<u>LIST OF FIGURES</u>

Chapter I:

Figure 1: α -amylose, the linear polymer of α -D-glucose.

Figure 2: Cellulose, β -(1 \rightarrow 4) linked glucose polymer.

Figure 3: Chitosan

Figure 4: Pectin: α -(1 \rightarrow 4)-linked galacturonic acid or its ester in the backbone.

Figure 5: Heparin, sulfated $(1\rightarrow 4)$ -linked hexosamine and uronic acid.

Figure 6: Hyaluronic acid.

Figure 7: Photograph of the fruit bodies of an edible mushroom, *Termitomyces clypeatus*.

Figure 8: Photograph of the fruit bodies of an ectomycorrhizal edible mushroom, *Tuber rufum* (Pico) var.

Figure 9: Photograph of the fruit bodies of wild edible mushroom Lentinus sajor-caju

Chapter III:

Figure 1(a): Gel permeation chromatogram of crude polysaccharide isolated from an edible mushroom *T. clypeatus* using Sepharose 6B column.

Figure 1(b): Determination of molecular weight of PS by gel permeation chromatography in Sepharose 6B column.

Figure 2: ¹H NMR spectrum (500 MHz, D_2O , 30 ⁰C) of the PS isolated from the edible mushroom *T. clypeatus*.

Figure 3: (a) ¹³C NMR spectrum (125 MHz, D₂O, 30 $^{\circ}$ C) (b) with insert of the part of DEPT-135 spectrum (D₂O, 30 $^{\circ}$ C) of the PS isolated from the edible mushroom *T. clypeatus*.

Figure 4(a): HSQC spectrum (D_2O , 30 ^{0}C) of anomeric part of the PS isolated from the edible mushroom *T. clypeatus*.

Figure 4(b): HSQC spectrum (D_2O , 30 ^{0}C) of other than anomeric part of the PS isolated from the edible mushroom *T. clypeatus*.

Figure 5: Part of NOESY spectrum of the PS of the edible mushroom *T. clypeatus*. The NOESY mixing time was 300 ms.

Figure 6: ¹³C NMR spectrum (125 MHz, D₂O, 30 0 C) of the Smith-degraded glycerol containing tetrasaccharide isolated from the edible mushroom *T. clypeatus*.

Figure 7(a): Ferrous ion chelating ability of the PS isolated from the edible mushroom *T*. *clypeatus*. All the results are the mean \pm SD of three separate experiments, each in triplicate.

Figure 7(b): reducing power of the PS isolated from the edible mushroom *T. clypeatus*. All the results are the mean \pm SD of three separate experiments, each in triplicate.

Figure 7(c): superoxide radical scavenging activity of the PS isolated from the edible mushroom *T. clypeatus*. All the results are the mean \pm SD of three separate experiments, each in triplicate.

Chapter IV:

Figure 1(a): Gel permeation chromatogram of crude polysaccharide isolated from an edible mushroom *T. rufum* using Sepharose 6B column.

Figure 1(b): Determination of molecular weight of PS-II by gel permeation chromatography in Sepharose 6B column.

Figure 2: ¹H NMR spectrum (500 MHz, D₂O, 30 °C) of PS-II, isolated from an edible mushroom *T. rufum*.

Figure 3: ¹³C NMR spectrum (125 MHz, D₂O, 30 °C); (inset: Part of DEPT-135 spectrum (D₂O, 30 °C) of the PS-II, isolated from an edible mushroom *T. rufum*).

Figure 4(a): HSQC spectrum (D₂O, 30 °C) of anomeric part of PS-II isolated from an edible mushroom *T. rufum*.

Figure 4(b): HSQC spectrum (D₂O, 30 °C) of other than anomeric part (inset: C-6/H-6 correlation of α -L-Fuc*p* moiety) of PS-II isolated from an edible mushroom *T. rufum*.

Figure 5: Part of ROESY spectrum of PS-II from an edible mushroom *T. rufum*. The ROESY mixing time was 300 ms.

Figure 6(a): The part of HMBC spectrum for anomeric protons of PS-II isolated from an edible mushroom *T. rufum*.

Figure 6(b): the part of HMBC spectrum for anomeric carbons of PS-II isolated from an edible mushroom *T. rufum*. The delay time in the HMBC experiment was 80 ms.

Figure 7: ¹³C NMR spectrum (125 MHz, D₂O, 30 °C) of the Smith-degraded glycerol containing monosaccharide of PS-II isolated from an edible mushroom *T. rufum*.

Figure $8(a_1)$: Cytotoxicity of PS-II against human lymphocytes, $8(a_{II})$: IC₅₀ value of PS-II against human lymphocytes 8(b): Changes of Glutathione (Reduced and Oxidised) of PS-II against human lymphocytes, 8(c): Formation of membrane lipid peroxidation in terms of Maloneldehyde (MDA) of PS-II against human lymphocytes, 8(d): Generation of nitric oxide (NO) of PS-II against human lymphocytes, 8(e): Reactive Oxygen species (ROS) generation of PS-II against human lymphocytes.

Chapter V:

Figure 1: Gel permeation chromatogram of crude polysaccharide isolated from an edible mushroom *L. sajor-caju* using Sepharose 6B column.

Figure 2: Determination of molecular weight of PS-I by gel permeation chromatography in Sepharose 6B column.

Figure 3: ¹H NMR spectrum (500 MHz, D₂O, 30 °C) of PS-I, isolated from an edible mushroom *L. sajor-caju*.

Figure 4(a): ¹³C NMR spectrum (125 MHz, D₂O, 30 °C) of the PS-I, isolated from an edible mushroom *L. sajor-caju*.

Figure 4(b): Part of ¹³C NMR and DEPT-135 spectrum (D₂O, 30 °C) of the PS-I.

Figure 5(a): HSQC spectrum (D₂O, 30 °C) of anomeric part of PS-I isolated from an edible mushroom *L. sajor-caju*.

Figure 5(b): HSQC spectrum (D₂O, 30 °C) of other than anomeric part (Inset: C-6/H-6 correlation of α -L-Fuc*p* moiety) of PS-I isolated from an edible mushroom *L. sajor-caju*.

Figure 6: Part of ROESY spectrum of PS-I from an edible mushroom *L. sajor-caju*. The ROESY mixing time was 300 ms.

Figure 7: ¹³C NMR spectrum (125 MHz, D₂O, 30 °C) of the Smith-degraded glycerol containing trisaccharide of PS-I isolated from an edible mushroom *L. sajor-caju*.

Figure 8: Antioxidant activities of polysaccharides isolated from *T. clypeatus*, *T. striatus*, and PS-I (*L. sajor-caju*) (a) DPPH radical scavenging activity, (b) Hydroxyl radical scavenging activity, (c) Reducing power, (d) Chelating ability. Results are the mean \pm SD of five separate experiments, each in triplicate.