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Appendix  

Panel Analysis: Fixed and Random Effect Model 

One of the major benefit of panel data over cross section data is that panel data set 

will provide the investigator abundant flexibility in modeling behavior differences 

across individuals. The regression model is of the form 

  yit = x
/
 itβ + z

/
iα + εit                       …1 

       = x
/
 itβ + ci + εi                    …2 

Let there are K regressors in xit, without a constant term. The heterogeneity, or 

individual effect is z
/
iα where zi contains a constant term and a set of individual or 

group specific variables, which may be observed and ci is unobserved.  The main 

objective of the analysis will be consistent and efficient estimation of the partial 

effects, 

 β = ∂E[yit | xit]/∂xit            …3 

Now foe estimating the Panel regression analysis one can consider either  

I) Fixed Effect Model 

Or 

II) Random Effect Model 

Fixed Effects: If zi is unobserved, but correlated with xit, then the least squares 

estimator of β is biased and inconsistent as a consequence of an omitted variable. In 

case pf fixed effect model one can consider the following model  
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yit = x/
 itβ + αi + εit         …4 

Where αi = z /
iα, captures all the observable effects and specifies an estimable 

conditional mean. For fixed effects model, αi stands for a group-specific constant 

term. It may be pointed out that “fixed” denotes the correlation between ci and xit in 

equation 2, note that ci is nonstochastic. 

Random Effects: When unobserved individual heterogeneity, can be assumed to be 

uncorrelated with the included variables, then one can consider the following model  

yit = x/
 itβ + E [z/ iα] + {z/

 iα − E [z/ iα]} + εit         …5 

      = x/ itβ + α + ui + εit          …6 

That is, as a linear regression model with a compound disturbance that could be 

consistently, albeit inefficiently, estimated by least squares. The random effects 

approach specifies ui to be a group-specific random element. The fundamental 

difference between random and fixed effects is whether the unobserved individual 

effect represents elements which are associated with the regressors or not.  

Hausman’s test for the Random Effects Model 

For estimating the model under Panel set-up one can consider two types of 

specification, i) Fixed Effect Model or ii) Random Effect Model. Now to test which 

specification is better one have to consider the Hausman‟s test which says that the 

random effects are free of the right hand side variables. The test is on the basis of the 

conjecture that under the hypothesis of zero correlation between the right hand side 

variables and the random effects are consistent estimators but fixed effects is 

inefficient. 
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The test is on the basis of the following Wald statistic: 

W = [FE - RE] 
-1

[FE - RE] 

where Var[FE - RE] = Var[FE] - Var[RE] =  

W is distributed as 
2
 with (K-1) degrees of freedom where K is the number of 

parameters in the model. If W is larger than the tabulated value, then the null 

hypothesis is rejected i.e. of “no correlation between the right hand side variables and 

the „random effects‟ and in this case the fixed effects model turned out to be the better 

one.  

Seemingly Unrelated Regression (SUR)  

SUR is appropriate when all the right hand side regressors X are assumed to be 

exogenous, and the errors are heteroscedastic and contemporaneously correlated so 

that the error variance matrix is given by .   

Zellner‟s SUR estimator of β takes the following form: 

 

Where  is a consistent estimate of ∑ with typical element sij, for all i and j.  

If autoregressive terms are incorporated in the equation, then the equation as below is 

estimated: 

 



348 

 

where  is assumed to be serially independent, but maybe contemporaneously 

correlated across equations. Now, generalized least squares (GLS) specifications can 

be estimated which accounts for several patterns of correlation amongst the residuals.  

In the present chapter contemporaneous covariance is considered.  

Cross Section SUR or Contemporaneous Covariances: This class of covariance 

structures permits for conditional correlation between contemporaneous residuals for 

cross section i and j, but confines residuals in different times to be uncorrelated, 

specifically that: 

E( , E(  for all i, j , s and t with s≠t.  

The error terms may be thought of as cross-sectionally correlated. Alternatively, this 

error structure is at times denoted as clustered by period since observations for a given 

period are correlated. Using the period specific residual vectors one may rewrite this 

assumption as follows: 

E(  

For all t, where  

=  

This is a cross section specification because it encompasses covariances across cross 

section as in a SUR type framework. Cross section SUR GLS on this specification is 

merely the feasible systems GLS estimator where the residuals are both cross 

sectionally heteroskedastic and contemporaneously correlated.  
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Eviews employs residual from stage 1 estimates to form an estimate of . In stage 

2, they perform feasible GLS. 

White Cross-Section or Cross Section Heteroscedasticity: The White Cross-

Section method is based on the assumption of contemporaneously (Cross-Sectionally) 

correlated (Period Clustered) errors. The method considers pool regressions as a 

multivariate regression (with an equation for each cross section) and calculates robust 

standard errors for the equations system. The coefficient covariance estimator is as 

follows: 

 

Where the leading term is a degrees of freedom adjustment contingent on the total 

observations in the stacked data,  is the total stacked observations and  is the 

total estimated parameters. 

Wald Test  

The Wald test statistic is  which follows  distribution with k 

degree of freedom. 

Where, k= Number of restrictions in the model under H0, RSSR= Residual sum of 

squares of the model under H0, RSSUR= Residual sum of squares of the model under 

H1, N=Number of observations, K=Number of parameters in the model under H1. 


