List of Figures

1.	Figure 2.1: Schematic representation of (a) WGM micro-cavity (b) OMS set up
	with external driving17
2.	Figure 2.2: (a) spreading of decay line width (b) work done leads to cooling and
	heating effect
3.	Figure 2.3: Uncertainties of (a) coherent state (b) squeezed state27
4.	Figure 2.4: Photon stream comparison of (a) antibunching (b) coherent (c)
	bunched light
5.	Figure 2.5: Representations of entangled, steerable and Bell state
6.	Figure 3.1: Schematic diagram of the model system with 'membrane-in-the-
	middle' configuration41
7.	Figure 3.2: Variation of the field quadrature variances $(\Delta X_b)^2$ (solid line) and
	$(\Delta Y_b)^2$ (dashed line) with rescaled time $\omega_m t$. The parameters are $ \alpha = 3$,
	$ \beta = 2$ (a) $g/\omega_m = 2, g = 1.2$ MHz (b) $g/\omega_m = 2000, g = 1.2$ GHz44
8.	Figure 3.3: Variation of squeezing factors $S_{1b}(n)$ (solid line) and $S_{2b}(n)$
	(dashed line) with $\omega_m t$ for mechanical mode with $ \alpha = 3$, $ \beta = 2$, $g = 2\pi \times$
	10 KHz and $g/\omega_m = 0.1$ (a) $n = 2$ (b) $n = 3$
9.	Figure 3.4: Plot of $S_{1b}(4)$ (blue solid line) and $S_{2b}(4)$ (red dotted line) with
	t(ms) for b mode with n=4, $ \alpha = 3$, $ \beta = 2$, $g = 2\pi \times 10$ KHz and
	$g/\omega_m = 0.146$
10.	Figure 3.5: Variation of compound mode field quadratures $(\Delta X_{ab})^2$ (solid line)
	and $(\Delta Y_{ab})^2$ (dashed line) with rescaled time $\omega_m t$. The parameters are $ \alpha = 3$,
	$ \beta = 2$ (a) $g/\omega_m = 2, g = 1.2$ MHz (b) $g/\omega_m = 2000, g = 1.2$ GHz47

11. Figure 3.6: Plot of spin squeezing factors S(x) (solid line) and S(y) (dashed line) with rescaled time $\omega_{\rm m}$ t. The parameters are $|\alpha| = 3$, $|\beta| = 2$, $g = 2\pi \times$ 12. Figure 3.7: Plot of (a) sum squeezing parameters $S_{1_{ab}}$ (blue solid line) and $S_{2_{ab}}$ (red dashed line) and (b) difference squeezing parameters $Q_{1_{ab}}$ (blue solid line) and $Q_{2_{ab}}$ (red dashed line) with $\omega_m t$ for $|\alpha| = 3$, $g = 2\pi \times 10$ KHz 13. Figure 3.8: Variation of compound mode antibunching factor $A_{ab}(n)$ with rescaled time gt with (a) n = 6, $|\beta| = 2$, $g = 2\pi \times 0.4$ KHz, $g/\omega_m = 0.004$, $|\alpha| = 3$ (solid curve) and $|\alpha| = 4$ (dashed curve) (b) $|\alpha| = 3$, $|\beta| = 2$, $g = 2\pi \times$ 0.4 KHz, $g/\omega_m = 0.004$, n = 7 (solid curve) and n = 6 (dashed curve)...... 51 14. Figure 3.9: Variation of $(\Delta u)^2 + (\Delta v)^2 - 2$ with rescaled time $\omega_{\rm m}$ t for $|\alpha| = 3$ (solid curve) and $|\alpha| = 5$ (dashed curve), $|\beta| = 2$ (a) $g/\omega_m = 2$, g = 1.2 MHz 15. Figure 3.10: Variation of E_{ab} with rescaled time $\omega_{\rm m} t$ for $|\alpha| = 3$ (solid curve) and $|\alpha| = 5$ (dashed curve), $|\beta| = 2$ (a) $g/\omega_m = 2$, g = 1.2 MHz (b) $g/\omega_m = 2\,000, g = 1.2\,\text{GHz}.....53$ 16. Figure 3.11: Variation of $E'^{m,n}_{ab}$ with rescaled time gt for $|\alpha| = 3$, $|\beta| = 2$, m = n= 2 (solid curve) and m = 2, n = 3 (dashed curve) (a) $g = 2\pi \times 0.4$ KHz,

17. Figure 3.12: Plot of the variance of the field quadratures with normalised cavity detuning. (a) $(\Delta X_b)^2$ (solid blue line) and $(\Delta Y_b)^2$ (solid red line) for $g/\omega_m = 0.02$; $(\Delta X_b)^2$ (dashed blue line) and $(\Delta Y_b)^2$ (dashed red line) for $g/\omega_m = 0.05$ (b) $(\Delta X_{ab})^2$ (solid blue line) and $(\Delta Y_{ab})^2$ (solid red line) for

- 23. Figure 4.5: Qudrature variation (a) $(\Delta X_{a_k b_k})^2$ (solid line) and $(\Delta Y_{a_k b_k})^2$ (dashed line) for compound mode $a_k b_k$ with $\omega_m t$ for $|\alpha_k| = 6$, $|\beta_k| = 2$ (b) $(\Delta X_{a_k b_i})^2$

- 25. Figure 4.7: Variation of antibunching factors for different compound mode with rescaled time gt (a) $A_{a_kb_k}$ for compound mode a_kb_k for $|\alpha_k| = 3$, $|\beta_k| = 2$, n = 2, $g/\omega_m = 0.08$, $g/\xi = 2.5$, $g = 2\pi \times 0.01$ MHz and phase angle 0 (blue line), $\pi/2$ (red line), π (green line) (b) $A_{a_kb_k}$ for compound mode a_kb_k for $|\alpha_k| = 3$, $|\beta_k| = 2$, n = 4, $g/\omega_m = 0.08$, $g/\xi = 2.5$, $g = 2\pi \times 0.01$ MHz and phase angle 0 (blue line), $\pi/2$ (red line), $\pi/2$ (red line), $\pi/2$ (red line), π (green line) (c) $A_{a_kb_j}$ for compound mode a_kb_j for $|\alpha_k| = 3$, $|\beta_k| = 2$, n = 2, $g/\omega_m = 0.8$, $g/\xi = 4$, $g = 2\pi \times 0.1$ MHz and phase angle 0 (blue line), $\pi/2$ (red line), $\pi/2$ (red line), π (green line) and (d) $A_{a_ka_j}$ for compound mode a_ka_j for $|\alpha_k| = 3$, $|\beta_k| = 2$, n = 2, $g/\omega_m = 0.8$, $g/\xi = 4$, $g = 2\pi \times 0.1$ MHz and phase angle 0 (blue line), $\pi/2$ (red line)......
- 26. Figure 4.8: Variation of entanglement parameters (a) e_{akbk} for compound mode a_kb_k for |α_k| = 6, |β_k| = 2 (solid line) and |α_k| = 8, |β_k| = 2 (dashed line) and (b) e_{akbj} for compound mode a_kb_j for |α_k| = 6, |β_j| = 2 (solid line) and

- 32. Figure 4.14: Variation of ζ's for three different field modes (a) a_kb_kb_j mode (b) a_kb_jb_k mode (c) a_ka_jb_j mode (d) a_ja_kb_j mode with cavity detuning Δ/ω_m for different values of ξ/ω_m. Other parameters are g/ω_m = 0.0033, k/ω_m = 0.5, γ/ω_m = 10⁻⁵, Ω/ω_m = 0.02 and n_{th} = 20......90
- 33. Figure 4.15: Variation of ε 's for three different field modes (a) $a_k b_k b_j$ mode (b) $a_k b_j b_k$ mode (c) $a_k a_j b_j$ mode (d) $a_j a_k b_j$ mode with normalized cavity detuning Δ/ω_m for different values of ξ/ω_m . Other parameters are $g/\omega_m =$ 0.0033, $k/\omega_m = 0.5$, $\gamma/\omega_m = 10^{-5}$, $\Omega/\omega_m = 0.02$ and $n_{th} = 20$91
- 34. Figure 4.16: Plot of E_{a1b1a2b2} with normalized cavity detuning Δ/ω_m for different values of ξ/ω_m. Other parameters are g/ω_m = 0.0033, k/ω_m = 0.5, γ/ω_m = 10⁻⁵, Ω/ω_m = 0.02 and n_{th} = 2092
- 36. Figure 5.2: Variation of the variance of the field quadratures (ΔX_{a1})² (solid line) and (ΔY_{a1})² (dashed line) with normalised time Ut. The parameters are |α₁| = 2, |α₂| = 1(blue); |α₁| = 2, |α₂| = 2(red) (a) J/k₁ = 0.2, k₂/k₁ = -0.2 (b) J/k₁ = 0.5, k₂/k₁ = 0.2(c) J/k₁ = 0.5, k₂/k₁ = -0.2.....104
- 37. Figure 5.3: Variation of amplitude squared squeezing factors S₁ (solid line) and S₂ (dashed line) with Ut. The parameters are |α₁| = 2, |α₂| = 1
 (a) J/k₁ = 0.2, k₂/k₁ = 0.2 (b) J/k₁ = 0.5, k₂/k₁ = 0.2 (c) J/k₁ = 0.5, k₂/k₁ = -0.2 and (d) J/k₁ = 1.0, k₂/k₁ = -0.2.....105

- 38. Figure 5.4: Variation of $(\Delta X_{a_1a_2})^2$ (solid line) and $(\Delta Y_{a_1a_2})^2$ (dashed line) with normalised time *Ut*. The parameters are $|\alpha_1| = 2$, $|\alpha_2| = 1$ (blue); $|\alpha_1| = 2$, $|\alpha_2| = 2$ (red) (a) $J/k_1 = 0.2$, $k_2/k_1 = 0.2$ (b) $J/k_1 = 0.2$, $k_2/k_1 = -0.2$ (c) $J/k_1 = 0.5$, $k_2/k_1 = 0.2$ (d) $J/k_1 = 0.5$, $k_2/k_1 = -0.2$ (e) $J/k_1 = 1.0$, $k_2/k_1 = 0.2$ (f) $J/k_1 = 1.0$, $k_2/k_1 = -0.2$106

- 43. Figure 5.9: Variation of $e_{a_1a_2}$ with normalised time Ut for $U/k_1 = 0.1$, $\alpha_1 =$
- 44. Figure 5.10: Variation of E_{a1a2} with normalised time Ut for α₁ = 2 , α₂ = 1 (solid line); α₁ = 3 , α₂ = 1 (dashed line) (a) J/k₁ = 0.2 , k₂/k₁ = 3
 (b) J/k₁ = 0.2,k₂/k₁ = -3 (c)J/k₁ = 0.5, k₂/k₁ = 3 (d)J/k₁ = 0.5, k₂/k₁ = -1(e) J/k₁ = 0.5, k₂/k₁ = -3 (f) J/k₁ = 1.0, k₂/k₁ = -3......115
 45. Figure 5.11: Plot of e_{a1a2} with cavity detuning Δ/k₁ for Ω/k₁ = 0.01 (a)-(b) U/k₁ = 0.1 and J/k₁ = 0.5 (c) k₂/k₁ = -1 and U/k₁ = 0.1 and (d) k₂/k₁ = -1 and J/k₁ = 0.5...........116

- 48. Figure 5.14: Plot of $A_{a_1a_2}$ with cavity detuning Δ/k_1 for $\Omega/k_1 = 0.01$ (a)-(b) $U/k_1 = 0.1$ and $J/k_1 = 0.5$ (c) $k_2/k_1 = -1$ and $J/k_1 = 0.5$ and (d) $k_2/k_1 =$
 - $-1 \text{ and } U/k_1 = 0.1....119$

- 51. Figure 6.1: Schematic diagram of the PT-symmetric coupled micro-

52. Figure 6.2: Mean cavity photon number as a function of normalised driving strength with different values of mode coupling strength and Kerr-nonlinear strength (a) $J/k_a = 0$ and $U/k_a = 0.1$ (b) $J/k_a = 0.3$ and $U/k_a = 0.1$ (c) $J/k_a = 0.5$, $U/k_a = 0.1$ (d) $J/k_a = 0.7$, $U/k_a = 0.1$ (e) $J/k_a = 0.5$,

- 58. Figure 7.2: Variation of forward transmission rate T_F (blue line) and backward reflection rate T_B (red line) with normalised probe detuning Δ_p/k_a for

- 59. Figure 7.3: Variation of forward transmission rate T_F (blue line) and backward reflection rate T_B (red line) with normalised probe detuning Δ_p/k_a for $\Delta_a/k_a = -0.1$, $\Delta_b/k_a = 0.0$, $U/k_a = 0.01$, $|a_s| = 0.06$, $J/k_a = 0.05$ (a) $k_b/k_a = 0.0001$ (b) $k_b/k_a = 0.001$ (c) $k_b/k_a = 0.01$ (d) $k_b/k_a = 0.05$147
- 61. Figure 7.5: Forward transmission rate T_F as a function of probe detuning Δ_p/k_a