Total Pages-5

PG/IIS/PHS-202/15

M.Sc. 2nd Semester Examination, 2015

PHYSICS

PAPER – PHS-202 (A & B)

Full Marks: 40

Time : 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

PHS-202(A) [*Marks* : 20]

1. Answer any *two* of the following : 2×2

- (a) A superconducting tin has a critical temperature of 3.7 K in zero magnetic field and a critical field of 0.0306 T at OK. Find the critical field at 2 K.
- (b) Draw the variation of B and M with H for a superconductor.

(Turn Over)

(2)

- (c) What is Josephson effect ?
- 2. Answer any *two* of the following :

 3×2

- (a) Explain what do you mean by complex dielectric constant.
- (b) The space between a parallel plate capacitor is filled with a dielectric having dielectric constant $\epsilon'_r = 2.5$ when subjected to a 2 volt alternating voltage at 1 MHz. The loss tangent at this frequency is 4×10^{-4} calculate the imaginary part of dielectric constant (ϵ''_r) at this frequency.
- (c) What is Meissner effect? Show how London equations lead to this effect.

3. Answer any one of the following :

 10×1

(a) Consider the total current in a superconductor as the superposition of the contributions to the current from the superconducting electron pairs and from the normal electron, hence determine the propagation characteristics at finite temperature of a superconductor in an

PG/IIS/PHS-202/15

(Continued)

electromagnetic field. Derive the expression for $\in'(w)$ and $\in''(w)$ for electronic polarizability in presence of an ac field. Show the variation $\in'(w)$ and $\in''(w)$ with frequency for electronic polarizability. 5+3+2

(b) Derive the expression for current density for cooper pair tunneling. Explain a.c. Josephson effect and show how the value of $\frac{\hbar}{2e}$ can be measured from a.c. Josephson effect. 3+5+2

PHS-202(B)

[Marks : 20]

Answer Q. No. 1 & 2 and any one from the rest

1. Answer any two questions :

 2×2

(a) A semiconductor is lightly doped with p type impurity. Prove that value of minimum conductivity is $2qn_i\sqrt{\mu_n\mu_p}$ where n_i is the intrinsic carrier concentration and μ_n, μ_p are electron and hole mobilities.

PG/IIS/PHS-202/15

(Turn Over)

	<i>(b</i>)) Show the variation of $\ln \sigma vs \frac{1}{T}$ plot (from
		low temperature to high temperature range) for a non-degenerate semiconductor. Also explain the different portions of the plot.
	(c)	What is meant by Direct recombination and indirect recombination ?
2.	An	swer any <i>two</i> questions : 3×2
	(<i>a</i>)	An abrupt junction diode has a capacitance of 30 pF when reverse biased at 6 V. What is the decrease in capacitance if the voltage is increased by $2 V$?
	(b)	Explain population inversion for lasing action in $p-n$ junction under forward bias (using band diagram).
		A semiconductor contains acceptor and hole concentration is $10^{22}/m^3$. Assume that effective density of states in the valence band is $10^{25}/m^3$. How far above the valence

band in eV the Fermi energy E_F lies at 300 K?

PG/IIS/PHS-202/15

(Continued)

- 3. (a) Derive Einstein relation assuming a *p*-*n* junction under equilibrium condition.
 - (b) Find also the expression of barrier potential in a *p*-*n* junction under equilibrium condition.
 - (c) Explain what is meant by Varicaps. 5+3+2
- 4. (a) Describe in details photoconductivity in a semiconductor and hence find an expression of growth of current.
 - (b) What is meant by quadratic recombination and hence find an expression of carrier density when light is switched off?

PG/IIS/PHS-202/15

MV-150