Duan et al criteria and Hillery-Zubairy criteria. First we have found out entanglement 

parameter by analytical solutions of equation (5.4) and then numerically by master 

equation approach. According to Duan et al criteria (equation 2.26), we obtain the 

following expression of entanglement correlation parameter as follows: 

        
       

       
         

     
       

      
      

    

           
       

     
       

    
     

       
       

     
      

    

          
       

     
       

     
       

                                        (5.17) 

The right side of the expression (5.17) is plotted with normalised time    , in figure 5.9 

(a-f). Figure 5.9(a) and (b) represent the entanglement factor for PPCS and PACS at 
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broken phase, respectively. As the value of       is positive, so entangled state is not 

possible for PPCS. Again, the negativity of       indicates the possibility of 

nonseperable state for PACS.  

                                                                                                                               

               
                             (a)                                                             (b) 

                                                                                                                                  

                  
                                                  (c)                                                            (d) 

                                  

                                                                                                                                                                                

            
                         (e)                                                                    (f)     
                                                                                                                                     

Figure 5.9: Variation of       with normalised time    for          ,        , 

       (blue solid line);       ,       (red dashed line) with (a)          , 

         (b)          ,          (c)                   (d) 

                   (e)                     (f)                   . 
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Figure 5.9(c), (d) and (e), present the same variations at EP. For passive-passive 

configuration there is no signature of entanglement as the right side of equation (5.17), 

always positive, as shown in figure 5.9(c). On the other hand, the negative regions 

(figure 5.9d and e) of  the entanglement factor give the signature of entanglement for 

passive-active system. The degree of squeezing increases with gain-to-loss ratio. Figure 

5.9(f) displays the variation for PACS at unbroken    symmetry phase. The 

negativity of       is enhanced significantly at unbroken regime as compared to other 

two. The degree of non-separability also depends on weight factor of the input field. 

We have examined the possibility of non-separable state by another moment based 

criteria, Hillery-Zubairy criteria (equation 2.28). Using above criteria and solutions of 

equation (5.4), we have derived the following expression of        . 
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                                     (e)                                                                            (f)                                                                          

 

Figure 5.10: Variation of      with normalised time    for        ,        (blue 

solid line);        ,        (red dashed line) (a)          ,          

(b)          ,          (c)                    (d)                    

(e)                    (f)                   . 

The expression of        is not simple, so we plot it as a function of time, in figure 5.10 

(a-f). The plots of        is similar to the plots (Figure 5.9) as obtained from Duan et al 

criteria and the variations are similar. But degree of non-separability is little different. 

We find out entanglement correlation parameters numerically, in presence of driving 

term by using Duan et al criteria and plot these in figure 5.11. Figure 5.11 (a) and (b) 

display the variation of       as a function of cavity detuning at EP, for PPCS and 

PACS, respectively. For PPCS the negative value of       is very small i.e. weaker 

nonclassicality. For PACS negativity of       is increased and hence degree of 

entanglement is enhanced. This enhancement is also significant when        changed 

from    to    . So, one can control the degree of non-separability by changing gain-to-

loss ratio. Figure 5.11(c) and (d) represent the variation with different values of photon 

tunnelling strength and Kerr nonlinear strength. For strength of 

nonlinearity           the degree of non-separability is optimum. The degree of non-

separability decreases when the strength of nonlinearity in the PPCS increases. 
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(a)                                                                   (b)                    

                                                                               

    
                                (c)                                                                    (d)                           

Figure 5.11: Plot of       with cavity detuning      for            (a)-(b) 

         and            (c)          and          and (d)           

and           . 
 

5.7.2 Higher order entanglement  

We have analyzed the possibility of higher order entanglement using Hillery-Zubairy 

criteria and Agarwal-Biswas criteria, via analytically and numerically, respectively. 

First, we have derived the analytical expression of entanglement factor            , 

using Hillery-Zubairy criteria (equation 2.31). 
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(a) (b) 
                                                                                                                                 

           
                                                                                                                                     

                                            (c)                                                             (d) 

 
                                                                                                                                               

           
                                                                                            

                                         (e)                                                                    (f)   

    

 Figure 5.12:Variation of            with normalised time    for         ,    

 ,      ,    ,     (blue solid line),     ,     ( green dot-dashed line) and 

   ,     (red dashed line) (a)         ,         (b)          , 

          (c)                        (d)                        (e)

                       (f)                   . 
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Temporal variation of equation (5.19) is displayed in figure 5.12 (a-f). The value of 

           is positive for PPCS for broken phase and at EP (figure 5.12a and c). These 

are similar for others as discussed in lower order entanglement (section 5.7). Here, 

degree of entanglement is enhanced with order number. To explain, we assume     

(for simplicity) and put in above equation (5.19) and one can find that a term 

     
       

  plays the role of amplification factor and hence enhances the degree.       

                                                                                   

    
                                                                                                

(a)                                                                     (b) 

                                                                                     

      
                                                                                                                                                     

                                 (c)                                                                       (d) 

Figure 5.13: Plot of       with cavity detuning      for            (a)-(b) 

         and            (c)          and          and (d)          

and          . 

Using Agarwal-Biswas criteria (equation 2.32) – higher order correlation criteria of two 

mode non-separable states and master equation (5.6), we plot       as a function of 
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cavity detuning with different system parameters as shown in figure 5.13 (a-d).  Figure 

5.13(a) indicates that       is positive, i.e. states are separable for PPCS. This result is 

similar with analytical solutions as obtained by using Duan et al criteria and Hillery-

Zubairy criteria. For PACS the value of       is negative and negativity increases with 

negative values of gain-to-loss ratio. Variation of       for different     and   are 

shown in figure 5.13(c) and (d), respectively. The degree of separability is higher for  

       .  

                                                                                      

       
                                                                                                      

(a)                                                                           (b) 

                                                                                      

     
                                                                                                                                                     

   (c)                                                                           (d)   

Figure 5.14: Plot of       with cavity detuning      for            (a)-(b) 

         and            (c)          and          and (d)          and 

        . 
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The possibility of entangled state in present system is also investigated by another 

higher order correlation function       (Agarwal-Biswas criteria – equation 2.33). The 

variation of       with normalised detuning is shown in figure 5.14 (a-d). Figure 

5.14(a-b) present the variation for            and           , respectively. Both 

the variation is shown that non-separable state is possible for PPCS and PACS. There is 

weaker nonclassicality for PPCS and comparatively stronger nonclassicality for PACS. 

Figure 5.14(c) displays the variation at EP for different nonlinearity and it is clear that 

the degree of nonclassicality is optimum for          . This is well established in 

analytical solution in previous section and also feasible with experimental setup. Figure 

5.14(d) depicts the variation for different strength of photon tunnelling. 

5.9   EPR steering 

 

In this section, we have discussed about the possibility of steerable states. This is 

stronger correlation than entangled state. We have found out the steering correlation 

factor      using master equation (5.6) and Cavalcanti et al criteria (equation 2.37). The 

numerical solution is obtained by Monte Carlo simulation.  

In figure 5.15 (a) and (b), we display how the correlation factor      explicitly depends 

on the cavity detuning       for different gain-to-loss ratio       for PACS and PPCS. 

Interestingly, for      inter-mode     is negative whereas for      inter-mode     is 

positive for PACS. On the other hand,     is positive for either      inter-mode or      

inter-mode in case of PPCS. This confirms the presence of asymmetric steering in the 

system. So,    mode would be able to steer mode    or vice-versa. This is important for 

quantum cryptography. The degree of steering is enriched for PACS as compared to 

PPCS.  
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(a)                                                                          (b) 

Figure 5.15: Variation of     with cavity detuning       for           ,          

and            (a)       mode with          (red solid line),           

(blue solid line)  and       mode with          (red dashed line),          

(blue dashed line)  (b)       mode with         (red solid line),         (blue 

solid line)  and       mode with         (red dashed line) and        (blue 

dashed line). 

                                                                                       

          
                                                                                                                                                           

(a)                                                                      (b) 
 

Figure 5.16: Plot of     with nonlinearity parameter       for           ,     and  

          for (a)       mode with          (red solid line) and          

(blue solid line) and       mode with          (red dashed line) and          

(blue dashed line) (b)       mode with         (red solid line) and         (blue 

solid line) and       mode with         (red dashed line) and         (blue 

dashed line). 
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Figure 5.16 (a) and (b) depict the variation of       as a function of nonlinear strength for 

different values of gain-to-loss ratio. Positive value of       gives the signature of 

steerable state. The positivity is maximum around          , which is realizable in 

passive micro-toroid setup. Here the variation is of the asymmetric behaviour. The 

positive values of       and hence the degree of steering is enhanced for    symmetry 

cavity system (PACS). 

5.10    Summary 

In this chapter, we have illustrated about    symmetry double cavity system. The 

system consists of two separated cavities, coupled via photon tunnelling. One is passive 

with optical Kerr medium and other is active cavity. The system Hamiltonian is solved 

analytically without driving by using Heisenberg EOM for both the field modes. To 

account the presence of driving term, we have also solved the system Hamiltonian 

numerically. Using both types of solution we have illustrated the possibilities of 

different nonclassicalities such as squeezing, entanglement and EPR steering.  

From the analysis of various squeezing effects, it is revealed that squeezing is possible 

for passive cavity field mode but not for active mode. This result is also verified by 

using single mode principal and normal squeezing. The study of amplitude squared 

squeezing is shown where the degree of squeezing effects is enhanced as compared to 

lower order quadrature. Although, single active field mode squeezing is not possible but 

passive-active compound mode is possible. This is also confirmed by compound mode 

principal and normal squeezing.  

The intermodal entanglement in the present system is studied via Duan et al criteria, 

Hillery-Zubairy criteria for lower order effects and Agarwal-Biswas criteria, Hillery-

Zubairy criteria for higher order effects. The degree of intermodal noclassical effects 
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boost up higher order effects. The study of EPR steering indicates the presence of 

stronger correlation between the field modes as compared to entangled system. 

Interestingly, the present system gives the signature of asymmetric steering. This 

property has an important role in quantum computation. 

The nonclassicalities are illustrated here to show prominent effect in unbroken 

   symmetry regime as compared to broken regime. The degree of both 

nonclassicalities studied here, are enhanced in PACS. It is also tuned by system 

parameters – weight factor and phase of the input state, photon tunnelling strength 

between the cavities, strength of nonlinearity in passive cavity and gain-to-loss ratio. 

The parameters used here, are experimentally realizable in micro-toroid setup. This 

study supplies a new platform to enhance the nonclassicalities via    symmetry 

architecture which is useful for nonclassical state generation. 


