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ABSTRACT

Supposed = (X, E) is a graph. A Roman dominating function (RDF)8ofs a function
g:X - {0,1,2} such that every verten for whichg(m) = 0 has a neighborwith g(s) =

2. The weight of an RDkg is w(m) = Y,,ex g (m). The Roman domination number
(RDN) of a graph®, denoted by, (), is the minimum weight of all possible RDFs. In
this study, we define RDF on fuzzy graph (FG). Puipose is to develop a notion of the
RDF and also to present some basic definitionstioots, remarks, and proofs related to
RDF on FGs.
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1. Introduction

lan Stewart discussed the strategy of Emperor @otise for defending the Roman
Empire. Cockayne et al. (2004) introduced the motibRoman domination in grapih].
Akram [2] presented some results on the strong Roman ddarinaamber (RDN) of
graphs. Roushini leely pushpal,4] defined new notions of Roman domination in
graphs. Varieties of Roman domination Il are intreed by Chellal[5].

Graphs, from ancient times to the present day, hkyed a very important role in various
fields, including computer science and social nekaoso with the help of the vertices and
edges of a graph, the relationships between obgectelements in a social group can be
easily introduced. But, some phenomena in our Iheege a wide range of complexities
that make it impossible for us to express certaiifhese complexities and ambiguities
were reduced with the introduction of FSs by ZajgghThe subject of FGs was presented
by Rosenfeld7]. An FG has good capabilities in dealing with pevb$ that cannot be
explained by weight graphs. Somasundaram discusg&], the concept of domination
and determines the domination number for sevemyfgraphs. Prassanfig] studied
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domination in FGs. Ghaffafil0] discussed the Roman domination problem with uagert
positioning and deployment costs. The definitiom &foman dominating function is given
implicitly in [11,12]. Roman domination in graphs has been studiedgfample in
[13 — 19]. Some results of FGs were introducedlaf — 33].

Supposeéb = (X, E) is a graph of ordgX| = n. For any vertexn € X, the open
neighbourhood ofn is the seft(m) = {s € X|sm € E} and the closed neighbourhood of
m is the seth[m] = N(m) U {m}. The degree ofn, denoted byleg(X), is the total
number of neighbours af. In other wordsleg(m) = |9t(m)|. For a se® < X, the open
neighbourhood i$t(&) = U,,c¢ and the closed neighbourhoodigs] = N(ES) U S. A
subsets € X is a domination set(DS) &, if, for any vertexn € X — &, there exists a
vertexs € & such thatns € E. The DN of®, is the minimum cardinality of DS and is
denoted byo(®). A DS of cardinalityo(®) is called g — set of®. A Roman dominating
function (RDF) of FG® is a functiong: X — {0,1,2} such that every vertex for which
g(@m) =0 has a neighbous with g(s) = 2. The weight of an RDFg is w(m) =

Ymex g (m).

A graph® is bipartite if the vertex set can be partitioftd two disjoint subsets
S; ands, such that the vertices i are only adjacent to verticesSp and vice versa. The
complete bipartite graph is denoted Ky, where|X| =S; U S, , [S1| =1,1S;] =5, S
andS, are independent sets and every vertes iis adjacent to every vertex .

More than 50 types of domination parameters hawn tstudied by different
authors. In this paper, we developed the conceRDdf on FGs and also, presented a new
definition of it.

2. Preliminaries
In this section, we present some preliminary reswhich will be used throughout the
paper.

Definition 2.1. Suppos« is a finite non-empty set, aifids a collection of all two-element
subsets oK. A graph is a pai®* = (X, E) whereX andE € X X X are the set of vertices
and the set of edges ®f, respectively.

Definition 2.2. Assume®* = (X, E) is a graph. A subsé of a vertex seX(®*) is DS
of a graph®*, if for every vertexn € X(6*) — D there exists a vertex € © such that
mn is an edge ob*. The domination number(DN)Y&*) of * is the smallest cardinality
of a DSD of G*.

Definition 2.3. An FG® = (¢, ) is a pair of functiorh: X — [0,1] andip: X X X — [0,1]
such that, for alin,n € X,

Y(m,n) < min{¢p(m), p(n)},
Definition 2.4. The ordep and sizey of the FG® = (¢, y) are described by:

pl= D oGm) , ld= ) G

. mex mneE . ,
Supposéb is an FG ork andS < X, then the cardinality o® is defined as:

8= > ¢m)

mes
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Definition 2.5. A path® of lengthl is a sequence of distinct verticgsx,, x5, ..., x; such
thaty(x,_q,x,) > 0,k =1,2,3,...,1. The degree of membership of a weakest edge is
defined as its strength. The strength of conneetgxihetween two vertices andn is
defined as the maximum of the strength of all pdtesveernm andn is denoted by
Y (m,n) or CONNg(m,n).

The strength of the connectedness between twacesrti andn in an FG® is

Y@ (m,n) = sup{y'(m,n):1=123,...}
where

Yi(m,n) = sup{Y(m,x1) AP (xq,x3) AP (xz, x3) A AP(x_1,n)}

Definition 2.6. An edgemn is called to be a strong edge (SE) (m,n) if y(m,n) =0
for eachn € X, thenm is named an isolated vertex.

An edge of an FG is named strong if its weighttieast as great as the strength
of the connectedness of its end vertices wherdilisted. Note thaCON Ng_,,,, (m, n) is
the strength of the connectedness betweemdn in an FG obtained fro® by deleting
the edgenn.

Definition 2.7. Assumenn is an edge in F®& then,

An edgemn is a — strong ifCON Ng_,,,,(m, n) < p(m, n).
An edgemn is § — strong ifCON Ng_ ., (m, n) = p(m, n).
An edgemn is § — strong ifCONNg_,,,,(m, ) > Y (m, n).

Therefore, an edgen is an SE if it is eithest —strong or —strong.

Definition 2.8. Two verticesn andn in an FG® are called adjacentif(m,n) > 0 and
m andn are named neighbours. The collection of all nedgitb ofm is denoted by (m).
An edgemn of an FG is named an effective edg@{fn,n) = ¢(m) A ¢(n). Thus,m
andn are named effective neighbours (EN). The setldMlof m is named EN ofn and
is shown byE9t(m). Also,n is named the strong neighbour (SNjoff edgemn is strong.
The set of all SNs afi is named the open SN of and is denoted b3,(m). The close
SN %t [m] is defined aSt;[m] = Ny(m) U {m}.

Definition 2.9. Supposéb is an FG an® < X, D is a DS if for eachn € X — D there
existn € D such that,

(ii)(m,n) is an SE.

(iDp(m) < p(n).

A DS of an FG minimum number of vertices is nanmad)iimum DS. The minimum DS
of an FGG is named the DN of an FG and is denotegif).

Definition 2.10. The weight of a strong domination set (S@Sk described adB(D) =
Ymep ¥ (m,n), such thatp(m, n) is the minimum weight(MW) of the SE incident on
The strong DN of an FG is as the MW of SDSs @ and is shown by (®). A minimum
SDS in an FGp is an SDS of MW.
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Definition 2.11. A Roman dominating function (RDF) on grafh = (X, E) is defined
as a functiorg: X — {0,1,2} satisfying the condition that every verteXor whichg(m) =
0 is adjacent to at least one vertexfor which g(n) = 2. The weight of an RDF is the
valueg (X) = Ymex g (m). The Roman domination number (RDN) of a gréishdenoted
by gor (6*), is the MW of RDFs ofs".

A graph®* is a Roman graph ipr(®*) = 20(6*) SupposeX,, Xy, Xy) is the
ordered partition ok induced byg, such thak, = {m € X|g(m) = k} andX, = [, for
k=0,1,2.

Note that there exists a 1-1 correspondence betweerunctionsg and the ordered
partition(X,, Xo, Xo) of X. d(m, n) is the distance between two vertieegndn in a graph
®* that is defined as the number of edges in thetssigpath connecting them.

Example 2.12. A graph®* = (X, E) with X = {zy, 25, 23, 24, Z5, Z¢ } IS shown in Fig 1. A

function g(z;):X —»{0,1,2} is defined. Assume g(z;) =0,g9(z;) =2,9(z3) =
0,9(z4) =1,9(z5) = 2.

@

©

The® = {z,,2,} is a DS of grapl®*. The DN of grapt®* is o(®*) = 2 . The RDN is
Pr(G) =2x14+1x1=3.

Figure 1. Roman graph

In Table 1, we show the essential notations.
Some essential notations.
Table 1; Some essential notations.

Notatior | Meaning

FS Fuzzy Se

FG Fuzzy Grap

DS Dominating Se

DN Domination Numbe
SE Strong Edg

SD¢< Strong Domination S
MW Minimum Weigh
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EN Effective Neighbc

SN Strong Neighbc

RDF Roman Dominating Functit
RDN Roman Domination Numb

3. Roman domination in fuzzy graphs
In this section, we defined a new notion of Romamihation in FGs.

Definition 3.1. Supposdb = (¢,y) is a FG ord* = (X, E). Assume a functiog: X —
{0,1,2} and let(X,, X1, X,) is a ordered partition of induced byg, whereX; = {m €
X|g(m) = 1} and|X;| = k; forl = 0,1,2.

A RDF on FG is defined as a functigrsatisfying the condition:

there exists a strong edge between every vertexwaish g(m) = 0 and one vertex with
g() = 2. Let¢p(m) be a membership degree of vertices, the weightRDF on FGb is
the valueg(X) = Y.mex g (m)¢p(m). The RDN of an FGH, denoted byoi(®), is the
MW of RDFs on®.

An FG® is a Roman FG iz () < 20(6).
Example3.2. Considel® is an FG orh* = (X, E). AssumeX = {c;, 3, 3,4, C5, C6} @nd

E = {c1€3,€1C4,C5C3,C5C4, C3C4, C3Cs5, C4Cs, C5C6 1 ANAD S X. TheD = {cy,c3,c4} is a DS
on FG in Fig 2. The DN of F® is ¢(®) = 0.9 . The strong edges is shown in Table 2.

0.3

Figure2: A fuzzy graph

Table 2. The strong edges
Strong edge | ¢yc, | €264 | €2€3 | €3C5 | €4C5 | C5Cq
value 02z |04 |0E /02 0E |04

Assume a functiog: X — {0,1,2}, and we consider

glc) =1, g(c) =0, glc3) =2, glca) =2, g(cs) =0, glcg) =1
Thus,
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1g(X0)| = z g(c)p(c) =1X02+2%x03+2%0.6+1x04=24
ci€EX

The RDN of FG® is g0z(6) =1 X 0.2 +2 x 0.3 + 1 x 0.4 = 1.2.

Theorem 3.3. For every FG G, we have 0 (®) < o (®) < 2p(6).
Proof: Supposgy = (X,, X1, X,) is agpg function andd is ag — set of®. ThenX; U X,
is a DS of and(X — D, 9, D) is an RDF. Therefore,

PO = ) pm< ) G(mgm) = P(®)

med meXx,UX,

But pz(0) < 2|D| = 2Xpep ¢ (M) = 2(6). U

Theorem 3.4. For any FG ® of order n, (®) = g5 (®), if and only if, thereis no strong
edge between every vertex in .

Proof: Assumeg = (X,, X1, X;) is agor — function the equalityp(®) = g (6) implies
that we have;

PO D pm= Y g+ Y < Y pm+2 ) B

meX,UX, meX, meX, mex, meX,
=D e+ ) 20m = ) gmetm + ) gmm) = p(6)
meX, meX, meX, meX,

Thus,|X,| = 0 and|X,| = 0, which implies thatX,| = n. Since,
Yimex, @ (M) = 2 Yinex, ¢ (M), andy e, ¢ (M) = 0.
Therefore oz () = Yex @ (M) = 0(6). O

Theorem 3.5. For any complete FG (CFG), £ (®) = 2k such that k = ming(m): m €
X.

Proof: Suppos&® = (¢, ) is a CFG of order n arpl(m) = ming(m,): m € X. Since in
CFG, any pair of vertices are adjacent fgra— functiong = (Xy, X1, X2), | X5 = 1. So,
if X, ={mgy}, such thatp(my) = min{¢p(m), m € X}. Then,pr(®) = Y nex P (M) =
2k. O

Theorem 3.6. Suppose g = (X,, X1, X,) isa g — function. Let ® isa FG, such that, for
alme Xy, 3y,w € N(m) and p(m) < dp(y) + p(w),

0] Then, G[X, ], the subgraph induced by X;, vim € X; , |:t(m)| < 1.

(i) Each vertex of X, is adjacent to at most two vertices of X;.

(iii) No edge of ® joins X; and X,.

(iv) X, isagp — setof ®[X, U X,].
Proof: (i) Supposen € X; is adjacent with two vertices, y € X;, whereg(m) = g(y) =
gw) =1, therefore o, = p(m) + ¢p(y) + p(w). By reassigningg(m) = 2, g(y) =
g(w) = 0 and keeping all other values gfto the same, we hayep = 2¢(m), In this
case, we find a new RDF with smaller weigh2df(m) < ¢p(m) + ¢(y) + ¢p(w), thus,

d(m) < o(y) + p(w).

(i) Supposevm € X, is adjacent to all verticeg w,x € X, where,g(m) =0,g(y) =
gw) = g(x) = 0. Therefore,gor = dp(x) + ¢p(y) + ¢p(w). By reassigningg(m) = 2,
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g) = glw) = g(x) = 0 and keeping all other values gfto the same, we haye, =
2¢(m), In this case, we find a new RDF with smaller iaig@¢p(m) < ¢(x) + d(y) +

p(w).

(iii) Suppose an edge joinm € X, with g(m) =2 andy € X; with g(y) =1. By
reassigningy(y) = 0 and keeping all other values gfto the same, we find a new RDF
with smaller weight, a contradiction.

(VJAssumem € X, with g(m) = 0 is adjacent to at least onee X, with g(y) = 2.
Therefore X, is a DS of the subgraph inducedXyyu X,. (J

Theorem 3.7. Let " = (X, E) and 6 = (X',E") aretwo FGswithX = X' andE € E'.
Then, 9 (6") < pr(6™)
Proof: Observe that any RDF 6 is an RDF of5*. (J

Theorem 3.8. AFG G isRoman if and only if hasa gop — function g = (X, X1, X,) with

|X1] =ny = 0.

Proof: Suppose® is an FG andg = (X,,X1,X,) is a fr — function of ®. From
Proposition 3.6(v) we know, the s8f dominates the séf, and the seX; N X, dominates
the setX, thus

p@)<| D dm|+| > dm|<| > dm|+2| D 0| =px©®)

meX, meX, meX, meX,
Since® is a Roman, we have,

20) =2| ) dm|+2| ) ¢ =@ =| > pm)|+2| > ¢m)

meX, meX, mex, meX,
Therefore|X;| = n, = 0.

Conversely, supposeg = (X, X1,X,) is a g — function of ® with |X;| =n, =0.

Therefore oz (®) = 2|Xmex, ¢ (m)|. SinceX; U X, is adjacent with all vertex d, it

follows thatX, is DS of®. Also, we know thak, is ag — set of®[X, U X,]. Therefore,
|Zmex, ® (M)| = $(6) andgpx(6) = 2(6). Hence® is a Roman grapt]

4. Conclusion

Graphs are simply models of relations. A graph isoavenient way of representing
information involving relationship between objedtbe objects are represented by vertices
and relations by edges. When there is vaguenedsg idescription of the objects or in its
relationships or in both, it is natural that we schée design an FG Model. In this paper, we
have introduced the basic set-up of Roman domindié-Gs. The existing research tends
to focus on special properties of this idea and fi@iper serves to build a foundation for
understanding various advanced problems. Also, efim&d a dominating set, minimum
dominating set and Roman domination function in~& Various results regarding the
Roman domination of FGs are discussed.
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