MSC/IVS/PHY/PH2201 A&B/08

2008

PHYSICS.

PAPER-PH 2201 A & B

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP-A

(Quantum Mechanics)

[*Marks*: 20]

Answer Q. No. 1 & 2 and any one from the rest

(Turn Over)

1. Answer any two bits:

 2×2

- (a) Show the $1_p 1_s$ transition of an atom placed in a magnetic field \overrightarrow{B} along z-axis.

 (The 1_p and 1_s corresponds to s = 0)
- (b) Obtain an expression for phase shift δ_0 for s wave scattering by the potential

$$V(r) = \begin{cases} \infty & \text{for } 0 \le r \le a \\ 0 & \text{for } r > a \end{cases}$$

- (c) Indistinguishability of identical particles lead to symmetric or antisymmetric nature of wave functions. — Justify.
- (d) If the s-wave phase shift suffered by an extremely low energy electron (0.001 a.u. of energy) by a spherically symmetric potential be 10° , then calculate the scattering length and total scattering cross-section of the scattering process. In a.u. $e = m = \hbar = 1$.

2. Answer any two bits:

3 x 2

(a) Two non-interacting electrons having same spin state are in a infinite potential well defined by

$$V(x) = \begin{cases} 0 & \text{for } -a < x < a \\ \infty & -a > x > a \end{cases}$$

Write the Hamiltonian for the system. Find the lowest energy state and the corresponding wave function.

(b) Prove the optical theorem

$$\sigma_{\rm tat} = \frac{4\pi}{k} I_m [f(0)].$$

Where symbols carry their usual meaning, $I_m[f(0)]$ in the imaginary part of forward scattering amplitude.

(c) Find an expression for estimating the potential energy in a multielectron system using Thomas – Fermi model of the atom.

- 3. (a) Obtain an expression for scattering amplitude using integral equation and Green's function. Simplify the expression using first Born approximation for the wave function.
 - (b) Derive Rutherford's scattering formula for scattering from a pure Coulomb potential

$$V(r) = \frac{-zz'e^2}{r} e^{-\alpha r}.$$

- 4. (a) Write the Hamiltonian for an alkali atom in presence of a magnetic field taking into account the spin-orbit term.
 - (b) In absence of the magnetic field calculate the doublet separation for states with definite I(I≠0). What will be the effect of spin orbit term for the state with I=0.
 - (c) Find the splitting of the energy level of the ${}^2p_{3/2}$, ${}^2p_{1/2}$ and ${}^2s_{1/2}$ states in presence of the magnetic field. Show all allowed transitions involving the above transitions.

GROUP-B

(Statistical Mechanics)

[Marks: 20]

Answer any two questions

- 1. (a) Derive expressions for the pressure, specific heat at constant volume and the number of particles in the excited states of a Bose gas below the condensation temperature.
 - (b) Find out an expression for free energy of F.D gas under magnetic quantization. $(2 \times 3) + 4$
- (a) Discuss Bragg William approximations and show that the equilibrium value of long range order parameter is given by

$$L(T) = \tan h \mu_0 \beta H_{\text{eff}}$$

(b) From the above expression also prove that the temperature dependance of long range order parameter predicts the 2nd kind phase transition as well as characteristic of MFA (mean field approximation).

- 3. (a) Find out an expression for the carrier statistics for 2D Fermi gas.
 - (b) From Planck's radiation law formulate Rayleigh Jean's and Wien's laws respectively.
 - (c) Prove that BE condensation is a 1st order phase transition (According to Ehrenfest) and 3rd order phase transition (according to Landaue).

 3+3+(2+2)