
Chapter 6

Multi-objective solid transportation
-location problem in inventory
management1

This chapter acquaints a streamlining model that incorporates FLP, STP, and inventory
management under a multi-objective environment. The aims of the stated formulation
are multi-fold: (i) seek the optimum locations for potential facilities in Euclidean plane;
(ii) find the amount of distributed commodities; and (iii) reduce the overall transportation
cost, transportation time, and inventory cost along with the carbon emission cost. Here,
variable carbon emission cost is taken into consideration because of the variable locations
of facilities and the amount of distributed products. After that, a new hybrid approach is
introduced dependent on an alternating locate-allocate heuristic and the intuitionistic fuzzy
programming to get the Pareto-optimal solution of the proposed formulation. In fact, the
performances of our findings are discussed with a numerical example. Sensitivity analysis
is executed to check the resiliency of the parameters. Ultimately, managerial insights and
conclusions are offered at the end of this study.

6.1 Introduction

FLP, STP and inventory management are the core components of supply chain management.
Deciding the optimal locations for the facilities such as retailer-outlets, plants, terminals,
workplaces, fire stations, railroad stations, and so forth and optimizing the overall logistics
cost, transportation time and inventory cost by different transportation modes can signifi-
cantly affect the management system. Therefore, the significance of the integrated model
helps an organization to increase efficiency and decrease the wastage. The primary level
of the integrated model consists of location cost, inventory cost, and transportation cost.
Therefore, the trade-off between these cost factors is the major component of this model.

1The content of this chapter has been published in Annals of Operations Research, Springer, SCI, I.F:
2.583, 2021, https://doi.org/10.1007/s10479-020-03809-z.
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Nowadays, due to enormous transportation systems, huge quantities of carbon dioxide emit
into the atmosphere, which is the crucial clarification for an unnatural climate change. To
reduce carbon discharge, the government endorses a couple of strategies wherein carbon tax
policy is commonly acquired. According to this policy, the carbon discharge holders have to
pay the carbon tax for each unit of carbon emission to the government. Here, an unprece-
dented mathematical model is introduced by incorporating FLP, inventory management, and
STP under multi-objective decision making environment. Consequently, the stated model is
referred as multi-objective solid transportation-location problem (MOST-LP). In MOST-LP,
the DM asks for the best positions of potential facilities in the Euclidean plane and quantities
of distributed items by different modes of transportation simultaneously with minimizing
the stated goals. It is believed that the above mathematical model will be more relevant
than conventional FLP, inventory management, and MOSTP. It is also evident that several
uncertainties occur in a transportation system because of insufficient information from the
market situation. For that reason, IFS is introduced dependent on an assumption wherein
member is expressed by two degrees, namely, membership and non-membership. For more
explanations of the intuitionistic fuzzy environment, we suggest to the Chapter 1.

The major contributions of this chapter are highlighted as:

• An unprecedented non-linear mathematical formulation based on FLP, inventory
management, and MOSTP is presented.

• The formulation provides a decision regarding the assignment from numerous existing
sites to several potential sites in the Euclidean plane with a distance function.

• The overall logistics cost and time, and inventory cost by different modes of trans-
portation are also considered.

• Variable carbon emission cost is incorporated which is a significant issue in the
modern time.

• A hybrid approach is described to get the Pareto-optimal solution of MOST-LP.

• The characteristic of the derived compromise solution is also discussed.

6.2 Modeling framework

In this section, we initially delineate the stated problem, that is, the multi-objective solid
transportation-location problem within an inventory management framework. In this regard,
we incorporate the notations and state the assumptions to formulate the mathematical model.
Eventually, the coordination between MOST-LP and MOSTP is discussed. Finally, some
basic definitions are defined for the development of the study.
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6.2.1 Problem description

Herein, an unprecedented strategic formulation is investigated from an environmental and
economical frame of reference. This study deals with a solid logistics framework, which
comprises of multiple suppliers treated as existing facilities, retail outlets addressed as
potential facilities, and commodities are distributed from some suppliers to certain retail
outlets through warehouses considered as existing facilities. The important goal is to reduce
the overall conveyance cost, time, and inventory cost along with the carbon discharge cost
of finding the potential sites simultaneously. Apart from the logistics cost and delivery time,
the following postures are also taken into consideration: (i) the weights of the conveyances
which affect the logistics cost, delivery time and carbon emission cost, (ii) weights of the
obstacles in the way which are considered in conveyance time, (iii) variable carbon emission
cost, (iv) fixed cost for opening the warehouses, (v) each of the warehouses pursues a
continuous review policy, that is, a fixed quantity is ordered from the suppliers when the
inventory level at warehouses gets below the reorder point and preserves it for future uses,
(vi) before preserving, a screening process is performed at the warehouses for selecting the
defective items and it is backed for changing to the producer at the next slot of order, (vii)

when there is a requirement for the items, the warehouses supply the items according to
their requirement, (viii) deterioration occurs in the warehouses if the items are deteriorating
in nature, and (ix) shortages are not allowed in the warehouses because the DM always
preserves a safety stock, as this is a continuous review inventory policy. Therefore, the total
inventory cost of the system consists of ordering cost, holding cost, fixed cost, screening
cost, deterioration cost, purchasing cost and carbon emission cost. Fig. 6.1 illustrates the

Fig. 6.1: Pictorial representation of MOST-LP.

structure of MOST-LP network. Assume that there is one supplier S1, three warehouses
W1, W2 and W3, and two retail outlets R1 and R2. The supply and demand of the relating
facilities are provided. Furthermore, the locations of S1, W1, W2, and W3 are given. But,
the locations of R1 and R2 are not known in the two-dimensional space. In fact, the dotted
paths indicate the product flow by three different transportation modes such as E1, E2, and
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E3 from S1 to R1 and R2 through W1, W2, and W3, respectively. Moreover, the obstacle is
assigned as T1. In this circumstance, we have to find the optimum positions of the potential
facilities with the stated goals.

6.2.2 Notations & Assumptions

This subsection describes the notations and assumptions corresponding to the stated model:

I: Set of suppliers indexed by i.

J: Set of retailers indexed by j.

K: Set of warehouses indexed by k.

L: Set of transportation modes indexed by l.

d1 j: Average demand rate for the product from jth retailer.

d2k: Average demand rate for the product from kth warehouse.

fk: Fixed cost for opening kth warehouse.

Bi: Unit purchasing cost of an item from ith supplier.

Aik: Unit ordering cost from ith supplier to kth warehouse.

Gk j: Unit ordering cost from kth warehouse to jth retailer.

gk: Unit screening cost at kth warehouse.

Hk: Unit holding cost at kth warehouse is time-dependent (t) and it also depends on the
location of the warehouse and it is represented by Hk = th1k +h2k

√
rk

2 + sk
2, where

h1k and h2k are constants.

Dk: Unit deterioration cost at kth warehouse.

m: Number of suppliers.

n: Number of warehouses.

p: Number of retailers.

q: Number of transportation modes.

q′: Number of objective functions.

wl
ik j: Unknown amount to be distributed from ith supplier to jth retailer through kth ware-

house by lth different transportation modes.

W : {(wl
ik j) : ∀ i, j,k, l}: the feasible space.
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W B: {(wlB
ik j) : ∀ i, j,k, l}: the optimal feasible set.

(ui,vi): Coordinate of the ith supplier (i = 1,2, . . . ,m).

(rk,sk): Coordinate of the kth warehouse (k = 1,2, . . . ,n).

(x j,y j): Coordinate of the jth retailer ( j = 1,2, . . . , p).

F : R2p ×W , where (x,y) ∈ R2p and w ∈W , the feasible set.

ak: Availability in the kth warehouse (k = 1,2, . . . ,n).

b j: Demand at the jth retailer ( j = 1,2, . . . , p).

cl: Capacity of the lth transportation mode (l = 1,2, . . . ,q).

αi: In a location problem, the DM may put more important of the supplier with respect
to transportation cost, expressed as weight. Therefore, with each ith supplier, we
associate a weight αi.

α ′
k: Nonnegative weight of the kth warehouse with respect to transportation cost (k =

1,2, . . . ,n).

βi: Nonnegative weight of the ith supplier with respect to transportation time (i =

1,2, . . . ,m).

β ′
k: Nonnegative weight of the kth warehouse with respect to transportation time (k =

1,2, . . . ,n).

εl: Nonnegative weight of the lth transportation mode cost a unit measure of goods
(l = 1,2, . . . ,q).

δik: There might be utilized an alternate kind of transportation modes to distribute the
products from the ith site to the kth site. Based on their machine execution, a weight
δik is designated.

δk j: Nonnegative weight (machine performance) of conveyances to transfer the assignment
from the kth site to the jth site.

ε ′l : Nonnegative weight of the lth conveyance time a unit measure of goods (l = 1,2, . . . ,q).

tik: There might be a few barriers (e.g., bridge crossing, broken-down, railway level
crossing, and so on) of the way from the ith supplier to the kth warehouse which is
influenced the conveyance time. These will be assigned as tik.

tk j: Nonnegative weight (obstacle) of paths from the kth warehouse to the jth retailer.

γ: Tax for per unit item that emits carbon dioxide.



96 Multi-objective solid transportation-location problem in inventory management

ε ′′l : Nonnegative weight of the lth conveyance carbon emission a unit measure of com-
modity (l = 1,2, . . . ,q).

Z: Objective function vector.

M: Membership function.

No: Non-membership function.

U ′
q′: Upper bound of the q′th objective function.

L′
q′: Lower bound of the q′th objective function.

There are the following functions and assumptions:

• φl(ui,vi;rk,sk) = εlϕ(ui,vi;rk,sk): transportation cost function a unit measure of
goods from ith supplier to kth warehouse by lth conveyance, where ϕ(ui,vi;rk,sk) is a
hyperbolic approximation of Euclidean distance in two-dimensional space(

ϕ(ui,vi;rk,sk) =
√

(ui − rk)2 +(vi − sk)2 +δik

)
.

• φl(rk,sk;x j,y j) = εlϕ(rk,sk;x j,y j): transportation cost function per unit item from
kth warehouse to jth retailer by lth conveyance, where
ϕ(rk,sk;x j,y j) =

√
(x j − rk)2 +(y j − sk)2 +δk j.

• ψl(ui,vi;rk,sk) = ε ′l τ(ui,vi;rk,sk): transportation time function per unit product from
ith supplier to kth warehouse by lth conveyance, where
τ(ui,vi;rk,sk) =

√
(ui − rk)2 +(vi − sk)2 + tik +δik.

• ψl(rk,sk;x j,y j) = ε ′l τ(rk,sk;x j,y j): transportation time function per unit flow from
kth warehouse to jth retailer by lth conveyance, where
τ(rk,sk;x j,y j) =

√
(x j − rk)2 +(y j − sk)2 + tk j +δk j.

• ρl(ui,vi;rk,sk) = ε ′′l ρ(ui,vi;rk,sk): carbon emission function per unit transported item
from ith supplier to kth warehouse by lth conveyance, where
ρ(ui,vi;rk,sk) =

√
(ui − rk)2 +(vi − sk)2 +δik.

• ρl(rk,sk;x j,y j) = ε ′′l ρ(rk,sk;x j,y j): carbon emission function per unit transported
good from kth warehouse to jth retailer by lth conveyance, where
ρ(rk,sk;x j,y j) =

√
(x j − rk)2 +(y j − sk)2 +δk j.

• The solution space where the facilities are situated is the continuous planner surface.
Furthermore, the facility plants are considered as Euclidean points.

• The facility sites have some capacity. The nature of the parameters is deterministic.
The distances are assumed as a hyperbolic approximation of Euclidean metric in the
Euclidean plane.
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• The distributed commodity is the homogeneous type. The nature of transportation
modes is heterogeneous. Logistics cost, deliver time, and carbon emission are directly
proportional to the unit of shipped commodities.

• There does not exist any connection between the potential facilities. The installation
costs of potential facilities are also overlooked.

• The supplier has a limited capacity, so, warehouses are established. Shortages are not
allowed in this model. The lead time is 0 and the replenishment rate is finite.

• There are no replacements of the deteriorated commodities during transportation.
Deterioration cost is calculated because the supplied items are deteriorating in nature.
There are fixed opening costs for opening warehouses.

• Holding cost is time-dependent as with time the rate of deterioration increases simul-
taneously. The holding cost is also dependent on the locations of the warehouse as the
holding cost for a warehouse which is located at a far distance from town will be less.

6.2.3 Model formulation

Here, a mathematical model is introduced in the light of FLP, inventory management, and
MOSTP. Indeed, this formulation finds distributed commodities and optimum locations for
the potential facilities at the same time. The mathematical model of MOST-LP along with
carbon emission cost can be stated as follows:
Model 6.1

minimize Z1(x,y,w) = ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
αiφl(ui,vi;rk,sk)+α

′
kφl(rk,sk;x j,y j)

)
wl

ik j (6.1)

minimize Z2(x,y,w) = ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
βiψl(ui,vi;rk,sk)+β

′
kψl(rk,sk;x j,y j)

)
wl

ik j (6.2)

minimize Z3(x,y,w) = ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
d2kAik +d1 jGk j

)
wl

ik j +∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

Hkwl
ik j

+∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

Dkwl
ik j +∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

Biwl
ik j

+∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

gkwl
ik j + ∑

k∈K
fk

+ γ ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
ρl(ui,vi;rk,sk)+ρl(rk,sk;x j,y j)

)
wl

ik j (6.3)

subject to ∑
i∈I

∑
j∈J

∑
l∈L

wl
ik j ≤ ak ∀ k, (6.4)

∑
i∈I

∑
k∈K

∑
l∈L

wl
ik j ≥ b j ∀ j, (6.5)

∑
i∈I

∑
j∈J

∑
k∈K

wl
ik j ≤ cl ∀ l, (6.6)

wl
i jk ≥ 0 ∀ i, j,k, l, (6.7)

∑
k∈K

ak ≥ ∑
j∈J

b j and ∑
l∈L

cl ≥ ∑
j∈J

b j. (6.8)
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The objective function (6.1) objects to determine the optimum positions for p-facilities
which minimize the overall logistics cost. Terms 1 and 2 of (6.1) represent the transportation
cost from ith supplier to kth warehouse, and kth warehouse to jth retailer by lth conveyance,
respectively. The objective function (6.2) intents to reduce the overall conveyance time
from ith supplier to jth retailer through kth warehouse by lth conveyance, seeking the
optimum positions for p-facilities. The objective function (6.3) indicates to optimize the
total inventory cost along with carbon emission cost by determining the optimum locations
for the p-facilities. Terms 1-6 of (6.3) express the inventory related costs such as ordering
cost from warehouses to suppliers and retailers to warehouses, holding cost of storage and
maintenance of items in the warehouses, deterioration cost of the deteriorating items in
the warehouses, purchasing cost of all items from suppliers, screening cost for selecting
the imperfect units from the items delivered by the suppliers and the imperfect units are
returned back to the suppliers at next slot, fixed cost for opening the warehouses. Term 7
of (6.3) displays the total carbon emission cost for transporting the goods from ith supplier
to kth warehouse, and kth warehouse to jth retailer by lth transportation mode. Constraints
(6.4) enforce that the overall distributed quantity of each warehouse must be less or equal
to its capacity. Constraints (6.5) impose that the overall shipped units of each retailer
fulfill the demand. Constraints (6.6) demonstrate that the overall transported flows of
each transportation mode cannot surpass its ability. Constraints (6.7) are the nonnegativity
condition. Ultimately, Constraints (6.8) refer to the feasibility criterion of the problem.

6.2.4 Connection between MOST-LP and MOSTP

The functions (i.e., φl , ψl and ρl) rely upon the locations of the potential facilities. In
this regard, we determine the best locations of the potential facilities, then the functions
must be converted into constant functions. Hence, we address (x∗j ,y

∗
j) for optimal facili-

ties,
(
αiφl(ui,vi;rk,sk)+α ′

kφl(rk,sk;x∗j ,y
∗
j)
)
= c′lik j for unit conveyance cost from ith sup-

plier to jth retailer through kth warehouse by mode of lth conveyance,
(
βiψl(ui,vi;rk,sk)+

β ′
kψl(rk,sk;x∗j ,y

∗
j)
)
= t ′lik j as unit delivery time from ith supplier to jth retailer through kth

warehouse by mode of lth conveyance, and γ
(
ρl(ui,vi;rk,sk)+ρl(rk,sk;x j,y j)

)
= d′l

ik j for
unit carbon emission cost due to transport the product from ith supplier to jth retailer through
kth warehouse by mode of lth conveyance. Henceforth, Model 6.1 is rewritten as the follow-
ing Model 6.2:
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Model 6.2
minimize Z1(w) = ∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

c′lik jw
l
ik j

minimize Z2(w) = ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

t ′lik jw
l
ik j

minimize Z3(w) = ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
d2kAik +d1 jGk j

)
wl

ik j +∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

Hkwl
ik j

+∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

Dkwl
ik j +∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

Biwl
ik j

+∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

gkwl
ik j + ∑

k∈K
fk +∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

d′l
ik jw

l
ik j

subject to the constraints (6.4) to (6.8),

which is the well-known form of an MOSTP along with total inventory cost.

6.2.5 Basic concept of a multi-objective problem

In this subsection, we discuss a few basic definitions which are related to the proposed
hybrid approach of MOST-LP.

Definition 6.1 (Intuitionistic fuzzy set [8]): Let U be a universal set and s ∈U. An intu-

itionistic fuzzy set S in U is defined by a membership function M(s) and a non-membership

function No(s), respectively, and denoted by S =
{(

s,M(s),No(s)
)

: s ∈U
}

, where

1. M(s) : U → [0,1] and No(s) : U → [0,1],

2. 0 ≤ M(s)+No(s)≤ 1.

Definition 6.2 (Ideal solution): An ideal solution of MOST-LP is the one which reduces

each of the goal independently, i.e., Zq′(x∗,y∗,w∗) = min(x,y,w)∈F Zq′(x,y,w), q′ = 1,2,3.

Definition 6.3 (Anti-ideal solution): The anti-ideal solution of MOST-LP is Zq′(xA,yA,wA)

= max(x,y,w)∈F Zq′(x,y,w), q′ = 1,2,3.

Definition 6.4 (Pareto-optimal solution): A solution (xN ,yN ,wN) ∈ F is said to be a

Pareto-optimal solution (otherwise called non-dominated solution, non-inferior or effi-

cient solution) of Model 6.1 if and only if there is no other solution (x,y,w) ∈ F such

that

Zq′(x,y,w)≤ Zq′(x
N ,yN ,wN) for q′ = 1,2,3,and

Zq′(x,y,w)< Zq′(x
N ,yN ,wN) for at least one q′.

Definition 6.5 (Compromise solution): A Pareto-optimal solution (xN ,yN ,wN) ∈ F yields

a compromise solution of MOST-LP if and only if Z(xN ,yN ,wN)≤∧(x,y,w)∈FZ(x,y,w), whereas

∧ designates the minimum.

The pictorial representation of ideal, anti-ideal, Pareto-optimal solutions and Pareto front
(BC) are delineated in Fig. 6.2.
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A: Anti-Ideal point

: Non-dominated solution

: Dominated solution
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: Pareto optimal front

C

B

Z1,min Z1,max

Z1

Fig. 6.2: The solution procedure of a multi-objective decision making problem.

6.3 Solution methodology

Herein, a hybrid solution procedure is introduced to solve the stated MOST-LP. Afterwards,
the pros and cons of the proposed procedure are also discussed.

6.3.1 Hybrid approach

In this subsection, a hybrid approach is presented based on an alternating Loc-Alloc heuristic
(Cooper [29]) and an IFP (Roy et al. [134]). The mentioned procedure is divided into two
parts. In the first part, three single objective solid transportation-location problems (ST-LPs)
are solved by the heuristic, and in the subsequent part, the Pareto-optimal solution for
MOST-LP is derived by IFP.

Alternating Loc-Alloc heuristic: The Loc-Alloc heuristic consists of two steps. In the
first step, the heuristic looks for the initial positions of p-outlets, and in the second step, it
determines the optimum positions of the outlets. Here, at first, the locations are chosen for
p-outlets from n-warehouses. If p < n, then all possible combinations of the n-warehouses
are generated taken p at once, i.e.,

(n
p

)
. For each combination, the existing facilities are to

be assumed as potential facilities, and other existing facilities are assigned relying upon
which potential facilities have the minimum distance. Ultimately, all assigned distances are
summed up. Therefore, this fact is repeated for all combinations. In this way, the final initial
potential sites for three distance functions are the combinations with the minimum sum of
distances. With these final allocations, the distances between p-outlets and n-warehouses
for three distance functions are computed. If p = n, the case is trivial and we easily get
the distances between them. Nevertheless, if p > n, then there is a problem to find the
initial locations for outlets. For that reason, here, we incorporate a new heuristic idea.
At first, we select the n allocations as n warehouses randomly and locate the remaining
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(p− n) outlets in some large Euclidean coordinates in such a way that the distances of
those coordinates become very large numbers from warehouses. Thereafter, the distances
between p-outlets and n-warehouses are calculated and a large positive number is allocated
for such distances which cannot be computed. In fact, we already consider that the distance
metrics are treated as logistics cost, delivery time and carbon discharge functions per unit
item. Then, these distances are taken as the cost, time and carbon discharge coefficients.
Hence, the three single objective ST-LPs turn into three traditional STPs. Utilizing the initial
potential location (xI

j,y
I
j), we solve the following problems:

Model 6.3
minimize Z1(w) = ∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

(
αiφl(ui,vi;rk,sk)+α

′
kφl(rk,sk;xI

j,y
I
j)
)
wl

ik j

subject to the constraints (6.4) to (6.8).

Model 6.4
minimize Z2(w) = ∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

(
βiψl(ui,vi;rk,sk)+β

′
kψl(rk,sk;xI

j,y
I
j)
)
wl

ik j

subject to the constraints (6.4) to (6.8).

Model 6.5
minimize Z3(w) = ∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

(
d2kAik +d1 jGk j

)
wl

ik j +∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

Hkwl
ik j

+∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

Dkwl
ik j +∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

Biwl
ik j

+∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

gkwl
ik j + ∑

k∈K
fk

+ γ ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
ρl(ui,vi;rk,sk)+ρl(rk,sk;xI

j,y
I
j)
)
wl

ik j

subject to the constraints (6.4) to (6.8).

From the Models 6.3 to 6.5, the optimal feasible solutions (wB) are derived. Employing
these (wB), the objective functions are minimized. The iterations (see Appendix A.4) are
utilized to optimize the objective functions. Thereafter, (x,y,w)(p′) is the local optimal
(ideal) solution for the p′-th single objective ST-LP, where p′ = 1,2,3.

IFP: Here, a payoff table with entries Zp′q′ := Zq′
(
(x,y,w)(p′)), p′,q′ = 1,2,3 are computed

for Pareto-optimal solution of MOST-LP. Afterwards, the upper (U ′
q′) and lower (L′

q′) bound
for each goal are evaluated as U ′

q′ = max{Z1q′,Z2q′,Z3q′} and L′
q′ = Zq′q′ , q′ = 1,2,3. Thus,

the membership and non-membership functions for the intuitionistic fuzzy environment are
calculated as:

M
(
Zq′(x,y,w)

)
=


1 Zq′(x,y,w)≤ L′

q′,
U ′

q′−Zq′(x,y,w)

U ′
q′−L′

q′
L′

q′ ≤ Zq(x,y,w)≤U ′
q′,

0 Zq′(x,y,w)≥U ′
q′.
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No
(
Zq′(x,y,w)

)
=


0 Zq′(x,y,w)≤ L′

q′,
Zq′(x,y,w)−L′

q′
U ′

q′−L′
q′

L′
q′ ≤ Zq′(x,y,w)≤U ′

q′,

1 Zq′(x,y,w)≥U ′
q′.

As the objective functions are conflicting in nature, thus, U ′
q′ = L′

q′ is not possible for any
(x∗q′,y

∗
q′,w

∗
q′) (q

′ = 1,2,3). The intuitionistic optimization model for MOST-LP can be
expressed as follows:
Model 6.6

maximize θ

minimize µ

subject to M
(
Zq′(x,y,w)

)
≥ θ , No

(
Zq′(x,y,w)

)
≤ µ, q′ = 1,2,3,

the constraints (6.4) to (6.8),

θ ≥ µ, θ +µ ≤ 1, θ ,µ ∈ [0,1].

Here, θ and µ are the level of satisfaction and dissatisfaction of a solution, respectively.
Thereafter, the simplified intuitionistic fuzzy optimization model of MOST-LP is as follows:
Model 6.7

maximize θ −µ

subject to Zq′(x,y,w)+θ(U ′
q′ −L′

q′)≤U ′
q′, q′ = 1,2,3,

Zq′(x,y,w)−µ(U ′
q′ −L′

q′)≤ L′
q′, q′ = 1,2,3,

the constraints (6.4) to (6.8),

θ ≥ µ, θ +µ ≤ 1, θ ,µ ∈ [0,1].

6.3.2 Advantages of the hybrid approach

Herein, the crucial advantages of the stated solution procedure are investigated.

• The major advantage of the aforementioned procedure is to provide a general structure
for handling the membership and non-membership concept in available information.
Besides, it doesn’t need trade-offs, complicated parameters or any other reference
directions from the DM. Indeed, employing this ensures a solution that maximizes the
satisfaction level and reduces the dissatisfaction level.

• The facts about the available data of MOST-LP are not exactly characterized, the
model of the stated procedure has the potentiality to handle fuzzy concepts such as
the number of objective functions and restrictions.

• The stated procedure gives a basic numerical structure which makes it simpler for com-
prehension and utilizing. Moreover, it generally provides a Pareto-optimal solution
with a less computational burden.
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6.3.3 Disadvantages of the proposed approach

The main disadvantage of our procedure is that it cannot deal with the fixed-charge cost for
route selection (represent toll charges on the expressway, landing expenses at air terminals,
etc.). If the fixed-charge cost is included, then the continuous nature of the model will be
lost. Additionally, the iterations (see Appendix A.4) are coded in C++ programming for and
the IFP model is solved using LINGO optimization tool. Thus, if an algorithm is specially
delineated for the complex problem, then this may yield result faster for large-scale entries.

6.4 Analysis of Pareto-optimal solution

In this section, we initially show that if (x∗,y∗,w∗) is a Pareto-optimal solution of MOST-LP,
then (x∗,y∗) is a Pareto-optimal solution of the unconstrained multi-objective FLPs of Eqs.
(6.1), (6.2) and (6.3), whereas w = w∗.

Proposition 6.1 Let us consider that (x∗,y∗,w∗) is a Pareto-optimal solution of MOST-LP

of Eqs. (6.1), (6.2) and (6.3). Then (x∗,y∗) is a Pareto-optimal solution of the multi-objective

FLP:

minimize Z1(x,y) = ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
αiφl(ui,vi;rk,sk)+α

′
kφl(rk,sk;x j,y j)

)
wl∗

ik j

minimize Z2(x,y) = ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
βiψl(ui,vi;rk,sk)+β

′
kψl(rk,sk;x j,y j)

)
wl∗

ik j

minimize Z3(x,y) = ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
d2kAik +d1 jGk j

)
wl∗

ik j +∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

Hkwl∗
ik j

+∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

Dkwl∗
ik j +∑

i∈I
∑
j∈J

∑
k∈K

∑
l∈L

Biwl∗
ik j

+∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

gkwl∗
ik j + ∑

k∈K
fk

+ γ ∑
i∈I

∑
j∈J

∑
k∈K

∑
l∈L

(
ρl(ui,vi;rk,sk)+ρl(rk,sk;x j,y j)

)
wl∗

ik j

Proof. The proposition can be demonstrated by contradiction logic. At first, we assume that
(x̄, ȳ) is a solution which satisfies the criteria Zq′(x̄, ȳ,w∗)≤ Zq′(x∗,y∗,w∗) for q′(= 1,2,3),
and Zq′(x̄, ȳ,w∗) < Zq′(x∗,y∗,w∗) for at least one q′(= 1,2,3). Once more (x̄, ȳ,w∗) is a
feasible solution of the problem; then there is a contradiction to Pareto-optimal solution of
(x∗,y∗,w∗). �

Proposition 6.2 Let us assume that (x∗,y∗,w∗,θ ∗,µ∗) be an optimal solution of Model 6.7,

then it should be also a Pareto-optimal solution (x∗,y∗,w∗) of Model 6.1.

Proof. Let the contradictory be true. Thus, there is a solution (x̄, ȳ, w̄)∈ F like Zq′(x̄, ȳ, w̄)<

Zq′(x∗,y∗,w∗) for q′ = 1,2,3. Again, θ ∗ and µ∗ are the optimum values of Model 6.7;
subsequently:

θ
∗(U ′

q′ −L′
q′)< Zq′(x

∗,y∗,w∗)+θ
∗(U ′

q′ −L′
q′)≤U ′

q′, q′ = 1,2,3,

µ
∗(U ′

q′ −L′
q′)< Zq′(x

∗,y∗,w∗)−µ
∗(U ′

q′ −L′
q′)≤ L′

q′, q′ = 1,2,3.
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Hereafter, there exist θ > θ ∗, µ > µ∗ and a q′′ ∈ {1,2,3} like

Zq′′(x̄, ȳ, w̄)+θ(U ′
q′′ −L′

q′′) =U ′
q′′ ,

Zq′(x̄, ȳ, w̄)+θ(U ′
q′ −L′

q′)≤U ′
q′,q

′ ̸= q′′,

Zq′′(x̄, ȳ, w̄)−µ(U ′
q′′ −L′

q′′) = L′
q′′ ,

Zq′(x̄, ȳ, w̄)−µ(U ′
q′ −L′

q′)≤ L′
q′,q

′ ̸= q′′,

which contradicts with that (x∗,y∗,w∗,θ ∗,µ∗) is an optimal solution of Model 6.7. �

6.5 Numerical experiment

An extensive numerical effort has been put and a suitable numerical example has been
studied in order to validate the objective of this study. Here, we consider that an industrial
organization wishes to begin a couple of new firms with the goal of reducing the overall
logistics cost, delivery time and inventory cost along with carbon emission cost. The
association has 3 supplier firms: S1, S2 and S3; 4 warehouses: W1, W2, W3 and W4, and they
want to establish 3 new retail outlets: R1, R2 and R3. They transport the goods from suppliers
to retail outlets through warehouses by mode of conveyances. Products are transported
by 3 different conveyances E1, E2 and E3. For that reason, the non-negative weights of
conveyances for transportation cost, time and carbon emission are also taken into account.
Supportive hypothetical data of this phenomenon are designed. The availability at S1, S2 and
S3, and the demand of the firms R1, R2 and R3, are given. Further, the positions and weights
of the firms S1, S2 and S3, and W1, W2, W3 and W4 are also provided. Tables 6.1 and 6.2
represent the locations and weights of the supplier firms and warehouses, respectively. The
supply and demand of a product and their corresponding weights are given in Tables 6.3 and
6.4. Thereafter, Table 6.5 displays the weights and capacity of conveyances. Furthermore,
Tables 6.6 and 6.7 depict the parametric values of ordering cost.

Table 6.1: Positions and weights of the supplier firms.

Position (ui,vi) Weight (αi) Weight (βi)
S1 (2,16) 15 10
S2 (3,6) 13 13
S3 (14,24) 12 15

Table 6.2: Locations and weights of the warehouses.

Position (rk,sk) Weight (α ′
k) Weight (β ′

k)
W1 (7,12) 14 16
W2 (4,27) 13 12
W3 (19,27) 12 10
W4 (22,7) 20 14
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Table 6.3: Pay-off table (tk j,δk j).

R1 R2 R3 Supply (ak)
S1 (0.0,0.2) (0.7,0.3) (0.3,0.5) 20
S2 (0.1,0.3) (0.2,0.4) (0.7,0.3) 85
S3 (0.1,0.5) (0.5,0.4) (0.4,0.1) 30
S4 (0.0,0.3) (0.6,0.6) (0.4,0.1) 50
Demand (b j) 40 75 60

Table 6.4: Pay-off table (tik,δik).

(0.1,0.5) (0.4,0.4) (0.5,0.1) (0.4,0.2)
(0.6,0.2) (0.0,0.4) (0.4,0.4) (0.5,0.1)
(0.0,0.5) (0.3,0.3) (0.7,0.2) (0.1,0.5)

Table 6.5: Capacity & weight of con-
veyance.

Capacity
(cl)

Weight
(εl)

Weight
(ε ′l )

Weight
(ε ′′l )

30 0.6 0.1 0.2
70 0.3 0.4 0.3
75 0.1 0.5 0.5

Table 6.6: Pay-off table for parameters
(Aik).

5 4 5 2
2 2 6 3
4 4 8 5

Table 6.7: Pay-off table for parameters
(Gk j).

3 2 4
5 7 9
3 2 4
2 4 5

Here, the other input parameters are taken as follows:
Carbon emission tax γ = 0.4; purchasing costs as B1 = 15, B2 = 20, B3 = 10; holding
costs like t = 5, h11 = 2, h12 = 4, h13 = 5, h14 = 7, h21 = 8, h22 = 9, h23 = 11, h24 = 15;
deterioration costs such as D1 = 3, D2 = 2, D3 = 4, D4 = 5; screening costs as g1 = 5,
g2 = 6, g3 = 3, g4 = 4; demand rates for the goods like d11 = 10, d12 = 2, d13 = 4, d21 = 2,
d22 = 2, d23 = 4, d24 = 6, f1 = 10; fixed cost as f1 = 15, f1 = 20, f1 = 20.

6.5.1 Performance of the proposed procedure

The steps are required to solve MOST-LP:

Step 1: Initially, we choose three potential sites from Table 2 for three retail outlets.
Therefore, four possible cases appear which are displayed in Tables 6.8- 6.11.
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Table 6.8: Case 6.1.

Position (x j,y j)

R1 (7,12)
R2 (4,27)
R3 (19,27)

Table 6.9: Case 6.2.

Position (x j,y j)

R1 (4,27)
R2 (19,27)
R3 (22,7)

Table 6.10: Case 6.3.

Position (x j,y j)

R1 (19,27)
R2 (22,7)
R3 (7,12)

Table 6.11: Case 6.4.

Position (x j,y j)

R1 (22,7)
R2 (7,12)
R3 (4,27)

Step 2: The distances (that is, for each individual Euclidean function) are calculated among
the allocated outlets and the rest firm site for each possible case. Then, the smallest distance
is picked up for each individual Euclidean function from the mentioned possible cases. Thus,
the initial potential sites of the retail outlets are as follows: Case 6.4 for the transportation
cost function, Case 6.3 for the transportation time function, and Case 6.4 for the carbon
emission function.

Step 3: Now, the distances among suppliers, warehouses and initially allocated outlets are
calculated, and then these are taken as a logistics cost, delivery time and carbon emission
coefficients. Thereafter, LINGO 17.0 software is utilized to get the individual feasible
solution:
For Model 6.3:
w1

341 = 30, w2
341 = 10, w2

342 = 10, w2
312 = 20, w2

323 = 30, w3
123 = 30, w3

322 = 45 with all
other wl

ik j = 0.
For Model 6.4:
w1

122 = 25, w1
123 = 5, w2

121 = 10, w2
123 = 35, w2

342 = 5, w2
313 = 20, w3

131 = 30, w3
342 = 45

with all other wl
ik j = 0.

For Model 6.5:
w1

322 = 30, w2
322 = 45, w2

133 = 25, w3
123 = 10, w3

141 = 40, w3
313 = 20, w3

323 = 5 with all other
wl

ik j = 0.

Step 4: The C++ programming language is executed to obtain the individual optimal loca-
tions for the outlets and they are as follows:
(x1,y1)

(1) = (22.000,7.000), (x2,y2)
(1) = (7.421,12.355), (x3,y3)

(1) = (4.000,27.000),
(x1,y1)

(2) = (18.736,27.000), (x2,y2)
(2) = (21.936,7.072), (x3,y3)

(2) = (4.330,25.350),
(x1,y1)

(3)=(22.000,7.000), (x2,y2)
(3)=(4.000,27.000) and (x3,y3)

(3)=(8.713,20.867).

Step 5: Employing the aforementioned solutions (i.e., Steps 3 and 4), a payoff table (for
details see the IFP methodology) are computed, and the entries are:
U ′

1 = max{9998.322,14971.328,23372.049}, L′
1 = 9998.322;
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U ′
2 = max{22823.112,13925.662,21140.882}, L′

2 = 13925.662;
U ′

3 = max{19528.219,19895.936,18851.763}, L′
3 = 18851.763.

Step 6: Therefore, the upper and lower values depend on IFP are estimated which are as
follows:
For Z1(x,y,w): U ′

1 = 23372.049, L′
1 = 9998.322,

For Z2(x,y,w): U ′
2 = 22823.112, L′

2 = 13925.662,
For Z3(x,y,w): U ′

3 = 19895.936, L′
3 = 18851.763.

Step 7: Using LINGO 17.0 software, the simplified intuitionistic fuzzy optimization
model (i.e., Model 6.7) is solved. The compromise solution of MOST-LP are as follows:
w2

111 = 19.106, w3
111 = 0.336, w3

121 = 8.926, w2
122 = 10.550, w3

122 = 5.459, w1
123 = 30.000,

w3
123 = 29.238, w2

133 = 0.305, w2
131 = 7.457, w3

131 = 3.246, w2
132 = 1.897, w3

132 = 7.094,
w2

142 = 19.165, w3
142 = 1.086, w2

223 = 0.456, w3
221 = 0.370, w2

211 = 0.558, w2
242 = 0.513,

w3
242 = 0.845, w2

342 = 9.991, w3
342 = 18.391 with all other wl

ik j = 0, θ = 0.9, µ = 0.1,
(x1,y1) = (7.091,12.352), (x2,y2) = (121.884,7.167), (x3,y3) = (3.936,27.018), Z1 =

11315.716, Z2 = 147779.317, Z3 = 19757.347.

6.6 Experimental result and discussion

A numerical study is presented for analyzing the stated problem and solution procedure. In
this procedure, we first find the initial allocations, optimal feasible solutions, optimum loca-
tions, ideal solutions (individual minimum), and anti-ideal solutions (individual maximum),
and then we calculate the upper and lower bounds for membership and non-membership
functions. Subsequently, the intuitionistic fuzzy optimization model for MOST-LP is de-
signed to get the Pareto-optimal solution. The derived result of the numerical experiment
shows that the overall conveyance cost and time, and inventory cost along with carbon
discharge cost are minimized, and the best locations of the retail outlets are established with
a global degree of satisfaction; here it is 0.9, and dissatisfaction level is 0.1. In fact, when
the carbon emission cost increases (decreases), the profit of firms will be less (more). For
that reason, the industrial organization will always be concerned about carbon emission due
to the transportation of goods. In this way, the stated formulation can control the effusions
which also directly affect the environment to reduce pollution. The optimal positions of
outlets for this numerical study are shown in Fig. 6.3. The heuristic is coded in C++, the IFP
is coded in the LINGO optimization tool (version 17.0), and the experiment is performed on
a computer with Intel Core i5-3210M CPU @2.50 GHz and 4 GB RAM. In contrast, the
obtained result is also verified with Mac terminal on a personal computer (1.8 GHz Intel
Core i5 with 8 GB 1600 MHz DDR3 RAM).
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Fig. 6.3: The locations of existing and potential facilities in the example.

6.7 Sensitivity analysis

Here, we check the sensibility of a Pareto-optimal solution in MOST-LP by varying the
parameters. For MOST-LP, the complexity occurs when the ranges are calculated after
parametric changes to the object that the obtained compromise solution still remains the
same. Indeed, the difficulty enlarges when the decision variables and restrictions are large in
number. Because of that, a simple procedure is already carried out in Chapter 3 (see Section
3.5) to analyze the sensitivity of parameters. Here, the same steps (Steps 1- 4) are repeated
to obtain the validity ranges of the parameters in MOST-LP .

Sensitivity analysis for supply, demand and capacity parameters:
Let us consider that ak be converted to a∗k (k = 1,2,3,4), b j be changed to b∗j ( j = 1,2,3)
and cl be changed to c∗l (l = 1,2,3). Using the above steps, the values of a∗k , b∗j and c∗l
are easily computed, which is displayed in Table 6.12. In fact, the ranges of the alternate
parameters in MOST-LP are likewise achieved comparably.

Table 6.12: The range of supply, demand and capacity parameters for the example..

Real values of ak, b j and cl Changing values of ak, b j and cl
a1 = 20 20 ≤ a∗1 ≤ 35.5
a2 = 85 85 ≤ a∗2 ≤ 116.3
a3 = 30 30 ≤ a∗3 ≤ 44
a4 = 50 50 ≤ a∗4 < ∞

b1 = 40 15 ≤ b∗1 ≤ 40
b2 = 75 31 ≤ b∗2 ≤ 75
b3 = 60 15 ≤ b∗3 ≤ 60
c1 = 30 30 ≤ c∗1 < ∞

c2 = 70 70 ≤ c∗2 ≤ 95
c3 = 75 75 ≤ c∗3 ≤ 100
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6.8 Managerial insights

The fact that MOST-LP is a decision making application-based study, makes it essential to
get deep insights into the attributes of the compromise solution. Here, we gather information
about the compromise solution obtained when utilizing Model 6.1 into Model 6.7. From
the outcome, the DM can choose the Pareto-optimal solution from Model 6.7. A brief
discussion of the logistics cost, delivery time and inventory cost along with carbon emission
are displayed. From that discourse, the DM can determine the best potential sites so that
he/she can easily distribute the commodities with the least expense and time just as the
carbon discharge. On the other hand, there is an inspection of carbon tax policy, from that
the DM can choose when their profit will be less (more). As a result, he/she can balance their
profits, and environmental issues, which may lead to a gain of reputation in the worldwide
market. Again, the machine execution of the vehicles is displayed in conveyance cost and
discharge. In case the machine execution is good, then the overall logistics cost along with
carbon discharge will be reduced. Hence, the DM can easily select which kinds of vehicles
are better for distributing products. Once more, the time for the barriers of the paths is also
incorporated in conveyance time, so that the DM can calculate a more accurate delivery time
which improves his/her services to the customers. Now, the following are the deep insights
for the organization which significantly defined in our model:

• The model works as a trade-off between locations problems and inventory manage-
ment. As inventory is fundamental for the development of a company, therefore, the
model ensures a strong economic investment for maximizing the profit of a company.

• When the probability of total inventory cost and fixed set up cost increases, the number
of constructed facilities are also increasing.

• This integrated model leads to significant economic savings which indirectly drive us
to reinvest in another aspect of the model.

• If one spread customer’s demand in more facilities, it will help to reduce the number
of the shipment and the total transportation cost.

• The model gives a full understanding of the relationship between the decisions associ-
ated with facility locations, inventory, transportation cost and time.

• The model adds a managerial insight which helps the industry to obtain a financial
surplus at an optimal level.

Ultimately, we can say that this study will be operative for the DM to make the decisions
about the best potential sites and distribute the commodities simultaneously.
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6.9 Conclusion

In this research work, we have introduced an unprecedented formulation of integrated
supply chain management and location decisions with the objects of reducing the overall
logistics cost, shipping time and inventory cost along with carbon emission cost in a solid
transportation network. At the same time, it also asks the optimal locations for the potential
facilities as well as the amounts of distributed goods by different transportation modes
simultaneously. To the best of the authors’ knowledge, there is no research so far integrating
by the FLP, inventory management and STP in a multi-objective environment. In addition, a
hybrid approach is introduced to solve the stated formulation in a successful way. Thereafter,
the aforementioned model and solution procedure have been validated by a numerical
example. Therefore, the decisions regarding reducing carbon dioxide due to transportation
systems are also discussed. The characteristic of the optimal compromise solution is
described by two propositions. In fact, this study of decision making will definitely help the
DMs to deal with the other multi-objective decision making applications such as production-
inventory system, green supply chain model, financial and further applications.


