
Chapter 2

An exact and a heuristic approach for
transportation-location problem1

This chapter addresses transportation-location problem (T-LP) which makes a connection
between FLP and TP. In fact, T-LP is a generalization of the classical TP in which we have to
seek where and how we impose the new facilities such that the total transportation cost from
existing facility sites to the potential facility sites will be minimized. The exact approach,
based on the iterative procedure, and a heuristic approach as applied to T-LP are discussed
and corresponding results are compared. An experimental analysis is incorporated to expose
the efficiency and effectiveness of our proposed study in reality. Finally, a summary is given
at the end of this chapter.

2.1 Introduction

In the present decade, FLP and TP are a “hot topic" in supply chain management as well
as the transportation planning system. Determining the best locations for the facilities (i.e.,
plants, depots, warehouses, offices, fire stations, railway stations, etc.) and minimizing the
total transportation cost from existing sites to facilities can significantly affect transportation
planning system. The main aim is to introduce a way to connect FLP and TP. We generalize
the concept of TP by taking the sources as existing facility sites and demand points as
potential facility sites that are to be determined. In fact, T-LP is a cost minimization problem
obtained by integrating FLP and TP. Thereafter, T-LP can be solved in a continuous planner
surface with Euclidean distance. We determine the best location of a facility and the effective
transportation cost from sources to this facility locations simultaneously by solving T-LP.
Our formulation can be applied to plant location problems where minimizing transportation
cost is the main priority. We believe that this model is more reasonable than the classical TP
and FLP approach. The proposed formulation will be useful to the models of transportation
systems, emergency services, and online-shopping systems.

1The content of this chapter has been published in Computational Management Science, Springer, Scopus,
17:389-407, 2020, https://doi.org/10.1007/s10287-020-00363-8.
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2.2 Mathematical identification

In this section, we first incorporate the proposed problem. Thereafter, the mathematical
formulation is stated based on the following notations and assumptions. The model for-
mulation, a connection between this formulation and TP, and the structural properties are
presented.

2.2.1 Problem description

Herein, a new logistical problem is inspected from an economical point of view. Our
proposed problem deals with a transportation network that consists of multiple existing
sites or sources, potential facility sites or demand points, and products are transported from
existing sites to potential facility sites. The main aim is to minimize the total transportation
cost by locating potential facility sites simultaneously. A network is depicted in Figure 2.1
to illustrate T-LP. For example, there are three existing facility sites such as O1, O2 and
O3, and four potential facility sites like D1, D2, D3 and D4. The corresponding supply and
demand of the existing facility sites and the potential facility sites are given. Furthermore,
the locations of O1,O2 and O3 are known. But, the locations of D1,D2,D3 and D4 are not
known in the planner surface (Euclidean plane). The line denotes the transportation cost
function per unit commodity from O1,O2 and O3 to D1,D2,D3 and D4, respectively. In this
situation, the DM has to seek the optimal locations for the potential facility sites in such a
way that the total transportation cost from existing facility sites to potential facility sites will
be minimized.

Fig. 2.1: Pictorial representation of T-LP.

2.2.2 Notations and Assumptions

Notations and assumptions are as follows:

m : number of existing facility sites (origins).
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p : number of potential facility sites (demand points).

αi : non-negative weights of existing facility sites (i = 1,2, . . . ,m).

ai : availability at the i-th existing facility site (i = 1,2, . . . ,m).

b j : demand at the j-th potential facility site ( j = 1,2, . . . , p).

(ci,di): coordinates of i-th existing facility sites (i = 1,2, . . . ,m).

(x j,y j): coordinates of j-th potential facility sites ( j = 1,2, . . . , p).

wi j : amounts of flow to be transported from the i-th existing facility site to the j-th potential
facility site (i = 1,2, . . . ,m; j = 1,2, . . . , p).

F : {(wi j) : ∀ i, j}: the feasible set with respect to the matrix variable w.

WB : {(wB
i j) : i = 1,2, . . .m; j = 1,2, . . . , p}: the initial basic feasible solution.

φ : transportation cost function per unit commodity from an existing facility site to a
potential facility site.

• The solution space is continuous. The space in which potential facility sites are
located is the planner. Potential facility sites are assumed as points. Parameters are
deterministic.

• Facilities are capacitated. No relationship between potential facility sites. Ignoring
the opening cost of new potential facility sites.

• The objective function is to be minimized. Type of distance is the usual Euclidean
distance in 2-dimensional space (φ(ci,di;x j,y j) = [(ci − x j)

2 +(di − y j)
2]1/2).

2.2.3 Model formulation

Here, we introduce a formulation based on the classical FLP and TP. However, instead of
minimizing the total transportation cost, this model finds optimal locations by determining
the potential facility sites. We consider the mathematical model of T-LP as follows:
Model 2.1

minimize(x,y,w) Z =
m

∑
i=1

p

∑
j=1

αiwi jφ(ci,di;x j,y j) (2.1)

subject to
p

∑
j=1

wi j ≤ ai (i = 1,2, . . . ,m), (2.2)

m

∑
i=1

wi j ≥ b j ( j = 1,2, . . . , p), (2.3)

wi j ≥ 0 ∀ i and j. (2.4)

The objective function (2.1) aims to minimize the total transportation cost from existing
facility sites to potential facility sites. Constraints (2.2) enforce that the total flow from each
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existing facility site cannot exceed its amount available. Constraints (2.3) impose that the
total flow to each potential facility site should satisfy its demand. Constraints (2.4) consist
of non-negativity conditions.

2.2.4 Connection between T-LP and TP

The objective function (2.1) of Model 2.1 depends on the location of potential facility sites.
From Figure 2.1, it can be seen that if we fix the locations of potential facility sites, then
the set of cost functions converts into the set of constant cost functions. Subsequently, in
view of objective function (2.1) we use the short notation φ(ci,di;x j,y j) = si j (constant
cost functions), now αisi j is chosen as ti j (unit transportation cost from sources to demand
points). Hence, the objective function of Model 2.1 is reduced; and the subsequent Model
2.2 as follows:
Model 2.2

minimize(w) Z =
m

∑
i=1

p

∑
j=1

ti jwi j (2.5)

subject to the constraints (2.2) to (2.4);

this is the classical form of a TP. Hence, for constant cost function T-LP becomes a TP.

2.2.5 Structural properties

In this subsection, we discuss some fundamental propositions and a theorem to recognize
the nature of T-LP.

Proposition 2.1 A necessary and sufficient conditions for the problem T-LP is that ∑
m
i=1 ai ≥

∑
p
j=1 b j.

Proof: This property is called feasibility condition. The feasibility condition depends on
the constraints. In fact, both the problems have the same constraints. This illustrates the
proof of the proposition. �

Proposition 2.2 The feasible solution of T-LP is never unbounded.

Proof: The constraints of T-LP are as follows:
p

∑
j=1

wi j ≤ ai (i = 1,2, . . . ,m),

m

∑
i=1

wi j ≥ b j ( j = 1,2, . . . , p),

wi j ≥ 0 ∀ i and j.

So, b j ≤ wi j ≤ ai ∀ i and j, and also wi j ≥ 0 ∀ i and j. We conclude that inf{0,b j} ≤
wi j ≤ ai ∀ i and j. As b j> 0 ∀ j, now inf{0,b j}= 0 and 0 ≤ wi j ≤ ai. This completes the
proof of the proposition. �

Proposition 2.3 The number of basic variables in T-LP is at most (m+ p−1).
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Proof: This property is also dependent on the constraints. Here, we see that the constraints
of two problems are the same. So, this proposition is also the same as the TP. �

Proposition 2.4 For the problem minimize(x,y,w) Z =∑
m
i=1 ∑

p
j=1 αiwi jφ(ci,di;x j,y j), (wi j)∈

F, an optimal solution exists at an extreme point of the convex set F of feasible solutions to

T-LP.

Proof: Let (x,y) = (x j,y j) ( j = 1,2, . . . , p), w = (wi j : i = 1,2, . . . ,m; j = 1,2, . . . , p)

and wE ∈ {(wE
i j) (i = 1,2, . . . ,m; j = 1,2, . . . , p) : extreme points of F}. If we choose the

destination such that (x,y) = (x∗j ,y
∗
j) by seeking the optimal location, then the objective

function to minimize is Z = ∑
m
i=1 ∑

p
j=1 αiwi jφ(ci,di;x∗j ,y

∗
j), (wi j) ∈ F , which is a classical

TP. Then it always has a solution at an extreme point wE ∈ F . So, we conclude that
(x∗,y∗,wE) is an optimal solution at an extreme point of F to T-LP. �

Proposition 2.5 The number of basic feasible solutions of T-LP is at most
( mp

m+p−1

)
.

Proof: T-LP has mp variables and at most m+ p− 1 basic variables. So, the number of
basic feasible solutions of T-LP is at most

( mp
m+p−1

)
. �

Theorem 2.1 The objective function Z = ∑
m
i=1 ∑

p
j=1 αiwB

i jφ(ci,di;x j,y j) is a convex func-

tion in the joint variable (x,y) on R2p.

Proof: We know that a function Z is convex over the region iff the Hessian matrix as-
sociated with Z is positive semidefinite over the region [130]. Let Z = ∑

p
j=1 Z j, where

Z j = ∑
m
i=1 αiwB

i jφ(ci,di;x j,y j) and the terms wB
i j are constants. Here, Z j only depends on

the variables x j and y j. Hence we can consider Z j to be a function in two variables x j and
y j. The Hessian matrix for Z j at (x j,y j) is

H j =

 ∂ 2Z j

∂x2
j

∂ 2Z j
∂x j∂y j

∂ 2Z j
∂y j∂x j

∂ 2Z j

∂y2
j

 .

The principal minors of H j are ∂ 2Z j

∂x2
j

and detH j (determinant of H j).
Now,

∂ 2Z j

∂x2
j
=

m

∑
i=1

αiwB
i j(di − y j)

2

[(ci − x j)2 +(di − y j)2]3/2 ,

and detH j =
∂ 2Z j

∂x2
j

∂ 2Z j

∂y2
j
−
(

∂ 2Z j

∂x j∂y j

)2 (
since

∂ 2Z j

∂x j∂y j
=

∂ 2Z j

∂y j∂x j

)
=
( m

∑
i=1

αiwB
i j(di − y j)

2

[(ci − x j)2 +(di − y j)2]3/2

)( m

∑
i=1

αiwB
i j(ci − x j)

2

[(ci − x j)2 +(di − y j)2]3/2

)
−
( m

∑
i=1

αiwB
i j(ci − x j)(di − y j)

[(ci − x j)2 +(di − y j)2]3/2

)2

=
( m

∑
i=1

( √
αiwB

i j(di − y j)

[(ci − x j)2 +(di − y j)2]3/4

)2
)( m

∑
i=1

( √
αiwB

i j(ci − x j)

[(ci − x j)2 +(di − y j)2]3/4

)2
)
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−
( m

∑
i=1

√
αiwB

i j(di − y j)

[(ci − x j)2 +(di − y j)2]3/4

√
αiwB

i j(ci − x j)

[(ci − x j)2 +(di − y j)2]3/4

)2
.

Now,
( m

∑
i=1

(

√
αiwB

i j(di − y j)

[(ci − x j)2 +(di − y j)2]3/4 )
2)( m

∑
i=1

(

√
αiwB

i j(ci − x j)

[(ci − x j)2 +(di − y j)2]3/4 )
2)

≥
( m

∑
i=1

√
αiwB

i j(di − y j)

[(ci − x j)2 +(di − y j)2]3/4

√
αiwB

i j(ci − x j)

[(ci − x j)2 +(di − y j)2]3/4

)2

(by Cauchy-Schwarz inequality).

As αi > 0,wB
i j ≥ 0,(ci − x j)

2 ≥ 0 and (di − y j)
2 ≥ 0, we conclude that ∂ 2Z j

∂x2
j
≥ 0 and

detH j ≥ 0 for all values of x j and y j. Hence, Z j is convex with respect to x j and y j.
Let (x1,y1,x2,y2, . . . ,xp,yp) and (x′1,y

′
1,x

′
2,y

′
2, . . . ,x

′
p,y

′
p) be two arbitrary points of R2p,

and t ∈ [0,1].

Herewith, Z
(
t(x1,y1,x2,y2, . . . ,xp,yp)+(1− t)(x′1,y

′
1,x

′
2,y

′
2, . . . ,x

′
p,y

′
p)
)

=
p

∑
j=1

Z j
(
t(x1,y1,x2,y2, . . . ,xp,yp)+(1− t)(x′1,y

′
1,x

′
2,y

′
2, . . . ,x

′
p,y

′
p)
)

≤ t
p

∑
j=1

Z j(x1,y1,x2,y2, . . . ,xp,yp)+(1− t)
p

∑
j=1

Z j(x′1,y
′
1,x

′
2,y

′
2, . . . ,x

′
p,y

′
p)

= tZ(x1,y1,x2,y2, . . . ,xp,yp)+(1− t)Z(x′1,y
′
1,x

′
2,y

′
2, . . . ,x

′
p,y

′
p).

Therefore, Z is convex in the variable (x,y) on R2p. This completes the proof. �

2.3 Solution methodology

In this section, we first briefly describe an exact method with its algorithm, and present a
heuristic algorithm for our model.

2.3.1 Exact approach

The iterative procedure is an exact and simple solution procedure in which we find the best
nearest optimal locations. We see that the objective function has a minimum value at an
extreme point of the convex set F and the number of basic feasible solutions in F are finite
(by Theorem 2.1 and Propositions 2.4 and 2.5). First, we find all basic feasible solutions
in F by solving the constraints of T-LP. We observe that these constraints are the same as
the constraints of the classical TP. Therefore, we apply the Northwest-Corner method [62]
to generate the initial basic feasible solutions which are WB = (wB

i j : i = 1,2, . . . ,m; j =

1,2, . . . , p); then for each such solution we solve the problem.

minimize(x,y) ZB =
m

∑
i=1

p

∑
j=1

αiwB
i j

√
(ci − x j)2 +(di − y j)2

subject to the constraints (2.2) to (2.4).
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Now we can write the problem as

minimize(x,y) ZB =
p

∑
j=1

ZB
j (2.6)

subject to the constraints (2.2) to (2.4),

where ZB
j = ∑

m
i=1 αiwB

i j

√
(ci − x j)2 +(di − y j)2 ( j = 1,2, . . . , p). Then, we minimize ZB

j

( j = 1,2, . . . , p) for minimizing ZB. We use the iterative formulas (A.1) to (A.6) (see
Appendix A.1) to minimize the function ZB

j . Let S = {Z∗
n : the optimum value for ZB for n-th

basic feasible solution}. Clearly, S is a finite set from Proposition 2.5. Hence, it has a
minimum, then the optimal value of the objective function Z∗ for T-LP will be Z∗ = minS.
If the optimum has been attained at n = l, then the best nearest optimal solutions are
(xl

j,y
l
j), ( j = 1,2, . . . , p), and wB

i jl (i = 1,2, . . . ,m; j = 1,2, . . . , p), where (xl
j,y

l
j) indicates

(x j,y j) for the l-th basic feasible solution and wB
i jl are the values of wB

i j for this solution.

2.3.2 An Exact algorithm

Here, we describe an algorithm for solving T-LP. The following steps are appraised for
selection of optimal potential facility sites to the objective function in T-LP as:

Step 1: First, we solve the constraints using the Northwest-Corner method to evaluate the
initial basic feasible solutions.

Step 2: We address each such l-th basic feasible solution as wB
i jl . Based on each such

solution, we consider a set of problems as indicated below:

minimize(x,y) ZB
l =

p

∑
j=1

ZB
jl

subject to the constraints (2.2) to (2.4),

where ZB
jl = ∑

m
i=1 αiwB

i jl

√
(ci − x j)2 +(di − y j)2 ( j = 1,2, . . . , p).

Step 3: We solve the set of problems in Step 2 by using the iterations (A.1) to (A.6).

Step 4: After a finite number of iterations, we observe that when the coordinates of some
existing facility sites are equal to the potential facility sites, then the denominator of the
iteration in Step 3 becomes 0. In that case, we cannot move to the next iteration. As our
aim is to seek the best nearest location of the existing facility sites, we take this result as an
optimal location and terminate the loop.

Step 5: Repeat Steps 3 and 4 until no further changes are possible in correct up to 4 decimal
places.

Step 6: We choose optimal solutions are (xl
j,y

l
j) and Z∗ = minS.

Step 7: Stop.

2.3.3 A Loc-Alloc heuristic algorithm

The locate-allocate (Loc-Alloc) heuristic algorithm was first introduced to solve large scale
traditional location problems by Cooper [29], which provides always a good solution (sub-
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optimal) within a relatively less computational burden. We moderate it to solve T-LP. The
steps of the Loc-Alloc heuristic algorithm are as follows:

Step 1: First, we choose the initial locations for the p-facilities from m-existing locations.

Step 2: Therefore, two cases arise: If p ≤ m, then we can easily find the distances between
the existing and the potential facility sites. But, if p > m, then we cannot find all the
distances. So, in that case, we assign a positive number for each distance to less calculation
burden.

Step 3: Without loss of generality, we assume that the distances are proportional to the cost
functions. So, we take these distances as the cost coefficients wi j (in Eqs. (2.1)). Then, it is
converted to the classical TP.

Step 4: Using the LINGO optimization tool we easily find the set of initial basic feasible
solutions WB.

Step 5: Employing WB from Step 4 and the iteration from Eqs. (A.1) to (A.6), we solve the
T-LP to generate a new set of potential locations.

Step 6: If any of the locations has changed correct up to 4 decimal places, then repeat Step
5; otherwise stop.

2.4 Experimental analysis

In this section, we incorporate a real-life experiment to illustrate our model and to work out
that our procedures are effective to locate the potential facility sites in the Euclidean plane
with the objective to minimize the total transportation cost. A reckoned company wishes to
establish some new wings in such a way that the total transportation cost from the existing
plants is minimized. The company has four plants S1, S2, S3 and S4, and the company wants
to set-up three new wings (plants) D1, D2 and D3. The capacities of supply at S1, S2, S3 and
S4, the requirement to the wings D1, D2 and D3, the position and the weights of the plants
S1, S2, S3 and S4 are also known. The supplied data of the problem are given in Tables 2.1
and 2.2. We code the approaches in C++ and execute it using a code-block compiler on
a Lenovo z580 computer with 2.50 GHz Intel (R) Core (TM) i5-3210M CPU and 4 GB
RAM. We set up the same configuration as above and compared its performance with our
Loc-Alloc heuristic. In contrast, we compare the results obtained from the Linux terminal
on a computer with Intel(R) Core (TM) i3-4130 CPU @3.40 GHz and 4 GB RAM.
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Table 2.1: The capacities of supply & demand
of the plants.

D1 D2 D3 ai

S1 wB
11 wB

12 wB
13 10

S2 wB
21 wB

22 wB
23 60

S3 wB
31 wB

32 wB
33 50

S4 wB
41 wB

42 wB
43 30

b j 20 90 40

Table 2.2: The positions & weights
of the existing plants.

Position Weight
S1 (0,1) 0.1
S2 (0,0) 0.2
S3 (1,0) 0.3
S4 (1,1) 0.4

2.4.1 Performance of Exact approach

Here, we mainly concentrate on the following topics:

• First, we find the possible initial BFSs by the Northwest-Corner method.

• To fix the optimum position of D1, D2 and D3 for minimizing transportation cost and
maximizing the profit.

Now, we use the Northwest-Corner method by utilizing Table 2.1 and get the possible initial
BFS sets. They are placed in Tables 2.3 to 2.5.

Table 2.3: The possible BFS set 1.

D1 D2 D3 ai
S1 10 10
S2 10 50 60
S3 40 10 50
S4 30 30
b j 20 90 40

Table 2.4: The possible BFS set 2.

D1 D2 D3 ai

S1 10 10
S2 10 10 40 60
S3 50 50
S4 30 30
b j 20 90 40

Table 2.5: The possible BFS set 3.

D1 D2 D3 ai

S1 10 10
S2 10 40 10 60
S3 50 50
S4 30 30
b j 20 90 40

The computational results for Tables 2.3 to 2.5 using the C++ programming language are
shown in Table 2.6.
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Table 2.6: Computational results for Tables 2.3 to 2.5.

Initial
BFS

Location of D1 Location of D2 Location of D3 Value of
Z

Table 2.3 (0.000000,0.000066)(0.883816,0.000000)(1.000000,1.000000)14.232434
Table 2.4 (0.000000,0.000066)(0.991361,0.055396)(0.000000,0.000000)15.162587
Table 2.5 (0.000000,0.000066)(0.999790,0.000000)(1.000000,1.000000)9.829962

2.4.2 Performance of Loc-Alloc heuristic

For solving T-LP by Loc-Alloc heuristic we focus on the following:

• First, we choose three initial locations for each of 3 wings from Table 2.2. Then, 4
possible cases have arisen and they are displayed in Tables 2.7 to 2.10.

Table 2.7: Case 2.1.

Position Weight
D1 (0,1) 0.1
D2 (0,0) 0.2
D3 (1,0) 0.3

Table 2.8: Case 2.2.

Position Weight
D1 (0,0) 0.2
D2 (1,0) 0.3
D3 (1,1) 0.4

Table 2.9: Case 2.3.

Position Weight
D1 (1,0) 0.3
D2 (1,1) 0.4
D3 (0,1) 0.1

Table 2.10: Case 2.4.

Position Weight
D1 (1,1) 0.4
D2 (0,1) 0.1
D3 (0,0) 0.2

• Now, we calculate the distances between existing plants and initial locations of wings
by using Tables 2.7 to 2.10. We put the distances as cost coefficients in Tables 2.11 to
2.14, respectively.

Table 2.11: Cost Coefficients for Table
2.7.

D1 D2 D3 ai

S1 0 1
√

2 10
S2 1 0 1 60
S3

√
2 1 0 50

S4 1
√

2 1 30
b j 20 90 40

Table 2.12: Cost Coefficients for Table
2.8.

D1 D2 D3 ai

S1 1
√

2 1 10
S2 0 1

√
2 60

S3 1 0 1 50
S4

√
2 1 0 30

b j 20 90 40
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Table 2.13: Cost Coefficients for Table
2.9.

D1 D2 D3 ai

S1
√

2 1 0 10
S2 1

√
2 1 60

S3 0 1
√

2 50
S4 1 0 1 30
b j 20 90 40

Table 2.14: Cost Coefficients for Table 2.10.

D1 D2 D3 ai

S1 1 0 1 10
S2

√
2 1 0 60

S3 1
√

2 1 50
S4 0 1

√
2 30

b j 20 90 40

• We use LINGO optimization tool for initial BFSs by utilizing Tables 2.11 to 2.14, and
the obtained results are shown in Tables 2.15 to 2.18, respectively.

Table 2.15: Initial BFS for Table 2.7.

D1 D2 D3 ai

S1 10 10
S2 60 60
S3 10 40 50
S4 20 10 30
b j 20 90 40

Table 2.16: Initial BFS for Table 2.8.

D1 D2 D3 ai

S1 10 10
S2 20 40 60
S3 50 50
S4 30 30
b j 20 90 40

Table 2.17: Initial BFS for Table 2.9.

D1 D2 D3 ai

S1 10 10
S2 30 30 60
S3 20 30 50
S4 30 30
b j 20 90 40

Table 2.18: Initial BFS for Table 2.10.

D1 D2 D3 ai

S1 10 10
S2 20 40 60
S3 50 50
S4 20 10 30
b j 20 90 40

• Finally, the computational results for Tables 2.15 to 2.18 using C++ programming
language are placed in Table 2.19.

Table 2.19: Computational results for Tables 2.15 to 2.18.

Initial BFS Location of D1 Location of D2 Location of D3 Value of Z
Table 2.7 (1.000000,1.000000) (0.000598,0.000393) (1.000000,0.000000) 9.660450
Table 2.8 (0.000000,0.000000) (0.999790,0.000000) (1.000000,1.000000) 9.001470
Table 2.9 (1.000000,0.000000) (0.869809,0.476981) (0.000000,0.000000) 17.869660
Table 2.10 (1.000000,1.000000) (0.999997,0.000003) (0.000000,0.000000) 9.414249

2.5 Computational results and discussion

Here, first, we present the optimal solutions of the experimental study, obtained by two
approaches. Second, we compare the performances of the proposed solution procedures for
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T-LP, based on our experiment analysis.
Exact approach: We obtain the following nearest optimal solution by our iterative pro-
cedure, utilizing Table 2.6, as shown in Table 2.20. The convergence performance of the
iterative procedure is delineated in Figure 2.2.

Table 2.20: The optimal solution of the proposed T-LP.

Decimal
places

Location of D1 Location of D2 Location of D3 Value of Z

4 decimal (0.0000,0.0000) (0.9997,0.0000) (1.0000,1.0000) 9.8299
6 decimal (0.000000,0.000066) (0.999790,0.000000) (1.000000,1.000000) 9.829962

Fig. 2.2: Performance of Exact approach.

Loc-Alloc heuristic: We derive the sub-optimal solution by Loc-Alloc heuristic, employing
Table 2.19, which is displayed in Table 2.21. Figure 2.3 shows the convergence performance
of the heuristic.

Table 2.21: The sub-optimal solution of the proposed T-LP.

Decimal
places

Location of D1 Location of D2 Location of D3 Value of Z

4 decimal (0.0000,0.0000) (0.9997,0.0000) (1.0000,1.0000) 9.0014
6 decimal (0.000000,0.000000) (0.999790,0.000000) (1.000000,1.000000) 9.001470

2.5.1 Comparison of the obtained results

Here, we confront the computational results obtained by our two approaches. From Tables
20 and 21, the following conclusions are made and offered to further consideration and
research.

• No difference exists between solutions (correct up to 4 decimal places).
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Fig. 2.3: Performance of Loc-Alloc heuristic.

• When we consider correct up to 6 decimal places, then the solution of the Loc-Alloc
heuristic is slightly sub-optimal, compare to the exact solution which is depicted in
Figure 2.4.

Fig. 2.4: Comparison between the obtained results.

2.6 Conclusion

This study has been introduced a practical problem for a transportation network that objects
to reduce the overall transportation cost along the entire supply chain and to select potential
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facility sites for different plants. To the best of our knowledge, for the first time in research,
we have provided a way of analyzing the connection between the FLP and TP. Thereafter,
some fundamental propositions and a theorem on T-LP have been introduced to investigate
the nature of T-LP. In addition to the aforementioned achievements, the development of
novel versions of two approaches is analyzed to solve the proposed problem in an efficient
manner. The studied model and developed procedures have been tested by a real-life
example. Finally, the obtained computational results from our two approaches have been
compared with suggestions for selecting the potential facility sites. In comparison, the
iterative approach is more appropriate to solve the T-LP with small sizes. The Loc-Alloc
heuristic is more suitable for T-LP of larger size since it can generate comparable solutions
in less computational time. In fact, the formulation presented here can be employed in large-
scale industrial applications such as the manufacturing of plants, transportation systems,
emergency services, and online-shopping systems.


